当前位置: 仪器信息网 > 行业主题 > >

阶梯三棱镜

仪器信息网阶梯三棱镜专题为您提供2024年最新阶梯三棱镜价格报价、厂家品牌的相关信息, 包括阶梯三棱镜参数、型号等,不管是国产,还是进口品牌的阶梯三棱镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阶梯三棱镜相关的耗材配件、试剂标物,还有阶梯三棱镜相关的最新资讯、资料,以及阶梯三棱镜相关的解决方案。

阶梯三棱镜相关的论坛

  • 【讨论】讨论“光的色散(光谱)”来自于光里吗?

    【讨论】讨论“光的色散(光谱)”来自于光里吗?

    讨论“光的色散(光谱)”来自于光里吗?牛顿“光的色散”实验说明色散象来自于白色光里,那么当把三棱镜或光栅只注视在白色发光体內时(这样安排主要是让三棱镜或光栅只感应到只有白色光源时,看是否有色散出现,同时也证明色散是否真正来自于光里)。这样会有色散现象出现吗?如下图,下图是一面光源,虚线內是三棱镜或光栅注视范围,http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_630195_1601036_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/01/201101081443_272728_1601036_3.jpg 仪器光路图结果 当把三棱镜或光栅只注视在白色发光体內时,让光源通过无色散现象出现。这说明色散现象不来自光里讨论1 实验这样安置是否围背牛顿实验方法?2 色散现象是否真正来自于光里?3 色散不来自光里又来自那里?(注:本实验结果如不真实戓误导,愿承担一切法律责任)

  • 中阶梯光栅的介绍

    线色散率、分辨率、集光本领是评价光谱仪性能的重要指标,而这些性能又主要取决于所采用的色散元件—光栅,制造高性能的光栅一直是光谱仪技术追求的目标。ICP分光系统中,全直谱图的很多都是采用中阶梯光栅。从光栅色散率公式可知,在自准条件下(a=b=e)dl/dλ=(m·f)/(d·cosb)提高线色散率可采用长焦距f、大衍射角b、高光谱级次m、减少两刻线间的距离d(提高每毫米刻线数)。从光栅分辨率公式可知R=λ/Dλ=m·N提高分辨率可增加光栅刻线总数N、用高衍射级次来解决。在常规的光栅设计中,都是通过增加每毫米刻线数来提高线色散率和分辨率。事实上由于制造技术及成本原因,精确、均匀地在每毫米刻制2400条线已很困难,采用全息技术制造的全息光栅最高可达10000条,但由于槽面成正弦形,使闪耀特性受影响,集光效率下降。1949年美国麻省理工学院的Harrison教授摆脱常规光栅的设计思路,从增加衍射角b,利用“短槽面”获得高衍射级次m着手,增加两刻线间距离d的方法研制成中阶梯光栅(Echelle),这种光栅刻线数目较少(8~80条),使用的光谱级次高(m=28~200),具有光谱范围宽、色散率大、分辨率好等突出优点。但由于当时无法解决光谱级次间重叠的问题,在五、六十年代未受到重视,直到七十年代由于实现了交叉色散,将一维光谱变为二维光谱,方得到实际应用。随着九十年代初二维半导体检测器(CID)和(CCD)的应用,中阶梯光栅的优点才在ICP光谱分析中充分的展现出来。光栅方程d(Sina+Sinb)=mλ 同样也适用于中阶梯光栅。在“自准”(a=b=e)时,m=2d·Sine/λ。中阶梯光栅不同于平面光栅,采用刻槽的“短边”进行衍射,即闪耀角e很大(60°- 70°);采用减少每毫米刻线数,即增大光栅常数d,因此,光谱级次m大大增加。例如IRIS Ad.全谱直读ICP的光栅刻线为52.6条/mm,闪耀角e=64°,可计算出对应λ=175nm的光谱级次m=189级,对应λ=800nm的光谱级次m=42级。对于衍射级次从42~189时,其闪耀波长分别在800~175nm光谱分析段内,且这些闪耀波长间隔较近,即形成全波长闪耀。中阶梯光栅的角散率:db/dλ=(2·tgb)/λ线色散率 dl/dλ=(2·f·tgb)/λ分辨率 R=λ/Dλ=2·W/(λ·Sinb)从上面三个公式可知,中阶梯光栅的角色散率、线色散率和分辨率都与衍射角b有关,并随着b增大而增大。因此,只要取足够大的b值(取闪耀角接近衍射角b=64°),即相当于在较高级次下工作,就能获得很大的角色散率、线色散率和分辨率。对于一般平面光栅,线色散率dl/dx =(f·m)/d,必须依靠增大仪器的焦距f,减小刻线间距d(增加刻线条数)来增加线色散率。而中阶梯光栅由于角色散率很大,不必依赖焦距的增加,就能获得较大的线散率。例如焦距1米,3600条/mm的平面光栅在200nm处,一级光谱的倒数线色散率仅为0.22nm/mm,而0.5米焦距,52.6条/mm的中阶梯光栅光谱仪在168级处同一波长的倒数线色散率可达0.14nm/mm。由于中阶梯光栅的角色散率足够大,焦距反而可缩小(如0.5米),因此,仪器光室的体积大为缩小,使相对孔径变大,光谱光强也得到提高。由于线色散率大,中阶梯光栅每一级光谱的波长范围相当小,在这个范围内各波长的衍射角基本一致,而且各级基本上是在同一角度下(闪耀角)观察整个波长范围,所以均可达到很大闪耀强度,即“全波长闪耀”。另外,这种中阶梯光栅它们相邻的衍射光谱级次之间的能量分布如上图所示,从图中可以看出,同一波长的入射光的能量多被分布在两个相邻衍射光谱的级次里,由于最佳闪耀波段两侧能量锐减,如图中虚线下方所示。故入射光强能量几乎都被集中到如图中虚线上方的闪耀波段中的该波长上,由此可知,中阶梯光栅在175~800nm全波段范围内均有很强的能量分布,中阶梯光栅其光谱图象可聚焦在200 mm2的焦面上,非常适合于半导体检测器来检测谱线。中阶梯光栅光谱仪各级之间的重叠用交叉色散棱镜的办法来解决,即棱镜的色散方向与中阶梯光栅的色散方向互相垂直,这样在仪器的焦面上形成二维光谱图象。

  • 【讨论】讨论“光的色散(光谱)”来自于光里吗?

    【讨论】讨论“光的色散(光谱)”来自于光里吗?

