微纳制备

仪器信息网微纳制备专题为您整合微纳制备相关的最新文章,在微纳制备专题,您不仅可以免费浏览微纳制备的资讯, 同时您还可以浏览微纳制备的相关资料、解决方案,参与社区微纳制备话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

微纳制备相关的资讯

  • 牛津仪器2011微纳制备工艺技术研讨会在京举行
    仪器信息网讯 2011年3月11日-12日,牛津仪器2011微纳制备工艺技术研讨会暨英国牛津仪器等离子技术公司客户会在北京西郊宾馆举行。此次研讨会以“纳米电子:生长、沉积与蚀刻”为主题,由英国牛津仪器离子技术公司主办,中科院半导体所协办,吸引了110余名来自半导体领域的用户,仪器信息网作为独家特邀媒体参加了本次研讨会。   研讨会现场   英国牛津仪器等离子技术公司全球销售总监 Mark Vosloo先生   牛津仪器等离子技术公司全球销售总监Mark Voslo先生首先致欢迎辞并对牛津仪器等离子技术进行了简要介绍,他说到:牛津仪器等离子技术公司是英国牛津仪器公司的子公司,是微纳制备仪器的生产商,公司提供各类刻蚀、沉积和生长系统,可以为材料的微米、纳米级工程提供工艺方法,产品广泛应用于半导体、光电子、MEMS和微流体、高质量光学涂层及其他多种微纳技术领域。本次研讨会是英国牛津仪器等离子技术公司在中国大陆举办的首场研讨会,未来我们还将联合重点研究所及大学举办更多的研讨会,促进公司与用户之间的交流。   会上,来自牛津仪器、中科院半导体所、中科院物理所、3M公司等企业或科研单位的专家分别做报告,内容涉及硅蚀刻、III - V族聚合物蚀刻、RIE-ICP干法蚀刻、ALD技术、ICP CVD/PECVD、纳米蚀刻等方面的技术工艺及应用过程中遇到的问题及解决方法。   表1 牛津仪器2011微纳制备工艺技术研讨会报告名单 报告人 单位或公司 报告题目 杨富华 中科院半导体所 微纳技术在中科院半导体所的应用 Robert Gunn 英国牛津仪器公司 硅蚀刻综述 Ligang Deng 英国牛津仪器公司 III - V族聚合物蚀刻综述 樊中朝 中科院半导体所 运用Plasmalab System 100对III - V族化合物半导体进行干法刻蚀 张俊颖 II - VI族化合物RIE-ICP干法蚀刻与PECVD的应用 方起 英国牛津仪器公司 ALD技术综述 Deirdre Olynick 美国劳伦斯伯克力国家实验室 纳米蚀刻 Robert Gunn 英国牛津仪器公司 ICP CVD/PECVD综述 王晓东 中科院半导体所 运用Optofab ® 3000光学镀膜系统进行介质涂层的制备 夏晓翔 中科院物理所 运用ICP-RIE蚀刻技术进行纳米加工 Haiping Zhou 英国Glasgow大学 常温下运用ICP-CVD加工纳米尺度器件   研讨会现场气氛活跃,与会人员踊跃提问。此外,本次研讨会还设有主题讨论环节,牛津仪器工作人员就用户的提问都进行了细致解答。研讨会结束后,与会人员还参观了中科院半导体所。   现场讨论   附录:牛津仪器公司   http://www.oichina.cn/   http://www.instrument.com.cn/netshow/SH100233/
  • 利用微纳微尺度3D打印技术制备微流控液滴生成芯片
    许多食品(烘焙食品、乳剂、冷冻产品等)是含有多种成分的分散体系,其中乳液是最常见的。传统的乳液制备通常需要高速均质、高压均质等方法。这些常用方法制备的乳液其大小、形状和分布是不可控的,存在多分散液滴。然而,微流控技术可精确控制多相流,以形成具有所需直径的单分散液滴。它在许多行业都有潜在的应用,包括食品、制药、化妆品和生物材料等行业。但其液滴生成效率低,不能满足工业化的要求。此外,传统方法不能很好的实现多重乳液的制备,而微流控技术可以较好的实现多重乳液的生成,但实验时需用有机试剂对微流控芯片(玻璃毛细管,PDMS)进行局部表面处理。近日,华南农业大学食品学院蒋卓副教授课题组基于微立体光刻3D打印技术(深圳摩方材料科技有限公司nanoArch® P140),利用光敏树脂材料实现微流控芯片的制备。此工作利用一种新技术制造了单乳液和双乳液的微流控生成芯片。这些芯片采用微纳微尺度3D打印技术制作,实现宏观结构和微观结构的有机结合,可以同时满足不同乳液类型的制备和生成,清洗后可多次重复使用。同时实现了五个平行通道的单乳液生成,为高通量微流控技术的改进奠定了基础。基于此,该微流控芯片成功实现了W/O/W(水/油/水)和O/W/O(油/水/油)双重乳液的制备。此外,由于制备芯片所使用的树脂材料对油和水都具有良好的润湿性,因此不需要使用有机试剂对芯片进行局部改性。该工作以“Microfluidicdroplet formation in co-flow devices fabricated by micro 3D printing”为题发表在Journal of FoodEngineering上,第一作者是华南农业大学硕士生张佳。微流控芯片的设计及3D打印制得的装置基于Co-flow原理,通过3D打印技术,制备了单乳液生成芯片(图1),五个平行流道的单乳液生成芯片以及双重乳液生成芯片(图2)。图1 单乳液生成装置图2 五个平行流道的单乳液生成装置和双重乳液生成装置微流控芯片的评价为了验证和评估该装置的可用性,我们选取不同的乳液配方进行试验。