当前位置: 仪器信息网 > 行业主题 > >

紧凑激光器

仪器信息网紧凑激光器专题为您提供2024年最新紧凑激光器价格报价、厂家品牌的相关信息, 包括紧凑激光器参数、型号等,不管是国产,还是进口品牌的紧凑激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紧凑激光器相关的耗材配件、试剂标物,还有紧凑激光器相关的最新资讯、资料,以及紧凑激光器相关的解决方案。

紧凑激光器相关的资讯

  • 新发现!紧凑型 X 射线自由电子激光器项目成功推进
    经过五年的努力,亚利桑那州立大学的研究人员已经实现了构建紧凑型 X 射线自由电子激光器的第一个目标——创造最终将产生超短 X 射线脉冲的最重要的电子。ASU Physica 教授、应用结构发现生物设计中心研究员 William Graves 教授说:“这是一种灵光乍现的时刻,当我们打开所有这些复杂系统的所有东西时,我们看到了第一个电子的产生。”研究人员打算使用电子束的纳米图案,通过电子衍射,将他们杂乱无章的电子包转换成原子大小的“箱”,提高功率并产生完全相干的 X 射线。完全可操作的紧凑型 X 射线光源 (CXLS) 长约 10 m,可产生超短 X 射线脉冲以拍摄化学反应和分子活动的“高速电影”。紧凑型 X 射线光源紧凑型 X 射线光源将极短的紫外激光脉冲聚焦到铜表面上来产生电子包。然后,这些电子将被 1 m 长的直线加速器和具有兆瓦峰值功率的强微波频率电磁场加速到接近光速。接下来,电子将通过一系列精确对准的磁铁形成定向束。产生的电子束将被强烈的短脉冲激光发射,使电子产生起伏运动,从而产生强烈且可预测的 X 射线发射。使用光学激光场作为波荡器从电子产生 X 射线,而不是一英里长的自由电子激光设施中常见的磁铁,如直线加速器相干光源,减少了电子波荡器的长度和加速器的数量级。至关重要的是,减少规模和成本意味着更多的研究机构可以建立类似的资源,投入更多的精力来研究光合作用和药物相互作用等现象。事实上,一旦产生,X 射线将用于揭示生物分子和新材料的原子结构和功能。一个关键应用就是阿秒物理学,它研究分子如何相互连接以及化学反应和催化的动力学。阿秒动力学是自然界中最快的过程,对工业也具有重要意义。同时,可以研究量子材料和时间分辨生物化学——涉及生物和化学过程之间微妙的相互作用。ASU 紧凑型 X 射线自由电子激光器 (CXFEL) 计划“我们不仅要捕捉静态结构,还要捕捉它的工作原理,”格雷夫斯说。“不同分子的功能是什么?我们真的能看到正在发生的反应吗?我们想制作一种关于化学键形成和断裂的定格电影。”“通过这样做,我们可以更深入地了解化学和分子的工作原理,”他补充道。“例如,药物如何影响病毒……或研究高温超导体如何彻底改变能源生产。我们还不了解它的物理原理。”如果没有Annette 和 Leo Beus 为创建 Beus Compact X 射线自由电子激光实验室提供了 1000 万美元的慷慨捐助,该计划就不可能实现。在过去的几年中,该计划引起了该领域科学家的极大期待和兴奋,并吸引了数十名科学家来到亚利桑那州立大学。从创新的 CXLS 过渡到设想的未来紧凑型 X 射线自由电子激光器 (CXFEL),需要进一步的突破。2019 年,美国国家科学基金会宣布支持下一阶段的 CXFEL 项目,拨款 470 万美元,用于资助新设备的综合设计研究。尽管 Covid-19 大流行仍在持续,但来自ASU 和其他机构的大约 100 名研究人员和学生参与了该项目,CXLS 的设计工作和建设仍在快速进行。文章来源:MicroscopyX-Ray Analysis(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • 紧凑型全固态半导体泵浦激光打标机研制成功
    近日,由长春新产业光电技术有限公司研制成功的紧凑型全固态半导体泵浦激光打标机,倍受市场青睐。  激光打标是指利用激光束使打标表面物质气化或发生化学物理变化,从而显出刻蚀图形和文字的方式。与传统标记方式相比,激光打标技术具有标记速度快、字迹清晰永久、污染小、无磨损、操作方便、防伪能力强、可以做到高速自动化运行等优点,因此在工业领域逐渐从电加工进入光加工时代的今天,激光打标已被广泛应用到各种加工领域,包括五金制品、金属器皿、精密机械、汽车配件、电子器件、集成电路块、食品包装、刀具、礼品、钟表、电脑键盘等产品的表面,必将代替传统的标记工艺,给产品注入新的活力。  目前市场上,激光打标机根据工作方式不同可分为灯泵YAG激光打标机、半导体侧泵激光打标机、半导体端泵激光打标机、光纤打标机等。其中,半导体端泵激光打标机不仅可以实现更为精细的打标效果,而且更加具有体积小、价格低的优势。  长春新产业光电技术有限公司是依托中科院长春光机所设立的高新技术企业,成立于1996年3月主要从事半导体泵浦全固态激光器的研发、生产和销售,其全固态激光器产业化规模和产品技术水平近年来一直保持国际先进、国内领先水平,产品遍布全球81个国家和地区,同类产品的国际市场占有率约为30%,国内市场占有率70%以上。紧凑型全固态半导体泵浦激光打标机的研制是公司依托原有半导体泵浦全固态激光器方面的技术优势,逐步实现对激光器下游产品的开发,进一步促进固体激光技术及其器件的应用发展,而且将带动晶体材料、半导体材料、光电器件工艺、加工领域的发展,其带来的直接效益和二次效益都会对国民经济和地区发展带来新的活力。  该公司研制成功的紧凑型全固态半导体泵浦激光打标机,发光源采用半导体列阵,光光转换效率高 采用特殊耦合泵浦方式,光源结构更加紧凑 热耗损低,无需单独配备冷却系统,是目前国内同类产品中体积最小的设备。
  • HORIBA颗粒分析家族再添一员 全新LA-350-紧凑型激光粒度
    近来,HORIBA颗粒分析大家族又进新成员啦——Partica mini LA-350-紧凑型激光粒度仪。小巧,智能,强劲——LA350 全新激光粒度仪  LA-350 激光粒度仪在以往先进的光路设计基础上,实现了多功能、易操作、少维护和低成本的完美结合。它不仅具有小巧的身姿,还有聪明的“大脑”,更是一个不折不扣的“环保小达人”哦,接下来,小编就带你见识见识~小身材——灵活,便捷  LA-350 全新激光粒度仪体积小巧紧凑,仅有A3大小哦~紧凑的尺寸(297mmx420mm) 设计可以实现工作台空间高效利用,可以将仪器搬运到不同的位置或者是寄运到不能采购分析仪的外部场所进行现场测试。  这样看来,我们再也不用担心实验室拥挤,或者经常搬来搬去的情形了。  人如其名,别看他小巧,没有真材实料,怎敢立足于partical world,并完成“争宠”大任?大智慧——高效、易操作  LA-350 全新激光粒度仪不仅操作灵活、简单、快速,巧妙的设计、高精度和高品质制造保证了操作的便捷,可靠和结果的准确,并有更宽的测量范围(0.1-1,000μ m)。操作简单、灵活  自动校正,用于样品分散的内置超声系统,和强力泵水系统,结合软件的自动化特点,用 LA-350 激光粒度仪分析样品非常简单。并且具备导航系统,高精度光学设计和演算法可以简单三步给出测量结果:点击按钮,加入样品,查看结果,仅10秒钟就可以获得测量数据。高效分析  0.1 - 1,000μ m适用于最宽范围的应用,拥有可以匹敌多款其他全范围系统的高性能。宽尺寸范围和灵活的软件随时适应测量需求的改变。LA-350 激光粒度仪使用和其他LA系列颗粒分析仪相同的功能齐全软件包,提供宽范围统计测量,数据分析和展示工具。微量池——少量,回收  除了这些优异性能以外,LA-350 激光粒度仪配置微量池,适用于极少量或需回收的珍贵样品,并且样品池维护拆卸方便。  可谓“小身材大智慧”,LA-350激光粒度仪完美结合了性能,价格和外观设计优势,尤其擅长在质量管理上的应用,包括浆料,矿物,造纸、陶瓷等行业。  LA-350激光粒度仪势头如此之强大,看来已经做好充足的战前准备,作为材料人,您是否为之心动?