    讨论“光的色散(光谱)”来自于光里吗?牛顿“光的色散”实验说明色散象来自于白色光里,那么当把三棱镜或光栅只注视在白色发光体內时(这样安排主要是让三棱镜或光栅只感应到只有白色光源时,看是否有色散出现,同时也证明色散是否真正来自于光里)。这样会有色散现象出现吗?如下图,下图是一面光源,虚线內是三棱镜或光栅注视范围,http://ng1.17img.cn/bbsfiles/images/2011/01/201101071335_272558_1601036_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/01/201101081443_272728_1601036_3.jpg 仪器光路图结果 当把三棱镜或光栅只注视在白色发光体內时,让光源通过无色散现象出现。这说明色散现象不来自光里讨论1 实验这样安置是否围背牛顿实验方法?2 色散现象是否真正来自于光里?3 色散不来自光里又来自那里?(注:本实验结果如不真实戓误导,愿承担一切法律责任)

  • ICP棱镜的作用

    ICP棱镜的作用是什么啊?就是中阶梯光栅&棱镜的配合时棱镜的作用?

  • 【杨啸涛研究员】回用户【zhangxm】关于中阶梯光栅的问题并推荐一本好书

    Zhangxm,您一共有六个问题,先回答一个。关于中阶梯光栅,我的回答是抄书。以下的文字是邓勃,何华昆老师的《[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析》中抄下来的,改了改段落号和图号,改了一二个印刷错误。《[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析》化学工业出版社2004年9月第一版。这是十分好的教科书。许多问题可以从中得到解答。参考文献我就不列了。希望大家都能看到,看完这本书。[color=red]【4077注】[/color]本网《仪器书店》有这本书出售,用户可在此购买:[url]http://www.instrument.com.cn/book/shtml/20040922/1008299.shtml[/url]1. 中阶梯光栅与棱镜构成的双单色器中阶梯光栅的特点一是每毫米的刻线数目较少,都在100以内;二是以较大的衍射角和较高级数的谱线工作,且多与棱镜或低色散的光栅构成高色散中阶梯光栅单色器。G.R.Harrson开创了这项工作。 由前面的光栅的角色散率与分辨率各式可知,在波长一定时,光栅的角色散率与衍射角β、光栅常数d和光谱级次n有关,分辨率取决于光栅的刻线面宽度W和光谱级次n。当衍射角β确定后,用小的光栅常数d(即大的刻线密度)和低谱级次(n小),或者采用大的光栅常数d(小的刻线密度)高谱级次(n大),可以得到相同的角色散率。缩小d,即增加刻线密度是有物理限度的。所以采用大的衍射角β和高谱级次n是增大角色散率的实际有效途径。至于要提高分辨率,除了要增大衍射角β外,还要增大光栅的刻线面宽度W,因为与分辨率直接相关的通光孔径A会随衍射角β的增大而缩小(A=Wcosβ)。Harrson据此发明了刻线密度小(例如100刻线/mm),主要用于高谱级(例如n等于几十至一二百)的光栅,并命名为echelle,中文译名是中阶梯光栅。图1是中阶梯光栅示意图。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211444_2819_1868106_3.gif[/img]图1中阶梯光栅示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211445_2820_1868106_3.gif[/img]图2 中阶梯光栅的色散的重叠多级谱线位于最佳闪耀区 当衍射角β=0时,通光孔径A=O,此时分辨率虽达到分辨率的理论极限值Rmax,但光栅无法使用。目前,一般的中阶梯光栅采用a=β=63。26’(实际上β是有一定角度范围的),此时,R= O.89Rmax。此外,为了使光栅在β方向有最大的闪耀效率,必须使光栅的闪耀角ε=β=α。并且,光栅刻槽的衍射面s须与入射、衍射光谱线垂直,s面的光学平整度要达到1/10干涉条纹(“光圈”),否则不可能使上百级的光谱都有足够的光强。这就是说,在β方向的闪耀效率很高,只要有一两度的偏离,闪耀效率就会迅速下降。目前中阶梯光栅各级光谱中央的闪耀效率可以达到70%以上(如图2所示)鬼线强度也只有母线的O.005%以下。中阶梯光栅的特点是:a.衍射角β大,由nλ=2 sinβ可知,将不同的λ和不同n级的谱线重叠在同一位置;b.这些重叠的谱线都集中在最佳的光栅闪耀区;c.对中阶梯光栅光谱,需用辅助色散元件在垂直方向进行谱级色散,再在水平方向进行波长色散,即可获得高色散的良好结果。表1列出了3个元素的谱线在不同级数次中的相对强度。表1不同级次中光谱线的相对强度[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211446_2821_1868106_3.gif[/img]2. 中阶梯光栅、棱镜两次色散一维分光双单色器 用中阶梯光栅和棱镜作色散元件构成的双单色器分光系统,如图3所示。这种单色器具有体积小,线色散率高的特点。第一个单色器用中阶梯光栅作色散元件,能得到大衍射角高级次角色散率大的谱线。由于众多衍射级次的谱线分布在很小的角度范围内,不同级次的谱线发生重叠较严重,第二个单色器将不同级次间重叠区分离开并对相应级次谱线进行色散。因第二个单色器用了石英棱镜色散元件,其紫外光谱区线色散倒数小。如Thermo-Elemental公司M系列[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]就是采用这种分光系统,其线色散倒数为0.5 nm。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211447_2822_1868106_3.gif[/img]图3 中阶梯光栅、棱镜两次色散一维分光光路系统示意3.二维分光工作方式 二维分光是指在X轴与y轴两个方向色散分光,经分光后谱线在二维的焦面上成像。由上述对中阶梯光栅工作过程分析可知,对中阶梯光栅的色散,再加用辅助的色散元件,在被色散谱线的垂直方向进行色散,即可获得高色散的良好结果。图4为中阶梯光栅与棱镜组成的交叉色散(即二维色散)分光过程示意,为简化问题,只标出了在垂直方向的色散,即不同衍射级次谱线的色散。图5为多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]实验装置中用的中阶梯光栅两次分光交叉色散多色器分光系统,分光系统的焦面为二维谱线图像,检测器亦由多个光电倍增管组成的二维阵列。在检测器阵列与谱线焦面之间经严密测算制作的与多条分析波长谱线图像对应的多个狭缝专用板,分析线的数目多于光电倍增管的数目,专用板也有多块。工作时根据分析者选定的分析元素,采用相应的专用板,再通过转动机构将光电倍增管阵列移至分析谱线波长位置。这种固定光学系统,采用更换专用狭缝板和移动光电倍增管的工作方式,不仅免除了要将中阶梯光栅和棱镜十分精确地转动一个极小角度的困难,还可得到与多道同时测定一样的精度,而且在接近检出限工作时也不会找错谱线。这种交叉色散系统能提供高分辨的二维光谱信息,最先是应用在原子发射光谱仪器中。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211449_2823_1868106_3.gif[/img]图4 为中阶梯光栅与棱镜组成的交叉 色散(二维色散)分光过程示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211450_2824_1868106_3.gif[/img]图5 为连续光源多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]实验装置中用的 中阶梯光栅两次分光交叉色散多色器分光系统4 电子扫描二维分光工作方式由于中阶梯光栅经交叉色散后能给出面积较小,并有较宽波长范围的高分辨率二维光谱,所以人们就容易想到用成像器件来做二维检测器,最先是用于原子发射光谱仪器中,如国外若干大分析仪器公司的原子发射光谱仪器商品都是用紫外增强型CMOS、 CCD或CID等半导体图像检测器。对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器采用此项先进技术的是SIMAA6000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],有文献详细报道过,采用了具有高分辨率的二维光谱焦面的中阶梯光栅分光系统和紫外增强型分段式PDA检测器。其分光光路和检测系统如图6所示,中阶梯光栅刻线是79槽/mm,闪耀角63.4o,棱镜是人造熔融石英,顶角25.15o,成像球面镜的焦距501 mm,面积是120 mmxl20 mm。线色散倒数是O.1 nm/mm(200 nm,113级)和O4nm/mm(800nm,28级)。入射狭缝选用2.3 mm×1O mm时,对于As 193.7 nm光谱通带0.2 nm,Ba 553.5 nm光谱通带约为O.55 nm。二维光谱线焦面约为50 mm×60 mm,覆盖波长范围190~900 nm。半导体图像体检测器从日本Hamamatsu定制,专门设计加工成分段式单片检测器,称分段式PDA[又称分段式CMOS-PDA]检测器],整个检测器结构如图6所示。可提供的分析线数目为:39个主要常用元素的主灵敏线,16条次灵敏线和3条用于波长校正的氖线。关于波长的检查和校正,使用装在仪器内的充氖辉光放电灯,由计算机控制一面反射镜使氖灯发射光谱线进入光路,用位于图6左上角的607.43 nm[607(A)]和左下角的614.31 nm[614(A)]和Zn空心阴极灯的202.55 nm[位于图6右上角的202(A)]三条谱线来进行。此三条谱线处于二维焦面三个重要位置,包罗了全部分析线。具体操作程序是通过在X和Y方向分别在2 mm和4 mm范围内扫描,用峰拟合程序测量三条谱线轮廓的半宽度与相对位置。SIMAA型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]的这种分光系统,用电子扫描代替了分光元件转动的机械扫描,不但缩短工作时间和减少机械磨损,而且提高了波长精度。由于光源数量的限制,以及其他技术难点,多元素同时测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器还在研究开发中,上述的中阶梯光栅分光系统应属较好的方案之一。[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211451_2825_1868106_3.gif[/img]图5 SIMAA6000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]光学系统示意[img]http://ng1.17img.cn/bbsfiles/images/2005/03/200503211451_2826_1868106_3.gif[/img]

