当前位置: 仪器信息网 > 行业主题 > >

激光破膜仪

仪器信息网激光破膜仪专题为您提供2024年最新激光破膜仪价格报价、厂家品牌的相关信息, 包括激光破膜仪参数、型号等,不管是国产,还是进口品牌的激光破膜仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光破膜仪相关的耗材配件、试剂标物,还有激光破膜仪相关的最新资讯、资料,以及激光破膜仪相关的解决方案。

激光破膜仪相关的资讯

  • 国产突破!松山湖材料实验室成功研制先进激光镀膜设备
    超导技术被誉为21世纪最具有经济战略意义的新兴技术之一,超导体所具备的“零电阻”和“完全抗磁”这两大神奇特性,为人们带来了巨大想象空间。例如利用超导体电阻为零的特性来进行电力输送,可以大大减少线路损耗,实现超远距离的大容量电力输送;利用它完全的磁抗性可以制造磁悬浮列车、电磁弹射装置等。“超导最近在媒体出现的频率比较高。比如时下热门的量子计算,涉及到超导量子比特;被称为‘人造太阳’的全超导托卡马克核聚变实验装置,也应用了超导磁体。”中国高温超导研究奠基人之一、国家最高科学技术奖得主赵忠贤院士介绍道,超导距离实际生活最近的应用,则是医院常见的核磁共振成像中的超导磁体。超导薄膜技术是超导技术发展的重要方向之一。日前,由赵忠贤院士倡导建立并担任顾问的研究团队,面对国外禁运,通过技术集成创新,成功研制出基于国产部件的“三光束脉冲激光共沉积镀膜系统”,并制备出大尺寸双面钇钡铜氧(YBCO)超导单晶薄膜,为我国制备高品质、应用型超导薄膜产品技术带来新突破。关键设备买不来,怎么办?在东莞松山湖科学城松山湖材料实验室“实用超导薄膜研究团队”的一间实验室内,一组银白色装置占据了房间一角,三台激光器宛如手术台上的三支机械臂,将一个带有观测窗的球形操作台围在中间,绿色和紫色的光束不时闪烁。这个装置就是该团队近期研发成功的“三光束脉冲激光共沉积镀膜系统”。该设备基于国产部件实现技术集成创新,包括采用国产小型固态脉冲激光器实现多光束共沉积、激光器与光路系统模块化整体位移、自主研发控制软件实现操作智能化等。利用这台设备,该团队还成功制备出2英寸双面YBCO超导单晶薄膜,将脉冲激光沉积技术制备高品质应用型薄膜产品,推向了一个新的高度。该团队负责人金魁研究员表示,大尺寸双面钇钡铜氧(YBCO)单晶薄膜,是设计高温超导薄膜器件的良好载体,而高温超导薄膜器件则是开发未来通信技术和超高性能雷达探测器的重要部件,具有十分重要的应用前景。然而,能够制备该类薄膜的先进设备,此前被德日美等少数国家掌握,一直以来对我国封锁核心技术,并且大尺寸薄膜制备设备近期也已对我国禁运,导致我国高品质应用型“薄膜”和“镀膜设备”核心技术受制于人。金魁坦言,按照最初构想,是希望直接从国外购买一套先进的大尺寸镀膜设备,之后按团队的需求改造,然而却未能如愿。“买小尺寸薄膜制备设备回来,做出的样品主要是用于基础研究,找规律、写论文,国外公司同意卖给我们;但要买能投入实用的大尺寸薄膜制备设备,他们就拒绝了。”金魁表示,另一方面,国外的设备只能实现单面薄膜的制备,无法满足团队需求。关键设备买不来,怎么办?在赵忠贤院士的鼓励和指导下,团队最终下定决心走上了自研之路。令他们感到高兴的是,团队产出成果的进度超过了预期。在国外禁运的情况下,团队仅用一年多时间就取得了成功。“积小胜为大胜”“我们用激光去打真空腔里面的靶材,由于瞬时高温,靶材表面的成分会变成等离子体向外喷射,之后接触高温衬底,外延沉积完成镀膜,过程就像是烙饼一样。”该设备主要的设计和搭建者冯中沛博士是团队里的一名年轻人,设备成功运转,让他格外兴奋。过去一年多,冯中沛和同事们几乎每天都围着这台设备转。在工作室紧邻该装置的墙边有一面白板,上面写满了与装置搭建相关的事项。一年时间里,大到整个装置的设计装配,小到一根螺丝钉的定制,整个团队“挂图作战”,环环推进,最终才获得了成功。“这台设备的功能可以扩展,也可以为超导以外的材料进行镀膜。就像买了一口锅,一开始只用来炒菜,后面还可以用来蒸煮。”冯中沛介绍道。令整个团队感慨的是,直到他们研制出成本更低、性能更优的设备时,从日本采购的小尺寸镀膜设备甚至因为疫情,还没有厂家工程师前来拆箱。“这件事虽然谈不上伟大,但是它给了我们很大信心。遇到‘卡脖子’难题,逼着自己进行自主研制和创新,最终把一条新的技术路线走通了。”赵忠贤表示,假如全国几十万、上百万的科研团队,能有十分之一像这样专注去做一件事,我们跟国外的科技竞争就能握有更大的主动权。“积小胜为大胜,变成大胜就有了长板,有了竞争优势,国外还怎么卡我们脖子?”他说道。除了团队自身的努力和经验积累,赵忠贤还特别提到,松山湖科学城给予的宽松科研环境与合理的评价体系,为这一成果取得提供了重要土壤。在他看来,松山湖材料实验室一方面注重研究实效,不以论文论英雄,让科研人员集中精力搞攻关;另一方面,充分信任科学家,原本购置设备的钱可以灵活用于自主研发,“允许用打酱油的钱去买醋”,赋予科学家自主权。推动超导技术成果转化能否制备出大尺寸、高质量的超导薄膜,关系诸多关键产业的发展前景。以超导薄膜为基础的数字电路,相比半导体材料做的数字电路速度更快、损耗更小、容量更大;用超导薄膜制成的超导量子干涉器,可以探测比人脑磁场弱几千倍的磁场,用收集来的磁信号进行分析,能够确定矿源、预报地震等。而超导薄膜制成的天线、谐振器、滤波器等微波通讯器件,具有常规材料(如金、银等)无法比拟的高灵敏度。此外超导薄膜在大型粒子加速器中也有着广泛的应用。粗略估计,国内外计划建设的各类加速器项目,对超导薄膜谐振腔的需求量将超过10000个。面对这一趋势,与超导基础研究打了大半辈子交道的学界泰斗,开始将工作重心放在推动超导技术成果转化与实际应用上来。2017年底,广东启动首批四家省实验室建设,赵忠贤接受邀请,出任松山湖材料实验室学术委员会主任一职,从北京来到了东莞松山湖。在他倡议和亲自指导推动下,“实用超导薄膜研究团队”在松山湖材料实验室迅速建立起来。除赵忠贤院士作为团队顾问之外,担任团队负责人的金魁研究员,也是一位高水平超导研究专家,他在高温超导体机理研究、超导薄膜制备、新超导体探索等方面都有诸多重要成果,先后在《自然》杂志等主流刊物发表重要论文80余篇。此外,多位具备国家重点实验室工作背景的超导薄膜和低温技术专家也先后加入,组成了国内一流的班底阵容。“我们选定的题目是‘实用超导薄膜及相关技术研究’,这个不像‘量子’或者‘智能’之类的名字时髦,但并不意味着研究的内容不重要。”赵忠贤说,希望以应用为目标来做一个中长期项目,解决超导应用过程中一系列关键核心技术难题,推动实现跨越性的进步,带来应用上的质变。谈及今后的打算,年届八旬的赵忠贤心心念念的,仍然是超导。“一是找到超导应用存在的短板,想办法推动一些项目、组织一批队伍来把超导领域的这些问题全部扫光;二是在超导应用的某些方面,希望看到我们比别人强,有自己的‘绝活’。”
  • 两校合作助国产激光扫描仪破国外垄断
    日前,在北京工业大学正在举行的第十一届学生科技节上,一台由北工大和清华博硕团队联合研发的格镭智图—双旋轴激光扫描仪吸引了众人的目光。该双旋轴激光扫描仪的核心器件做到了全国产化,一举打破国外产品的垄断地位,实现国产激光扫描仪的“弯道超车”。双旋轴激光扫描仪及其效果图 北京工业大学供图 在三维测绘领域,激光扫描仪相当于人类的眼睛,在智慧城市建设、智慧矿井、隧道工程、空域探测等都发挥着重要作用。据统计,2017年国内三维重建市场规模突破千亿,预计在2025年突破3200亿,然而直到2021年,我国尖端激光扫描仪的研制仍然远远落后于世界先进水平,最尖端的双旋轴激光扫描仪的核心技术,以及全球绝大部分市场处于被英国和澳大利亚公司垄断的状态,中国企业大量依赖昂贵的进口设备。中国测绘领域要发展升级,必须解决这个“卡脖子”技术难题。  “三维重建在众多领域中是重要的基础性工作,然而国内尖端激光扫描仪大多是依赖国外进口,一方面市场被垄断,另一方面在国土数据安全等领域也存在隐患。”受访时,受访时,项目负责人、北京工业大学硕士生王志举说。  为了打破这一困局,北京工业大学信息学部与清华大学机械工程系的研究生们组成研究团队,在北工大教授贾克斌、副教授严海,以及清华大学副研究员王子羲的指导下,开启了联合攻关。  在研发中,在同步定位与建图新技术的基础上,项目团队采用的偏心轴结构设计大幅提高了扫描的有效视界,产品的有效视界高达95%,远超欧美同类产品,并且提供与之配套的技术服务,根据客户的不同需求定制个性化的设备,以适应现代三维激光扫描仪的应用需求。该项目先后获得2021年第七届中国国际“互联网+”大学生创新创业大赛国家金奖、第三届首都高校大学生创新创业大赛冠军、第十五届iCAN大赛北京赛区一等奖等高规格奖项,目前的意向采购订单超过2000万。
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。  径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。  该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。  此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 我国工业激光器关键技术获突破 打破国外垄断
    湖北省科技厅昨日发布消息称,经过近4年的攻关,我国“十一五”科技支撑计划《工业激光器及其成套设备关键技术》已取得重大突破,实现了规模化生产,打破了国外技术垄断。  该项目的实施解决了我国“十一五”期间激光产业急需突破的两大瓶颈:先进工业激光器核心制造技术、激光加工成套设备的集成制造关键技术。  华工科技副总裁闵大勇介绍说,该项目的承担与实施,开发出两类新型国产工业激光器和8种具有重大应用前景的工业激光加工成套设备,已广泛应用于钢铁冶金、有色金属、汽车及零部件等行业。到去年底,已申请专利56项,其中国际专利2项。  2007年到现在,已实现激光产业销售收入12亿元,带动全国激光产业年产值达100亿元以上。  该项目是2007年由省政府与国家科技部联合启动的首个省部共建项目。
