激光扩束镜

仪器信息网激光扩束镜专题为您提供2024年最新激光扩束镜价格报价、厂家品牌的相关信息, 包括激光扩束镜参数、型号等,不管是国产,还是进口品牌的激光扩束镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光扩束镜相关的耗材配件、试剂标物,还有激光扩束镜相关的最新资讯、资料,以及激光扩束镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光扩束镜相关的厂商

  • 本公司是一家专业从事激光产品研发的高科技公司,拥有雄厚的技术设计和生产能力,终身致力于为国内外客户提供品质优良、性能出众、价格有竞争力之产品。目前已开发出多种半导体激光产品,其中激光标线器是一种方便实用的标线工具。可广泛用于作服装钉钮点光源定位、裁布机裁布辅助标线、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位、裁床裁剪对格与对条、电脑开袋机标线等等。方便快捷、直观实用。。  产品主要包括:半导体激光器、激光准直光源、激光平行光管、激光标线仪、光学透镜、实验室教学光源、激光功率计等。  半导体激光器主要包括绿光(532nm)系列激光器、红光(635nm、650nm、780nm)系列激光器和红外(808nm、850nm、980nm)系列激光器。  激光准直光源主要包括:D-系列(点状光斑)激光器、L-系列(一字线)激光器、S-系列(十字线)激光器、T1-系列(功率可调)激光器、T2-系列(频率调制)激光器,P-系列(平行光管)激光器,B-系列激光标线仪。其中D-系列激光器光束发散度可达0.1mrad;L-系列激光器线宽最小可达0.3mm;调制(T2)激光器调制范围0-10KHz。P-系列激光平行光管口径可达40mm,光束发散度可达0.02mrad。  激光功率计可标定532nm、635nm、650nm、780nm、808nm、850nm、980nm、1100nm各波段,工作同时可监测电流。  我公司激光产品及光学产品可广泛应用于科研、工业、勘探、测量及医疗等领域。可以根据用户的特殊要求设计加工专用激光器及光学系统,也可以提供激光系统应用和特殊用途的批量供应。“团结、自信、坚韧、进取”是我们的企业宗旨,我们将一如既往地为用户提供高品质的产品。
    留言咨询
  • 昆山瑞博骏激光科技有限公司是一家专业从事激光行业配件产品的研发,生产和销售的高新科技企业,主要致力于激光打标机、切割机和焊接机等激光设备易损件的销售供应,主要产品有: Nd:YAG激光晶体棒、激光灯(氪灯、氙灯)、激光护目镜(激光眼镜、光子美容眼镜眼罩)、光学扫描振镜、聚焦镜、全反镜、输出镜、扩束镜、Q开关及驱动器 (声光Q开关、电光Q开关)、滤紫外管、调光相纸、倍频片、激光电源等 因为专业,所以卓越。公司始终坚持以市场为导向,以技术为核心,以服务为宗旨的方针,积极研发,生产满足客户需求的各类激光配件产品,专注于为客户提供更专业、更细致的激光技术服务。
    留言咨询
  • 北方光科激光技术(北京)有限公司成立于2009年,是一家集专业研发、生产、销售激光设备于一体的智能激光技术企业。公司生产的自主品牌“昂泰科”激光设备,涵盖激光熔覆、激光焊接、激光切割、激光打孔、激光打标和激光清洗等激光加工领域。公司设备受到国内外客户一致好评,远销俄罗斯、印度、奥地利等国家。 北方光科专注为客户提供工程机械、煤矿、化工、石油、能源科技等各行业的工艺配套解决方案。高速激光熔覆技术主要用于提高零件表面的耐磨、耐腐蚀、耐高温、及抗氧化等性能,从而达到表面改性或修复的目标,满足了对材料表面特定性能的要求。可实现对平板类、圆柱类及异形类工件的激光修复,为企业降低成本、节约材料、优化加工系统。公司激光设备产品系列从20w至8000w均可为广大企业专机定制,解决企业由复杂的工序转换成自动化生产加工提高工作效率。公司拥有一支优秀的管理团队,从企业创新到发展,核心团队始终保持凝聚力,积极进取。作为国内最早从事矿山行业智能化,信息化的一个群体,积累了丰富的技术及管理经验。
    留言咨询