  • 【讨论】光谱仪器中的入射挟漨象

    光谱仪器中的入射狭缝通常大家理解为限制杂散光源进入和让光薄 一点通过分光系统(三棱镜.光栅),但对于色散(谱面)的出现.明线暗线的形成过程等被这一狭缝象遮盖了。对于狭缝象来说,分光系统(三棱镜.光栅)对它感应的只是一个不同物质象(上下狭缝片是同一物质象,中间白光源是一个象),这个象通常大家很难理解到它,总认为这里狭缝是用来限制杂散光进入和让光薄 一点通过.但对于色散象出现来说,人们是无法理解总认为色散来自于白色光里,确怱略了另一物质象的存在(狭缝象)。 分光系统若感应的是只有一种物质象(如白色光源象......),这样是不能产生色散现象的,因此说明.分光系统(三棱镜.光栅)需感应到有两种不相同物质象时,这样才能构成色散出现条件。 色散谱面是不连续的,由于现光谱仪这样安置,巧合的使两组色散谱面连续在一起。色散谱面象应该是一组为红.橙.黄色,另一组谱面为青.兰.紫色,中间绿色出现是由一组色散谱面中的黄色和另一组色散谱面中的青色相互叠加产生的.

  • 【讨论】光谱仪器中的入射挟漨象

    光谱仪器中的入射狭缝通常大家理解为限制杂散光源进入和让光薄 一点通过分光系统(三棱镜.光栅),但对于色散(谱面)的出现.明线暗线的形成过程等被这一狭缝象遮盖了。对于狭缝象来说,分光系统(三棱镜.光栅)对它感应的只是一个不同物质象(上下狭缝片是同一物质象,中间白光源是一个象),这个象通常大家很难理解到它,总认为这里狭缝是用来限制杂散光进入和让光薄 一点通过.但对于色散象出现来说,人们是无法理解总认为色散来自于白色光里,确怱略了另一物质象的存在(狭缝象)。 分光系统若感应的是只有一种物质象(如白色光源象......),这样是不能产生色散现象的,因此说明.分光系统(三棱镜.光栅)需感应到有两种不相同物质象时,这样才能构成色散出现条件。 色散谱面是不连续的,由于现光谱仪这样安置,巧合的使两组色散谱面连续在一起。色散谱面象应该是一组为红.橙.黄色,另一组谱面为青.兰.紫色,中间绿色出现是由一组色散谱面中的黄色和另一组色散谱面中的青色相互叠加产生的.