  • “Cleanlaze激光器在拉曼光谱分析中的应用”获美国专利
    近日必达泰克公司(B&W Tek)的“新型激光器(Cleanlaze™ 系列)在拉曼光谱分析中的应用”,成功地获得了美国专利 (专利号: US 7,245,369 B2), 为拉曼专用激光器的应用提供了新的选择。 新型激光器(Cleanlaze™ 系列)是一种窄带、稳频、低功耗、小体积、结构紧凑的激光激发光源(特别是在近红外波长范围内)。过去这种激发光源依赖于外腔型激光器,其成本和复杂程度往往令使用者望而生畏。B&W Tek在与有关厂商的多年合作过程中,成功发展了数种高性能、高性价比的稳频半导体激光器,并将其应用在拉曼光谱分析中,成功地获得了美国专利。该系列主要有785nm、830nm、980nm及其他客户所需波长。根据不同拉曼光谱分析的需求,我们提供了单模(0.02nm FWHM)及窄带多模(0.25nm FWHM)等不同规格。多模激光器最大可通过光纤输出大于1.2w的功率。单模目前已经可以达到输出100mw的要求。 基于这款Cleanlaze™ 系列激光产品,B&W Tek为广大客户提供了3种仪器系统。 一. 完整的拉曼光谱仪系统MiniRam™ 、MiniRam™ II和i-Raman™ ,其中包括了Cleanlaze™ 系列激光产品 二. 供实验室使用的台式Cleanlaze™ 系列激光激发光源 三. OEM Cleanlaze™ 系列激光模块,其包括TE 致冷控温,电路驱动以及激光光纤输出。 (以上产品均有USB激光输出功率控制模块选配。) 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得多项美国专利,并且还有十几项专利正在审核中。如需要具体信息,可与上海办公室联系,必达泰克光电科技(上海)有限公司,电话021-64515208。我们将竭诚为您服务!
  • 遇见“Prima”——德国PicoQuant全新推出多色激光器
    近日,在德国柏林最近的一次网络研讨会上,PicoQuant向大家展示了其最新的激光创新良心之作:独立的、全电脑控制的激光模块Prima。PicoQuant公司的产品经理Guillaume Delpont阐述了这款激光器的设计初衷:“许多科研人员在工作中都面临着同样的困难,那就是他们需要多个激发波长来研究他们的待测样品,而购买多个激光器又会变得非常昂贵。PicoQuant公司为了给科研人员面临的共同挑战提供解决方案,最终依托自身在激光开发方面长达25年的专业背景和研发实力,创造了Prima—— 一种经济实惠、紧凑的激光模块,可以发出红色、绿色和蓝色的脉冲激光。”Prima——三色皮秒脉冲激光器Prima是一款独立、紧凑、价格合理的激光模块,提供3个独立的发射波长,可以在皮秒脉冲和连续波(CW)模式下工作。皮秒脉冲可以由Prima模块的内部时钟触发,也支持高达200MHz的外部触发。该模块采用全电脑控制,操作非常简单:通过USB端口将Prima连接到PC端,所有操作参数的更改都可以通过一个方便的软件接口完成。 红、绿、蓝:三种最有用的波长Prima可以提供三种波长的激光:640nm、515nm和450 nm。每种颜色都可以单独输出,每次输出一个波长。 这三种颜色是材料科学、化学和生命科学中最常用的3种波长,广泛应用于光谱学或显微镜应用的常规激发,进行种类多样待测样品的研究,其中包括新型纳米材料、量子点、分子和荧光团。 Prima是一款几近完美的工具:当涉及到日常实验室任务时,能够满足您的大多数需求,如寿命或量子产率测量,光致发光和荧光测量等。 灵活多样的工作模式:脉冲、连续和快速开关模式在进行时间分辨或稳态测量的时候,无论您需要哪种类型的操作模式,Prima的灵活性都可以轻松实现。Prima同时也支持快速连续开关功能。脉冲模式支持内触发和外触发,内触发的重频率范围从100 Hz至200 MHz可调,外触发支持的重复频率范围从单次脉冲至200 MHz。 每个波长的平均输出功率高达5mW。在CW工作模式下,每个波长可以达到更高的平均输出功率(高达50 mW)。在CW工作模式下,进行ON和OFF状态切换的上升/下降时间小于3 ns。 恒定的重复频率可以通过内部触发来进行设置,Burst工作模式也可以由合适的外部触发源实现触发(例如,PicoQuant的Sepia PDL 828的振荡器模块)。您甚至可以将Prima与其他激光模块组合使用,从而实现更为复杂的激发模式,不仅包括Burst模式,还包括脉冲交替激发(PIE)或交替激光激发(ALEX)。 这使得Prima成为一个通用的工具,可以在许多环境中使用。 易于使用作为一个独立的激光模块,Prima不需要任何其他外部激光驱动对齐进行控制。其参数设置和操作通过一个基于成熟的Sepia的图形用户界面软件进行全电脑控制。
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • BD推出紧凑流式细胞仪 满足高端实验需求
    全球医疗技术领导者之一BD(Becton, Dickinson and Company)公司三大业务部之一的生物科学部门11日宣布其高性能科研型流式细胞仪产品线最新产品BD LSRFortessaTM X-20流式细胞仪正式上线。  BD LSRFortessaTM X-20流式细胞仪由BD特殊定制设计,BD特殊定制能够满足客户对BD流式细胞分析和分选仪配置的特殊需求,以满足特殊科研和分析需要。特殊定制能够为研究者&ldquo 量体裁衣&rdquo ,满足其进行生物医学前沿研究的需求。  BD LSRFortessaTM X-20流式细胞仪带来高性能多色分析表现的同时,外形更加精巧,仅有76.2*73.7*76.2 cm。BD生物科学深刻认识到在当今科研环境下实验空间已经变得越来越珍贵,故而设计了体积进一步紧凑但完全保证高端实验需求的BD LSRFortessaTM X-20 流式细胞仪。  这款流式细胞仪提供了更自由的配置,可以同时装配5根激光器,并同时检测20参数。选配激光器包括最流行的蓝、红、紫、黄绿色和紫外在内的34种激光器。每种激发光源都配有新型多角形检测阵列,并且每个多角形检测阵列都可以提供最多8个检测器,最大程度保证了光路配置的灵活性。  BD LSRFortessaTM X-20 流式细胞仪由BD特殊定制设计,BD 特殊定制能够满足客户对BD流式细胞分析和分选仪配置的特殊需求,以满足特殊科研和分析需要。特殊定制能够为研究者&ldquo 量体裁衣&rdquo ,满足其进行生物医学前沿研究的需求。这一平台同样支持BD生物科学全线试剂产品。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试2min at 1000W光斑大小37µ m-3.5mm34.5µ m-2mm焦长范围200-400mm150-800mm OPHIR 的 BeamWatch 非接触式轮廓分析仪通过测量瑞利散射,捕获和分析波长范围为 980nm - 1080nm 的高功率工业激光。该分析仪包括全穿透光束测量技术、无运动部件、轻便紧凑型设计等特征,非常适合于高功率工业激光进行分析。主要参数 BeamWatch波长范围980-1080nm最小功率密度2MW/cm2最小焦斑大小55µ m最大入射口径12.5mm束腰宽度准确度±5%束腰位置准确度±125µ m焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 美军拟研发拉曼紫外激光器用于生化探测(图)