  • 上海高研院在全相干自由电子激光研究方面取得突破进展
    中国科学院上海高等研究院自由电子激光团队在全相干自由电子激光研究方面取得重要突破,基于上海软X射线自由电子激光装置成功验证了由我国自主提出的回声谐波级联自由电子激光新机制,并获得了具有优异性能的软X射线相干辐射。近日,相关研究成果以“Coherent and ultra-short soft X-ray pulses from echo-enabled harmonic cascade free-electron lasers”为题发表在光学顶级期刊Optica上。 X射线自由电子激光是国际上最先进的光源大科学装置之一。目前国际上绝大部分X射线自由电子激光都是基于自放大自发辐射机制(SASE),SASE具有极高的峰值亮度和飞秒级超短脉宽等优异性能,但SASE由噪声起振,其辐射脉冲的相干性和稳定性不高,还不是X射线波段的“激光”。国际自由电子激光领域最重要的发展方向之一就是产生具备常规激光品质的全相干X射线辐射,其重要途径就是采用外种子型自由电子激光运行机制。外种子型自由电子激光的辐射继承了种子激光的特性,具备全相干、相位可控和与外部泵浦激光精确同步等优异特性。然而,受到种子激光波长和脉宽的限制,外种子型自由电子激光的短波长覆盖范围和脉冲长度调节范围有限。为进一步拓展外种子型自由电子激光的短波长覆盖范围,国际上近些年正在大力发展回声谐波产生等新型自由电子激光运行模式。 回声谐波级联自由电子激光具有优异的光谱性能:左图为常规级联模式,右图为回声谐波级联模式采用回声谐波级联可实现X射线脉冲长度调节和超快脉冲产生 外种子型自由电子激光是我国发展高增益自由电子激光的主要技术路线之一,目前我国全部四台高增益自由电子激光装置都采用了外种子运行模式。基于上海深紫外自由电子激光装置和上海软X射线自由电子激光装置,我们已先后实现了国际上首个回声型自由电子激光出光放大和首个极紫外波段回声型自由电子激光饱和放大。为进一步将外种子型自由电子激光向短波长推进,我院自由电子激光团队自主提出了回声谐波级联的全相干自由电子激光新机制,随后,这一机制被上海软X射线自由电子激光装置作为基本方案采用,并完成了从原理验证到软X射线波段出光放大的全过程。研究结果表明,与传统外种子型运行机制相比,这一新机制具有十分优异的光谱特性,通过采用我们自主发展的超快X射线脉冲诊断技术(DOI: https://doi.org/10.1016/j.fmre.2022.01.027),我们还验证了这一新机制在脉冲长度控制和超快脉冲产生方面的优越性能。这些研究成果为产生亚纳米波段的全相干自由电子激光提供了切实可行的技术路线,并将为X射线非线性光学和超快物理化学等领域提供了理想的研究工具。 目前,意大利的FERMI-FEL装置和瑞士的SwissFEL装置均提出采用这一新机制进一步提升其辐射性能的计划。 该工作得到了国家重点研发计划项目、国家优秀青年基金项目、国家自然科学基金面上项目和上海市人才计划项目的支持。 全文链接:https://doi.org/10.1364/OPTICA.466064
  • 存储器和高能激光芯片设备有新突破!
    近日,《nature》杂志更新了两则最新研究,明尼苏达大学团队研究出计算随机存取存储器CRAM,可以极大地减少人工智能(AI)处理所需的能量消耗;斯坦福大学的研究人员则在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,可用于未来的量子计算机、神经科学等领域。明尼苏达大学研究出计算随机存取存储器CRAM近期,《nature》杂志的同行评议科学期刊《npj Unconventional Computing》发布了一项名为计算随机存取存储器(Computational Random-Access Memory, CRAM)的最新研究,该新技术能够极大地减少人工智能(AI)处理所需的能量消耗。图片来源:《nature》截图据悉,这项技术由明尼苏达大学双城分校的一组工程研究人员开发,该校电气与计算机工程系博士后研究员、论文第一作者杨吕表示,这项工作是 CRAM 的首次实验演示,其中数据可以完全在存储器阵列内处理,而无需离开计算机存储信息的网格。国际能源署(IEA)于2024年3月发布了全球能源使用预测,预测人工智能的能源消耗可能会从2022年的460太瓦时(TWh)增加一倍至2026年的1,000 TWh。这大致相当于日本整个国家的电力消耗。目前,随着人工智能应用需求的不断增长,许多研究人员一直在寻找方法来创建更节能的流程,同时保持高性能和低成本。通常机器或人工智能流程在逻辑和内存之间传输数据会消耗大量的电力和能源。据悉,这项研究已经进行了二十多年,其最早可以追溯到电气与计算机工程系教授王建平在使用MTJ(磁隧道结)纳米设备进行计算方面的开创性工作。“我们20年前直接使用存储单元进行计算的最初想法被认为是疯狂的”,该论文的资深作者、明尼苏达大学电气与计算机工程系杰出 McKnight 教授兼 Robert F. Hartmann主席王建平 (Jian-Ping Wang) 表示。2022年1月3日,明尼苏达大学理工学院宣布,明大“Distinguished McKnight University Professor”王建平博士当选美国国家发明家科学院(National Academy of Inventors - NAI)院士。MTJ器件是一种纳米结构器件,这是一种利用磁性材料实现存储的新兴技术。在王建平的专利 MTJ研究的基础上,这个团队开发出了磁性RAM (MRAM),目前这种技术已用于智能手表和其他嵌入式系统。在CRAM中,MTJ不仅仅用于存储数据,还被用来执行计算任务。通过精确控制MTJ的状态,可以实现诸如AND、OR、NAND、NOR和多数逻辑运算等基本逻辑操作。CRAM技术采用了高密度、可重构的自旋电子(spintronic)计算基底,直接嵌入到内存单元中。与三星的PIM技术相比,CRAM技术使数据无需离开内存即可进行处理,消除了数据在内存单元与处理单元之间的长距离传输。CRAM通过消除数据在内存和处理单元之间的移动,显著降低了能耗。此外,由于CRAM的计算直接发生在内存中,它还提供了更好的随机访问能力、可重构性以及大规模并行处理能力。CRAM 架构实现了真正的在内存中进行计算,打破了传统冯诺依曼架构中计算与内存之间的瓶颈——冯诺依曼架构是一种存储程序计算机的理论设计,是几乎所有现代计算机的基础。CRAM技术展现了巨大的潜力,尤其是在机器学习、生物信息学、图像处理、信号处理、神经网络和边缘计算等领域。例如,一项基于CRAM的机器学习推理加速器的研究表明,它在能量延迟乘积方面的性能比现有技术提高了大约1000倍。此外,CRAM在执行MNIST手写数字分类任务时,能耗和时间分别降低了2500倍和1700倍。当下CRAM技术展现出巨大的潜力,但其真实计算能力的局限在于连续CRAM数组内部。任何需要跨越不同CRAM数组的数据访问和计算都会增加额外的数据移动开销。未来,研究人员仍需应对可扩展性、制造和与现有硅片集成方面的挑战。他们已计划与半导体行业领导者进行演示合作,以帮助将CRAM变成商业现实。高能激光芯片设备研究有新突破!近日,斯坦福大学的研究人员在芯片上设计开发出一台微型的钛蓝宝石 (Ti:Sa) 激光器,相关研究已于6月26日更新在《nature》杂志上。原型机的体积仅为传统传统钛宝石激光器的万分之一,而生产成本也仅有原来的千分之一。总体而言,新设备同时解决了体积大、价格高等挑战,而且在规模效率方面也具有优势。目前传统激光器成本高达10万美元。但科学家认为,采用杂志上提及的最新方法,每台激光器的成本可能会降至100美元。他们还声称,未来可以在一块四英寸晶圆上安装数千台激光器,而每台激光器的成本将降至最低。这些小型激光器可用于未来的量子计算机、神经科学,甚至微观手术。图片来源:《nature》截图实验性激光依赖于两个关键过程。首先,他们将蓝宝石晶体研磨成厚度仅为几百纳米的一层。然后,他们制作出一个由微小脊线组成的旋涡,并用绿色激光笔照射其中。随着旋涡的每次旋转,激光的强度都会增加。“最棘手的部分之一是平台的生产,”这项研究的共同第一作者、斯坦福大学博士生Joshua Yang告诉《生活科学》。“蓝宝石是一种非常坚硬的材料。当你研磨它时,它常常不喜欢它,它会破裂,或者损坏你用来研磨的东西。”激光的强度通过晶体表面的一系列涡流增加(图源:Joshua Lang 等人,《自然》杂志)该学术团队对这项技术十分看好,主要原因在于这台最新激光器可以调节到不同的波长;具体来说,从 700 到 1,000 纳米,或从红光到红外光。杨教授以固态量子比特为例,指出这对于原子研究人员来说至关重要。“这些原子系统需要不同的能量(才能从一种状态过渡到另一种状态),”他说。“如果你购买的激光器增益带宽较小,而另一种过渡超出了该带宽,那么你就必须购买另一种激光器来解决该问题。”目前, Joshua Yang和他的同事已创建了一家名为Brightlight Photonics 的公司,以实现这项技术商业化。
  • 欧美克新品LS-POP(9)激光粒度仪正式上市