激光扩束镜相关的仪器

  • 激光扩束镜 400-628-5299
    由两个或更多透镜组成,可以改变通过它的光束的尺寸和角偏向特性。扩束镜可以被用于 1) 在光束被聚焦之前扩大光束,从而得到更小的聚焦光斑;2)提高光束的准直特性。1.LBE系列激光扩束镜选型表:型号波长(nm)扩束倍数最大入光直径(mm)最大出光直径(mm)透过率L(mm)D(mm)接口D1LBE532-453241040>95%8045M22*0.75LBE532-553251030>95%8037M22*0.75LBE532-1053210730>92%8037M22*0.75         LBE633-3632.831030>95%8337M22*0.75LBE633-4632.841030>95%8337M22*0.75LBE633-5632.851030>95%8337M22*0.75         LBE1064-3106431030>95%8037M22*0.75LBE1064-4106441030>95%8037M22*0.75LBE1064-5106451030>95%8037M22*0.752.其他规格激光扩束镜(进口)A. 扩束镜(进口) 说明: 透镜结构:伽利略式2枚; 镀膜:防反射多层膜;选型表: 型号波长(nm)扩束倍数最大入光直径(mm)A(mm)B(mm)重量(kg)LBE-3400~7003&Phi 3.862.956.90.12LBE-5400~7005&Phi 2.761.955.90.12LBE-10400~70010&Phi 1.7127.9121.90.18LBE-3L780~8303&Phi 3.863.357.30.12LBE-5L780~8305&Phi 2.762.356.30.12LBE-10L780~83010&Phi 1.7128.8122.80.18LBE-3Y10643&Phi 3.863.857.80.12LBE-5Y10645&Phi 2.763.857.80.12LBE-10Y106410&Phi 1.7129.8123.80.18 尺寸图:B. 屈光度可调式激光扩束镜(进口)尺寸图:屈光度可调激光扩束镜(SIGMA)选型表:型号设计波长(nm)扩束倍数最大A(mm)安装螺纹C(mm)直径D(mm)BE-3-266266× 3.079.5(± 4)M34 P=148BE-4-266266× 4.090.5(± 4)M34 P=148BE-10-266266× 10.0173.0(± 4)M34 P=148BE-3-355355× 3.083.0(± 4)M34 P=148BE-4-355355× 4.094.5(± 4)M34 P=148BE-5-355355× 5.0125.0(± 4)M34 P=148BE-7.5-355355× 7.5134.0(± 4)M34 P=148BE-10-355355× 10.0181.0(± 4)M34 P=148LBED-3400~700× 3.042.0(+3,-2)M22 P=0.7526BE-4.1-V400~700× 4.162.0(± 3)M22 P=0.7526LBED-5400~700× 5.050.5(± 3)M22 P=0.7526BE-6-V400~700× 6.0102.0(± 3)M22 P=0.7536LBED-10400~700× 10.0109.5(± 3)M22 P=0.7536BE-12.6-V400~700× 12.6138.0(± 3)M22 P=0.7536BE-21-V400~700× 21.0241.0(± 3)M22 P=0.7546BE-2-LD780~830× 2.0053.0(± 4)M34 P=148BE-4-LD780~830× 4.0095.5(± 4)M34 P=148BE-5-LD780~830× 5.0125.5(± 4)M34 P=148BE-10-LD780~830× 10.0186.5(± 4)M34 P=148LBED-2Y1064× 2.049.0(± 4)M34 P=148BE-7-10641064× 7.0179.5(± 4)M34 P=148BE-10-10641064× 10.0188.5(± 4)M34 P=148 C. 扩束倍数可调的激光扩束镜 尺寸图及说明: 扩束倍数可调的激光扩束镜SIGMA选型表:型号设计波长(nm)扩束倍数最大入射光直径(mm)安装螺纹(mm)重量(kg)LBEZ632.8× 2.5 ~× 10&Phi 2M30× 10.74
    留言咨询
  • 西格玛激光扩束镜在简易实验中扩大激光光束的光束扩束器。已经调整固定在射入准直光束时,射出最佳的准直光束。所以只要直接入射激光光束,就可以得到简单扩大的准直光束。 光束扩束器的光学系统为没有胶合透镜的空气隙型透镜构造,因此,高能量激光也可以使用。 采用伽利略型透镜构造,减少了校正像差的透镜数量,缩短了光束扩束器的全长。 可见光型的扩束器,可以直接安装在He-Ne激光器(05-LHP)的射出口处。 西格玛激光扩束镜注意:?相对入射光轴倾斜方向安装光束扩束器时,从扩束器射出的光束将相对入射光轴倾斜射出。安装光束扩束器时要使入射光束垂直射入或请使用可以调整光束扩束器的倾斜角度的支架。?相反朝向使用光束扩束器时,不能形成光束口径缩小了的准直光线。请计算激光光束的发散角度或束腰的位置,使用其它适当的光学系统。?入射光束是发散光或收缩光时,射出光束可能不能变为准直光束。西格玛激光扩束镜外形图
    留言咨询
  • LEB系列激光扩束镜: 由两个或更多透镜组成,可以改变通过它的光束的尺寸和角偏向特性。扩束镜主要用于: 1) 在光束被聚焦之前扩大光束,从而得到更小的聚焦光斑;2) 提高光束的准直特性。 LEB系列激光扩束镜结构图 选型表: 型号波长(nm) 扩束倍数最大出光直径(mm) 透过率L(mm) D(mm) 接口D1 LBE532-4 532 4 30 >95% 80 37 M22×0.75 LBE532-5 532 5 30 >95% 80 37 M22×0.75 LBE532-10 532 10 48 >92% 127 57 M22×0.75 LBE633-5 632.8 5 30 >95% 80 37 M22×0.75 LBE1064-4 1064 4 30 >95% 80 37 M22×0.75 LBE1064-5 1064 5 30 >95% 80 37 M22×0.75
    留言咨询