    美军的生物联合防区外检测系统(JBSDS)。JBSDS是防区外化学与生物威胁监测的应用实例,利用激光雷达(LIDAR)来探测一定距离外的气溶胶。DARPA希望通过LUSTER项目开发出小巧的大功率紫外激光器来实现类似功能。  中新网3月6日电 据中国国防科技信息网报道,美国国防高级研究计划局(DARPA)启动了一项新研究,旨在开发出一种结构小巧、性能可靠的紫外线探测设备。  该研究项目名为&ldquo 战术有效的拉曼紫外激光光源&rdquo (LUSTER)。DARPA向业界寻求设计方案,以开发结构紧致、高效低成本、可灵活部署的深紫外(deep UV)激光生化战剂探测新技术。这种新技术可以节省空间、降低重量和功率需求,也比当前的同类装置要敏感很多。DARPA的目标是:新紫外激光器的体积不超过目前激光器的1/300,同时效率提高10倍。  拉曼光谱分析是利用激光来测量分子振动、从而迅速准确地识别未知物质的方法。紫外激光的波长特别适合进行拉曼分析,但美国国防部当前所使用的战术紫外线探测系统体积庞大、价格昂贵,其性能也有限。  DARPA项目经理丹格林介绍说,目前探测系统的体积和重量太大,需要用卡车运送,而LUSTER项目的目标是开发出具有突破性的化学与生物战剂探测系统,可以单兵携带,并且效率大幅提高,同时,DARPA希望新系统的价格也能在目前探测系统价格基础上&ldquo 抹去几个零&rdquo 。  目前&ldquo 紧凑型中紫外技术&rdquo (CMUVT)项目已经完成,DARPA希望在此基础上研制LUSTER。CMUVT项目研发出了创纪录的高效大功率中紫外线发光二极管,紫外线波长接近LUSTER的紫外光波长。 但发光二极管对化合物识别的灵敏度有限,因此DARPA希望LUSTER项目能够开发出新的激光技术,使其准确度和灵敏度不低于当前昂贵的激光系统,而其稳定性和成本又与发光二极管相当。  格林透露,除了用于探测战场或国内大规模恐怖袭击中可能出现的化学与生物战剂,紫外激光器还有许多其他用途,例如医疗诊断、先进制造和紧凑的原子钟。  LUSTER项目可考虑采用多种不同的技术方法,只要他们能够发出220-240纳米波长的深紫外光,其功率输出大于1瓦,功率转换效率大于10%,导线宽度小于0.01纳米。
  • 半导体所等在高功率、低噪声量子点DFB单模激光器研究中获进展
    分布反馈(DFB)激光器具有结构紧凑、动态单模等特性,是高速光通信、大规模光子集成、激光雷达和微波光子学等应用的核心光源。特别是,以ChatGPT为代表的人工智能领域呈现爆发态势,亟需高算力、高集成、低功耗的光计算芯片作为物理支撑,对核心光源的温度稳定性、高温工作特性、光反馈稳定性、单模质量、体积成本等提出了更高要求。近期,中国科学院半导体研究所材料科学重点实验室研究员杨涛-杨晓光团队与研究员陆丹,联合浙江大学兼之江实验室教授吉晨,在高功率、低噪声的量子点DFB单模激光器研究方面取得重要进展。该团队采用高密度、低缺陷的叠层InAs/GaAs量子点结构作为有源区,结合低损耗侧向耦合光栅作为高效选模结构,研制出宽温区内高功率、高稳定、低噪声、抗反馈的高性能O波段量子点DFB激光器。在25-85 °C范围内,激光器输出功率均大于100 mW,最大边模抑制比超过62 dB;最低的白噪声水平仅为515 Hz2 Hz-1,对应的本征线宽低至1.62 kHz;最小平均RIN仅为-166 dB/Hz(0.1-20 GHz)。此外,激光器的抗光反馈阈值高达-8 dB,满足无外部光隔离器下稳定工作的技术标准。该器件综合性能优异,兼具低成本、小体积的优势,在大容量光通信、高速片上光互连、高精度探测等领域具有规模应用前景。相关研究成果以High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers为题,发表在Laser & Photonics Reviews上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1. 量子点材料的形貌和荧光特性,以及器件与光栅结构图2. 器件的输出特性、光谱特性、光频率噪声特性和外部光反馈下的光谱稳定性
  • 滨松中国携新款量子级联激光器亮相第三届全国激光光谱技术学术论坛
    2019年5月10-12号,由吉林大学、中国科学院长春光学精密机械与物理研究所联合举办的第三届全国激光光谱技术学术论坛在吉林省长春市圆满落幕。滨松中国作为此次研讨会的首家赞助商,在会上隆重展出了激光器新产品——外腔调谐量子级联激光器L14890-09(External-Cavity Quantum Cascade Laser, EC-QCL)和低热功耗的蝶形量子级联激光器。 外腔调谐量子级联激光器L14890-09是一款利用腔外光栅结构、连续波长调谐、频扫式工作的脉冲量子级联激光器,波长调谐范围为7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。 在中红外光谱应用上,相比较于传统的FT-IR方法,该产品充分利用激光的定向能和宽频扫特性,可实现中红外光谱的远程、非接触式、高通量测量。 现已应用于中红外光谱测量、树脂塑料分选、无创血糖测量、中红外高光谱成像技术以及气体分析等领域。值得一提的是,该产品在2018年被日本文部科学省纳米技术平台事业部授予“最佳成果奖”。Polystyrene film Measurement resultData provided byMr. Hiromitsu Furukawa, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology新款蝶形量子级联激光器,采用Tall-Butterfly 封装,相比较于传统的HHL封装,该款产品QCL芯片经过重新设计,在阈值电流、最大电流、芯片功耗以及总功耗方面均有大幅度优化。且更加紧凑,重量只有16g,非常适合于集成到气体分析设备内。该款产品仍然继承了滨松光子原HHL封装QCL的优点:CW功率保证不低于15mW,芯片工作温度10~65摄氏度,甚至某些高温芯片无需外部风冷,完全可以满足日常环境要求。 在探测器方面,滨松中国展出了满足ROHS标准的无毒害InAsSb红外探测,探测范围为1~14um。同时也展出了满足工业监测标准要求的CCD/CMoS阵列光谱仪,主要应用于紫外差分吸收光谱(DOAS)和拉曼光谱分析技术。滨松QCL产品在气体分析的应用中,具有实时检测、快速响应、高精度和高分辨率的优点。搭配相应的探测器,则可准确高效地实现气体的分析测量。
  • 400um光纤耦合千瓦半导体激光器
    成果名称400um光纤耦合千瓦半导体激光器单位名称北京工业大学联系人李强联系邮箱ncltlq@bjut.edu.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:  400&mu m光纤耦合千瓦半导体激光头实物图 400&mu m光纤耦合千瓦半导体激光器整机实物图本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。应用前景:输出激光光强分布图半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。知识产权及项目获奖情况:本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。专利情况:(1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A(2)激光二极管电极连接装置,专利号:CN100527532C
  • 应用案例 | 基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究
    近日,来自山东师范大学的研究团队发表了《基于4.5 μm量子级联激光器的开放光路N2O气体检测系统研究》的研究成果。项目背景温室气体(Greenhouse Gas,GHG)的温室效应引发全球变暖和气候变化,这使得全球生态环境面临着很大的威胁。一氧化二氮(N2O)是全球六大GHG之一,相较于人们熟知的二氧化碳(CO2),N2O含量相对较低,但其全球变暖潜能值(Global Warming Potential, GWP)却是CO2的310倍左右,此外,它对臭氧(O3)也有一定的破坏作用。因此,有效探测大气中的N2O含量及其浓度变化趋势是至关重要的。N2O气体分子的吸收谱带主要集中在中红外区域,需要选用中红外光源对N2O气体进行探测。近年来,随着波长可调谐、可室温工作的量子级联激光器(Quantum Cascade Laser, QCL)的研发技术日益成熟,将其与激光吸收光谱技术相结合,可以实现对气体的高分辨率、高灵敏度探测,被广泛应用于气体遥感探测领域。目前,结合激光吸收光谱技术及紧凑型多通道气室(MGC),可实现对气体分子的快速响应,并达到较低的检测限,但系统为封闭式光学路径,限制了在户外环境中持续检测的便携性、实际适用性和空间覆盖范围。因此,开放式光学路径的设计,对于户外大范围环境中气体浓度的实时检测是十分必要的。系统搭建宁波海尔欣光电科技有限公司为该项目提供了HPQCL-Q&trade 标准量子级联激光发射头、QC750-Touch&trade 量子级联激光屏显驱动器、HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器。HPQCL-Q&trade 标准量子级联激光发射头其波数的可调谐范围是 2203.7 cm-1~2204.1 cm-1,最大输出光功率可达 50 mW。 为了充分发挥 QCL 的波长可调谐特性,结合激光器驱动,对 QCL 的工作温度以及电流进行设置,进而得到系统中所需要的激光器发射中心波长。