    仲夏时节,欧美克潜心打造的重量级全新产品—LS-POP(9)正式上市了。 四年前的今天,英国思百吉集团公司带着先进的管理经验入主欧美克,欧美克从此正式走上国际化的道路;四年后的今天,欧美克携着厚积薄发的创新力量,带着全新的产品正式亮相。 在中国,只要是从事粒度检测或者粒度分析工作的人,大多数都见过或者听说过欧美克的LS-POP6激光粒度仪。做为国内原创激光粒度仪的代表,POP系列创造了多项历史记录:第一个销量过千的国产激光粒度仪;单一型号销量最大的国产激光粒度仪;市场保有量最多的国产激光粒度仪。。。。POP过往的辉煌历史既是我们欧美克宝贵的财富,也是欧美克人前进的动力。随着近年来国内生产水平的提高,产业的转型升级需要,市场对粒度测试提出了新的要求。欧美克依靠思百吉强大的研发管理经验,结合国内市场应用特点,在继承了LS-POP6适应恶劣工作环境,性价比高等优点的基础上,借鉴国外粒度仪先进平台倾心打造了LS-POP(9)。该仪器采用全新的光学平台,在整体设计、光路优化、工装调试、材质选用、安装工艺等方面采用了多项创新技术,大幅提高了仪器的测试性能,部分部件采用原装进口设备,同时又有效控制成本,充分保证仪器的优良性价比。漫江碧透,百舸争流。在竞争日益激烈的市场中继续保持领先地位,为广大的有粒度测试需求的客户提供性价比更高的产品是我们欧美克人不容推卸的责任。在思百吉先进的国际管理经验和强大的研发团队支持下,欧美克的国际化道路将稳步向前!欲了解产品详情,请访问欧美克公司官网细节。
  • 加速激光聚变实验点火进程!上海光机所多项关键技术获突破
    中国科学院上海光学精密机械研究所(下称上海光机所)已做了几十年的激光聚变技术研究有多重大?用“百年大业”来形容或许也不为过。疫情封控期间,上海光机所数百名员工持续作战,最近完成了多项科研技术突破,在我国激光聚变实验点火的进程中又迈出坚实的脚步。加快聚变实验进程上海光机所本次取得重大突破的国家重大专项任务包括:核心光学元器件N41钕玻璃用包边玻璃研制工作,实现米级光栅大口径离轴反射曝光技术突破性进展以及大尺寸DKDP长籽晶快速生长技术新进展。牵头上述攻关项目研究工作的上海光机所党委书记邵建达告诉记者,早在上世纪60年代,包括我国科学家王淦昌在内的物理学家们就论证了通过激光聚变产生能源的可行性,而且认定这是清洁的、可无限使用的终极能源。上世纪80年代末,中国开始完全独立自主研发聚变技术。“现在中美都走到了实验点火阶段,中国并没有落后。”独立自主研发背后是大量艰辛付出。上海疫情期间,上海光机所数百名教职员工、研究生选择了在单位封闭办公,他们夜以继日,连续不断地做实验,获取相关数据,及时调整、改进相关工艺,加上居家办公同事在后台提供数据分析与理论支撑,研发进展取得了快速突破。N41钕玻璃元件是国家重大专项高功率激光装置的“心脏”,包边玻璃是确保钕玻璃元件增益性能的重要核心材料。它的作用是让激光按照指定方向发射,从而减少激光损耗。本次技术突破后,实现了大口径磷酸盐玻璃生产线在最优工艺状态下稳定运行,超计划完成包边玻璃的生产任务。而米级光栅大口径离轴反射曝光技术是国际首创,解决了光栅平滑度的问题。这项技术加工极具挑战。疫情期间上海光机所科研小组们连续实验,顺利实现了工艺突破。该创新方案得到了科技部重点研发计划变革性技术项目的支持。另外,大尺寸DKDP长籽晶快速生长技术主要是生长速度取得突破。上海光机所利用长籽晶生长技术,在国际上首次获得600mm×600mm×800mm的大尺寸DKDP晶体,为高功率激光驱动器系统用混频DKDP晶体研制提供一种全新的技术方案。中科院微电子所研究员王宇表示,N41钕玻璃、光栅和晶体都是激光器的关键核心零部件。N41钕玻璃是产生激光的介质,光栅作用是压缩激光脉冲,晶体是产生激光波长变换的。上述科研进展的突破,都是非常关键的突破。邵建达透露,上述科研成果突破,有助于我国聚变实验点火的进程。不过,点火实验到聚变这种终极能源实现规模量产,预计还要三五十年的时间,这确实是百年大业。另据介绍,聚变相关科研工作我国还有一条技术路线在并行推进,即安徽合肥的磁约束聚变技术。中国光学技术领先光学在通信、电子、能源、医疗器械等方面有广泛的应用。中国光学光电子行业协会旗下设有七个专业分会:激光分会、红外分会、液晶分会、光学元件与光学仪器分会、光电器件分会、发光二极管显示应用分会、激光应用分会。每个分会均对应着一个细分产业。中国光学技术较为领先。王大珩是中国光学奠基人,其上世纪50年代末期首创国内第一个研究机构中科院长春光机所。上世纪60年代,长春光机所开枝散叶,成都光电所、上海技物所、西安光机所、上海光机所、安徽光机所等纷纷设立。其中,上海光机所专注于研究强激光和高功率激光,除了探索激光聚变技术,他们还在激光前沿物理研究方面较为领先。中国光学技术产业化已小有成就。中国工业激光器比肩国际先进水平,大族激光、锐科激光、长光华芯均已登陆资本市场,分别是激光设备、激光器和激光芯片龙头。长春光机所相关的长光集团是长光华芯前十大股东。长春光机所还持有奥普光电等。红外领域,高德红外、大立科技等已经上市。LED照明及显示技术,中国已领先于国际水平,相关上市公司数十家,代表性企业有三安光电、华灿、聚灿、乾照等。另外,京东方、华星光电则是全球两大LCD液晶显示龙头企业。中科院微电子所研究员王宇认为,与微电子技术相比,中国光学技术与国际先进水平差别较小。就应用而言,眼镜、显微镜和照相机是光学技术应用比较集中的产业。而光子与微电子组合,会派生出更为广泛的应用,但这要依赖下游产业发达,比如手机、智能汽车等。中国集成电路和精密仪器相对落后,一定程度上限制了中国光学光电子产业的发展。未来,随着相关研究和产业进一步深入发展,中国光电技术还有很大扩展空间。
  • 国防科大突破高功率光纤激光技术 超过国外3.6倍
    实验室就是战场搞科研也是打仗——国防科大光电学院创新纪实  2013年3月,国防科技大学光电科学与工程学院某课题组突破了光纤后处理、光纤盘整体冷却、宽波段光纤色散特性测量和光纤模式控制技术等具有自主知识产权的核心关键技术,研制出“高平均功率近红外全光纤超连续谱光源”,平均功率超过了国际同类研究的3.6倍,入选“2012年中国光学重要成果”。  该院院长秦石乔教授刚刚主持召开了一个项目阶段性报告会,又急匆匆地赶往某实验室,组织课题负责人现场会商某难题,他接受采访时说:“习主席要求我们牢记能打仗、打胜仗是强军之要,作为军队的科技工作者,就是要牢固树立实验室就是战场、搞科研也是打仗的理念。”  在科研中啃硬骨头  光纤激光代表了高能激光的发展方向和趋势,具有重要的应用价值。单根光纤单模到底能出多大功率的激光?美国的劳伦斯国家实验室断言最大可以达到36千瓦,该院高能激光技术研究所周朴副研究员愣是不信这个邪,他带领学员通过扎实的理论分析,作出了73千瓦的论断,论文发表后,引起国际光学界的高度关注。  光纤激光相干合成是激光领域的一个研究热点,由于系统复杂、研制难度很大,此前国际上此类系统的最大输出功率仅为725瓦。该所刘泽金教授率领课题组从最基本的物理机制出发,发明了两种新的相位控制方法,研制出“千瓦级光纤激光相干合成试验系统”,各项技术指标均达到了该领域国际最高水平。  “在战场上赢家只有第一,第二就意味着失败,我们在高能激光的研制领域要始终保持冲锋姿态,在核心关键技术上牢牢掌握主动权。”高能激光技术研究所所长许晓军研究员说。  今天的丢脸是明天的光荣  该院某研究所从事某激光器件研制已经40多年了,他们早在上世纪80年代就研制出了原理样机,但是能否真正在武器装备上发挥作用,当时大家心里都没有底。第一代学术带头人高伯龙院士鼓动大家:“我们研制的器件,只有能够在装备上得到应用,才算尽到了军人的职责。我们必须一直到研制出实用性强的器件为止。”最终在上世纪90年代研制出了实用化的激光器件。  新世纪初,某新型器件由于性能优异,被海军部队选作核心导航部件,靶场试验屡获成功。海军某领导在试验现场夸奖道:“这是海军部队此类试验第一次取得百分百的成功,非常值得庆贺啊。”但是,研究所的科研人员生怕器件还存在问题影响作战性能,又组织了一次次严格的试验。果然发现器件光强不太稳定,会对若干年后的使用造成隐患。  在党委会上,研究所的科研人员统一了思想:不能因为今天丢脸,就为明天的使用留下隐患。他们主动找到海军相关部门,说明了情况。海军领导对此很是理解,主动提出给他们半年时间查找解决问题的方法。最终,他们改进了该型器件,并使得某武器平台的打击精度有了较大的提高。海军领导高兴地说:“你们是干实事的人,武器装备由你们研制,我们上战场一百个放心。”  不苦不累不科研  2010年,上级把某重大设备研制的任务交给该所。院党委有意识锤炼年轻人,安排了一批平均年龄不到40岁的年轻干部担当技术负责人。当时,面对一些接近物理极限的技术指标,大家一筹莫展。所党委及时组织思想动员,邀请老领导老专家讲传统话使命。李传胪教授当年“挖地三尺干革命”的科研故事,激发了年轻一代的斗志。大家天天泡在郊外的试验外场,早上很早就赶去,晚上十一二点钟才拖着疲惫的身子回来。  平时工作忙,没有时间交流,研究所就实行每周6天工作制,利用周六组织大家集中交流研讨。小袁和小张是一对夫妻,同在研究所。两人一个负责微波源部分的研制工作,一个负责天线部分的研制工作。为了完成任务,夫妻两人把小孩丢给老人,每天一起去外场试验,见面就讨论技术问题,在相互的启发中收获了很多灵感。这种定期开“诸葛亮会”的做法已经坚持了两年多,许多技术难题因而得到了解决。  2012年,研制工作取得重要进展,顺利通过了上级部门组织的转阶段评审。该所政治协理员曹亮激动地说:“年轻的科技工作者面对不亚于战场的环境压力,表现得非常顽强,这一点非常值得骄傲和自豪。”  质量过硬才能打得赢  近年来,学院承担的装备型号研制任务越来越多。学院为此专门成立装备研制工程与质量管理办公室,从一线科研人员中抽调经验丰富的工程技术人员专职从事装备研制的工程与质量管理工作。  办公室成立后,部门人员认真查阅了总部、工业部门几千份有关装备研制质量管理的文件规定,虚心向业内的专家请教,制订了一系列质量管理的规章制度,组织开展装备研制过程质量工作。某型号装备交付部队,一般保修期为1年,但是考虑到该装备属高新技术武器,装备使用部队对维修保养工作存在疑虑,学院主动提出将保修期延长1年。  在采访中,该办公室主任表示:“我们虽然是院校,是装备承研单位,但是我们同样是军人,深知为部队提供管用、好用的高新装备的重要性。”就是抱着这样一颗心,前仆后继的光电人为铸造共和国利剑作出了重大的贡献。