选取不同的油包水和水包油乳液,对乳液生成过程进行记录,并对收集后的乳液进行分析(图3)。收集到的油包水乳液单分散性较好,其CV为2.7%。同一装置上实现了水包油乳液的生成,所得液滴的CV仅为2.2%。图3 单乳液生成装置用于油包水(a、b)和水包油(c、d)乳液的生成及其分散性利用五个平行流道的单乳液生成装置进行试验,可以在同一装置上实现油包水和水包油两种不同类型乳液的生成(图4),所得油包水液滴的CV为2.6%,水包油液滴的CV为3.1%。本研究使用的微流控芯片制作简单,集成度高,可重复使用。但其生产效率和液滴直径仍需进一步提高,这也是我们后续研究的重点。图4 五个平行流道的单乳液生成装置用于油包水(b、c)和水包油(d、e)乳液的生成及其液滴的分散性基于上述实验结果,我们进行了双重乳液的生成。在实验中,通过改变内相、中间相和外相的速度可以调节液滴的尺寸和核壳比例。图5展示了不同流量下W/O/W双乳状液的形成过程和收集的液滴,可以看到明显的核-壳层。对于O/W/O双乳状液的形成(图6),实验过程中可以清楚地看到乳状液的形成过程,但收集后的乳液稳定性极差,不能观察到均匀分散的双乳状液滴,尝试了多种O/W/O乳液配方,暂未得到可靠的实验结果。图5 采用双乳液生成装置在不同流速下生成和收集W/O/W双重乳液图6 采用双乳液生成装置生成O/W/O双重乳液目前,对于3D打印微流控芯片的性能评价还处于实验室阶段,所使用的乳液配方是在现有参考文献的基础上进行修改的。为了进一步促进微流体在食品工业中商业化,需要进一步开发相关的乳液配方。此外,微流体的一些问题需要解决,如高通量,稳定性,生物相容性等。参与该工作的合作者有华南农业大学食品学院的硕士生徐文华,工程学院的徐凤英教授,无限极(中国)有限公司的鲁旺旺、张晨,深圳摩方材料科技有限公司的周建林等。原文链接:https://doi.org/10.1016/j.jfoodeng.2020.110212(以上相关介绍内容由华南农业大学蒋卓副教授提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对蒋卓副教授进行了更进一步的访谈,以下为部分内容:BMF:请问目前您与BMF的合作进展情况如何?蒋教授:2018年6月前后开始与BMF的合作,最开始了解摩方所做的微尺度3D打印技术之后,有通过3D技术打印微流控芯片的想法,画出设计图之后,与工程师沟通交流后,进行了装置打印,并进行了实验验证,发现其可以实现液滴的生成,且可以看到液滴的生成过程。通过设计图的不断修改以及实验验证,最终完成了单乳液生成装置,五个平行流道的单乳液生成装置,以及双乳液生成装置的设计制造。BMF:能否概括总结液滴反应器这个案例,以及BMF高精密3D打印在其中发挥的作用?蒋教授:目前进行微流控芯片的研发,大多是在PDMS上进行,基于T-连接和流动聚焦原理。本论文基于流动聚焦原理进行了微流控芯片的开发设计,具有流动阻力小的优点,前期了解到微尺度3D打印技术的发展,可以实现微米级或亚微米级通道的制造,因而进行了相关芯片设计。实验发现3D打印过程中所使用的光敏树脂具有良好的特性,能较清晰的记录液滴生成过程,且材料具有两亲性,能够在同一装置上实现两种不同类型乳液的生成。在此基础上,无需对装置进行表面改性就能实现双重乳液的生成。此外,采用3D打印,可以制备具有复杂立体结构的芯片。这些为微流控在食品、化妆品及保健品乳液的产业化应用提供了另外一种可行的选择。BMF高精密3D打印是我们这项实验的基础,正是由于BMF帮助我们把芯片设计图变成实物,才能开展后续的实验,并发现这么多有趣的实验现象,也为我们后续的研究奠定了一定的研究基础。官网:https://www.bmftec.cn/links/7
  • 聚焦低维材料的制备和微纳加工——LDMAS2021分会报告集锦
    近日,2021年第四届低维材料应用与标准研讨会(简称:LDMAS2021)在北京西郊宾馆成功召开。会议吸引了低维材料与器件相关领域的400余名专家学者与企业代表出席,云端参会人数超过1万人。会议同期举办5个不同主题的分会场,仪器信息网编辑对“第1分论坛:低维材料的制备和微纳加工”进行了跟踪报道。该会场共安排了16个特邀报告和6个青年报告,相继由清华大学魏飞教授、中国科学院半导体研究所王智杰研究员、湖南大学刘松教授等人主持;内容精彩纷呈,得到与会观众的高度关注,现场座无虚席。会议现场报告题目:《超长无缺陷碳纳米管的控制制备与器件、结构材料应用》清华大学化学工程系教授魏飞碳纳米管由于其高比表面积、化学稳定性及导热、导电及力学特性,近年来发展十分迅速。报告中,魏飞教授团队利用碳纳米管几何结构拓扑保护及进化生长的概念,通过动力学选择性实现 650mm 长碳纳米管的无缺陷生长,可实现99.9999%高纯度半导体性碳纳米管的生长,这类碳纳米管的电学、热学性质可以达到理论预测的极限。同时利用这种无缺陷碳纳米管可得到宏观强度、韧性、耐疲劳性高于目前所有材料数量级的碳纳米管高强纤维束。报告最后介绍了高纯碳纳米材料在器件等方面的应用。报告题目:《拓扑光电探测》北京大学量子材料中心长聘副教授 孙栋成熟的半导体可见光和近红外光电探测器是各个领域不可或缺的关键器件,而探测更长波长的中远红外和太赫兹波段的光电探测器却存在多个难以攻克的技术瓶颈。如何实现室温下工作的高性能长波探测器困扰了光电探测领域几十年时间,一直是科研领域关注的重要研究方向之一。