激光扩束镜相关的资讯

  • 【综述】齿轮线激光三维测量研究进展与前景
    齿轮线激光三维测量研究评述石照耀, 孙衍强摘 要:齿轮线激光三维测量是实现三维全齿面数据快速采集的一项关键技术。这种方法弥补了传统测量技术依赖于齿面上有限数量的特征点和特征线的局限和小样本数据处理方法的不足,可真实反映复杂齿面的三维形貌,包括尺寸和修形等信息。本文介绍了线激光传感器的主要生产厂商以及传感器特定的设计与功能,揭示了线激光传感器在当代智能制造领域的突出作用和发展趋势。根据齿轮线激光三维测量技术应用场景和搭载设备的不同,综合比较了六种不同解决方案的特点及相关研究进展和发展态势。最后,总结了齿轮线激光三维测量面临的挑战,并从五个主要方面分析了齿轮线激光三维测量未来的研究前景。总之,这些进步将为齿轮线激光三维测量和相关领域提供新的机会,以开发满足广泛应用的创新技术和产品。关键词:齿轮;齿轮测量;线激光测量;线激光传感器;齿轮三维测量1 引 言 1923年,德国Zeiss公司发明了机械展成式渐开线检查仪,标志着齿轮精密测量的开始。一百年来,齿轮测量技术经历了纯机械式、电动式到CNC式的三代发展;目前处于向下一代齿轮测量跨越的关键阶段。传统的齿轮测量以齿面上少数“点”、“线”为基础,仅包含了复杂齿面的局部几何信息,用对局部几何信息的评价来替代对整个齿轮的评价,由此构筑了一系列齿轮精度标准的基础。虽然这种齿轮误差评价方式已形成体系,但这种“小样本”处理方法存在的固有垢病是显而易见的,难以反映整个齿轮真实的质量情况。新一代齿轮测量的主要特征就是齿轮全信息三维测量。目前,有两种主要力量推动齿轮测量技术的发展。一是齿轮产业发展对齿轮测量不断呈现出的新要求,二是不断进步的关联技术在齿轮测量领域的渗透。齿轮产业的新需求表现为齿轮质量的完整评价与性能控制、大批量齿轮的现场检测、特大特小齿轮的测量等,关联技术有复杂曲面三维测量、大数据处理、微电子、软件工程、云平台、误差修正等。这两股力量的深度交汇,推动了齿轮测量技术的快速发展,其测量方法分为两类,其一是基于齿轮测量中心或多维坐标测量机的接触式测量方法;其二为光学式非接触测量方法,诸如激光三角测量、激光全息术、CT扫描等。总体而言,接触式测量的精度高、测量效率低,测量技术相对成熟;而非接触测量的精度偏低、测量效率高。但后者快速获取所有轮齿的全部几何信息。近些年,光学式非接触测量方法在齿轮全信息三维测量中不断得到研究和应用。特别是,线激光测量作为一种典型的激光三角法,因测量效率高,已成为齿轮三维误差信息获取的一种主要方法,也是过去几年的研究热点。齿轮线激光三维测量方法获取到的三维齿面信息全面、数据完整,蕴含丰富的有价值而未解构的信息。本文论述了齿轮线激光三维测量方案及其国内外研究现状,分析齿轮线激光三维测量中的关键问题以及可能的解决方案,并展望了未来的发展趋势。2 研究现状2.1 齿轮线激光三维测量原理建立如图1所示的4个坐标系:齿轮坐标系σg、机器坐标系σ0、传感器坐标系σs和测量光线坐标系σl。图1 坐标系及其空间关系被测齿轮安装在测量仪器主轴上并随之回转,线激光传感器布置在被测齿轮的周向上,可以是一个传感器,也可以是多个传感器。被测齿轮的安装方式也不仅仅局限于图1所示的芯轴安装,也可以是卡盘等其他方式。仪器主轴的圆光栅回转角度信号作为外部编码器触发源,触发线激光传感器实时采集被测齿轮齿面的几何形貌信息。2.2 齿轮线激光三维测量方案自2015年起,陆续有齿轮线激光三维测量设备问世。目前,根据齿轮线激光三维测量技术应用场景和搭载设备的不同,国内外厂商提出了以下几种解决方案。