  • 【讨论】光谱仪器中的入射挟缝

    光谱仪器中的入射挟缝通常大家理解为限制杂散光源进入和让光薄 一点通过分光系统(三棱镜.光栅),但对于色散(谱面)的出现.明线暗线的形成等被这挟缝象把这些起因都遮盖了。对于挟缝象来说,分光系统(三棱镜.光栅)对它感应的只是一个不同物质象(上下挟缝片是同一物质象,中间白光源是一个象),这个象通常大家很难理解,对于色散象的出现只理解是来自于白色光里,怱略了另一物质象的存在(挟缝象)。分光系统若感应的是只有一种物质象(如白色光源......),这样是不能产生色散现象的,因此说明.分光系统(三棱镜.光栅)需感应到有两种不相同的物质,这样才能构成色散出现条件。色散谱面是不连续的,由于现光谱仪这样安置,巧合的使两组色散谱面连续在一起。色散谱面象应该是一组为红.橙.黄色,另一组谱面为青.兰.紫色,物质吸收的光源不同,其出现的色散谱面是不同的。如两不相同的物质吸收含有稀薄气体光源(如荧光光源......),在通过分光系统后,则出现的色散谱面是一段一段的(谱面上各单色象),"这是1752苏格兰人梅耳维尔在实验中发现的"。若这两个不同物质吸收的是热辐射光源(如炽热的固体或液体发光),通过分光系统后,则出现的色散谱面是连续的(各单色之间无界格之分的象)。当两个不同物质象很小(挟缝中间白色光源象在几个MM时),在稀薄气体光源下出现的一段一段的色散谱面象消失了,色散谱面中只出现几条明亮条纹(明线光谱)。若这个很小的不同物质象是在热辐射光源下,色散谱面虽然出现,只是在出现几条明亮条纹的位置上从新出现几条黑色条纹(夫琅和费线)。对于在两种不同光源下出现的两种不同条纹,当把挟缝口逐渐増大即逐渐缩小,这一过程会发现在稀薄气体光源下出现一段一段的(色散)各单色象相互叠加,从而使谱面中光强逐渐减弱,最后只胜下几个沒被叠加到的象出现,被称为:“明亮光谱”。如这一过程是在热辐射光源下,各单色象相互叠加,在谱面中出几条黑色条纹。我们现代所说的色散象是由两个不同物质产生的(黑色与白色),由于不相同的物质众多,都可以拼在一起,这样出现的不同色散象也就多(色散谱面各单色不同)。

  • XRD应用能力的七重阶梯(粉晶衍射)

    [font=宋体]随着[/font]XRD[font=宋体]仪器越来越多,从事[/font]XRD[font=宋体]应用的人员也越来越多,但技术水平却参差不齐,有的人不善言辞却能充分解决科研和生产中的问题,有的人也许只会仪器简单的操作但却夸夸其谈,技术是做不得假的,更不能伪装,一旦出现错误和伪劣,轻则浪费成本和时间,重则导致生产事故,这就要求带有问题的老师同学或者企业人员必须具有一双能甄别“真伪”的眼睛。[/font][font=宋体]为了提高甄别能力,也为了给[/font]XRD[font=宋体]从业人员铺就一条学习之路,在十余年从业经验和亲身经历基础上,特此提出本帖之命题,将[/font]XRD[font=宋体]应用能力划分成七个阶段,也可称为七重阶梯。[/font][font=宋体]第一重:应用初级。[/font][font=宋体]具备操作仪器通用功能的能力,具有一定的仪器维护保养能力,能读懂[/font]XRD[font=宋体]测量标准,并严格执行标准,做到一名“合格检测员”。[/font][font=宋体]第二重:应用中级。[/font][font=宋体]在合格检测员的基础上,能熟练使用仪器高级功能,能应对大多科研检测和分析,并具有对检测和分析中存在的问题给出一定合理解释的能力。[/font][font=宋体]第三重:应用高级。[/font][font=宋体]能将检测和分析中存在的问题进行定量化处理,具备利用仪器配置的光路、样品台、探测装置等设计检测方案的能力,能自主开发便于科研应用的小装置小部件,真正达到将仪器应用到“灵动由心”的程度。[/font][font=宋体]第四重:专业初级。[/font][font=宋体]能将所学的衍射理论、测量几何、晶体学、材料学等理论知识,充分与[/font]XRD[font=宋体]测量和分析相结合,达到理论与实践融合一体,对测量和分析具有充分预判的能力,并对样品相关课题中的问题给出深入并理论知识上逻辑自洽的解释,主动走进课题中去,利用[/font]XRD[font=宋体]推动相关课题发展。[/font][font=宋体]第五重:专业中级。[/font][font=宋体]在理论学习和[/font]XRD[font=宋体]实践中,发现至今未曾得到解决的新问题或新课题,针对这些问题设计一系列科研活动获取到具有重要意义的新发现,推动该方向理论的前进,并为国计民生实现一定的经济价值。[/font][font=宋体]第六重:专业高级。[/font][font=宋体]在多方面理论创新和实践创新中,为[/font]XRD[font=宋体]应用开创新局面,凝聚新特色,引领团队解决[/font]XRD[font=宋体]领域重大问题,或为国计民生创造重大价值,引领行业前进。[/font][font=宋体]第七重:大师。[/font][font=宋体]这种人物,不是我等普通人能揣测的,所以不作评论。[/font][font=宋体]以上七重阶梯,纯属个人思考,喜欢的可以对号入座,找到下一步技能晋升的阶梯,不喜欢的也希望能借此抛砖引玉,共同促进[/font]XRD[font=宋体]应用和技术发展。[/font]

  • 【讨论】光谱仪器中的入射挟漨象

    【讨论】光谱仪器中的入射挟漨象

    光谱仪器中的入射狭缝象光谱仪器中的入射挟缝通常大家理解为限制杂散光源进入和让光薄 一点通过分光系统(三棱镜.光栅),但对于色散(谱面)的出现.明线暗线的形成等被这一狭缝象把这些起因都遮盖了,使研究者无法理解色散的真实来源。对于狭缝象来说,分光系统(三棱镜.光栅)对它感应的只是一个不同物质象(上下狭缝片是同一物质象,中间白光源是一个象) ,这个象通常大家很难理解到,对于色散象的出现只理解是来自于白色光里,怱略了另一物质象的存在(狭缝象)。分光系统若感应的是只有一种物质象(如白色光源象),这样是不能产生色散现象的,因此说明,分光系统(三棱镜.光栅)需感应到有两种不相同的物质象,这样才能构成色散出现条件。 色散谱面也不是现代这样连续的,由于现代光谱仪(系统)这样安置,巧合的使两组色散谱面连续在一起。正确的色散谱面出现应该是一组为红.橙.黄色,另一组为青.兰.紫色,。物质吸收的光源不同,出现的色散谱面是不同的。如两不相同的物质吸收含有稀薄气体光源(如荧光光 源......),在通过分光系统后,则出现的色散谱面是一段一段的(谱面上各单色象),(这是1752苏格兰人梅耳维尔在实验中发现的,后人对梅耳维这一重要发现没做进一步研究了),这两个不同物质吸收的是热辐射光源(如炽热的固体或液体发光),过分光系统后,出现的色散谱面是连续的(各单色之间无界格之分的象,如现代连续光谱象)。 当这两个不同物质象很小(若狭缝中间白色光源象在几个MM时),在稀薄气体光源下出现的一段一段的色散谱 面象消失了,谱面中只出现几条明亮条纹(明线光谱)。若这个很小的不同物质象是在热辐射光源下,色散谱面发生了变化,在出现几条明亮条纹的位置上从新出现几条黑色条纹(夫琅和费线)。 对于不同物质在两种不同光源下出现的两种不同条纹,当把狭缝口逐渐増大即缩小,这一过程会发现在稀薄气 体光源下出现一段一段的(色散)各单色象相互叠加,从而使谱面中光强逐渐减弱,最后只胜下部分沒被叠加到的谱面出现,被称为:“明线光谱”。 若这一过程是在热辐射光源下,各单色象相互叠加后,在谱面中出现的几条黑色条纹,被称为“吸收光谱”。 现代出现的色散谱面是由两种不同物质(黑色与白色)产生的,由于不相同的物质众多,都可以拼在一起,这样出现的不同色散谱面也就多(色散谱面与现代都不相同)。http://ng1.17img.cn/bbsfiles/images/2010/06/201006140610_224434_1601036_3.jpg