QC750-Touch&trade 量子级联激光屏显驱动器结合触摸屏的显示功能,极大的方便了用户进行操作。 通过激光驱动器对注入激光器的电流进行更改,分析发射波数与驱动电流的相关性,调节驱动电流大小,分析在300 mA至360 mA的电流变化范围内,激光器波数随驱动电流变化的响应曲线。可以得到,随着电流逐渐增大,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.0271x + 2212.972。 同理,对激光器发射波数与温度的相关性进行分析,对温度进行调节,使激光器在30 °C至45 °C之间工作,分析激光器中心波数随温度变化的响应曲线。可以得到,随着温度逐渐升高,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.1716x + 2210.216。 综上所述,根据所选用的N2O吸收谱线波数为2203.7333cm-1,因此,所对应的QCL 中心电流和工作温度应分别设置为330 mA和36.0 °C。 HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器的感光面积为1×1 mm2,探测范围较为广泛,可达到 2μm-14μm,完全满足本系统探测的需求。由于探测器接收到的回波信号较为微弱,在对数据进行处理前,需要对信号进行放大,而该型号的探测器内部设计有前置放大器,以便后续可直接进行谐波解调和浓度反演等数据处理,同时也对系统的设计进行了简化。结论与创新点:使用该检测系统对大气中 N2O 浓度进行实时检测是可行的。(1) 选用QCL作为发射光源。QCL 具有波长调谐范围广、输出功率较高、并且可以在室温条件下工作的卓越性能。选取最优谱线位置为 2203.73 cm-1,能有效避免其他气体的干扰,实现对N2O气体分子的高灵敏度检测。(2) 为了避免MGC在远程或户外的大范围环境检测研究中的限制性,选用离轴抛物面反射镜和角反射镜,搭建了开放式光学路径的N2O气体检测系统。将大部分光学元件安装在一个光学平台上,实现了系统的紧凑、便携特性,并满足开放式、大范围环境监测的需求。(3) 经验证,当积分时间为1s时,N2O检测限为1.1 ppb,当积分时间延长至95 s时,系统达到最低检测限为0.14 ppb。结合实验结果,表征了系统的高精确度、高灵敏度、低检测限的性能,并且完全满足对大气环境中N2O浓度测量的标准。参考文献:张玉容,赵曰峰《基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究》
  • Coherent相干公司光泵半导体激光器(OPSL)在流式细胞应用领域占据主导地位
    近日,Coherent 相干公司紧凑型连续可见光激光器Sapphire出货量已突破 50000 台。Sapphire是全球首款可产生488 nm的商用化固态激光器,采用相干公司独有的光泵半导体激光(OPSL)技术, 取代了传统的笨重、高能耗气体激光器。 相干公司 Sapphire 光泵半导体激光器 光泵半导体激光器具有灵活可调的波长、可扩展的功率、高效的倍频转换、优异的光束质量等多种优势, 无论是在使用成本、可靠性和使用寿命等方面都极具竞争力。 数十年来,光泵半导体激光(OPSL)技术已在医学诊断、生物成像和其他生命科学应用领域的各种仪器中得到广泛应用。其典型的应用实例包括流式细胞仪、共聚焦显微镜、高通量基因测序、病毒检测等。流式细胞仪领域一直都非常活跃,它的应用涉及免疫学、药物研究,以及用作一线临床诊断工具。随着越来越多研究机构以及临床实验室对多参数流式细胞仪的使用,进一步增加可同时分析的参数数量,加快仪器开发速度并降低总体使用成本益发重要。增加可分析参数的数量能够推动免疫学和细胞生物学等领域开展更复杂的实验。在临床应用领域,这能够让一些数据更加具体,从而为越来越普及的“个性化医疗”(尤其是肿瘤医疗)提供支持。很显然,激光波长的数量是所能测量参数最大数量的制约因素之一。相干公司即插即用的小型化光泵半导体(OPSL)OBIS系列激光器可提供的波长不仅已基本覆盖整个可见光光谱,还把波长带宽拓展到了近红外及更重要的紫外波段,拓展了流式细胞仪多参数测量的能力。 对用于流式细胞仪的激光器而言,还有一个重要趋势是,多波长的激光引擎在临床仪器中的应用越来越普及。相干公司集成化的光引擎OBIS CellX,将4种波长的激光器以及其相关的电子元件、光束整形器和光学聚焦器件都封装在一个模块内,简化并加速了仪器制造商开发新仪器的过程,缩短了产品上市的时间,降低了开发成本。同时,集成化光引擎的这些优势使仪器制造商能够专注于荧光染料化学和可带来优势的其他关键领域的开发(如创新的数据分析技术及其他功能)。相干公司用于生命科学领域的激光器
  • HORIBA推出紧凑型台式拉曼光谱仪
    日前,HORIBA推出最新的台式拉曼光谱仪——MacroRAM。据介绍,这台拉曼光谱仪可以让用户的拉曼测量更简单,即使在处理复杂样品时也不逊色。MacroRAM拉曼光谱仪  120 mm焦距仪、像差校正平场凹面光栅、薄型背照式CCD、冷却到-50℃,该仪器可以在用户支付得起的套装条件下提供最佳的灵敏度。  MacroRAM采用紧凑和稳健的设计,包括1级激光安全,这样的设计意味着它可以在大多数环境中使用,涵盖从本科教学实验到工业质控等领域。而且该仪器体积只有17英寸×17英寸,适合大多数实验室的工作台。  此外,MacroRAM还为操作者配备了灵活的样品室/台,为液体样品(比色皿)以及固体样品提供适合的样品夹,而且恒温的比色皿支架也可用于需要控制温度的测量。此外,标准光纤端口可以适应更大的或形状不规则的样品。  “MacroRAM可以测量的样品类型非常灵活,从极微量的液体到大的固体都可以,” 光谱部门产品线经理Francis Ndi说,“它给用户带来简便的拉曼测量,同时保持高的测量水平。”  据悉,目前MacroRAM还只是在北美地区销售。
  • 太赫兹技术新突破:新型锁相技术实现太赫兹激光器创纪录高输出功率
    p style="text-align: justify text-indent: 2em "等离子体激光器由于其本身的亚波长金属腔而经受着低输出功率和光束发散的困扰。/pp style="text-align: justify text-indent: 2em "strong近日,里海大学(Lehigh University)的科研人员研制出一套方案,可以显著提高激光的发射效率和改善光束质量,研究人员称之为锁相的方案。通过该应用,可以实现目前为止最高高功率的太赫兹激光输出。他们研制出的激光可以产生迄今为止最高的发射效率,并且适用于任何单波长半导体激光量子级联激光器。/strong/pp style="text-align: center"strongimg style="max-width: 100% max-height: 100% width: 470px height: 530px " src="https://img1.17img.cn/17img/images/202007/uepic/13f65aca-5a4c-4d3c-b367-43abbfff42c9.jpg" title="截屏2020-07-01 下午5.15.13.png" alt="截屏2020-07-01 下午5.15.13.png" width="470" height="530"//strong/pp style="text-align: center text-indent: 0em "strong文章截图/strong/pp style="text-align: justify text-indent: 2em "阵列的金属微腔穿过等离子体波而实现纵向地耦合,从而导致单个光谱模的发射和衍射局限在表面法线方向形成单瓣光束。研究人员将这一方案应用于太赫兹等离子体量子级联激光器(quantum-cascade lasers,QCLs)和测量峰值功率超过2 W的单模 3.3 THz QCL在窄单瓣光束时的发射,条件为运行温度为58K时的紧凑型斯特林制冷机。/pp style="text-align: justify text-indent: 2em "新的等离子体激光器锁相方案,与以往在半导体激光器方面的大量文献中对锁相激光器的研究截然不同,该方法利用电磁辐射的行波作为等离子体光腔锁相的工具。同早期的工作相比较,研究人员展示了在功率上可以有一个数量级的增加和至少30倍高的平均功率强度的单模太赫兹QCLs存在。/pp style="text-align: justify text-indent: 2em "该方法获得的太赫兹激光辐射效率是迄今为止任何单波长量子级联所能达到的最高水平,也是首次报道这种量子级联的辐射效率超过50%。这一高效率可以说超过了研究人员一开始的预期,这也是为什么他们研制的激光器的输出功率会显著的高出以前的激光器的原因。/pp style="text-align: justify text-indent: 2em "这项工作的主要创新在于光学腔的设计,它在某种程度上独立于半导体材料的特性。研究人员认为,在利哈伊大学的利哈伊大学光子学和纳米电子学中心,新获得的电感耦合等离子体(ICP)刻蚀工具在推动这些激光器的性能边界方面发挥了关键作用。这一研究报道可以说是单波长太赫兹激光的范式转变,窄的光束将会得到发展和在将来继续发展,同时研究者认为在将来太赫兹的前途非常光明。/p