2.2.1 基于齿轮测量中心的齿轮线激光三维测量方案以齿轮测量中心为主要搭载设备,在其现有多测头组件基础上新增加了一个线激光传感器,提出了基于齿轮测量中心的齿轮线激光三维测量方案:线激光传感器借助于三个直线运动轴在可测空间中实现任意位置移动,其角度位置可通过转接安装底座实现两个方向至少±90°范围内任意角度的调整;借助于齿轮测量中心回转轴的旋转运动,线激光传感器实时采集被测齿轮的齿面信息,并重构三维齿面模型。该测量方案的典型厂商和仪器包括:Gleason公司的300GMSL多传感器齿轮检测仪和Wenzel公司的CORE系列高速自动化光学扫描测量仪等。2.2.2 基于精密转台的齿轮线激光三维测量方案以精密转台为主要搭载设备,在其周边布置两个或两个以上的线激光传感器(测量每个齿面的传感器保证至少有一个),提出了基于精密转台的齿轮线激光三维测量方案:精密转台以给定速度做回转运动,回转角度信号作为外部触发源触发线激光传感器同步采集被测齿轮的齿面信息,经坐标变换和解耦分析后,可重构被测齿轮的三维齿面模型。该测量方案的典型厂商和仪器包括:HEXAGON公司的3D非接触现场型齿轮检测仪、+VANTAGE公司的3D非接触式齿轮检测仪和DWFRITZ Metrology公司的ZeroTouch系列齿轮在线检测仪等。2.2.3 基于综合测量仪的齿轮线激光三维测量方案以齿轮综合测量仪为主要搭载设备,被测齿轮的一侧装有标准齿轮用于综合测量,在另一侧增加一个或两个线激光传感器用于分析测量,提出了基于综合测量的齿轮线激光三维测量方案:同一个测量循环内,完成被测齿轮综合误差功能测量的同时,线激光传感器同步采集齿面信息进行分析测量。该测量方案的主要厂商和仪器包括:Gleason公司的GRSL型齿轮啮合测量仪等。2.2.4 基于加工机床的齿轮线激光三维测量方案以加工机床为主要搭载设备,新增加一个与机床加工刀具安装转接方式相同的线激光传感器,提出了基于加工机床的齿轮线激光三维测量方案:由于与机床加工刀具具有相同的安装转接方式,刀具能够实现的所有运动,新增加的线激光传感器同样可以完成。齿轮在加工完毕后无需卸下,只需将刀具更换为线激光传感器便可进行加工齿轮齿面数据采集,并完成齿轮三维重建和测量分析,保证了加工与检测的相同基准。该测量方案的主要厂商和仪器包括:DMGMORI公司为齿轮生产线配备的线激光传感器测量组件单元,适用于DMU85 FD monoBLOCK、DMC125 FD duoBLOOK等不同型号的加工机床等。2.2.5 基于关节臂的齿轮线激光三维测量方案以关节臂坐标测量机为主要搭载设备,紧靠着接触式测头手柄附加了一个线激光传感器,提出了基于关节臂的齿轮线激光三维测量方案:线激光传感器可随关节臂到达被测齿轮所处的可测区域并采集齿面信息,通过关节臂的坐标变换关系与解耦分析,重构被测齿轮的三维齿面模型。该测量方案的主要厂商和仪器包括:Faro公司的Quantum ScanArm便携式三维关节臂测量仪、Hexagon公司的ROMER便携式关节臂测量机和Nikon公司的MCAx+系列便携式三坐标测量仪等。2.2.6 基于三坐标测量机的齿轮线激光三维测量方案以三坐标测量机为主要搭载设备,在其现有的多自由度连接基座上加装一个线激光传感器,提出了基于三坐标测量机的齿轮线激光三维测量方案:线激光传感器借助于三坐标测量机的三个直线运动轴和多自由度连接基座在可测空间中实现任意位置移动和两个角度方向的任意角度调整;但必须配备精密回转台才能改善并提高齿轮线激光三维测量效率,降低三维齿面模型的重构难度。该测量方案的典型厂商和仪器包括:Hexagon公司的GLOBAL三坐标测量机和Nikon公司的配备L100/LC15Dx/XC65Dx的三坐标测量机等。2.2.7 北京工业大学石照耀教授团队的齿轮线激光三维测量方案石照耀教授团队自2015年起便开始了齿轮线激光三维测量技术及设备的相关研究,提出了两种齿轮线激光三维测量方案并研制了两套齿轮线激光三维测量仪器,如图2所示。