基于半金属的材料替代半导体材料有望解决目前低能光子探测方面的一系列问题,但是基于半金属材料的光电探测器为了避免暗电流需要在无偏置条件下工作,一直存在响应度低的关键性能缺陷,限制了其进一步的发展。孙栋教授团队借助于全新的拓扑半金属材料的特殊拓扑性质,于近期克服了一些关键的技术问题,使得基于拓扑半金属的光电探测器在室温的低能光子探测方面展现出了广阔的应用前景。报告题目:《二维半导体的范德华集成与去集成工艺》湖南大学教授 刘渊基于二维半导体材料的低功耗新型器件被认为有望延续摩尔定律存在空间,得到更小尺寸、更高密度的集成电路。然而由于超薄得体厚度,传统的硅基晶体管的高能量制备工艺电极很难应用于脆弱的二维晶格,严重限制了二维半导体器件的性能与其应有的新奇特性。报告中,刘渊教授重点阐述了其开发的范德华异质金属集成方法作为低能量的集成工艺来保证二维半导体的本征性能,这种集成工艺在与传统的硅基工艺兼容的同时,又避免了对二维材料表面的损伤,为二维材料与传统硅工艺的兼容集成提供了新的可能。另外,PVA 旋涂法可以作为一种新的基底和高分子层来补充/代替传统 PPC、PC、PMMA、PDMS 分子层,实现对二维范德华异质结更精确的控制。报告题目:《二维磁性材料的制备与性质研究》北京理工大学教授 周家东二维过渡金属硫属化合物包括硫化物,硒化物和碲化物三大类,表现为 2H,1T,3R 等多种相结构。这些二维材料包括半金属、半导体与绝缘体等,表现出多种优异的物理性质如铁磁、铁电、超导等,使其在诸多领域包括晶体管、光电传感器、高性能自旋电子学器件等领域有着潜在的应用价值。特别的,新型二维磁性材料 CrI3 和 CrSiTe3 的发现开启了二维磁性材料研究的科学前沿。但是对于二维铁磁材料如铁基,铬基等的二元和三元的单层与少层的制备仍非常困难,这极大的限制了其性质与应用的研究。报告主要聚集Fe 基硫族化合物和Cr 基硫族化合物新型二维磁性材料可控合成与性质研究,研究其结构与铁磁性能之间的关系。报告题目:《亚纳米尺度超薄纳米晶体》清华大学化学系教授 王训亚纳米尺度(Sub-1nm)材料指至少在一个维度上特征尺寸小于 1 纳米的材料。这个特征尺寸接近高分子链/DNA 单链的直径,并与无机晶体单晶胞的尺寸相当。亚纳米尺度材料理论上具有很多优异的特性及重要的研究价值,王训教授团队围绕亚纳米尺度材料开展了系统性研究工作:以良溶剂-不良溶剂体系控制晶核尺寸策略为基础,发展出亚纳米尺度材料合成方法学,以此为基础提出亚纳米尺度材料的新概念;发现一维无机纳米材料直径限制在1纳米左右时,会表现出类生物大分子及高分子的特征,其宏观组装体兼具无机与高分子材料的优异性能;实现了具有明确结构亚纳米尺寸团簇的精确组装,进一步证明团簇可以与亚纳米尺寸无机晶核共组装,从而在亚纳米尺度实现对无机材料组分及功能的调控。报告题目:《钙钛矿量子点原位制备与集成应用》北京理工大学教授 钟海政量子点具有光谱可调、溶液加工等特点,是备受关注的新一代光学材料,已经在照明显示、传感探测、太阳能电池、激光等领域展现出应用前景。近年来,钙钛矿量子点的出现,为发展量子点集成应用技术提供了机遇。针对光电集成应用需求,钟海政教授团队发明了钙钛矿量子点的原位制备技术,利用钙钛矿材料的溶液加工特性,通过引入聚合物或者有机分子配体控制结晶过程,在聚合物基质中直接制备出量子点,或者在ITO基片上控制形核和生长过程直接制备量子点薄膜,并在此基础上开展了量子点的显示和传感应用探索。报告题目:《盐辅助的过渡金属硫化物的可控制备》湖南大学教授 刘松二维层状过渡金属硫化物具有优异的电学、光学等性能,在电子学,光电子学、能源催化等多方面具有广泛的研究及应用潜力,但过渡金属硫化物材料的可控生长仍然是该领域的重要问题。报告重点介绍了盐辅助的化学气相沉积法,可控制备并调控过渡金属硫化物及异质结的生长,探索过渡金属硫化物生长的新策略。这些材料制备的可控探索为进一步的电子学及光电子学应用提供了材料基础,并将进一步推动过渡金属硫化物在不同领域的应用。报告题目:《基于二维纳米材料的聚合物电磁屏蔽复合材料研究》北京化工大学教授 张好斌随着电子技术的迅速发展,日渐严重的电磁辐射污染对人们健康和精密电子设备的正常工作造成了难以忽视的影响,因此,发展高性能聚合物电磁屏蔽纳米复合材料在电子、航空、航天等领域具有重要价值。张好斌教授团队致力于研究纳米材料制备、高分子材料加工过程中界面调控和复合体系设计等关键科学问题。报告在其团队前期聚合物/石墨烯纳米复合材料研究基础上,着重介绍了新型二维过渡金属碳/氮化物(MXene)纳米材料在电磁屏蔽应用方面的最新进展,探索充分利用其高电导率和亲水性特性的策略和方法,以期实现聚合物电磁屏蔽纳米复合材料的多功能化和高性能化设计与制备。报告题目:《低维纳米结构制备技术及其光催化应用》中国科学院半导体研究所研究员 王智杰低维纳米结构已经被广泛应用于光电子器件、光伏器件以及光催化等各个领域,并极大 的提高了相关器件的性能。报告主要介绍了几种新型纳米结构及材料制备技术,即缺陷诱导法规则纳米材料制备技术、AB孔氧化铝模板法纳米结构制备技术、以及湿法化学法纳米材料制备技术。利用这些新型纳米结构和材料,王智杰课题组以及合作者开发了一系列高性能光电化学系统,并用于光解水制氢、光催化降解污染等领域;研究了复杂污染物(比如抗生素等)光降解过程中的反应动力学过程,提出了相应的反应动力学模型。相对于常规的光电化学体系,利用复杂结构纳米材料制备的光电化学系统的性能大有提高。其他精彩报告掠影