  • 农污监测新突破 | 激光助力大气氨的测量
    ▲氨涡度协方差通量观测系统。新突破 准确量化农业生态系统的NH3排放可帮助理解某区域甚至是全球范围的NH3收支以及落实空气污染的控制和缓解战略。 中国科学院大气物理研究所的科学家及其合作者在《农业和森林气象学(Agricultural and Forest Meteorology)》上发表了一篇研究,称他们开发了一种便携式太阳能开路NH3分析仪(型号:HT8700)。该分析仪专门用于基于涡度协方差(eddy covariance-EC)方法的NH3通量观测,这是测量陆地生态系统和大气之间NH3交换的最直接和有效的方法。该团队不仅在实验室,也通过野外现场实验研究了分析仪测量NH3流量的适用性。原理与前景 基于电化学方法的通量系统需要具有高灵敏度和快速响应的NH3分析仪。该研究的主要作者王凯博士说:“运用通量观测新仪器使我们能够监控不同类型生态系统的NH3通量,包括排放和沉降。” HT8700 NH3分析仪基于最先进的量子级联激光吸收光谱技术。其开放路径设计克服了封闭路径仪器存在的一些问题。该仪器具有良好的响应时间、精度和稳定性,是基于电化学技术的NH3流量测量的理想工具。 来自宁波HealthyPhoton有限公司的合著者王博士说:“现场实验证明了开路设计对于NH3通量观测的重要性,但我们认为未来还有更多改进的机会。现阶段因为光学镜直接暴露在环境中,其数据可用性在很大程度上受到激光信号强度频繁降低的限制。我们正在开发一种镜子自动清洁设计,使该仪器更适合自动化测量、使用寿命更长,尤其是在多尘的野外条件下。”
  • 国产激光雷达龙头交付量突破 10 万台,登顶全球年度量产冠军
    国外激光雷达市场正乌云笼罩,10月,被誉为激光雷达鼻祖的Ibeo公司宣告破产;上个月,激光雷达制造商Ouster和Velodyne正式宣布合并;就在近期12月13日,专注OPA(光学相控阵)技术的Quanergy也宣布破产。在国外激光雷达市场经历雪崩时,国内激光雷达却发展热火朝天。近日,国产激光雷达行业再次迎来好消息。12月27日,禾赛科技正式对外宣布,其激光雷达累计交付量突破10万台。其中,今年共交付近8万台,登顶全球激光雷达量产冠军。在10月底时,禾赛科技的激光雷达产品AT128,就已实现单月交付量突破10000台,成为全球首家月交付过万台的车载激光雷达企业。据悉,2017年4月,禾赛科技向百度提供了第一台Pandar40,开始切入自动驾驶领域。2020年9月,搭载禾赛科技第一代自研芯片的中距激光雷达XT32开始交付,至今累计交付近1万台。截至2022年12月25日,禾赛科技累计交付超过10万台激光雷达,包括Pandar、QT、XT、AT系列产品。禾赛科技引领突围在全球激光雷达产业链中,国外企业具有先发优势。2021年,法雷奥牢牢占据着75%的份额。去年全球激光雷达市场的主要参与者仍是那些工业与测绘领域的供应商,总营收排名前五的公司都属于该领域。值得一提的是,在汽车领域,禾赛科技是总营收排名全球第一的激光雷达公司。在自动驾驶出租车领域,禾赛科技也以绝对优势领先,以58%的营收占比排名全球第一,是第二名 Waymo 份额的两倍以上,以往该细分领域的领导者Velodyne跌至第三。禾赛科技如此强势的增长劲头,也导致了激光雷达公司营收总排名的变化。其中,禾赛科技从去年的第12名上升到第6名,速腾聚创从第13名上升到第10名。相比之下,Velodyne从第7名下降到了第13名。此外,自2018年以来,在全球范围内官宣的ADAS前装定点数量大约有55个,其中中国激光雷达供应商占其中的50%。禾赛科技斩获了截至目前全球 27% 的前装定点数量,排名全球第一。速腾聚创以16%的数量排名中国第二、全球第三。以禾赛科技为首的中国供应商的强劲突围极大地改变了全球激光雷达行业的发展局面。Yole预计,2022 年将有超过 20 万台的激光雷达交付上车,其中20%的激光雷达都将来自于禾赛科技,仅次于法雷奥(29%)。前五名(法雷奥、禾赛科技、速腾聚创、华为和Luminar)将在2022年占全球激光雷达出货量的84%,其中三名都来自中国。激光雷达头部企业和中国玩家规模逐渐扩大激光雷达伴随汽车自动驾驶而走入业界视野,近年来也因此发展迅猛。据 Frost&Sullivan 预测,2025 年全球激光雷达市场规模将达135.4亿美元,其中高级辅助驾驶、无人驾驶、车联网和服务机器人领域分别占激光雷达市场总规模的 34.64%、26.30%、33.81%和 5.26%,而中国激光雷达市场规模2025年将达到43.1亿美元,占比约32%左右。根据 2021年Yole的数据,法国一级汽车供应商法雷奥以28%的市占率位居车载激光雷达第一位,本土企业速腾聚创则以10%的市占率位居第二,Luminar以7%的份额位列第三。除了速腾聚创外,上榜的中国企业还有览沃科技(大疆)、禾赛科技、图达通、华为等,中国5家企业合计占比达26%。此外,北科天绘、北醒光子、镭神智能、一径科技等企业也有涉足,虽然目前市场份额占比较小,但未来有较大的发展潜力。据了解,法雷奥起步最早,在2010年就接触了车载激光雷达产品,2017年上市全球首款车规级激光雷达SCALA 1,现已经更新至SCALA 2,计划2024年上市SCALA 3。禾赛科技拥有两款车规级产品,AT128为半固态-转镜式远距激光雷达,可做主雷达,QT128为机械式近距超广角激光雷达,可做辅助型雷达。华为半固态-微震镜式车规级激光雷达已经量产于北汽极狐、哪吒、长城、华为阿维塔。大疆览沃致力于提供高性能、低成本的激光雷达传感器,其HAP车规级激光雷达售价1599美元(当前汇率换算为1.12万元)。国外激光雷达企业起步早,主要定位高端市场,如法雷奥与奔驰、奥迪的深入合作。国内车载激光雷达企业依靠产品性价比高,近几年快速崛起,目前主攻半固态激光雷达,并布局纯固态激光雷达。另外国内涌现大量激光雷达初创公司,重点研究纯固态激光雷达。总体来看,激光雷达国产化替代进程很快,不仅蔚小理、威马、哪吒等新势力均选用国产激光雷达,多个传统品牌也选用国产激光雷达,如长城、上汽、广汽。百舸争流,竞相入场补盲激光雷达近期,几家国内头部激光雷达公司在上个月相继发布了自己的固态补盲激光雷达。11月2日,禾赛发布了面向ADAS前装量产车的纯固态近距补盲激光雷达FT120。该雷达用于近距补盲,拥有100°x75°的超广角FOV(视场范围),并具备体积小,集成度高等优点。据悉,目前FT120已拿到来自多家主机厂超过100万台的量产定点,预计2023年下半年开始量产交付。11月7日,速腾腾聚发布了全固态补盲激光雷达RS-LiDAR-E1。这款雷达拥有的120°的水平视场角,为市面上最大,综合性能最强,SOP(标准操作程序)时间预计在2023年下半年。此外,亮道智能补盲激光雷达LDSatellite的SPAD芯片,已经通过AEC-Q100认证,SOP时间则是在2023年第三季度。而图达通也在扩充自己的产品线,进军今年大热的「补盲激光雷达」。图达通联合创始人兼 CEO 鲍君威透露,将在2023 年 1 月的 CES 展会上,公布产品相关细节。目前国内激光雷达产业链主要集中在北京地区,其次是以深圳为中心的珠三角和浙江、江苏、上海为中心的长三角地区。其余地区虽有企业分布,但数量较少,未形成规模。2022年,中国激光雷达厂商一个个借着新势力高端车型的交付量节节攀升而意气风发。随着国内激光雷达市场愈发广阔,技术路线的迭代以及大厂进入赛道带来的规模效应等一系列因素,激光雷达整机的降本空间将十分可观,产业链有望乘自动驾驶等新兴产业快速发展的东风迎来机遇。
  • 中国科学技术大学在相干测风激光雷达系统研制方面取得重大突破
    日前记者从中国科学技术大学获悉,该校地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面取得重大突破,首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据悉,这是迄今为止有报道的全球最高精度的风场连续探测。相关成果发表在国际知名光学期刊《光学快报》。测风激光雷达的封装样机 课题组供图 米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。比如,为获取3米和0.1秒时空分辨率的风场观测结果,需要将现有激光雷达信号检测灵敏度提高2个数量级以上。 为了实现“看的远、看的细,测的快、测的准”的高时空分辨测风激光雷达,团队通过在激光光源、光学收发系统、高速数据采集电路和数据处理算法上对激光雷达进行全面优化,并在时频分析、脉冲编码基础上提出一种新的反演算法,大大提高了风场反演精度和稳健性,最终实现了一套全国产化的“产品级”测试样机。图1 3米距离分辨率相干测风雷达实验装置:(a)实验装置实物;(b)白天观测;(c)夜间观测;(d)光学系统及电路控制示意图;(e)连续5分钟观测的阵风结构图(时间分辨率为1秒)。图2 高铁尾流风场结构观测及模拟结果:(a)雷达观测的0.1秒分辨率尾流中风场结构图;(b)基于CCM+模拟的300km/h运行列车的尾流风场结构。 据介绍,雷达样机工作波长为1550.1纳米,具有人眼安全、设备轻便(整装设备40公斤)、工作稳定、环境适应性强等特点。通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。 为进一步测试雷达观测性能和环境适应性,团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。 审稿人认为,“观测结果是引人注目和印象深刻的”、“迄今为止首次实现连续观测的高分辨率结果”。