图2 作者团队的齿轮线激光三维测量方案在不同应用场景下,线激光传感器搭载不同设备可实现被测齿轮三维齿面点云数据的快速获取,具有测量齿面信息全面、测量效率高等优点。基于精密转台、综合测量以及加工机床的齿轮线激光三维测量方案,适用于齿轮生产现场。前两种为齿轮产线的专用设备,适配整条产线的生产节拍,更适合大批量齿轮在线100%全检;第三种是一个独立单元,属于通用设备,适配DMGMORI多种型号的加工机床,无需考虑生产节拍,更适合齿轮加工后的在机100%全检。基于齿轮测量中心的齿轮线激光三维测量方案,测量精度较高,为了确保较高的测量效率,仍需要借助接触式测头进行偏心修正和初始定位。基于坐标测量机的齿轮线激光三维测量方案,受精密转台配件的影响,限制了应用场景。基于关节臂的齿轮线激光三维测量方案,齿轮无需装夹,传感器装卸无需重复校准,自由灵活,但测量精度难以满足高精度等级齿轮测量需求。2.3 齿轮线激光三维测量研究进展线激光三维测量技术受到多家齿轮计量检测、加工生产厂商的青睐,但主要集中在国外;国内结合线激光测量技术转化为齿轮测量仪器或装置的案例几乎空白。此外,国内外专家学者也十分关注齿轮线激光三维测量技术的发展,在实验室条件下做了相关的理论与应用研究。不莱梅大学提出一种风电大齿轮在线检测方案,可扫描单个轮齿的整个齿面,对齿轮断裂和其他缺陷形式进行检测,并对损伤情况定量分析,避免了大齿轮装卸困难的问题,但全部轮齿的扫描测量还难以实现。北卡罗来纳UNC精密计量中心采用光学CMM (Nikon HN3030) 进行线激光扫描,能够在合理的时间内可靠地采集所有齿面的数据,其中四分之一的测量点位于评价范围内,并可用于被测齿面的面区域评价。国立台湾科技大学提出了一种在五轴机床上基于线激光传感器的螺旋锥齿轮非接触测量系统,与Klingelnberg P40 GMC的报告相比,齿距和最大齿面偏差分别在0.004 mm和0.05 mm以内。安徽理工大学提出了线激光齿轮测量中心的空间误差建模和精度分配方法,将几何误差由齿轮和线激光传感器的安装误差来代替,简化了误差传递关系。温州大学基于线激光传感器研究了齿轮齿廓偏差的检测方法,与接触式齿轮测量中心相比,7级精度齿轮的齿廓测量误差为1.47μm。笔者团队针对齿轮线激光三维测量技术也开展了相关研究。如图3所示,构建了一种基于高精密回转平台的齿轮三维测量装置,并将其深度融合到齿轮测量云计算平台中,提出齿面三维误差计算方法,制订了齿轮全生命周期数据交互格式标准,促进齿轮设计、制造、测量和在役阶段的数据交互。构建了一种基于齿轮测量中心的齿轮三维测量装置,对齿轮线激光三维测量中小弧段芯轴的中心确定、传感器偏置捕获完整齿廓以及全齿面误差评价等方面开展理论及实践研究。此外,我们还介绍了一种结合激光和视觉检测的齿轮在线测量的方法,如图4所示。这种创新方法有效地解决了接触测量技术测量效率、需要精密安装基准的局限性。可为小模数齿轮在线高精度、高效率检测提供稳健可靠的解决方案。图3 基于高精密回转平台的齿轮三维测量图4 融合激光与视觉的齿轮三维测量线激光测量技术在齿轮三维测量中应用广泛,相关的检测设备大多是由国外的齿轮加工、计量厂商来研制的,但测量与评价项目都是围绕传统评价指标进行。齿面的三维评价还处于探索、起步阶段,大量的三维齿面数据利用率不高,需要深度挖掘和充分利用。3 关键问题在齿轮线激光三维测量中,保证测量精度和全齿面测量是关键的技术问题。Hexagon、+Vantage3D、Gleason等公司也可能遇到过相同或者类似的现实问题,并采取了一些未公开的解决措施,特别是线激光传感器的光学特性、空间位姿参数的标定、测量位姿对结果的影响以及三维齿面数据的预处理等问题。