微纳制备相关的方案

  • MicroWriter ML3无掩膜激光直写光刻机制备分子微纳机电芯片,助力新冠病毒快速检测
    由于许多疾病相关生物标志物的浓度超低,所产生的信号往往会被其他高浓度分子所产生的信号所干扰,因此从生物流体中进行超低浓度样品(每100 μ L中有1到10份)的检测一直是医学/生物分析领域的一个难题。近日,复旦大学魏大程教授课题组使用小型台式无掩膜光刻机- MicroWriter ML3制备了基于石墨烯场效应管的分子微纳机电芯片解决了这一难题。所制备的芯片实现了对低浓度离子,生物分子和新冠病毒(每100 μ L中有1到2份)的快速检测。使用该芯片对新冠病毒进行检测时,仅需鼻咽样本即可,无需RNA提取和核酸扩增,四分钟内就可得到检测结果。相关研究论文已在国际知名期刊《Nature Biomedical Engineering》(IF=25.7)上发表。
  • 微纳米气泡的粒度测试方法
    微纳米气泡是指液体中存在的直径在100nm-100μ m之间的气泡,是通过专用的气泡发生器产生的。含有微气泡的水具有很多奇特的功效:用微纳米气泡养鱼能提高产量,用微纳米气泡栽培或灌溉能促进作物生长,微纳米气泡浴能有清洁、镇静和愉悦身心的效果,向污水中注入微气泡能加速水体及底泥中污染物的生物降解过程,实现水质净化。但是,微纳米气泡的粒度分布决定了它的性能,准确测试微纳米气泡的粒度,对验证微纳米气泡发生器的效能、评价微纳米气泡的效果至关重要。那么,怎样测试微纳米气泡的粒度呢?
  • 微纳米气泡发生器在水处理中的应用
    微纳米气泡的出现及其不同于普通气泡的特点,使其在水处理等领域显现出优良的技术优势和应用前景,介绍了微纳米气泡以及其比表面积大、停留时间长、自身增压溶解、界面电位高、产生自由基、强化传质效率等特点,论述了微纳米气泡在水体增氧、气浮工艺、强化臭氧化、增强生物活性等环境污染控制领域的应用研究。引 言微米气泡(microbubble)通常是指存在于水中直径为10~50μ m的微小气泡,直径小于200nm的超微小气泡称为纳米气泡(nanobubble),介于微米气泡和纳米气泡之间的气泡称为微纳米气泡(micro-nano bubble),与传统大气泡(coarse bubble,直径50mm)和小气泡(fine bubble,直径5mm)相比,微纳米气泡直径小,其传质特性和界面性质均显著不同于传统大气泡。