  • 光纤光谱仪和用户解释不清的原因

    光谱仪就是光谱仪。当年牛顿用三棱镜把阳光分开成彩虹,光谱仪就诞生了。到了后来戴维用光谱仪发现元素的时候,光谱仪已经是很火的仪器了,所以光谱仪绝不是新仪器。后来发展,光谱仪越来越精细,功能越来越专一,大家反倒忘了光谱仪是个什么东西了。返璞归真看一下,光纤光谱仪就是光谱仪,她的功能不是单一的,服务对象不是专一的,只不过我们被弄得很专一了,思想很专一,反倒对这么不专一的设备无法理解了。光纤光谱仪就是光谱仪,光谱仪是测光谱的仪器。

  • 【分享】什么是阶梯水价?

    什么是阶梯水价? 第一次听到阶梯水价大家会想到什么呢?肯定是阶梯或者楼梯。那么阶梯水价就是像阶梯一样节节增高的水价。其实简单的理解就是用的水量越多水费就越贵。 为了提高企业以及居民的节水意识,国家设置了阶梯水价的制度。例如一般居民的家用水表规定每月用水量有两个分界点,当用水量低于20吨时的水费是0.5元/吨;用水量是20~30吨时的水费是1.3元/吨,而当用水量大于30顿时的水费是2.2元/吨。一般家庭的正常用水量在15吨左右,如果超出就按阶梯水价收费。这样一是避免大家过分的浪费水资源,再一个就是对水资源进行了合理的分配和利用。不同的用水场所阶梯水价也是不一样的,例如企业、工程等用水量较大的地方,阶梯水价的第一个分解点也应该有所升高。为了顺应建设节约型社会的要求,阶梯式智能水表已经成功问世。各个地区按照管理部门的标准进行调整和实施。让我们时刻不要忘记节约用水。

  • 关于ICP-OES的讨论

    随着技术的发展,ICP-OES测定方法得到普及,消解的样品可直接进入高温等离子体(典型的ICP温度为5000~7000K),通过多色仪观测发射线同时进行分析,这一技术的优点在于:能进行约70多个元素的分析,每个元素都有很高的灵敏度,其检出限通常为ppb (ng/mL),标准曲线的线性范围在6个数量级以上,并且干扰非常小。90年代初推出的全谱直读ICP-OES是一个革命性的飞跃,使ICP-OES具有了同时获得谱线和其背景信息的能力,即一条谱线全部信息的直接读取,而这恰恰是传统的单道扫描与固定多通道ICP-OES所不具备的能力,因而能否同时测背景成了划分全谱直读仪器与传统仪器的分界线。但全谱直读ICP-OES并不意味着这个技术已经走到了尽头,相反经过十年多的实际应用,发现了其不足依然存在。其不足主要表现在如下几个方面,改进也主要针对这几个方面进行:第一,强光与弱光同时测量带来的问题。在ICP高温激发出来的众多谱线中,400~800nm范围的可见光的强度要远远大于紫外区的谱线,对这些谱线同时测量所带来的问题是检测器上有些象素点长时间强光照射而快速老化损坏,而紫外区的分析谱线却由于曝光不足而无法使用。从检出限来看,Li、Na、K、Rb、Cs用ICP-OES分析往往与火焰AAS相近甚至不如火焰AAS。而用ICP-OES分析Cl、Br得到的结果通常不能与其他成熟的分析方法较好吻合(如[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]、X射线荧光或离子选择电极法)。不仅是 ICP-OES,测定实际样品时,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]同样有这个问题。综合这些情况,采用的改进措施一般有两个,一个是购买只有紫外区分光系统的ICP-OES和一台火焰AAS,费用更为实惠,两台仪器都可以获得最佳的性能。二是在ICP-OES中采用两套分光系统和两个检测器,将可见光和紫外光分别进行处理,实现仪器的最优化。第二,有用的信息与垃圾信息同时测量带来的问题。目前最好的改进方法是采用专门设计的检测器有选择性地读取待分析元素的信息,将上述这些垃圾信息过滤掉,从而使操作者在最短的时间内获得最需要的分析结果,并保护检测器,避开垃圾信息的照射而老化损坏。第三,分光系统中三棱镜的分辨率不均匀带来的问题。这个问题在紫外区尤为明显,因为在可见光区的谱线很少,干扰也较少,对分辨率的要求也较小,而绝大部分元素的谱线都集中在200~400nm这个范围,目前最好的方法是在这一波长范围内采用中阶梯光栅和平面光栅两个光栅进行交叉色散,比中阶梯光栅加三棱镜有了显著的改善。第四,有机样品、无机样品、高盐样品、含HF酸样品、含NaOH样品同时分析带来的问题。对于ICP-OES的用户而言,需要分析的样品是多种多样的,这就需要有适应性强的进样系统,并尽量减小雾化器、雾室与炬管之间的距离以减小记忆效应。目前常用正交雾化器并在雾化器喷嘴装有耐腐蚀的宝石喷嘴,而雾室采用耐腐蚀的Ryton材料制成,可直接进行50%HCl、HNO3、H2SO4、20%HF及30%NaOH样品的分析。第五,主量、微量成分与痕量、超痕量成分同时分析带来的问题。目前最为成功的是采用双向观测的ICP-OES。采用轴向观测的检出限比侧向观测可改善达10倍。传统垂直观测型ICP-OES的不足是测定不同的元素时需要优化不同的观测位置。双向观测技术使用户可以在一次分析中同时获得两种观测方式的优点,无论是轴向观测还是侧向观测,其观测的位置全部由计算机自动优化,不仅提高了灵敏度而且扩大了线性范围,大大增加了分析的灵活性,提高了分析性能。第六,仪器的先进性与实际操作的易用性带来的问题。现代ICP-OES已经越来越多地用于生产性工厂中的质量控制,而不像以前主要集中于大学和研究所,操作者的素质当然也不及专业的研究人员。这个问题主要是通过操作软件的中文化、仪器软件硬件说明书的中文化、仪器维护的多媒体化来解决。第七,仪器的高稳定性与波长漂移带来的问题。传统全谱直读ICP光谱仪为了将全部几万条谱线集中在几平方厘米的检测器上,要求仪器必须有极高的热稳定性,仪器冷开机时一般需要约1个多小时的恒温过程,狭缝高度必须很小,使ICP最重要的紫外区域光强减弱,而且很难避开样品基体以及Ar、N等发射的高强度谱线,大大缩短了检测器的寿命。目前最为成功的方法是采用双单色仪光学系统和带参比的双检测器。它将全谱直读ICP光谱仪传统的棱镜光栅交叉色散方式分别在两个单色仪中进行。通过调节入射光进入棱镜的角度使待测谱线所在光谱级次通过中间狭缝进入第二个单色仪,将光谱中待分析谱线及附近一段光谱投射到CCD检测器上。由于交叉色散分别在两个单色仪中进行,而且每次投射到CCD检测器上仅是一段光谱,所以完全避免了传统全谱直读ICP光谱仪需要长时间预热、入射光狭缝很小、检测器寿命短等方面的不足。因此该仪器根本不需要恒温即可进行样品分析测定,是目前全谱直读ICP光谱仪发展的最高成就。