  • 精确到纳米!国产高端数字化激光干涉仪冲破超精密测量技术“封锁线”
    南极天文望远镜、空间引力波探测装置、极大规模集成电路制造装备、光刻机… … 这一系列关键装备的加工制造,都需要依靠超高精度的测量仪器对大量光学元件的各项参数进行测量。以往,超精密测量技术受到国外封锁,成为制约高端装备制造发展的瓶颈问题。近日,由上海理工大学光电学院庄松林院士领衔的韩森教授团队与苏州慧利仪器有限责任公司共建联合实验室所研发的国产化高端产品——数字化激光干涉仪进展顺利。据介绍,该项目研究成果技术难度大、创新性强,取得了多项自主知识产权,部分产品填补国内空白,PV值测量等核心指标及相关技术达到国际领先水平。有装备制造的地方就需要精密的测量仪器“简单来说,干涉仪就是将激光分为两束,照射至需要测量的器件上,再汇合产生干涉,从而精确地测量出被测件表面的形貌误差,包括平面、球面、柱面或者自由曲面。”韩森向科技日报记者介绍,数字化干涉检测技术是结合光学干涉测量原理与计算机技术、能够实现纳米精度的非接触式测量技术,是超精密光学计量、国家大科学装置及工程、高端工业检测领域最重要的手段之一。中国装备制造要实现突破,首先要解决制造质量问题,其核心关键就是超精密测量能力。“有装备制造尤其是高端装备制造的地方,就需要精密的测量仪器,国内精密测量仪器不能照搬国外的那一套,我们必须把核心技术掌握在自己手中。”韩森说道。团队针对中国高端检测仪器和技术的需求,系统性地开展了模块化激光干涉仪设计以及应用的关键技术的研究与攻关。他们首先基于模块化设计思路开发了激光干涉仪的核心关键部件和测量软件,形成了多种型号高精密数字化激光干涉仪;接着在满足高精度相对测量基础上提出绝对检测算法和闭环自检技术,使平面面形检测精度提高5倍。在双重身份中缩短创新与市场的距离技术创新到市场,还有多远的路需要走?“最后一公里”是科技成果转化的普遍难题。“早在2018年,上理工就与苏州慧利仪器有限责任公司共建联合实验室,以人为纽带,让高校教授长期深度对接产业,更有利于盘活一系列资源。”韩森表示,在“大学教授”和“创业者”的双重身份下,高校的基础创新与企业的技术实践紧密绑定,提高了科研成果转化率和使用效益。目前,项目成果完成了数字化激光干涉仪的工程化,研制出多种口径的商业化检测仪器,实现“产学研用”的完美结合。相关产品及技术已经在国家计量单位、国家大科学装置及工程、高精密光学机械加工行业等多家企事业单位进行推广应用,有助于提升中国高端检测仪器在市场的占有率,推动高精密检测技术发展。项目团队还参与起草国家行业标准、国家平晶检测规程和数字式球面干涉仪校准规范工作,填补国内空白。项目授权发明专利5项、实用新型专利5项,发表论文10余篇,荣获中国产学研创新成果一等奖、日内瓦发明展特别金奖等多个奖项。
  • 上海光机所合成孔径激光成像雷达技术研究取得突破性进展
    中科院上海光机所空间激光通信及检验技术重点实验室在重大项目的支持下,自2008年开始合成孔径激光成像雷达技术的研究,目前已经取得阶段性突破进展。已实现实验室尺度缩小合成孔径激光成像雷达装置的二维目标的同时距离向和方位向的成像,实现了合成孔径激光雷达的光学、光电子学和计算机处理的全过程贯通。这是世界上第三个成功的实验报道。合成孔径激光成像雷达(也称光学SAR)是在远距离达到厘米量级成像分辨率的唯一光学手段,在空间领域有着重大应用前景。其特点包括:1. 激光主动成像,适合全天时使用,具有接近光学可见成像的高视觉性,成像速度快;2. 雷达应用范围广泛,适合于空间对地超分辨率观察,空间远程活动目标超分辨率成像等应用。美国已于2002年取得了合成孔径激光成像雷达的核心关键技术突破,实现了实验室尺度缩小装置的合成孔径激光二维成像,并在此基础上,2006年,由雷声公司和诺格公司分别研制成功机载合成孔径激光成像雷达样机,进行了多种野外试验,目前已向应用拓展。与美国实验采用的光纤光学结构不同,上海光机所实验系统采用了空间光学结构,虽然增加了实验难度,但将更具有实用化前景。同时,由于光学合成孔径成像雷达与微波合成孔径雷达在实施方法上的根本不同,无法直接移植微波雷达的概念和原理,这也使得光学合成孔径成像雷达的研究具有很高的挑战性。上海光机所空间激光通信及检验技术重点实验室在研究过程中,创造性地提出并解决了一系列的空间域光学科学问题,时间域光学科学问题和统计光学科学问题,也相应系统性地发展了总体设计、光学天线、接收/发射光电子系统和图像处理等关键技术,为实现实验室尺度缩小合成孔径激光成像雷达,以及未来的样机装置奠定了坚实基础。本项目成果目前在国内起着引领作用,项目的基础研究成果特别是空间域光学问题上的研究具有高度创新性,填补了国际研究的空白,并迅速得到了国际同行的肯定。
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。我们对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。研究者对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 高分辨率激光外差光谱技术新突破!信号探测和测量精度双双大幅提升
    近日,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果文章链接:https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-17-4335&id=493999
  • 国产突破!中电科二所碳化硅激光剥离设备研制取得重大进展
    据太原日报报道,近日中国电子科技集团第二研究所(以下简称“中电科二所”)近日传来好消息,科研团队在SiC激光剥离设备研制方面,取得了突破性进展。报道指出,目前,中电科二所科研团队已掌握激光剥离技术原理与工艺基础,并利用自主搭建的实验测试平台,结合特殊光学设计、光束整形、多因素耦合剥离等核心技术,实现了小尺寸SiC(碳化硅)单晶片的激光剥离。据介绍,SiC半导体材料具有高热导率、高击穿场强、高饱和电子漂移速率、化学性能稳定等优点,对电动汽车、高压输变电、轨道交通、通讯基站、卫星通讯、国防军工等领域的发展有重要意义。但是,因SiC材料硬度与金刚石相近,现有的加工工艺切割速度慢、晶体与切割线损耗大,成本较高,导致材料价格高昂,限制了SiC半导体器件的广泛应用。激光垂直改质剥离设备被誉为“第三代半导体中的光刻机”,科利用光学非线性效应,使激光穿透晶体,在晶体内部发生一系列物理化学反应,最终实现晶片的剥离。这种激光剥离几乎能避免常规的多线切割技术导致的材料损耗,从而在等量原料的情况下提升SiC衬底产量。此外,激光剥离技术还可应用于器件晶圆的减薄过程,实现被剥离晶片的二次利用。中电科二所聚焦第三代半导体关键核心技术和重大应用方向,以解决SiC衬底加工效率这一产业突出难题为目标,将SiC激光剥离设备列为重点研发装备,借此实现激光剥离设备国产化,力争使其具备第三代半导体核心装备研发、产业化和整线装备解决方案的能力。目前,这一研发项目已通过专家论证,正式立项启动,下一步将依托国家第三代半导体技术创新中心,汇聚科研优势力量,聚焦激光剥离技术的实用化与工程化,积极推进工艺与设备的协同创新,研发快速生产化、全自动化、低能耗化的激光剥离设备。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 新型激光直写无掩模光刻机在孚光精仪发布问世
    孚光精仪在上海,天津同时发布一款新型激光直写式雾无掩模光刻系统。这款无掩模光刻机是一款高精度的激光直写光刻机。这套无掩模光刻机具有无掩模技术的便利,大大提高影印和新产品研发的效率,节省时间,是全球领先的无掩模光刻系统。这款激光直写无掩模光刻机直接用375nm或405nm紫外激光把图形写到光胶衬底上。 激光直写无掩模光刻系统特色尺寸:925x925x1600mm内置计算机控制接口激光光源:375nm或405nm视频辅助定位系统自动聚焦设置 详情浏览:http://www.f-opt.cn/guangkeji.html 激光直写无掩模光刻机参数线性写取速度:500mm/s位移台分辨率:100nm重复精度: 100nm晶圆写取面积:1—6英寸衬底厚度:250微米-10毫米激光点大小:1-100微米准直精度:500nm Email: info@felles.cn 或 felleschina@outlook.com Web: www.felles.cn (激光光学精密仪器官网) www.felles.cc (综合性尖端测试仪器官网) www.f-lab.cn (综合性实验室仪器官网) Tel: 021-51300728, 4006-118-227
  • 突破!睿创团队中红外带间级联激光器研究取得重要进展