微纳制备相关的论坛

  • 微纳米粉捕集装置

    微纳米粉捕集装置

    [font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]

  • 有去参加2015年电子背散射衍射(EBSD)应用分析及样品制备技术研讨会的吗?

    有去参加2015年电子背散射衍射(EBSD)应用分析及样品制备技术研讨会的吗?

    各位朋友有去参加这个会的吗?到时候可以一起交流交流!2015年电子背散射衍射(EBSD)应用分析及样品制备技术研讨会 尊敬的客户:您好! 欧波同有限公司长期专注于微观纳米技术应用解决方案的研发与推广。经过数年发展,欧波同有限公司作为蔡司、牛津、GATAN公司战略合作伙伴,目前已经成为中国最大的微纳米显微方案供应商。为了推动EBSD技术及电子显微学的进步和发展,提高广大显微学工作者的学术及技术水平,促进显微学在物理学、材料学、生命科学、化学化工、环境、地学等领域的应用,欧波同有限公司、牛津仪器有限公司、GATAN公司三方联合于2015年7月24日举办2015年电子背散射衍射(EBSD)应用分析及样品制备技术研讨会。 本次会议将邀请电子显微学应用专家、EBSD应用专家、EBSD样品制备专家、SEM样品制备专家等进行相关领域的应用实例分析报告,同时将以欧波同有限公司专业化的DEMO实验中心为平台,为用户提供现场体验微纳米分析技术设备——蔡司电子显微镜,晶体学分析设备——牛津EBSD及EBSD(SEM)样品制备技术设备——GATAN ILION 697氩离子束抛光系统的一站式操作。欢迎您的到来! 会议主要议程安排 1、7月23日下午报到入住 2、7月24日 9:00~12:00专家报告 12:00~13:00午休 13:00~17:00 DEMO机考察及演示会议主要内容:1. 国内知名EBSD应用专家进行专题讲座,主要内容为EBSD在相关领域的应用实例;2. 欧波同公司扫描电镜最新技术以及仪器操作技巧介绍;3. 牛津公司介绍仪器的最新技术以及仪器设备维修与维护技巧;4. GATAN公司EBSD样品制备技术及结合EBSD的拓展应用介绍;5. 难处理扫描电镜样品制备的方法,包括镀层样品、电子半导体样品、高分子复合材料等截面样品制备,岩石矿物等孔隙样品制备等。6. DEMO机考察及演示(欧波同DEMO实验中心);会议地点:欧波同有限公司DEMO实验中心(北京市朝阳区高碑店乡西店村1106号源创空间大厦F16室)会议费用:欧波同提供会务费并赠送精美叫礼品,差旅费自理! 2015年电子背散射衍射(EBSD)应用分析及样品制备技术研讨会 回执函 单位名称: 地址: 邮编: 报名参加会议人员: 姓名 性别 职务 手机 备注 报名咨询联系人:刘丹 黄杨联系电话: 15140813412 18804252487Email邮箱:shchb02@163.com optonpo02@163.com[b

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131407_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_02_1546_3.jpg[/img]