4 研究前景4.1 挑战与齿轮线激光三维测量技术相关的挑战是多方面的,需要在以下几个关键的方面给予关注:(1) 平衡测量精度与测量速度;(2) 确保线激光传感器的稳定性、耐用性和精度;(3) 软硬件的集成与同步;(4) 解决齿轮材料的反射特性;(5) 降低环境影响与实时补偿;(6) 大数据的处理和分析;(7) 精密的校准和验证;(8) 平衡成本和性能。(内容详见链接正文)总之,这些挑战需要一种全面的解决方法,包括硬件设计、软件算法、数据处理技术、校准方法和成本优化策略的进步,以提高齿轮线激光三维测量系统的整体性能、可靠性和成本效益。4.2 研究前景线激光齿轮三维测量技术的研究前景,主要体现在:(1) 测量精度保证与提升;(2) 智能融合与场景应用;(3) 齿面三维大数据的深度挖掘与利用;(4) 传感器微型化与便携化以及系统集成化与网络化;(5) 齿轮测量云平台。(内容详见链接正文)5 结论为获取完整的三维齿面形貌,线激光测量作为一种典型的激光三角测量技术,已成为实现齿轮三维快速测量的有效方法之一,获取到的三维齿面数据完整、信息丰富。本文介绍了线激光传感器的主要生产厂商及其设计与功能的发展趋势,线激光传感器也将逐渐由功能多样化向突出单一功能优势的方向发展。线激光传感器根据搭载设备和应用场景的不同,在齿轮三维测量中表现出不同的特点和优势,本文总结的六种解决方案和笔者团队的线激光齿轮测量仪器也将会在不同领域的齿轮在线、在机、在室测量中发挥重要的作用。为了保证线激光齿轮三维测量的测量精度、实现全齿面测量,分析了线激光传感器的光学特性、位姿参数标定、测量位姿特性以及三维测量数据预处理等关键技术问题及其解决思路,这也是确保齿轮高精度三维重构的重要一环。线激光齿轮三维测量技术未来的发展前景主要聚焦于测量精度的保证与提升,多传感器智能融合与多场景应用,齿面三维大数据的深度挖掘与充分利用,传感器微型化与便携化以及系统集成化与网络化,齿轮测量云平台等方面。齿轮线激光三维测量技术使得三维复杂齿面的测量与评价成为可能,其中蕴含的大数据齿面信息更值得充分挖掘和利用,具有极强的现实意义和实用价值,必将促使齿轮光学测量技术的新发展、新应用,产生更大的、符合新时代齿轮行业发展的社会效益。参考文献74篇(略)
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 新型激光输电技术前景广阔 或变革输电技术
    时代在进步,科技在发展,随着我们对电能的需求增大,全国性的电网联通覆盖是时代所趋,但传统的有线输电线路会受到地形及天气的影响,现在新的电力输送模送正在研发当中。   据报道,美国华盛顿州一家高科技公司正在研发一种激光输电技术。这种新型技术应用前景广阔,未来可能彻底取代依靠电线输电的模式,使人们的日常生活告别电线。这家公司的研究人员借助一个激光转换器,将常规电能转换成功率达数百瓦的可视激光束。这种光束可在空气中传播,被接收后在专门的光电电池中再转换回电能。通过望远镜和一系列镜面,操作人员可以控制激光束的传输方向。据了解,这家公司目前的主要研究方向如何运用这种新型激光输电技术为无人飞行器供电,并且已经在这个方面取得了一定成果。不过公司的长远目标绝不局限于此。他们希望这项技术未来能够应用到更为广泛的领域,比如取代现有电线输电模式从而降低远距离电力传输的成本,或是从地球为远在太空轨道上的卫星供电等。   这种模式从现在已有数据看来,本不是一种空想,只是要真正能投入到实用阶段还需要很长一段时间的发展。同时,纯粹的利用激光产生电能也是一种非常高效的手段,这种技术目前也在研发当中。当这两项技术成熟之后,利用激光发电,输送电能,都将不是一种梦。或许我们以后不光局限于激光输电手段,用微波输电也许也能成真。