    近日,睿创研究院及睿创光子团队在中红外带间级联激光器(Interband cascade laser,ICL)的研究取得重要进展,相关团队实现了高性能、室温连续工作、多个激射波长的带间级联激光器系列,结合分子束外延技术,在InAs衬底上生长带间级联激光器材料,制备的窄脊器件室温激射波长接近4.6μm和5.2μm。目前大部分带间级联激光器生长在GaSb衬底上,而睿创团队报道的带间级联激光器生长在InAs衬底上,波导包层由InAs/AlSb超晶格和高掺杂的InAs层构成。相比于常见的GaSb基带间级联激光器,InAs基带间激光器在较长波长处(例如长于4.5μm)具有更低的阈值电流密度。(a)4.6μm波长、2mm腔长、10μm脊宽的器件在20℃-64℃之间连续激射光谱;(b)同一器件在20℃-64℃之间的连续电流-电压-功率曲线对于4.6μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为292A/cm²;2mm腔长和10μm脊宽的窄脊器件的连续工作温度可达64℃,室温输出功率为20mW;在相近波长处为目前报道的最高连续工作温度。对于5.2μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为306A/cm²;2mm腔长和10μm脊宽的窄脊器件最高连续工作温度为41℃,室温输出功率为10mW;其中阈值电流密度在类似波长为报道的最低水平。相关论文“High-temperature continuous-wave operation of InAs-based interband cascade laser”和“InAs-based interband cascade laser operating at 5.17 μm in continuous wave above room temperature”分别发表于Applied Physics Letters 和IEEE Photonics Technology Letters。(a)5.2μm波长、2mm腔长、10μm脊宽的器件在15℃-41℃之间连续激射光谱;(b)同一器件在15℃-41℃之间的连续电流-电压-功率曲线带间级联激光器是基于能带工程和量子力学产生激射,技术含量很高并且研制难点众多,是国家纳米和量子器件核心技术的重要体现,目前和量子级联激光器(Quantum cascade laser,QCL)并列为重要的中红外激光光源,在环境监测、工业控制、医疗诊断和自由空间通信等领域具有重要的应用价值和科学意义。带间级联激光器的原始概念由美国俄克拉荷马大学的杨瑞青教授(Rui Q. Yang)于1994年首次提出,目前基本上都采用近晶格匹配的InAs/GaSb/AlSb三五族材料体系来构造,有源区大多为InAs/GaInSb二类量子阱,其能力可覆盖从中红外到远红外的波长范围。带间级联激光器结合了传统半导体二级管激光器和量子级联激光器的优势,与同样能覆盖中红外波段的量子级联激光器相比,具有更低的阈值功耗密度和阈值电流密度,这种极低功耗的优势在一些需要便携和电池供电设备的应用中显得非常重要。目前全球带间级联激光器市场仍由国外企业占据主导地位,国内仍处于产业发展的初始阶段。本文报道的这两项工作标志着睿创光子在带间级联激光器的外延设计和器件制备等多个方面同时达到了较高的技术水平,成为掌握高性能带间级联激光器技术的企业。该工作也为后续单模可调谐的DFB带间级联激光器的研发和量产打下了坚实的基础。睿创光子(无锡)技术有限公司是烟台睿创微纳技术股份有限公司的控股子公司,聚焦III-V族光电子器件、硅基光电子器件等光子芯片技术研发与产业化。
  • 飞秒激光结合自组装复合加工技术获突破
    p style="text-indent: 2em "记者从中国科学技术大学获悉,该校工程科学学院微纳米工程实验室利用飞秒激光引导毛细力自组装复合加工方法,实现了手性可控三维微结构和三维金属纳米间隙结构的灵活制备,并实现了在涡旋光手性检测和高灵敏度生化检测方面的应用,相关研究成果日前分别发表在《先进材料》和《先进功能材料》上。/pp style="text-indent: 2em "手性微结构在光学和力学等领域具有重要的应用潜力,可以用于构筑多种多样的光学和力学超材料。目前三维手性微结构的灵活、可控制备仍存在诸多困难。中国科学技术大学微纳米工程实验室在飞秒激光复合加工方面开展了长期的系统性研究。在前期工作中,他们通过将飞秒激光直写与毛细力自组装技术结合,开发了新型的飞秒激光复合加工方法,实现了复杂多层级聚合物结构的制备,并在微物体操纵、微粒制备、微光学、仿毛细血管微通道制备等多个领域开展了应用研究。/pp style="text-indent: 2em "在前期工作的基础上,研究团队将飞秒激光直写与毛细力驱动自组装技术相结合,通过调控微结构的空间排布、结构尺寸等参数,引导毛细力的方向和大小,成功制备了多层级手性微结构,并展示了该方法高度的灵活性和可扩展性。/pp style="text-indent: 2em "此外,该研究团队还利用这种飞秒激光复合加工方法成功制备了三维金属纳米间隙结构,并实现了典型表面增强拉曼光谱SERS标的物R6G和抗癌药物DOX的高灵敏度检测。该研究为非平坦表面上构建金属纳米间隙结构提供了一种新的方法,有望将基于微流体的表面增强拉曼光谱检测技术应用于精准医疗、实时在线检测等领域。(记者吴长锋)/p
  • 我国科学家在激光雷达系统研制上获突破
    记者获悉,中国科学技术大学地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据了解,米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。据介绍,薛向辉团队雷达样机工作波长为1550.1纳米,通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。为进一步测试雷达观测性能和环境适应性,薛向辉团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。相关成果发表于国际光学期刊《光学快报》。审稿人认为,“观测结果是引人注目和印象深刻的”“迄今为止首次实现连续观测的高分辨率结果”。中科大地球和空间科学学院博士研究生梁晨为该论文第一作者,王冲副研究员和薛向辉教授为论文共同通讯作者。
  • 上海光机所在孤子锁模光纤激光器研究方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与激光技术新体系融合创新中心在孤子锁模光纤激光器研究方面取得进展。研究团队报道了锁模光纤激光器中色散波辐射的物理机制及其时域表征。相关研究成果以“Characterization and Manipulation of Temporal Structures of Dispersive Waves in a Soliton Fiber Laser”为题发表于IEEE光学期刊《光波技术杂志》(Journal of Lightwave Technology)。孤子激光器中的色散波在频域上以凯利边带(Kelly sideband)的形式与孤子一同产生,由S. M. Kelly在1992年首次发现并解释,由孤子脉冲在锁模激光器内的周期性放大和衰减所产生,体现在孤子光谱上为一系列关于中心波长对称分布的光谱边带,是与孤子稳定性密切相关的光波成分。在锁模激光器中,凯利边带的产生是限制孤子脉冲能量的重要因素,往往需要通过一些技术方法加以压制;同时,色散波也可以成为孤子之间长距离相互作用的媒介,影响孤子序列的稳定性。之前绝大多数对于孤子激光器中色散波的实验研究集中在对于其频域特性(即凯利边带)的研究,而对色散波时域结构的研究却十分缺乏,不同激光器参数条件对色散波时域结构的影响尚无完整的理论与实验研究。针对这一问题,研究团队建立了孤子光纤激光器中色散波时域结构的动力学模型,用以分析两个重要因素:一是腔内群速度延迟导致的相位匹配关系变化,二是腔内的增益滤波效应;从而推导出了具有双边指数衰减形式的色散波包络形态。在实验上,团队搭建了单向环形锁模光纤激光器,并通过调节腔内色散(改变腔长 30~110 m)以及腔损耗(0~7 dB),在一定程度上实现了对色散波时频波形的调控与测量。实验结果与理论模型的预测一致。此外,团队也研究了色散波和孤子的响应时间延迟,色散波结构的对称性等色散波特征。这项研究可加深对孤子光纤激光器动力学过程的理解,也为超快光纤激光、光孤子信息处理等应用技术发展提供了一定的参考。相关工作得到了张江实验室建设与运行项目、2021年度博士后创新人才支持计划、中国博后科学基金、上海市2021年度“科技创新行动计划”原创探索项目、国家青年高层次人才项目的支持。图1 色散波产生原理图2 腔色散对色散波衰减速率影响图3 腔损耗对色散波衰减速率影响
  • 滨松激光加热光源助力更高效、更精确的激光焊接