微纳制备相关的资料

微纳制备相关的仪器

  • PrepChromaster-8000型高压制备色谱系统-----专为高通量纯化打造 为了满足中药与天然产物分离纯化领域的需求,推出了PrepChromaster品牌,为该领域提供制备色谱解决方案级产品,是中药与天然产物分离纯化实验室的理想选择。PrepChromaster-8000型是一款连接快速色谱和传统高压制备高效液相色谱的二元制备色谱设备,主要应用于药物活性成分、天然产物研究,合成化学分离纯化,在节省制备成本的同时极大地提高了分离效率。仪器特点1、本系统最大制备量可达克级,可适配10-100mm直径的各类色谱柱;2、本系统检测器使用全波长紫外-可见检测器,可同时选用4个不同检测波长3、本系统可使用Flash柱,支持各种级别的Flash低压分离纯化;4、本系统可以使用高压不锈钢柱,支持300bar以内高压级别的分离;5、本系统支持液体或固体样品上样,可以避免贮备过多的定量环;6、具有压力显示、报警、过压保护功能,实时监控泵的压力波动;7、本系统具有全波长光谱扫描功能,可检测190nm-850nm范围任意四个波长信号;8、带有光源自检功能,管理光源寿命,提醒及时更换;9、带有单色仪自校正功能,波长准确性高;10、进样方式独特设计,防止样品与溶剂扩散;11、本系统采用先进的进样技术,两种进样模式可选,进样时间短,避免样品残留和堵塞;12、高速准确的阀切换,避免样品的损失,提高回收率。13、本系统可以使用小粒度填料的不锈钢柱和商品化的Flash柱;14、独立的进样和馏分收集流路,避免交叉污染;15、智能馏分收集器可按体积、阈值、时间和色谱峰收集馏分;16、本系统提供多种标准试管架和试管,用户可自定义试管架,标配孔径18mm试管架;17、软件具有自动进样、梯度、色谱图、馏分收集图、设备状态同图显示的功能;18、软件具有自动进样状态显示与控制功能,可显示阀、注射泵、进样臂的状态;19、软件支持梯度,程序设定功能,具有阶梯、线性、点-拖式梯度曲线;20、软件支持智能馏分收集,具有时间、阈值、峰值、手动等多种收集方式;21、软件支持馏分索引功能,实时显示馏分收集位置与对应的色谱峰位置;22、软件支持色谱分峰与定量功能、审计追踪、数据管理、用户管理、个人管理等功能;23、仪器操作有软件控制,分离纯化参数都可以在线更改;24、软件中文界面,模块化设计,便于学习和操作,符合中国用户使用习惯。 仪器组成1、高压二元梯度泵系统;2、混合器;3、四波长UV-VIS检测器;4、自动进样器馏分收集一体机;5、溶剂槽;6、模块化液相工作站;7、电脑 ; 技术指标泵1、流量范围:0~200mL/min单泵,0~400mL/min双泵;2、压力范围:标准300bar;紫外检测器1、检测器范围:190~850nm;2、检测器光源:氘灯-钨灯组合光源;3、波长精度:±1nm;重复性0.2nm;4、检测方式:UV-VIS检测器,4波长实时显示;自动进样模块1、定量环:10mL;2、进样位数:108位;3、试管规格:13*100mm;馏分收集模块1、馏分收集容器:400位(标配);2、试管规格:18*180mm,(其它规格可定制); 可选配件1、 蒸发光散射检测器;2、二极管阵列检测器; 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知,敬请谅解。
    留言咨询
  • DSR300系列微纳器件光谱响应度测试系统是一款专用于低微材料光电测试的系统。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm探测光斑,实现百微米级探测器的*对光谱祥响应度测量。超高稳定性光源支持长时间的连续测试,丰富的光源选择以及多层光学光路设计可扩展多路光源,例如超连续白光激光器,皮秒脉冲激光器,半导体激光器,卤素灯,氙灯等,满足不同探测器测试功能的要求。是微纳器件研究的优选。 功能:? 光谱响应度? 外量子效率? 单色光/变功率IV;? 不同辐照度IT曲线(分辨率200ms)? 不同偏压下的IT曲线? LBIC,Mapping? 线性度测试? 