  • 滨松发布滨松波长可调谐量子级联激光器(QCL)模块L14890-09新品
    滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。本产品不可以销往美国。如果该产品在美国地区,跟客户的设备出现任何不适配的问题,滨松不承担任何责任。详细参数产品型号L14890-09脉冲输出功率(最大值)900 mW光脉冲重复频率(典型值)180 kHz准直透镜Included尺寸(W × H × D)82 mm × 88 mm × 112 mm重量1.2 kg中心波数(典型值)1075 cm-1波数扫描宽度(典型值)200 cm-1产品特点● 内置MEMS光栅● 实现宽波长范围高速扫描● 内置准直透镜● DAU结构基础上的宽带QCL外形尺寸(单位:mm)创新点:滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2× 8.8× 11.2 cm),易于装配。滨松波长可调谐量子级联激光器(QCL)模块L14890-09
  • 瞬间功率可达全球发电千倍的激光器问世
    一个国际科学家联合小组设计了新的强大激光系统,该系统有上千个光纤激光(fiber lasers)的阵列组成,可以用来在实验室进行基础研究和更加广泛的应用,如质子治疗和原子核嬗变。  激光可以提供非常短暂的测量手段,可以精确到飞秒(10^-15),瞬间释放的功率可以高达10^15瓦,是全球发电功率的上千倍。然而,阻碍高强度激光广泛应用的有两个方面:一是高强度激光通常每秒只能发出一个脉冲,而实际应用中则要求能提供上万次脉冲 二是高强度激光能量利用率非常低,输出的激光能量只是输入电能的很小一部分,大部分以热能的形式散发,在实际应用中要保持稳定的高功率输出是非常不经济的。  最新研发的这种&ldquo 光纤激光&rdquo 阵列不但能提供稳定的光脉冲,而且能量利用效率也大大提升。科学家可以利用它研制一种紧凑型粒子加速器(Compact accelerators),可以在数厘米的距离上把粒子的能量提升到很高的水平,而传统的粒子加速器的加速距离则高达数公里。当今天的加速器体积做的越来越大,耗资越来越高的时候,这种用激光驱动的加速器会越来越受到青睐,或许新一代LHC会采用这种手段。  紧凑型加速器在医学领域也有很强的应用需求,可以用来对癌症病人进行质子治疗。在工业领域可以用来处理核反应堆生成的核废料,缩短放射性同位素的半衰期,从数十万年降低到几十年、甚至更短,大大减少了对环境的危害性。
  • 最亮手持激光器在美问世 亮度为阳光八千倍
    Wicked公司研制的S3氪激光器,射程可达到85英里。  S3氪激光的亮度可达到阳光的8000倍。  北京时间9月8日消息,从CD到DVD,激光技术的触角已经延伸到地球的每一个角落。科学家研制的激光器中绝大多数能量很小,与科幻作品中可怕的太空激光武器相差十万八千里。在研制激光器的道路上,美国Wicked激光公司又向前迈出一步,他们研制的S3氪激光器射程可达到85英里(约合136公里),可以穿过房间点燃纸张,能够从地球大气层锁定地面上的物体。  S3氪激光的亮度达到阳光的8000倍,是世界上亮度最高的手持激光器。目前,吉尼斯世界纪录组织正对这一激光器进行评估。Wicked公司表示:“建议用户佩戴护目镜。”S3氪激光器的售价为299美元,涵盖一副护目镜的价格。在人类肉眼看来,绿色激光的亮度是蓝色激光的20倍,S3氪激光器便是绿色激光,拥有惊人的射程。它的能量很高,能够在远距离点燃纸张和火柴。由于内置微处理器,S3氪激光器不会出现温度过高情况。  Wicked公司为S3氪激光器采用了一系列安全举措,例如使用密码以防止滥用激光器。此外,他们还警告用户,不要将激光对准车辆、飞行员、动物、人或者卫星。这款激光器能够进入“战术休眠”模式,允许激光器立即冷启动。  由于任何非人造物体都无法从距地面85英里的高度照射到地球——除非科幻影片中入侵地球的外星人——人们不免对S3氪激光器的用途产生好奇。Wicked公司CEO史蒂夫-刘表示:“如果这款激光器安装在一个稳定的支架(我们并不卖这种支架)上并与卫星同步,宇航员能够看到微弱的绿光。这种实验需要获得政府航天机构的批准。我们的绝大多数职业消费者将这种激光器用于军队、工业界和科学研究。一些业余爱好者将其视为一个奇异的玩具,探索它的用途。作为公司的一项政策,我们并不列出激光器的具体用途,同时建议专业人员使用我们的产品并对自己的行为负责。”  WickedLasers.co.uk等网站计划将这种危险的装置进口到英国。2010年,一名青少年被自己从网上购买的绿色激光器严重灼伤眼睛,这起事故发生后,英国健康保护署发出警告,提醒公众不要购买大功率激光器。目前,英国已经有超过12个人因将大功率激光指示器对准飞行员、司机和足球运动员被送进监狱。
  • 日立高新推出DS3000紧凑型毛细管电泳测序仪
    p dir="ltr" style="text-align: justify text-indent: 2em "2020年9月1日,日立高新宣布,DS3000紧凑型毛细管电泳(CE)测序仪将在日本、中国、韩国发售。日立DS3000由日立高新技术公司和普洛麦格公司合作开发。/pp dir="ltr" style="text-align: center text-indent: 0em " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/cf02a272-e697-4cf7-8c8a-6ca36228236c.jpg" title="图片1.png" alt="图片1.png"//pp dir="ltr" style="text-align: center text-indent: 0em "span style="color: rgb(0, 112, 192) "strong紧凑型毛细管电泳测序仪 日立DS3000/strong/span/pp dir="ltr" style="text-align: justify text-indent: 2em "DNA测序仪用于遗传分析研究:包括对病毒、微生物和人类在内的所有生物体所拥有的遗传信息进行分析。该仪器用于自动读取和分析包含生物遗传信息的DNA碱基序列。尤其是新一代测序仪,可以一次性分析大量的基因序列,现已被广泛应用。然而,在制药、食品工业和大学中的小规模研究机构中,还需要能够在短时间内以相对较低的成本进行基因样品分析。 紧凑型第一代CE测序仪可以满足这些研究机构的需求,并且有望实现稳定的需求。/pp dir="ltr" style="text-align: justify text-indent: 2em "日立DS3000 CE测序仪以日立高科技多年来开发的毛细管和激光辐照技术,以紧凑的形式提供了世界一流的高性能和高速处理。 该产品还具有环保设计,可帮助减少产品使用过程中的CO2排放量-价值链中占CO2排放量最多的阶段,为客户带来的环境负荷较小。/pp dir="ltr" style="text-align: justify text-indent: 2em "日立DS3000 CE测序仪可以小巧的样式提供了世界一流的高性能和高速处理,得益于日立高新多年来开发的毛细管和激光辐照技术。该产品还采用了环保设计,可减少产品在使用过程中的二氧化碳排放量。/pp dir="ltr" style="text-align: justify text-indent: 2em "strong日立DS3000的主要优点如下:/strong/pp dir="ltr" style="text-align: justify text-indent: 2em "1. 