    如今,用激光进行塑料焊接(Plastic Welding)以及锡焊(Soldering)已是一种十分常见的加工方法。非接触性、高自由度、高速度、高精密是此类方法的突出优点。然而,需要达到理想的焊接效果,怎样的加工条件是最好的?我们都知道,假如使用放大镜将光聚焦在一张纸上,如果纸是黑色的,就很容易被点燃,白色的则相对困难,这是由其温度升高情况不同而造成的。激光加工也是一样,拿塑料焊接来说,待加工的塑料往往颜色、厚度各异,如果不去测量加工过程中物体表面的温度,则难以准确判定是否达到了预期的加工效果。对于新的待加工物来说,找到理想的加工条件就将花费很多时间。 可以说,温度信息是缩短寻找最佳加工条件周期的一项重要参数。以前,加工操作和合格判定多是通过交由经验丰富的工人来获得保障。但这种依赖于“人”的模式,显然不能满足工业发展的需求。如果能把握温度信息的反馈,就可实现“可视化”,即便是经验尚浅的人,也能进行精确高效的加工。那么,我们要如何获取此信息呢? 将温度信息一滴不差的收起来 获得温度信息的唯一方法,是测量来激光自加工过程中的红外光强度。但这里我们需要捕捉的,是高能量激光中那缕极其微弱的红外光,前后者的强度比率大约是一亿比一。常规操作是无效的,拥有极高灵敏度的弱光探测器才能派上用场。此外,红外光产生与物体被照的位置是一致的。想要精确测量,观测点和照射点的形状、位置都须做到同步。然而,受制于工艺水平,目前市面上许多此类激光器的该两部分是分离的,使用时主要通过一些人为的调试来尽可能保障效果,易用性和精确性都不够理想。 而滨松激光加热光源LD-HEATER及SPOLD,可以将以上问题都解决。滨松激光加热光源将激光照射和红外探测都集成在了同一个激光头中。因此,不必进行光轴调整,照射和探测就可完美的同步进行。由于照射光和监控信息的光程相同,所以不管大小、近远、光的形状,观测到的都是相同的。而滨松本身十分擅长微弱光的探测,探测器的灵敏度即可以得到很好的保障。高精度的实时温度监测技能加身后,会有怎样的直接变化呢?曾有客户反馈,在以前,新待加工物从试生产到批量生产,需半年左右(包括修正模具的时间)。配备滨松LD-HEATER后,大概仅需1/3的时间就可完成。如今,已有激光加热光源设备在客户的产线中工作了10年,且保持了0故障率。如此超高的稳定性,也为带来了生产效率的提升。 LD-HEATER和SPOLD有何不同? 这里我们提到了两个不同的名字,LD-HEATER以及SPOLD。同是激光加热光源的它们有什么不同呢? LD-HEATER是多功能的,实时温度监测功能为其标准配置,适用于试生产时期的加工条件寻找,以及问题分析。秉承即使是不完全了解激光的人都可以使用的理念,滨松工程师在开发时也考虑了足够的安全性。而SPOLD更低廉、更小巧、更多产品系列,易于在大规模生产现场使用。它是尽可能简化了的光源,以期能集成到其他的设备中。 不过,两者在许多核心的基本性能上是相同的。除了上述的高稳定性外,最为突出的则是其内部均配备了光束整形系统,输出的直接为平顶光,保证了加工的高效以及高度均匀性。如今某球知名的智能腕表生产商已将此系列激光加热光源置入了其产线中,其焊接达到的高防水性则让客户十分满意。此外, OLED屏的焊接也是目前的一个典型应用,其可进行高质量的无损拆解,这也源于激光器核心性能的保障。 简单来讲,LD-HEATER与SPOLD在生产的不同阶段扮演着不同的角色。在LD-HEATER给出加工条件后,可将相对低成本以及内嵌式的SPOLD配备入大规模生产系统,以保障已确定的加工条件与预期相同。而一旦实际生产中出现问题,也可以继续使用LD-HEATER找到问题所在。 不过,并不是所有SPOLD都配备了实时温度监测功能,客户可根据自身的需求进行选配。而此功能发挥的作用与LD-HEATER的也不尽相同,我们将此称为LPM(Laser Process Monitor,激光过程控制器)。 低成本,实现批量生产时的加工质量监控 一般来讲,激光加工的时间很短,在线探测异常并尽快做出反应非常重要。在实际生产现场,可能会发生很多难以直接察觉的未预料到的事情,比如设备或磨具状态的变化。而这些变化很可能导致待加工材料随着时间而改变,进而影响到最终的加工效果。而通过温度差异则可探知异常的发生,装配了LPM的SPOLD在加工中就可实现这样监测。 滨松目前提供3款配备LPM的SPOLD:L11785-61M,L12333-411M/-511M LPM采集由热产生的红外光后,可输出相应的模拟信息。如果加工出错,红外光的强度就会改变,LPM输出值也会不同。也就是说,其可以提供的是一个信息对比。如果是稳定的设备和材料,执行稳定正确的加工过程,输出信号也将是稳定的。一旦出现异常的信号,则可判定加工过程存在异常。 不过LPM并不是一个单独的模块,只能装配在SPOLD中才可很好的发挥作用。带有LPM的SPOLD只通过一根光纤来同步完成激光照射与红外探测,同样不用进行调整,也能确保加工区域和红外光信息获得区域是统一的。 当然,滨松也提供不带有LPM的SPOLD产品,可实现更低的成本,以及更小的体积。 不带有LPM的SPOLD系列:L11785,L13920 除了性能优异的产品外,由于产品研发是从应用端开始着手的,滨松对于不同材料之间的加工工艺非常熟悉,因此还可向客户提供帮助进行工艺选择的增值服务。 滨松最早的激光技术起源于激光核聚变的研究。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发,在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,便积极推进了各种激光技术的研发。结合自身在光子技术应用中的广阔视野和经验,以期为激光技术打开新的应用领域。
  • 我国紫外激光器产业化关键技术取得突破
    清华大学等单位共同承担的“十二五”863计划新材料领域“紫外激光器产业化关键技术及应用”课题取得重要进展,于近日通过技术验收。  课题组解决了厘米级BBSAG晶体生长、非线性晶体超光滑表面加工、工业级应用的全固态激光器整机装配等工艺难点,突破了高光束质量紫外频率变换、非线性光学晶体的寿命及抗损伤、光束指向稳定性等多项关键技术,开发出10-30W不同功率级别的全固态紫外激光器和新型的BBSAG四倍频器件,产品性能达到国外同类产品水平,形成了一套拥有自主知识产权的全固态紫外激光核心技术,并实现了紫外激光器在微加工成套设备上的试用。  课题实施期间,BBSAG晶体生长技术已经转移到福建福晶科技股份有限公司,该公司及下属公司已经实现BBSAG晶体的生产并出口到欧美等发达国家。经过本课题支持,课题组成功研制出最大输出功率达30W的紫外激光器,各项指标均达到甚至超过国际光电子公司紫外高功率激光器指标水平。该课题成果的产业化,将打破国外在紫外激光器市场中的垄断,极大地提升我国激光微加工制造产业的核心竞争力。
  • 河南:积极打造新装备,突破色/质/光谱、电镜等技术,目标产业规模6000亿
    近日,河南省人民政府印发《河南省加快制造业“六新”突破实施方案》(下称《方案》),提出把“六新”(新基建、新技术、新材料、新装备、新产品、新业态)突破作为提升战略竞争力的关键举措和重要标志,找准着力点、突破口,开辟发展新领域、新赛道,塑造发展新动能、新优势,加快推进新型工业化。《方案》提到,要积极打造新装备,力争到2025年,全省新装备产业规模突破6000亿元。其中,在高端仪器仪表方面,将开展新一代激光器、日盲紫外探测器、高精度电流互感器等部件共性技术攻关,加快突破质谱、光谱、色谱、电镜等高端测量分析关键技术,开展新一代智能仪表研发,支持关口用高精度电能表、控制系统及特种测控仪表等研究,进一步提升体外诊断仪器、气体传感器等优势领域研发能力。《方案》明确,为实现6000亿元新装备产业规模目标,将开展以下三大措施:(一)改造提升传统优势装备1. 矿山装备。突破综采综掘、选矿成套核心技术,加快发展大型矿山综合采掘成套设备、露天矿成套设备、大型选矿粉磨设备等装备,提升高端矿山装备供给能力。加快研制纯电动矿用自卸车、智能挖掘机、智能钻机等矿山开采装备,为绿色矿山建设提供先进装备支撑。加快5G、物联网等新一代信息技术融合应用,突破发展一批智慧矿山装备。2. 掘进装备。聚焦隧道掘进机、隧道机械化专用设备、地下空间开发等产业发展需求,重点发展大功率、高速度、强适应、智能化新型盾构成套装备,大力发展多模式盾构机、大吨位装载机、大型路面施工机械等优势装备产品。加快发展“大”“小”“异”不同断面及土压、泥水、硬岩等不同适应性的全系列掘进装备,满足各种工程应用需求。紧盯智能传感器、控制器、电气元件等掘进装备产业链关键环节,做优关键零部件配套产业。3. 电力装备。围绕特高压电网建设,持续开展特高压输变电、柔性直流输电等关键技术攻关,加快特高压换流阀、控制保护、GIS(气体绝缘开关设备)等关键零部件迭代升级。大力发展大容量海上风机新装备,提高风轮叶片、齿轮箱、大容量发电机及变流器、偏航系统等配套水平,加快发展海上风电换流阀和控制保护、高精度直流测量、数字换流站、低频输电断路器等产品,提升新型变配电装备供给水平。4. 农机装备。加快发展新型智能大功率拖拉机及智能耕种机、联合收获机、秸秆收集处理机等新型耕种收获装备,突破高效节能、远程运维、智能控制等关键技术,加快开发生产大功率发动机、200马力以上拖拉机底盘、湿式离合器等关键核心零部件,发展植保无人机和水田植保机械、节水灌溉与水肥一体化装备等。5. 起重机械。加大桥式起重装备、门式起重装备、悬臂起重装备等产品智能化研发力度,加快突破轻量化技术,提升安全监控、故障诊断、精确定位等成套设计水平,持续推出迭代升级产品。加快开发大吨位起重机发动机和钢丝绳、大载荷断开式车桥和大扭矩自动变速箱等关键核心部件,提升本地配套能力。(二)发展壮大新兴高端装备1. 节能环保装备。巩固提升节能电机、大气污染治理装备、大气监测仪器等领域优势,加快发展飞灰、铝灰、赤泥等难消耗固体废物的规模化利用技术装备,补齐激光器、密封件、燃烧器和高效电机等关键核心零部件短板,提升节能环保装备供给能力。以建设绿色工厂、绿色园区、绿色供应链为抓手,推动节能环保装备示范应用,大力发展节能环保服务业,完善节能环保装备产业链条。2. 数控机床。坚持突出重点、应用带动、质量先行,聚焦关键部件、专用数控机床和高档数控系统,重点突破数字化设计、高精度加工成型等高档数控机床关键共性技术,面向机械、汽车、航空航天等应用市场,巩固提升轴承等专用机床领先优势,扩大中高端通用机床规模,全面提升现有产品专业化、精细化水平。3. 机器人。围绕关键零部件制造、智能化发展和行业应用,推动机器人产业高端化、特色化发展。面向工业生产各个环节,重点发展高精度、高可靠性焊接、装配、搬运、喷涂等工业机器人。面向危险品操作、消防等领域,着力开发消防救援、巡检、特种作业机器人。围绕居民生活需求,积极发展医疗健康、家庭服务、教育娱乐等服务型机器人。4. 高端仪器仪表。开展新一代激光器、日盲紫外探测器、高精度电流互感器等部件共性技术攻关,加快突破质谱、光谱、色谱、电镜等高端测量分析关键技术,为高端仪器发展提供基础支撑。开展新一代智能仪表研发,支持关口用高精度电能表、控制系统及特种测控仪表等研究,进一步提升体外诊断仪器、气体传感器等优势领域研发能力。(三)引育发展战略前沿装备1. 航空航天装备。发展航空器整机、光电探测器等装备,加快军用航空机载装备开发和迭代升级。开展千公里级激光雷达、星间骨干网激光通信等关键部组件研发,强化航空航天连接器、宇航级管路件等技术和产品研发攻关,提升关键组件配套能力。开发卫星多功能模组和智能终端产品,提升遥感卫星制造能力,推动商业卫星批量化设计、研发与低成本制造,打造全国卫星及应用产业高地。2. 氢能装备。聚焦制氢、储氢、加氢、氢能发电等环节,全面提升高端氢能装备供给能力。突破低成本、高效率、长寿命质子交换膜电解制氢、高温固体氧化物电解制氢成套工艺,加快发展制氢装备、氢气纯化装备和储氢供氢装备,提升关键阀体和高压件配套水平。开展质子交换膜燃料电池关键材料、部件批量制备技术研发攻关,研发燃料电池系统、车载供氢系统等氢能发电装备。3. 储能装备。强化先进储能技术攻关,重点发展规模储能用锂离子电池、液流电池、大容量超级电容储能等储能设备,发展储能能量管理系统、储能变流器等新装备,促进分布式利用技术与储能技术融合发展。开展退役动力电池储能梯级利用技术、新能源综合利用与电力储能系统集成技术等研究,研发储能电池及系统在线检测、状态预测和预警技术及装备。附件:河南省新装备重点事项清单