  • 【讨沦】光谱仪器中的入射挟漨象

    光谱仪器中的入射挟漨象 光谱仪器中的入射挟缝通常大家理解为限制杂散光源进入和让光薄 一点通过分光系统(三棱镜.光栅),但对于色散(谱面)的出现.明线暗线的形成等被这挟缝象把这些起因都遮盖了。对于挟缝象来说,分光系统(三棱镜.光栅)对它感应的只是一个不同物质象(上下挟缝片是同一物质象,中间白光源是一个象),这个象通常大家很难理解,对于色散象的出现只理解是来自于白色光里,怱略了另一物质象的存在(挟缝象)。 分光系统若感应的是只有一种物质象(如白色光源......),这样是不能产生色散现象的,因此说明.分光系统(三棱镜.光栅)需感应到有两种不相同的物质,这样才能构成色散出现条件。 色散谱面是不连续的,由于现光谱仪这样安置,巧合的使两组色散谱面连续在一起。色散谱面象应该是一组为红.橙.黄色,另一组谱面为青.兰.紫色, 物质吸收的光源不同,其出现的色散谱面是不同的。如两不相同的物质吸收含有稀薄气体光源(如荧光光源......),在通过分光系统后,则出现的色散谱面是一段一段的(谱面上各单色象),"这是1752苏格兰人梅耳维尔在实验中发现的"。若这两个不同物质吸收的是热辐射光源(如炽热的固体或液体发光),通过分光系统后,则出现的色散谱面是连续的(各单色之间无界格之分的象)。 当两个不同物质象很小(挟缝中间白色光源象在几个MM时),在稀薄气体光源下出现的一段一段的色散谱面象消失了,色散谱面中只出现几条明亮条纹(明线光谱)。若这个很小的不同物质象是在热辐射光源下,色散谱面虽然出现,只是在出现几条明亮条纹的位置上从新出现几条黑色条纹(夫琅和费线)。 对于在两种不同光源下出现的两种不同条纹,当把挟缝口逐渐増大即逐渐缩小,这一过程会发现在稀薄气体光源下出现一段一段的(色散)各单色象相互叠加,从而使谱面中光强逐渐减弱,最后只胜下几个沒被叠加到的象出现,被称为:“明亮光谱”。如这一过程是在热辐射光源下,各单色象相互叠加,在谱面中出几条黑色条纹。 我们现代所说的色散象是由两个不同物质产生的(黑色与白色),由于不相同的物质众多,都可以拼在一起,这样出现的不同色散象也就多(色散谱面各单色不同)。

  • 【讨论】光谱仪器中的入射挟逢

    光谱仪器中的入射挟漨象 光谱仪器中的入射挟缝通常大家理解为限制杂散光源进入和让光薄 一点通过分光系统(三棱镜.光栅),但对于色散(谱面)的出现.明线暗线的形成等被这挟缝象把这些起因都遮盖了。对于挟缝象来说,分光系统(三棱镜.光栅)对它感应的只是一个不同物质象(上下挟缝片是同一物质象,中间白光源是一个象),这个象通常大家很难理解,对于色散象的出现只理解是来自于白色光里,怱略了另一物质象的存在(挟缝象)。 分光系统若感应的是只有一种物质象(如白色光源......),这样是不能产生色散现象的,因此说明.分光系统(三棱镜.光栅)需感应到有两种不相同的物质,这样才能构成色散出现条件。 色散谱面是不连续的,由于现光谱仪这样安置,巧合的使两组色散谱面连续在一起。色散谱面象应该是一组为红.橙.黄色,另一组谱面为青.兰.紫色, 物质吸收的光源不同,其出现的色散谱面是不同的。如两不相同的物质吸收含有稀薄气体光源(如荧光光源......),在通过分光系统后,则出现的色散谱面是一段一段的(谱面上各单色象),"这是1752苏格兰人梅耳维尔在实验中发现的"。若这两个不同物质吸收的是热辐射光源(如炽热的固体或液体发光),通过分光系统后,则出现的色散谱面是连续的(各单色之间无界格之分的象)。 当两个不同物质象很小(挟缝中间白色光源象在几个MM时),在稀薄气体光源下出现的一段一段的色散谱面象消失了,色散谱面中只出现几条明亮条纹(明线光谱)。若这个很小的不同物质象是在热辐射光源下,色散谱面虽然出现,只是在出现几条明亮条纹的位置上从新出现几条黑色条纹(夫琅和费线)。 对于在两种不同光源下出现的两种不同条纹,当把挟缝口逐渐増大即逐渐缩小,这一过程会发现在稀薄气体光源下出现一段一段的(色散)各单色象相互叠加,从而使谱面中光强逐渐减弱,最后只胜下几个沒被叠加到的象出现,被称为:“明亮光谱”。如这一过程是在热辐射光源下,各单色象相互叠加,在谱面中出几条黑色条纹。 我们现代所说的色散象是由两个不同物质产生的(黑色与白色),由于不相同的物质众多,都可以拼在一起,这样出现的不同色散象也就多(色散谱面各单色不同)。[em09511]

  • 液相基线如阶梯般升高

    使用安捷伦1260配FLD检测器检测衍生后的甲维盐,溶剂峰过后,基线就会上升一些,如果连续进样、基线就会如同阶梯般,是为什么呢。流动相是(娃哈哈)水:乙腈=2:98 150cm的小柱子麻烦各位告知原因,本人水平有限。。。谢谢各位。

  • BET吸附,阶梯状

    BET吸附,阶梯状

    BET测了三次了,我原先以为是样品烘干(150度)的程度太过了,导致曲线成这样。第三次过后(室温下真空干燥两小时),我发现我错了,阶梯状还在。现在贴出这个BET吸附曲线,请大家看看原因是什么,拜托了。后来想想,是不是我测试用的样品质量较少,藻酸钙球,(蓬松状小球,不容易研碎,)冻干,30mg左右,放在大口径玻璃管里的。(表达不专业~~~~~~~)谢谢。http://ng1.17img.cn/bbsfiles/images/2012/04/201204171501_361885_2348887_3.jpg

  • 【讨论】“明暗谱线”这样形成是原子跃迁的结果吗?