节省空间,设计方便/pp dir="ltr" style="text-align: justify text-indent: 2em "DS3000配有触摸屏,用户可以一目了然地查看状态;简化了测量设置过程,使基因分析更容易;它具有紧凑的设计,占地面积远远小于传统型号,从而节省了空间并易于使用;此外,远程监控系统允许远程访问设备,并且通用PC可以用于输出报告和运行辅助分析软件,从而降低了设备的成本。/pp dir="ltr" style="text-align: justify text-indent: 2em "2. 减少维修/pp dir="ltr" style="text-align: justify text-indent: 2em "设备内部的耗材采用盒式系统,便于安装。此外,输送系统是无泵的,从而无需常规的清洁工艺,减少了维护时间和成本。相比于更换复杂且昂贵的传统光源,新型激光二极管(LD)光源的发光速度更快、使用寿命更长。/pp dir="ltr" style="text-align: justify text-indent: 2em "br//pp dir="ltr" style="text-align: justify text-indent: 2em "日立DS3000有望被用于大学的核心设施和小型研究实验室等场所,因为它是一个易于使用,可操作的CE测序仪,它是一种易于使用的可操作CE测序仪,可用于验证已被下一代测序仪分析的大量基因序列数据以及进行人类鉴定中使用的片段分析等工作。/pp dir="ltr" style="text-align: justify text-indent: 2em "通过开发该产品,日立高新可进一步扩大生物/医疗保健市场的DNA测序业务,这是一个重点领域。日立高新将继续利用“分析技术”,迅速把握客户的先进需求,在生物/医疗、安全/安保等领域创造具有高附加值解决方案。/pp dir="ltr"br//p
  • 分析时间减少50% 赛默飞推出全新紧凑型FTIR光谱仪
    p  日前,赛默飞在Pittcon 2019上展出全新的、紧凑型的Nicolet Summit FTIR光谱仪。该款仪器使用智能背景收集模式,总分析时间减少50%。即使在繁忙的、多用户的QC实验室或教学实验室,使用这种紧凑、强大的FTIR光谱仪,也能快速、可靠地给出答案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/950a6610-8799-4aec-b0a0-4a5d043e7f73.jpg" title="1552660037590.jpg" alt="1552660037590.jpg" width="300" height="217" border="0" vspace="0" style="width: 300px height: 217px "//pp  与之前的Nicolet iS5 FTIR光谱仪相比, Nicolet Summit FTIR光谱仪采用创新的硬件和软件以改进性能、提高生产率、增强连接性。采用与赛默飞更先进的光谱仪相同的光驱动光学引擎技术,Nicolet Summit光谱仪可以提供准确和可重现的数据,同时对关键光学组件提供延长担保,以降低维护成本。/pp  Nicolet Summit光谱仪采用赛默飞尖端的OMNIC软件,为需要管理多个用户和样本类型的实验室提供了生产力优势。工作流通过一个新的、可视化的工作流编辑器进行简化。新一代触摸屏界面帮助用户执行这些工作流,并将分析简化为几个简单的步骤。数据分析将在桌面界面上进一步进行,该界面包含一个用于查看最新工作的仪表板,帮助用户轻松创建库、自动后台收集和执行多组件搜索。/pp  Nicolet Summit光谱仪是第一个使用内置多色LED灯条的光谱仪,它可以为用户提供关于仪器状态和样品通过/失败结果的即时视觉反馈。此外,该仪器还包括一个完全集成的机载计算机,它创建了一个新的数字科学平台,支持网络协作和集成分析。/pp  “我们为繁忙的QC/QA和教学实验室设计了这种紧凑的光谱仪,这些实验室需要仪器具有长期的可靠性,操作更直观。此外,Nicolet Summit光谱仪还可以帮助这些实验室删减收集和分析数据时的繁琐步骤。”赛默飞振动光谱高级业务主管Denzil Vaughn说。“Nicolet Summit光谱仪提供了一个在云端上传、分析和共享数据的无缝连接 (Thermo Fisher Connect),用户可以从任何设备或位置访问他们的数据。教授们会发现这个功能很有用,因为学生们现在可以在拥挤的教学实验室里快速测量样本,然后在校内或校外的任何地方分析数据。”/p
  • 赛默飞紧凑型拉曼光谱仪新品iXR首次亮相Pittcon
    芝加哥时间2017年3月6日,赛默飞在Pittcon现场展出拉曼光谱仪新品iXR,这是一款设计紧凑的多模式的拉曼光谱仪,可以使用多种技术对单一测量点进行同时分析。分析结果通过展示分子成分、表面和结构性能之间的关系,加深对材料的认识。新品  据悉,该产品使用光学接口同时提供化学指纹和材料结构数据,同时利用补充仪器收集元素或物理信息,并立即进行数据关联。这些信息的目的在于提高对材料整体性能的理解,提升研究成果的质量。  此外,采用赛默飞的OMNIC系列软件,iXR拉曼光谱仪可以捕获随着时间推移而产生的光谱变化,可以实现变化环境中的动态进程测量,比如聚合物的流变结晶。  “从事材料研究和表征的科研工作者需要深入、快速了解新材料的性能,” 赛默飞分子光谱副总裁和总经理Phillip van de Werken说。“iXR拉曼光谱仪以及我们在连用技术方面的实力,可以加深客户对材料物理化学性质的了解。”  现在科学家可以结合紧凑型拉曼和实验室的X射线电子能谱(XPS)、x射线衍射和流变仪等其他分析技术来进行材料研究和分析。结合化学和形态信息,以及元素和物理性质,可以更深入洞察化学和性能之间的关系。展会现场
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器  新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。  1.美国“国家点火装置”  这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。  美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。  2.庞大的靶室  庞大的靶室  在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。  3.包含放射性氢同位素、氘和氚的铍球  包含放射性氢同位素、氘和氚的铍球  这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。  例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。  4.靶室顶部的起重机和气闸盖  靶室顶部的起重机和气闸盖  在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。  5.精密诊断系统  精密诊断系统  激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。  6.激光间  激光间  在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。  最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。  7.磷酸盐放大玻璃  磷酸盐放大玻璃  国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。  8.技术人员在激光间里安装光束管  技术人员在激光间里安装光束管  技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。  9.紧急停运盘  紧急停运盘  在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。  10.光导纤维  光导纤维  光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。  11.能量放大器  能量放大器  能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。  12.可变形的镜子  可变形的镜子  可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。  