  • 广东激光后来居上 湖北激光正“加速”突围
    自2006年汽车产业率先突破千亿大关后,湖北的千亿产业一路小跑,划出一道靓丽的上升曲线。截至2012年底,汽车、钢铁、石化、电子信息、食品、纺织、机械、电力、建材、有色金属等十大“台柱”产业支撑湖北经济快速发展。肩负工业强省重任,走新型工业化道路,湖北哪些产业将策动经济实现弯道超车?  为此,记者多方探寻未来助力湖北经济快速发展的源动力。  作为中国激光技术的发源地、先行者、排头兵,湖北汇聚了大批激光领域的优秀技术人才和研究成果,但在激光业的产值上,湖北激光业先后被广东、江浙和环渤海地区超越。用“起了个大早,赶了个晚集”这句俗语来形容湖北激光产业,再恰当不过。  在新一轮竞争中,如何发挥湖北激光技术优势,向激光产业大省迈进?  “成为下一个千亿产业,激光业有很大的潜力”。全国政协常委,湖北省工商联主席赵晓勇去年曾对湖北激光业的发展有过深入的调研,日前在接受记者采访时感叹:我省激光业在经历了萌芽、突破性、规模化发展阶段后,目前已经进入进阶发展阶段,只要打通全产业链的发展链条,激光业将有望实现千亿产业的大跨越。  竞争比拼日趋激烈  赵晓勇提供给本报的一份《关于推动湖北千亿元激光产业建设的建议》的调研报告显示:经过十多年的发展,截至2011年底,武汉地区规模以上(产值1000万以上)激光企业仅26家,其中包括,产值规模过亿元以上企业7家、5亿以上企业3家、10亿以上企业2家、15亿以上企业1家(团结激光) 在全国规模以上激光企业数量占比25%左右,其中,激光装备制造规模以上企业占比40%左右,全国第一。  而深圳大族激光一家以民用激光为主营方向企业,2011年的营收总额就超过36亿元,远远超过湖北相关激光企业的营收。  不仅在单个企业的比拼上,湖北不如外省,在全省或地区激光产业的产值上,截至2011年,约150亿元产值的湖北,也远远落后于国内相关省份,处于“抱着技术、却饿肚子”的尴尬境地:数据显示,2011年,广东地区激光设备产值虽然仅35亿元,但激光加工及激光制品产值达到260亿元以上,在激光应用领域排在全国第一位。  不仅广东的激光业产值后来居上,长三角、环渤海湾地区特别是辽宁依托庞大的经济规模和快速的产业升级,激光产业发展大有后来居上之势。去年初,辽宁省在鞍山市规划建设我国首个以激光技术为特色的产业园辽宁(鞍山)激光科技产业园,最终打造成集激光技术研发、应用和生产为一体的国家级激光产业基地,目标产值1000亿元。  “广东等华南地区激光业后来居上,源于其先天优势。”华工科技常务副总裁、华工激光董事长、总经理闵大勇分析,最近10年,当地企业承接了来自世界的代加工服务,要求其适合激光产业的应用,所以激光加工及其制品的产值比较大。这既是区位优势使然,也是市场资源配置的结果。  有望彰显集群效应  后来者居上,激光产业的竞争日趋激烈,在技术上更占优势的湖北,怎样才能立于不败之地?记者在多日的调研中获悉,湖北已悄然擂响了“打造激光千亿产业”的战鼓:相关部门已为激光产业的发展筹划并完善产业规划。  借助东部产业转移,以及中部崛起等外围政策和环境的变化,湖北激光业也正在迎接着“美好时光”。  面对这样的机遇,赵晓勇建议:目前仅依靠单个企业自发的发展壮大的动力还不足,还要把分散的动力集合起来,推动其发展。延伸产业的覆盖面,使企业合作,产业合作,区域合作,技术合作有效地结合起来。逐步完善激光产业的产业链条。  闵大勇也表示:“政府搞好产业规划、引导及招商,可以极大促进武汉激光产业。”  公开资料显示,东湖高新技术开发区拟在左岭新城筹建目前国内最大的激光产业基地。根据武汉官方说法,该基地一期工程预计5年建成,届时,园区科工贸年生产总值可达300亿元,创税25亿元并间接带动相关产业生产总值500亿元左右,最终基地将打造千亿激光产业链。  据了解,正是基于光谷激光产业的这种集群效应,截至2012年底,仅华工科技就将国家千人计划人才徐进林等12位全球顶尖激光人才收入麾下。如今,华工激光从上游激光器到下游激光先进精密微细加工装备、大功率数控激光加工系统、激光再制造系统,已形成完整的产业链。  湖北优势下的“加速度”  闵大勇估算,激光产业链产业规模往下游成几何级数放大增长,1个单位的激光材料产值,将产生约10倍的激光器产值、约5—10倍的激光系统集成产值、约20倍激光应用产值。  “激光产业特征就是规模不大,所有新的市场开拓都是基于不断发现新的应用领域。”闵大勇称。  去年6月,华工科技公司与武钢研究院历时两年合作,开发出了国内首套激光拼焊机组,并将投入使用。武钢将在全国建20条激光拼焊设备生产线,建成后年产值将达百亿元。  不仅华工激光,在湖北规模最大的团结激光、产业品类最全的楚天激光也都拥有自身的拳头产品。  楚天激光2007年底与欧洲一流的激光系统制造商—意大利ELEN集团合资组建武汉奔腾楚天激光公司,专业生产经营中高功率激光切割设备,如今在国内占有重要市场份额,还实现批量出口,该公司已成为我国航天器精密加工装备的供应商。  而团结激光下属武汉科威晶激光公司2007年产值仅1000万,得益于国际合作,2011年产值突破2亿元。  “我感觉,5年左右,中国将取代日本,在激光产业与美国、德国形成三强鼎立的格局。”闵大勇称。  他山之石  在美国,受激光技术应用影响和推动的国民经济年产值约为7.5万亿美元,涉及生物与国民健康、交通与能源、通信与IT业、文学艺术与制造业等。  在我国,激光技术在国民经济中逐步显现放大效应。  2011年,全国激光产业总产值约1100亿元。其中,激光设备销售收入约300亿元,产业链下游的激光加工服务业约350亿元,激光制品约450亿元。
  • 我国与俄罗斯合作突破大功率激光器关键技术
    近日,受科技部委托,吉林省科技厅组织召开了大功率激光器技术研究国际科技合作项目验收会,邀请了北京、黑龙江、山东等省专家组成专家组,对项目进行了验收。专家组认为,该项目通过与俄罗斯知名院所合作创新,突破了千瓦级大功率激光器多项关键技术 在国内首次开发出连续输出千瓦级高效节能半导体激光加工机光源 实现了百瓦级质量激光输出。该项成果已在工业、医疗等重要领域获得了应用,取得了显著经济社会效益,并获国家科技进步二等奖。通过项目的实施,研究小组与俄罗斯合作方建立了长期稳定的合作机制,形成了良好的国际科技合作与交流环境,拓宽了合作渠道。
  • 100nm提升至50nm!中国长城半导体激光隐形晶圆切割技术取得重大突破
    100nm提升至50nm!近日,半导体行业又传来一个好消息,中国长城在晶圆切割技术方面取得重大突破:其旗下郑州轨道交通信息技术研究院联合河南通用智能装备有限公司,仅用了一年时间,便完成了半导体激光隐形晶圆切割设备的技术迭代,分辨率由100nm提升至50nm,达到行业内最高精度,实现了晶圆背切加工的功能。与此同时,持续优化工艺,在原有切割硅材料的技术基础上,实现了加工CIS、RFID、碳化硅、氮化镓等材料的技术突破,对进一步提高我国智能装备制造能力具有里程碑式的意义。HGL1341晶圆激光隐切设备半导体产业被称为国家工业的明珠,晶圆切割则是半导体封测工艺中不可或缺的关键工序,是半导体产业的“心脏”。经过“电路制作”后的每一片晶圆上都聚集着数千,数万,甚至十万的"独立功能晶粒”,晶圆分割工艺的好坏直接决定半导体工艺连锁的“生产效率”和”竞争力”的优劣。2020年5月,中国长城旗下郑州轨交院联合河南通用智能装备有限公司,研制出我国首台半导体激光隐形晶圆切割机,填补了国内空白,在半导体激光隐形晶圆切割技术上打破了国外垄断,关键技术性能参数达到了世界领先水平,开启了我国激光晶圆切割行业发展的序幕。高精度气浮载台分辨率100nm由提升至50nm,是一次迭代升级。中国长城副总裁、郑州轨交院院长刘振宇介绍到,迭代升级后的激光晶圆隐形切割设备可自由控制激光聚焦点的深度、可自由控制聚焦点的长度、可自由控制两个焦点之间的水平间隔,通过采用特殊材料、特殊结构设计、特殊运动平台,可在500mm/S的高速运动之下,保持高稳定性、高精度切割,激光焦点仅为0.5um,切割痕迹更细腻,可以避免对材料表面造成损伤,大幅提升芯片生产制造的质量、效率、效益。切割无崩边、无碎屑据介绍,该装备可广泛应用于高能集成电路产品,包括CPU制造、图像处理IC、汽车电子、传感器、新世代内存的制造,对解决我国半导体领域内高端智能装备“卡脖子”问题起到显著作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制