激光扩束镜相关的方案

激光扩束镜相关的资料

激光扩束镜相关的试剂

激光扩束镜相关的论坛

  • 从激光发展前景看激光划片机现状

    众所周知,激光的应用领域在人们生活中可谓是无处不在,你知或不知,激光应用就在那里,用它那精湛的激光加工技术丰富着您的生活。 今天我们就来探讨一下这样一个具有历史代表性的产业链,是怎样逆袭曾经的风貌。 目前随着激光技术的发展,已广泛用于单晶硅、多 晶硅、非晶硅太阳能电池的划片以及硅、锗、砷化镓和其他半导体衬底材料的划片与切割。那么说到这里肯定很多人会问,激光加工技术是利用什么原理来完成划片和切割的这样一个步骤的呢? 从科学的角度上来讲,激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为两大类: 一、激光加工系统; 二、激光加工工艺。 激光加工系统主要包括激光器、导光系统、加工机床、控制系统及检测系统这些配件。而激光加工工艺的范围就略广泛一些,主要应用在切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。 从功能上来讲,激光加工工艺在激光焊接、激光切割、激光笔、激光治疗、激光打孔、激光快速成型、激光涂敷、激光成像上都有很成熟的一个应用。 另外激光在医学上的应用主要分为三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。激光美容、激光去除面部黑痣、激光治疗近视、激光除皱、都是激光领域是医学行业内伟大的成就。 在军事方面,激光成就了战术激光武器、战略激光武器、激光动力推动器等,此外激光武器的关键技术已取得突破,2013年低能激光武器已经投入使用。 在通信方面,激光通过大气空间传输达到通信目的,激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 发展前景 由此可见激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光划片机现状 激光划片机又称为陶瓷激光切割机或激光划线机,采用连续泵浦声光调Q的 Nd: YAG 激光器或绿激光作为工作光源,由计算机控制二维工作台,能按输入的图形做各种运动。输出功率大,划片精度高,速度快,可进行曲线及直线图形切割;无污染,噪音低,性能稳定可靠等优点。 目前,常见的硅晶体划片工艺分接触划片和非接角划片(激光划片工艺)两种: 接触划片工艺: 接触划片工艺主要有锯片切割等多种方法,是过去硅晶体、太阳能电池的切割方法,缺点是精度差,废品率高,速度慢。 非接触划片工艺: 非接触划片工艺主要是激光划片,由于是非接触方式,划线细,精度高,速度快,目前是太阳能电池等划片的主要方法。 江苏启澜激光科技有限公司开发研制的晶圆激光划片机具有国际先进水平,主要适用于表面玻璃钝化硅晶圆的划片机切割加工。激光加工技术已广泛应用于制造、表面处理和材料加工领域。晶圆紫外激光划片机,其无接触式加工对晶圆片不产生应力、具有较高的加工效率、极高的加工成品率,可有效的解决困扰晶圆切割划片的难题。同时,图像识别、高精度控制、自动化技术的发展,使得能实现图像自动识别、高精度自动对位、自动切割融为一体的晶圆切割划片机成为可能。国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 调查显示,瑞士、美国和日本主要的激光晶圆切割机生产商每年在中国市场约销售近100台,国外设备售价在40~42万美元左右,为了提高我国激光精密加工装备的国产化水平,降低设备的采购及使用成本,提高行业的生产效率。晶圆紫外激光划片技术代表了当今世界晶圆切割加工技术前沿的发展方向,对国家未来新兴的晶圆制造产业的形成和发展具有引领作用,有利于晶圆制造技术的更新换代,实现跨越发展。

  • 关于激光脉冲法测试热扩散的几点疑问

    关于激光脉冲法测试热扩散的几点疑问

    众所周知,激光脉冲法测试原理是试样在绝热条件下前表面受瞬时脉冲热流加热根据试样背表面温度随时间的变化情况,确定试样的热扩散率。问题: 1 每种材料吸收激光的速度对测试结果有影响吗? 2 材料有没有反光的问题,如果是镜面,存在部分反光,那吸收的激光能量就没有那么多了,这样对最终测试结果有没有影响? 3 再添加一问题,采用激光脉冲法测试透明半透明材料时,在脉冲照射后样品起始升温的区域存在基线的“跃迁”,这个“跃迁”是什么导致的?耐驰说明书上写这种情况需要选择辐射模型+脉冲修正,难道说这个跃迁是材料本身辐射导致的?怎么产生辐射的?http://ng1.17img.cn/bbsfiles/images/2013/03/201303272042_432667_1698940_3.jpg