    【讨论】“明暗谱线”这样形成是原子跃迁的结果吗?

    “明暗谱线”形成是原子跃迁的结果吗?实验仪器如光路图图1所示,它由不同物质安置扳. 不同物质演示片. 热辐射光源(炽热固体发光). 荧光光源(充有稀薄气体发光). 三棱镜. 透镜组组成。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_630129_1601036_3.jpg在热辐射光源下(炽热固体发光),先出现连续色散,当狭缝逐渐缩小,则谱面部分相互叠加,这样在谱面中出现黒色条纹。如下图。http://ng1.17img.cn/bbsfiles/images/2010/06/201006182052_225745_1601036_3.jpg 在荧光光源下(充有稀薄气体发光)先出现的连续色散谱面是一段一段,当狭缝逐渐缩小,则谱面部分相互叠加,这样在谱面中出现明亮条纹。如下图。http://ng1.17img.cn/bbsfiles/images/2017/10/201007111037323995_01_1601036_3.jpg请问各位:“明暗谱线”这样形成是拫原子跃迁有关吗?

  • 【讨论】“明暗谱线”形成是原子跃迁的结果吗?

    【讨论】“明暗谱线”形成是原子跃迁的结果吗?

    “明暗谱线”形成是原子跃迁的结果吗?实验仪器如光路图图1所示,它由不同物质安置扳. 不同物质演示片. 热辐射光源(炽热固体发光). 荧光光源(充有稀薄气体发光). 三棱镜. 透镜组组成。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_630135_1601036_3.jpg在热辐射光源下(炽热固体发光),先出现连续色散,当狭缝逐渐缩小,则谱面部分相互叠加,这样在谱面中出现黒色条纹。如下图。http://ng1.17img.cn/bbsfiles/images/2010/06/201006182052_225745_1601036_3.jpg 在荧光光源下(充有稀薄气体发光)先出现的连续色散谱面是一段一段,当狭缝逐渐缩小,则谱面部分相互叠加,这样在谱面中出现明亮条纹。如下图。http://ng1.17img.cn/bbsfiles/images/2017/10/201007111037323995_01_1601036_3.jpg请问各位:“明暗谱线”这样形成是拫原子跃迁有关吗?

  • 求助中文文献

    【序号】:【作者】:陈杰,刘国营,李文胜,曾维友,张西平.【题名】:用分光计测量三棱镜折射率实验中的光谱弯曲现象[J]. 【期刊】:大学物理. 2013(12) 【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?filename=DXWL201312007&dbcode=CJFQ&dbname=CJFD2013&v=Wl0MPtiIM8b8d%mmd2FqbekiVcZjTquZGacfn%mmd2BhDKlDhBP1LDy%mmd2Fp2ZV%mmd2FP73CPppRzK6Ei