13.激光放大器  激光放大器  激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。  14.便携式洁净室  便携式洁净室  科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。  15.能量放大器  能量放大器  每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。  16.技术人员校对能量放大器  技术人员校对能量放大器  从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。  17.模仿NASA的主控室  模仿NASA的主控室  照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。  18.光束源控制中心  光束源控制中心  光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。  19.国家点火设施的激光源  国家点火设施的激光源  国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。  20.高能灯管  高能灯管  高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。  这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。  国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)  导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:  “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。  以下是“国家点火装置”产生最强激光的几大步骤:  1、安装球形外壳     安装球形外壳  为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。  2、用调节器调整靶位     用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。  3、将燃料放入燃料舱(圆柱体)     将燃料放入燃料舱(圆柱体)  进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。  4、压缩并加热燃料     压缩并加热燃料  所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。  5、用磷酸二氢钾晶体转换激光束     用磷酸二氢钾晶体转换激光束  激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 2015年斯派克最新推出紧凑型直读光谱仪SPECTROCHECK
    在中国的金属行业的市场对于金属成分分折来说斯派克的精确度和分析时间快速还有服务在业界是得到公认的。相对其它品牌来说,不管是进口的还是国产的他们都做不到这点,但他们唯有一点就是便宜。所以很多中小型企业不舍得花好几十万或上百万去买一台德国斯派克光谱仪,他们情愿去买一台别的牌子的光谱仪。但买回去用了一两下就坏了,有些买回去甚至用不了或测的不准确到最后还是选择德国斯派克的光谱仪。这些对于斯派克的直读光谱仪来说很多中小型企业是舍不到花这么多钱来买这样一台仪器,所以中小企业想买就是觉得太贵。 现在,斯派克公司根据中国的市场和用户需求,在2015年最新推出了专门针对中国中小型企业需求的新款紧凑型直读光谱仪:SPECTROCHECK。 SPECTROCHECK是专门为中小型企业设计的,与直读光谱仪MAXx 相对价格便宜很多,外型的灵巧美观,操作简单,功能齐全,这些其它品牌是更加比不了的。首台SPECTROCHECK已在广州市仪德科学仪器有限公司展示,这也是德国斯派克授权给中国华南区与华中区的唯一代理商!如有想观看学习和测试这台直读光谱仪的各大企业可以前来广州市仪德科学仪器有限公司参观学习。下面我们对这款直读光谱仪进行介绍下:斯派克SPECTROCHECK直读光谱仪:高性能,高可靠性和低价格的完美邂逅SPECTROCHECK是专门设计的直读光谱仪,以满足中小铸造厂和机械加工企业对于紧缩预算采购高性能光谱仪的需求。这一款高质量,紧凑型,买得起的光谱仪生来用于分析钢铁,铝合金和铜合金中的元素含量。使用SPECTROCHECK的公司可以确保为其用户提供经过严格成分检测的高质量的金属材料。经验和质量SPECTROCHECK完全是在德国设计制造。设计团队和生产部门由经验丰富,极富才干的专家和工程师组成。设计制造理念秉承德国制造的高质量,高性能和高可靠性。精英团队结合世界最大光谱仪生产线,其结果:放心使用,超极可靠数据的长久保证。简单易用所有的仪器特性,包括新设计的火花台,插件式功能模块,和易性的软件界面都是为使用效能最大化精心设计的。因此SPECTROCHECK操作简单,易于维护。经过简单的培训或视频学习,即使没有专业基础的人员也可以上手使用。从没有一款光谱仪给以如此低的价格提供这么高的性能保证。极低的使用维护成本来自于ICAL智能标准化大大降低再校准费用和时间;用仅为需要的插件式功能模块付费。毫无疑问SPECTROCHECK是最佳性价比的光谱仪。SPECTROCHECK的优越性SPECTROCHECK以崭新专利光学技术实现突破。光学系统结合了多检测器多色仪和波长选定映像反馈技术(SWIFT)。光学室隔离恒温,确保稳定运行。内部氩气流动冲洗技术保证紫外光通光率。这样的设计方案可以实现全部应用相关光谱范围高精度性能。SPECTROCHECK优化铸造金属元素选择设计方案。因此可以减少光谱干扰,使得分析谱线从大量干扰谱线中“脱颖而出”。全新的软件界面展示了清晰,友好的显示风格。基于按钮的,无菜单的日常操作界面,使得SPECTROCHECK简单易用。而且,独特的插件式模块设计使得用户可以根据需要定制功能。用户可以根据样品类别选择所需的插件模块,也可以在屏幕添加新增插件。用户很容易掌握操作要领。全新的,简单透彻的软件风格,用户不需长时间操作培训即可使用。用户可以快速上手,直观操作。这台SPECTROCHECK已在广州市仪德科学仪器有限公司开售,各大中小型企业都对他非常的满意!许多企业带样来测试都表示这台SPECTROCHECK可以中国中小企业的需求,是他们选购的最佳选择!斯派克现在还推对材料快速筛选和土壤矿产检测的手持式X射线荧光光谱仪SPECTRO xSORT。广州仪德(www.yidekeyi.com)联系电话:18028685183 丘生
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 我国研制成功5千瓦级全固态激光器 打破国际禁运
    美国“百夫长”激光炮就是将数个8千瓦级工业激光器并联。  林学春研究员(左一)与国外同行开展学术交流(科学报图片)  工欲善其事,必先利其器。  激光就是先进制造领域的一把利器,对一个国家的先进制造业发展有着至关重要的作用,而先进制造业的水平,体现着综合国力的强弱。  29岁就成为中国科学院半导体所最年轻的研究员,他最感谢的是他的导师、中国工程院院士许祖彦,导师不仅教给他扎实的基础知识,同时也教会他如何做人。  跨越鸿沟,就是一个全新的自己  2005年,博士毕业后来到半导体所科技处工作刚刚一年的林学春接到了一项艰巨的任务——筹建全固态光源实验室。  从无到有,往往要付出常人难以想象的努力。创建初期,林学春白天被科技处各种事务性工作填得满满当当,研究只能放在晚上做。大功率激光器实验危险性很强,水、电、光都集中到一个很小的区域,稍不留神,水溅出来会有灾难性的后果,看不见的激光射出来会把钢板烧个窟窿。而那时,实验室里只有林学春一个人在同时面对这些可能发生的危险。  危险,林学春不怕,但让他苦恼的是,如何才能得到理想的实验结果。很长一段时间内,他觉得自己离成功很远,想到研究所为实验室投入的那么多经费可能要付诸东流,他不免心急如焚。  一个能取得成功的人总是一个善于调节自己情绪的人。很快,他就豁然开朗了,要作出成绩必须先平静下来,有无所畏惧的决心和勇气。他把激光器部件一个个拆开,反复对比每一个参数,认真设计每一个步骤,经常在不知不觉中,发现窗外天已大亮。  