响应速率测试 微纳器件光谱响应度测试系统主要技术参数显微镜头标配:10倍超长工作距离物镜,工作距离大于17mmNA值:0.42光谱范围:350-800nm选配:1,50倍超长工作距离消色差物镜,工作距离大于17mmNA值:0.42光谱范围:480-1800nm 2,15倍紫外物镜,工作距离大于8.5mmNA值:0.32光谱范围:250-700nm 3,50倍超长工作距离紫外物镜,工作距离大于12mmNA值:0.42光谱范围:240-500nm 4,40倍反射式长工作距离工作距离大于7.8mmNA值:0.5光谱范围:200nm-20um光斑中心空心光源选配光源1、半导体激光器波长:405nm,532nm,633nm,808nm,980nm可选不稳定性:<1% 2、皮秒脉冲激光器波长:375nm,405nm,488nm,785nm,976nm可选脉宽:100ps频率:1-20M Hz 3、氙灯光源光谱范围:250nm-1800nm不稳定性:<1% 4、超连续白光激光光源光谱范围:400-2400nm频率:0.01MHz-200MHz脉宽:100ps光谱仪焦距:300mm;相对孔径:f/3.9;光学结构:C-T;光谱仪分辨率:0.1nm;倒线色散:2.7nm;波长准确度:±0.2nm波长重复性:±0.1nm扫描步距:0.005nm狭缝规格:圆孔抽拉式固定狭缝,孔径:0.2mm,0.5mm,1mm,1.5mm,2mm,2.5mm,3mm;三光栅塔台;光栅配置:1-120-300、1-060-500、1-030-1250,光栅尺寸:68×68mm6档自动滤光片轮,光谱范围200-2000nm;内置电动机械快门,软件控制快门开关;杂散光抑制比:10-5探针台配置4个探针座,配20/10微米针尖探针2米三同轴电缆,漏电流小于1pA。真空吸附样品台。探针座:XYZ方向12mm调节行程,0.75um调节分辨率,0-30°调节探针角度。LBIC MaappingXY方向行程50mm,分辨率5um。数釆v 锁相放大器斩波频率:20Hz~1KHz;频率6位显示,2.4英寸屏,320×240液晶显示;电压输入模式:单端输入或差分输入;电压、电流两种输入模式; 满量程灵敏度:1nV至1V;电流输入增益:106或108V/A;动态储备:>100dB;时间常数范围:10μs至3ks; v keithley2612B量程:100nA/1A最小信号:1nA本地噪音:100pa分辨率:100fa通道数:2 v keithley2636B量程:1nA/1A最小信号:10pA本地噪音:1pa分辨率:10fa通道数:2制冷样品台温度范围:-196℃-600℃,(-196℃需要选择专用冷却系统)全程温度精度/温度性:0.1℃/<0.01℃光孔直径:2.4mm样品区域面积:直径22mm两个样品探针,1个LEMO接头(可增加至1探针)工作距离:4.5-12.5mm气密样品腔室,可充入保护性气体独立温度控制响应速率测试示波器型号:MDO32模拟带宽100MHz采样率5GS/s记录长度10M时间范围:uS-S,需要配合调制激光器使用时间范围:10nS-S,需要配合皮秒脉冲激光器使用 三维可调高稳定探针台结构,方便样品位置调节。内置三路半导体激光器或者两路光纤激光器,外置一路激光光路。可以引入可调单色光源,进行全光谱范围的光谱响应度测试。测试功能曲线:40um光斑@550nm@50倍物镜200um光纤 70um光斑@550nm@50倍物镜400um光纤5um光斑@375nm皮秒激光器@40倍物镜 紫外增强氙灯和EQ99光源的单色光能量曲线,使用40倍反射式物镜,300mm焦距光谱仪,光谱仪使用1200刻线300nm闪耀光栅,光斑直径大小80um。
    留言咨询
  • 微流控制备仪 MPE-P1Microfluidic Preparation Equipment: MPE-P1微流控制备仪描述:MPE-P1微流控制备仪,是中试型制备系统,可用于脂质纳米颗粒LNP、聚合物纳米颗粒、脂质体Liposome、微乳Emulsion等微纳米制剂中试规模制备工艺开发, 助力核酸药物、小分子药物DDS系统的产业化研究。设备采用集成式触屏操作,系 统配置批次记录、数据导出等功能,便捷高效。MPE-P1中试型微流控制备仪,支持 高浓度和高流速下LNP、Liposome等微粒的制备,结果稳定,重现性高,可为生产 放大提供详实、可靠、全面的工艺数据。功能应用:化学药品脂质体(Liposome)制备,如多柔比星脂质体、伊立替康脂质体等; 生物类脂质纳米颗粒颗粒(LNP)制备,如mRNA脂质体、siRNA-LNP等; 聚合物纳米颗粒/微球等制备,如PLGA微球、PEG-PLGA纳米颗粒等; 乳剂(Emulsion)的制备,如疫苗佐剂、脂肪乳制剂等; 有机/无机纳米粒,如金纳米等; 其他相关微纳米制剂。微流控芯片:微流控芯片是基于应用工艺的定制型特殊流道结构部件,其通道结构和尺寸均与项 目工艺需求相结合,属定制型结构件。具体来说可实现以下四种功能:① 两相的混合、乳化;② 微粒形成后的孵育;③ 微粒形成后的粒径控制;④ 二次混合或乳化。技术参数:
    留言咨询