  • 【转帖】:太阳光谱的探索:內容里有个重要问题要注意

    阳光经过三棱镜会展开成一条彩色的光谱,那么,除了太阳光,其他光,如蜡烛光、固体发光和气体发光,经过三棱镜又会出现什么呢?1752年苏格兰人梅耳维尔开始对这个课题进行了开拓性的研究。当时他年仅26岁,是格拉斯哥神学院的学生。他是这样介绍自己的实验的:“在我的眼和酒精火焰之间放置一块开有一个圆孔的胶纸板,以便缩小和限定我的目标。然后,我用一块棱镜来检查这些不同光的构成……。” 他发现炽热的固体和液体都会发射出所有波长的光,在光屏上得到一条虹霓色彩的连续光谱。然而,炽热的气体产生的光谱并不是一条由紫逐渐变到红的连续谱带。而是由一些分开的斑点构成,每一斑点有它所在位置的那一部分光谱的颜色,而且各斑之间有暗的间色。后来,当人们普遍地利用狭缝来让光通过时,就看到了气体的发射光谱是一组明线。事实上,这些明线是狭缝的彩色像。这样的光谱存在,表明来自气体的光只是几种确定颜色的光,或几种狭窄波长范围的光的混合。 梅耳维尔还注意到,把不同的物质放进火焰时,明斑的颜色和位置是不同的。他说:“当硇砂、明矾或钾碱放进酒精火焰中,发射出了各种光线,但不是相同的数量,黄光比同时产生的其他一切光要明亮得多……,大大地超过其他颜色的明亮的黄光必定是一种具有确定的可折射度的光,并且从它到邻近的较弱的颜色的光的过渡不是逐渐的,而是直接的。”从这些话中不难看出他已经敏锐地注意到了那条“明亮的黄光”,并把它和“确定的可折射度的光”联系在一起了。在这个基础上他只要向前跨一步,就可能摸到了光谱分析的“大门口”。然而他的研究生涯只有1年,27岁的梅耳维尔就过早地离开了人世,真是一件令人遗撼的事。除了梅耳维尔,在那个时代里几乎无人再去注意那些隐匿在光谱中的明线,他们只是会观察火焰的颜色来判别物质的成分。当时有位德国化学家马格拉夫就很精于此道。他认为两种物质在燃烧的时候会发出同样颜色的光,是因为它们具有相同的成分。例如苏打和岩盐在燃烧时都会发出黄光,因为它们有一种相同的成分——钠;而锅灰碱和硝石在燃烧时都发出紫光,因为它们具有一种称为“钾”的相同的成分。 1802年伦敦有位医生叫沃拉斯顿,他用三棱镜观察太阳光谱的时候,发现了一个被牛顿忽略的事实:在从紫到红的太阳的连续光谱中出现了7条清晰的暗线,它们不规则地间隔分开着。他很兴奋,立即拿了棱镜去问一位好朋友,物理学家索默维尔报告自己的新发现,同时还想听听他的建议。一进门他就迫不及待地说:“这几天我认真观察了太阳的光谱,”“难道你发现太阳的脸色不正常了吗?”索默维尔一语双关地回答。“你猜对了。我的确发现太阳光谱中的7条黑线。”说着他取出随身携带的玻璃棱镜向索默维尔演示这个事实。可是索默维尔根本没仔细去看,因为他不相信一个才玩了几天棱镜的医生就会有什么新发现。他立即用物理术语提出了一连串质疑,把沃拉斯顿弄得很尴尬,最后沃拉斯顿只得自己收场说,也许是玻璃上有缺陷,所以在光谱中留下了黑线。就这样,索默维尔的自以为是,把一个送上门来的重大发现给断送了。 12年后,德国光学家夫琅和费在太阳光谱中又发现了这些黑线,并认真地研究它们。与沃尔斯顿不同,夫琅和费是光学方面的行家,他从小就和玻璃打交道,11岁时跟了一位光学技师做学徒。他对光学仪器的制作和原理有浓厚的兴趣。有一次他所居住的房屋突然倒塌,里面的人都被压死了,只有他幸存了下来。有位先生很同情这个受了伤的孩子,送了他18元金币,好学的夫琅和费用这些钱全部买了光学仪器和书籍,所以他在磨制玻璃镜和光学理论计算两方面他都有很深的造诣。他参与生产了没有脉纹的火石玻璃和大块的冕牌玻璃,还创立了计算各种透镜曲率半径的方法。1814年,夫琅和费想寻找一种单色光源来检验放大镜的质量。可是,什么样的火焰才能提供只有一种光线的光呢?为了这个目的,夫琅和费用把所有可以燃烧的东西拿来烧,却终不见有甚么单色火焰。然而失之东隅,收之桑榆。他却对观察和比较各种火焰的光谱产生了极大的兴趣。后来他创造了一种新颖的,比三棱镜的分辨力高得多的把光束色散成光谱的仪器——光栅。读者也许记得杨氏的双缝干涉实验,两条狭缝可以把不同波长的光分散到不同的角度。光栅利用同样的道理,在铜框内平行地安装了许多0.04到0.6毫米粗的银线(夫琅和费制的光栅,每厘米有136条银线),银线之间有0.0528~0.6866毫米的狭缝,一个光栅可以有上万条狭缝,所以它能够把不同波长的波分得更开。后来夫琅和费采用了划线的方法:即在平整的玻璃板上敷盖一块金箔,然后在金箔上划出等间隔的平行线,揭掉金箔,便得到了衍射光栅。由于光栅的分辨率主要取决于单位长度范围内的刻线的多少,因此不久后在许多国家里都有人精心制作高精度的光栅。美国的光学家罗兰可以在1英寸的光栅上刻出43000根线,在当时的手工条件下,堪称奇迹了。 密纹唱片每厘米上有120条凹槽,可以看成是一种光栅。站在窗前,把唱片水平举到稍低于眼睛的位置,以双手联线为轴,慢慢地转动唱片,待唱片在某一角度时,你会看到一大片彩虹,这是唱片光栅衍射太阳光,把太阳光色散成光谱。 回过头来再说夫琅和费有了自己感兴趣的研究课题,便一头钻进了实验室,把各种物质放在酒精灯的火焰上燃烧,再用窥管来观察它们经过三棱镜(后来用光栅)色散的光谱。他看到在彩色的光谱带中有两条明亮的黄线。他想这两条黄线也许与酒精有关,于是他又改用油灯、蜡烛来做试验,明亮的黄线却依旧如故。看来对任何一种火焰来说明亮的黄线是少不了喽,夫琅和费这样想,但心中也没有什么把握。  一天,他做实验觉得疲倦,便打开了百叶窗帘,顿时灿烂的阳光照得满屋生辉。夫琅和费精神为之振奋,他突发奇想,要看看太阳的光谱。他调节好仪器,让一束光进入摄谱仪。这一看,使他惊诧不已。原来的灯光中的明亮的黄线消失了,取而代之的却是两条黑线。真奇怪,难道普照万物的太阳发光还不如灯光?这是否说明它在整个发光光谱区域内留有空缺呢?且不管它什么原因,先仔细瞧个明白再说。这样仔细观察了一番,又发现了新的秘密。原来,太阳光谱中远不只有两条黑线,仔细计数的话有324条(实际上还要更多)。当然,其中最为明显的只有8条。为了研究方便,夫琅和费用A、B、C、D、E、F、G、H这八个字母表示这八大条黑线(事实上有些大黑线是二、三条黑线重叠而成的,如果用分辨力大的光栅可以把它们进一步分开。)  将太阳光谱和灯光谱对照,夫琅和费发现其中有个巧合,太阳光谱中用字母D表示的两根黑线的位置与灯光中的两条明亮的黄线重合,也就是说太阳光谱缺少的D线却在灯光中找到了,他还用光栅找出了D线的波长是从0.0005882到0.0005897毫米。这一切意味着什么?夫琅和费百思不得其解,而且老天也不允许他去仔细琢磨其中的奥秘,因为他还没有活到40岁,就被肺结核病夺去了生命。于是这就成了科学史上的一个谜。在夫琅和费发表这个事实之后的40年里,也没有人对这些线给出完满的解释。人们把这八条线组成的神秘图谱称做“夫琅和费线”。

  • 【分享】天体分光术的诞生

    通过分析星光,天文学家打开了一扇通往天体物理学这一崭新研究领域的大门。当工业时代进入高潮的时候,尚处幼年期的天体摄影术也一样。全球各地的天文学家迅速认识到了摄影与望远镜联合工作的强大能力及其能为人们带来的科学收益。19世纪中叶,他们已经获得了月球、太阳和恒星的照片。但尽管照片能使人们对天体进行空前的分析,它们却只讲出了故事的一部分。恒星的化学和物理性质仍旧是个谜题。法国哲学家奥古斯特·孔德(Auguste Comte)曾经咬定,由于恒星和星云过于遥远,它们将永远埋藏自身化学组成的秘密。那么我们能不能对遥远的恒星和星云在“实验室中”进行详尽审查呢?自17世纪起,太阳的光谱就不断地被科学家研究了。这些研究者中包括艾萨克·牛顿(Isaac Newton),他将一窄束阳光引入一间暗室中,并用玻璃三棱镜将其分解。但是直到两个世纪之后,罗伯特·本生(Robert Bunsen)和古斯塔夫·基尔霍夫(Gustav Kirchhoff)才说明,每束阳光是如何将太阳的化学组成显露出来的。如果说太阳彩虹中的特征线是埃及圣书文字,那么本生和基尔霍夫1860年的论文《由光谱观测进行化学分析》就可以称作天文学家的罗塞塔石碑。

  • 【讨论】中阶梯光栅

    为什么中阶梯光栅每一级光谱范围很窄?同时其高级光谱密集而低级光谱稀疏?一直搞不懂啊

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制