激光扩束镜相关的耗材

  • 电动激光扩束镜
    这款电动激光扩束镜,电动激光扩束器是专业为激光光束扩束而研发,它采用精密马达驱动,可计算机控制实现2-12倍扩束。电动激光扩束镜,电动激光扩束器由由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口激光扩束器.电动激光扩束镜,电动激光扩束器特色像差最小化设计(采用像差补偿技术)即插即用,内置控制器适合飞秒激光和皮秒激光等超快激光扩束内置微控制器直接控制可选安装接口自动放大倍率可调手动放大倍率可调电动激光扩束镜,电动激光扩束器参数规格连续可调放大倍率:2.5x...12X工作波长:340-360nm, 510-540nm, 1020-1070nm材料:光学玻璃或UVFS控制接口:USB2.0, RS232软件平台:WindowsTM入射光束直径:高达10mm出射光束直径:高达48mm整体透过率:98.5%激光损伤阈值:7 J/cm2 for 10 ns pulses @ 1064 nm重量:1kg
  • 场镜_linos扩束镜_激光扩束镜_Qioptiq
    仪器简介:德国Linos工业镜头,包括激光系统镜头,机器视觉镜头等工业光学部件,秉承德国设计严谨、工艺精湛的工业产品特点 产品及业务: 大幅照相机镜头 专业数码相机镜头 专业摄影滤镜 非球面的镜片 放大机及打印机镜头德国LINOS公司各种光学元件技术参数:德国LINOS公司 德国著名的光学产品制造商,其著名的Rodenstock镜头在德国以及世界机器视觉领域,堪与蔡司和施耐德比肩。德国Linos工业镜头,包括激光系统镜头,机器视觉镜头等工业光学部件,秉承德国设计严谨、工艺精湛的工业产品特点。 德国LINOS公司是活跃于全球的精密光学仪器制造商,市场涉及激光、照相洗印服务、测量技术、医学、生物工程及半导体等方面的应用。世界闻名的Rodenstock普通镜头及放大镜头是LINOS公司图像处理市场的重磅产品。几十年的丰富经验以及最前沿的技术知识,充分满足了现代化的数码设备对镜头的高度要求。Rodenstock普通镜头(如Sironar系列和Grandagon系列)和Rodenstock放大镜头(如Apo-Rodagon系列和Rodagon系列)因其杰出的成像性能而世界驰名。 主要特点:德国Linos Photonics公司以其丰富多样的光学系统而闻名世界。其远心式合成材料透镜,即F-Theta透镜,适用于激光标刻、 专门用于小型、快速扫描头的新型物镜,同时在725 nm至1050 nm范围内近红外线的新型激光扩径系统上也可适用该透镜。激光扫描 F-θ透镜,扩束镜,适合波长1064nm,532nm,355nm,266nm等德国LINOS激光扩束镜被众多的激光工业用户所采用,采用伽利略原理设计手动和自动2到8倍可调激光扩束镜,精密的加工,优异的光学品质,高通过率,低失真。主要特点:4片光学元件设计通过率95%扩束倍数可调波前失真λ/4主要技术指标:
  • 变倍激光扩束镜
    ?变倍激光扩束镜,变倍扩束镜,可调倍数扩束镜,Beam Expander由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口变倍激光扩束镜.这款变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜采用四级设计,扩束倍数2-8倍连续可变,适合激光波长1064nn, 532nm和355nm.这 款变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜放大倍率2-8倍可调,采用伽利略类型设计,包含了空气间隔(Air-Spaced)的透镜,非常适合高功 率激光应用。变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜的外壳采用M27x1螺丝,可以安装到4轴或5轴安装架上使用。这款变倍扩束镜,可调倍数扩束 镜,变倍激光扩束镜适合Nd:YAG激光的几个倍频波长,我们也有适合飞秒激光使用的飞秒激光变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜。变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜特色波前畸变优于λ/42-8X倍率高激光损伤阈值透过率优于97%变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜规格Manually Adjustable 2x - 8x Laser Beam Expander扩大倍数波长 nm入射孔径, mm出射孔径, mm外壳直径, mm外壳长度, mm型号Tunable 2X - 8X10644.5 - 113645 - 50114 - 142BE-MA-1064Tunable 2X - 8X5324.5 - 113645 - 50114 - 142BE-MA-532Tunable 2X - 8X3554.5 - 113645 - 50112 - 142BE-MA-355
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制