微纳制备相关的耗材

  • 飞秒激光微纳加工系统配件
    工业级飞秒激光微纳加工系统配件专业为工业微加工研究和生产而研发的成熟的技术,可用于飞秒激光打孔,飞秒激光蚀刻,飞秒激光多光子聚合等微纳加工应用。飞秒激光微纳加工系统配件具有非常绝佳的可靠性和超高的加工速度,飞秒激光器由于激光脉冲超短,提供了常见激光无以伦比的激光功率密度,其加工效果远远超过纳秒和皮秒激光。光束所到之处能够瞬间将材料汽化,由于激光脉冲超短,激光能量无法在如此短的时间内扩散到周围材料中,所以对加工区域周围影响微乎其微,是一种冷加工技术,加工效果堪称一流。飞秒激光微纳加工系统配件采用高达10W的Yb:KGW(1030nm)飞秒激光器作为激光光源,重复频率在1--1000KHz范围内可调,结合一流的精密扫描振镜,提供超高的微加工速度。系统配备Arotech公司高分辨率的定位平台,并同步激光光束扫描振镜和脉冲选择器, 在空间,时间和能量上提供全方位高精度控制。从而提供超高难度的加工能力,并达到亚微米精度的分辨率和重复性。配备机械视图系统,使用高分辨率的相机监控加工过程。飞秒激光微纳加工系统配件使用了贴别为微加工而设计的飞秒激光器,它比市场上出售的商业飞秒激光器具有更多优势,具有更高的稳定性和可靠性,达到工业使用的标准,飞秒激光放大器具有更短的脉冲(振动器80fs, 放大器280fs),飞秒激光器具有更高的平均功率(振荡器高达2W, 放大器为6W),而且激光重复频率可调,计算机监控并控制激光。飞秒激光微纳加工系统配件规格 激光放大器参数 波长 1030nm 平均功率 6W 重复频率 1-1000KHz可调 脉宽 280fs-10ps计算机控制 最大脉冲能量 1mJ 输出稳定性1% 光束质量M2 2 脉冲选择器 多种频率选择 SH, TH,FH可选 激光振荡器参数 功率 1W 脉宽 80fs 重复频率 76MHz飞秒激光微纳加工系统配件特色 超高加工速度:高达350000像素 飞秒微细加工模式下具有最小的热影响区 工作面积高达:150x150mm 使用高性能振镜控制精密激光光束 激光脉冲数可控(1-350KHz)飞 飞秒激光微纳加工系统涉及技术 飞秒激光钻孔,飞秒激光切割,飞秒激光打孔 飞秒激光烧蚀,飞秒激光蚀刻,飞秒激光雕刻 2.5D铣,自定义模型划线, 表面微纳结构价格 改变材料的折射率,飞秒激光材料改性 飞秒激光三维多光子聚合 光学微操作…… MEMS制造掩膜制造和修理微片修复 燃料电池材料制造LIBWE,医疗应用激 光诱导扩散微光学、光子晶体、衍射光学元件制造波导和微透镜的制备
  • M2N(微纳伙伴) 电镜用耗材 其他电镜配件
    众所周知,优质显微镜用品和耗材是微束分析领域样品制备和产生理想结果的必要条件。成功的样品制备是从样品中获取优质图像和可靠数据的关键步骤。由南京覃思科技有限公司(www.tansi.com.cn)代理的荷兰Micro to Nano(简称M2N)进口显微镜耗材及用品,遵循“创新、实用和优质”之理念,产品用于电子显微镜和扫描探针显微镜技术领域。M2N公司在电子显微镜、样品制备、成像技术和产品分销领域拥有50多年的行业经验,对客户的需求有着深刻的理解。我们的显微镜用品,特别是电子显微镜用品,能为客户提供当前任务所需的耗品耗材。 荷兰M2N持续从事基于显微镜新需求的耗品研发,是SEM、TEM、FIB、AFM、SPM、LM等微纳领域之贴心伙伴,提供优质和创新的样品桩、样品座、碳膜载网、校准标样、靶材、碳棒、碳绳、工具、配件、银导电胶、碳胶带、铜胶带、储存盒、清洁用品、真空密封、安全防护等各种耗材器具,琳琅满目,应有尽有,显微分析领域耗材之理想选择!
  • VANNAS维纳斯高级剪刀
    VANNAS维纳斯高级剪刀,直头卓越的尖部,总长75mm,有3mm和5mm两种刀刃。锋利、精确,适合各种精细显微操作。货号产品名称规格72932-013 mm Cutting Edge, 直头each72933-015 mm Cutting Edge, 直头eachVANNAS维纳斯高级剪刀,弯头卓越的尖部,总长75mm,有3mm和5mm两种刀刃。锋利、精确,适合各种精细显微操作.货号产品名称规格72932-023 mm Cutting Edge, 弯头each72933-025 mm Cutting Edge, 弯头eachVANNAS维纳斯高级剪刀,前角型式 卓越的尖部,总长75mm,有3mm和5mm两种刀刃。锋利、精确,适合各种精细显微操作。货号产品名称规格72932-033 mm Cutting Edge,前角型each72933-035 mm Cutting Edge, 前角型eachVANNAS维纳斯高级剪刀,边角型式 卓越的尖部,总长75mm,有3mm和5mm两种刀刃。锋利、精确,适合各种精细显微操作。货号产品名称规格72932-043mm Cutting Edge, 边角型each72933-045mm Cutting Edge, 边角型each

微纳制备相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制