尽管很累,但是他说,要感谢那段时间,因为在每天的坚持中,他不光看到了自己的进步,还锻炼了自己的意志,“现在我无论碰到什么困难都不怕,跟过去遇到的困难比起来小多了”。  跨越了鸿沟,成果接踵而至。实验室相继突破3kW、4kW、6kW和8kW激光输出,缩短了与国际上该领域的差距。2008年,以林学春作为项目负责人承担的“863”重点项目“高功率5千瓦全固态激光器”的课题“高功率全固态激光器研究”通过了科技部专家组严格评估,这是我国首次研制成功的满足工业需求的5千瓦级全固态激光器,并具有完全自主知识产权。这项成果对打破国际禁运、实现激光先进制造装备工程化具有重要意义。  进军“激光革命”  人类的文明史就是一部人类利用光的历史,激光则是迄今为止“最亮的光”,“激光革命”在改变着世界。让自己所制造的激光器服务于社会,在这场“革命”中取得一点小小的成绩,是林学春最大的心愿。  近年来,为加快科技成果转化,林学春及其科研团队以“工业应用需求”为导向,研制出一系列工业化高稳定性、高可靠性激光器及其装备,广泛应用于激光焊接、表面处理、精细加工和激光医疗等领域并取得了显著的成效。  他们研制的高稳定性全固态激光器被中国计量院作为标准光源,对国内的功率计进行标定。他们还开发出国内领先的1000W准连续(90ns)全固态激光器,用于船舶的除漆除锈等行业,目前应用于新加坡IDI激光有限公司。  林学春及其科研团队研发出的全固态高能量脉冲(12J/脉冲)激光器可以对金属表面进行毛化,使载货重轨能在雨雪等恶劣天气下正常行驶,技术将有望应用到高速铁路上,这将大大提高我国高铁在恶劣天气中的运营能力。  林学春团队研制出的工业用1~5kW高性能系列化全固态激光器于2010年成功与江苏省丹阳市天坤集团签订成果转化协议,直接为研究所带来了2000万元的现金收益。这项技术将广泛应用于汽车、船舶、航空、铁路等对国民经济起举足轻重作用的材料加工领域,对尽快扭转我国在先进制造领域关键成套装备基本依靠进口的局面,提高技术创新能力具有重要意义。  尽管如此,年轻的林学春一贯地谦逊:“我们只是在老一辈科学家引领下做了一些可供借鉴的工作而已,将来还有很多事情等着我们去做。”对于卓有成绩的青年科学家来说,这是难能可贵的。
  • 岛津二极管激光器「BLUE IMPACT」在日获大奖
    日前,岛津公司研发的光纤耦合型高亮度蓝光直接二极管激光器「BLUE IMPACT」获得了日刊工业新闻社主办的 “2015年度超级部件制造大奖”。该奖项主要用于表彰对日本产业、社会发展作出突出贡献的部件及部材。共分为“机械”、“电子电器”、“汽车”、“环境”、“健康/医疗器械”、“生活相关”六大领域,分别予以表彰。从2007年起直至去年,岛津公司装置类产品曾连续八年获奖,但斩获“超级部件制造大奖”尚属首次。 光纤耦合型高亮度蓝光直接二极管激光器「BLUE IMPACT」(左)10月13日格兰皇宫饭店颁奖仪式现场(右) 本次荣获“超级部件制造大奖”的光纤耦合型高亮度蓝光直接二极管激光器「BLUE IMPACT」采用了蓝光氮化镓类半导体激光,是全球首个完成产品化的激光加工用光源。 本产品采用岛津特有技术,通过将多个激光元件多重合成为直径100μ m以下的微细光纤,在维持高输出效率的同时,实现了世界顶尖水平的能源密度。原来经常使用的红外半导体激光,在进行金、铜等材料加工时,由于金、铜吸收红外光较少,很难完成加工。但光纤耦合型高亮度蓝光直接二极管激光器可以作为这些材料的微细加工光源使用。 【本产品相关评价】 光纤耦合型高亮度蓝光直接二极管激光器「BLUE IMPACT」获得了来自“超级部件制造大奖”事务局的好评。 l “一直以来,蓝光半导体激光用于加工用途时,很难克服输出效率、能量密度等课题。并且,从商品化角度来考虑,成本也不合算。岛津公司本次入选的这款产品,作为光源单元实现了产品化并完成了市场投入。” l “岛津公司的多重合成技术成功将多个激光元件发出的光汇集到微细光纤中,实现了高输出功率、高密度光源。可以说该技术攻克了难度系数非常高的课题。” l “高输入功率、高密度蓝光激光除可用于加工用途外,还有望和绿光、红光结合使用,使应用更加多样化。由于通用性、可行性高,可以说该技术实现了一项重大突破。” 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。  开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
  • 德国研发出世界上最小线宽的激光器 仅10 mHz
    p 激光器是精密的代名词,但一般来说,其还有改进的余地。“完美”的激光器会在一个特定的波长发出一种光。光从激光器中射出,激光起振后,会有一个或多个纵模产生,每个纵模的频率的范围就是激光的“线宽”。尽可能缩窄线宽是激光研究的目标之一,现在德国研究人员已经开发出了世界上最小线宽的激光器,线宽仅为10 mHz(0.01 Hz)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/d28fbc97-43fc-4843-8448-b6c70db66b3c.jpg" title="fa9904fa7c0c651.jpg"//pp  通常,最好的激光器可以具有窄到几kHz的线宽,但是对于特别精确的仪器,如光学原子钟,就需要将之进一步收窄。另一种衡量激光束质量的方式是光频率的稳定性:在过了一段时间之后,光波的震荡会出现不同步,因此一束激光能维持更长的“完美”时间,其质量也就愈佳。/pp  来自德国联邦物理技术研究院(PTB)和美国天体物理联合实验室(JILA)的科学家共同研发的新型激光器在这两个领域均表现优异。除了其10 mHz的极小线宽,其光波能持续11秒保持稳定,此时光束延伸约330万公里,约是地月距离的10倍。/pp  事实上,新的激光器非常精确的,难以与现有的激光器进行比较,为了证明它的价值,团队研发了两个激光器,并将它们相互比较。这两个设备由Fabry-Pé rot硅谐振器制成,包含两个彼此相对的固定反射镜。由于谐振器的长度决定了光波的频率,所以研究人员利用长21cm的谐振器来获得理想的激光束。 研究人员通过这样精确的测量,使仪器不受其他因素干扰,例如压力,振动和温度。/pp  研究人员正在利用这种极小线宽的新型激光器来制造更准确的原子钟,并对超冷原子进行更精确的测量。研究人员认为,通过调整反射镜的组成并找到降低谐振器内部温度的方法,线宽能进一步收窄,甚至可以达到1 mHz以下。/pp  这项研究成果发表在《物理评论快报》(Physical Review Letters)杂志上。/ppbr//p
  • 新型半导体激光器成功解决激光成像“光斑”问题
    美国耶鲁大学的科学家开发出一种新的半导体激光器,成功解决了长期困扰激光成像技术的&ldquo 光斑&rdquo 问题,有望显著提高下一代显微镜、激光投影仪、光刻录、全息摄影以及生物医学成像设备的成像质量。相关论文发表在1月19日出版的美国《国家科学院学报》上。  物理学家组织网1月20日报道称,全视场成像应用近几年来已经成为众多研究所关注的焦点,但光源问题却一直未能得到解决。这项由耶鲁大学多个实验室合作完成的项目成功破解了这一难题,为激光成像技术大范围的应用铺平了道路。  耶鲁大学物理学教授道格拉斯· 斯通说,这种混沌腔激光器是基础研究最终解决实际应用问题的一个典型范例。所有的基础性工作,都是由一个问题驱使的&mdash &mdash 如何让激光成像技术更好地在现实中获得应用。最终,在来自应用物理、电子学、生物医学工程以及放射诊断等多个学科的科学家努力下,这一问题得到了解决。  此前,科学家们发现激光在成像领域极具潜力。但&ldquo 光斑&rdquo 问题却一直困扰着人们:当传统激光器被用于成像时,由于高空间相干性,会产生大量随机的斑点或颗粒状的图案,严重影响成像效果。一种能够避免这种失真的方法是使用LED光源。但问题是,对高速成像而言,LED光源的亮度并不够。新开发出的电泵浦半导体激光器提供了一种不同的解决方案。它能发出十分强烈的光,但空间相干性却非常低。  论文作者、耶鲁大学应用物理学教授曹辉(音译)说,对于全视场成像,散斑对比度只有低于4%时才能达到可视要求。通过实验他们发现,普通激光器的散斑对比度高达50%,而新型激光器则只有3%。所以,新技术完全解决了全视场成像所面临的障碍。  论文合著者、放射诊断和生物医学助理教授迈克尔· 乔马说:&ldquo 激光斑点是目前将激光技术用于临床诊断最主要的障碍。开发这种无斑点激光器是一项极其有意义的工作,借助这一技术,未来我们将能开发出多种新的影像诊断方法。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制