当前位置: 仪器信息网 > 行业主题 > >

近场显微镜

仪器信息网近场显微镜专题为您提供2024年最新近场显微镜价格报价、厂家品牌的相关信息, 包括近场显微镜参数、型号等,不管是国产,还是进口品牌的近场显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近场显微镜相关的耗材配件、试剂标物,还有近场显微镜相关的最新资讯、资料,以及近场显微镜相关的解决方案。

近场显微镜相关的资讯

  • 英国新建散射扫描近场光学显微镜设施
    英国国家物理实验室(NPL)和曼彻斯特大学建立了新的联合设施——散射扫描近场光学显微镜(s-SNOM)。该设施位于英国曼彻斯特大学,能够在宽温度范围内为产业界提供纳米级、非接触、非破坏性近红外和可见光波长的多功能光电表征。该设施能够提供详细纳米级信息的能力,对于增强或实现依赖于各种低维和纳米工程材料及其光电特性的量子技术至关重要。通过该设施,NPL和曼彻斯特大学将为英国工业界提供纳米光电子学和纳米光子学量子技术方面的战略竞争优势。预计这些技术对于未来十年的数字基础设施、医疗保健、能源和环境以及英国的安全和恢复能力至关重要。
  • 1500万!东南大学理科平台低温散射式扫描近场光学显微镜采购项目
    一、项目基本情况项目编号:0664-2360SUMECTY005D(SEU-ZB-230698)项目名称:东南大学理科平台低温散射式扫描近场光学显微镜采购预算金额:1500.000000 万元(人民币)最高限价(如有):1460.000000 万元(人民币)采购需求:东南大学理科平台采购低温散射式扫描近场光学显微镜1套,主要技术参数:低温散射型扫描近场光学显微镜平台1.1基于低温AFM的无孔径近场扫描显微镜系统。冷却系统需基于一个完全阻尼且封闭循环低温恒温器,保证底板温度 20 K,并集成到光学平台中。通过自动低温恒温器操作来调节,可变温度范围需满足10k T 300k。XY扫描级的开环扫描范围不小于30 × 30µm @ 300K,不小于24 × 24µm @10K。要求低温AFM测量的形貌噪声 1nm (RMS) @10K。1.2低温AFM需基于轻敲模式AFM技术,通过基于轻敲振幅的AFM反馈进行形貌成像。悬臂偏转的读取需基于光学杠杆原理,采用激光二极管反射在悬臂背面,由光象限二极管读取。最高限价:人民币1460万元整(不含外贸代理费)本项目接受进口产品。本项目所属行业:工业。合同履行期限:境外产品:开具信用证后10个月设备安装调试合格。境内产品:自合同签订之日起30天内到货并安装调试合格。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月02日 至 2024年01月08日,每天上午9:00至11:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:微信公众号“苏美达达天下”方式:在线获取(详见补充事宜)售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:东南大学     地址:南京市玄武区四牌楼2号        联系方式:技术咨询:电子科学与工程学院:骆老师 电话:19852843441; 实验室与设备管理处:刘老师 电话:025-83792693      2.采购代理机构信息名 称:苏美达国际技术贸易有限公司            地 址:南京市长江路198号苏美达大厦5楼502室            联系方式:杨 扬 025-84532455、葛晓菲025-84532451            3.项目联系方式项目联系人:葛晓菲电 话:  025-84532451
  • 620万!华南理工大学纳米红外光谱及近场光学显微镜采购项目
    项目编号:CLF0123GZ00ZC63项目名称:华南理工大学纳米红外光谱及近场光学显微镜预算金额:620.0000000 万元(人民币)最高限价(如有):620.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1纳米红外光谱及近场光学显微镜一套纳米红外光谱及近场光学显微镜主要用于对样品表面形貌、纳米力学、纳米热学、以及微纳米尺度的化学成分分布进行表征,可获得微纳米材料的红外吸收光谱,并且可以得到微纳米尺度上的化学成分分布图。620经政府采购管理部门同意,本项目(纳米红外光谱及近场光学显微镜设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):收到信用证后(300)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师 020-871129622.采购代理机构信息名称:采联国际招标采购集团有限公司地址:广州市环市东路472号粤海大厦7、23楼联系方式:陈女士 020-87651688转分机132或1303.项目联系方式项目联系人:陈女士电话:020-87651688转分机132或130
  • 1645万!武汉大学采购散射式-近场光学高精度显微镜等
    项目编号:WHCSIMC2022-1308806ZF(H)项目名称:武汉大学散射式-近场光学高精度显微镜、电感耦合等离子体质谱、热重-红外-气相色谱质谱联用仪、有机无机样品预处理系统采购项目预算金额:1645.0000000 万元(人民币)最高限价(如有):1645.0000000 万元(人民币)采购需求:1.本次公开招标共分4个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。第一包:(1) 项目包名称:散射式-近场光学高精度显微镜(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:900万元人民币(6)其他:本项目包接受进口设备投标第二包:(1) 项目包名称:电感耦合等离子体质谱(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:285万元人民币(6)其他:本项目包接受进口设备投标第三包:(1) 项目包名称:热重-红外-气相色谱质谱联用仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:320万元人民币(6)其他:本项目包接受进口设备投标第四包:(1) 项目包名称:有机无机样品预处理系统(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:140万元人民币(6)其他:本项目包里的微波消解仪、十万分之一天平、非接触式超声破碎仪接受进口设备投标.合同履行期限:第一包:交货期 :合同签订后10个月内;质保期 :本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第二包:交货期 :合同签订后120日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第三包:交货期 :合同签订后 90 日内;质保期:本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第四包:交货期 :合同签订后60日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。其中微波消解仪的炉腔质保:腔体5年质量保证,非人为损坏、如出现形变或腐蚀生锈,免费更换。本项目( 不接受 )联合体投标。
  • 300万!华南理工大学拉曼-扫描近场光学联用显微镜采购项目
    项目编号:CLF0122GZ18ZC69-2项目名称:拉曼-扫描近场光学联用显微镜(二次)预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)单价最高限价万元(人民币)1拉曼-扫描近场光学联用显微镜1激发波长:532nm TEM00单频激光器,功率≥75 mW 光谱仪与检测器系统:光谱仪焦长:≥300 毫米;同时配备光栅,包括150, 600及1800刻线, 可实现软件控制全自动切换,无需手动更换光栅,单窗口可覆盖(3700 cm-1)。300经政府采购管理部门同意,本项目 拉曼-扫描近场光学联用显微镜(二次) 允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:办理免税证明后180天内。本项目( 不接受 )联合体投标。
  • 近场光学显微镜,SiC纳米线发表一篇Nature!
    表面声子极化激元(SPhPs)是由红外光和光学声子之间的耦合产生的,被预测有助于沿极性薄膜和纳米线的热传导。然而,迄今为止的实验工作表明SPhPs的贡献非常有限。近日,美国范德比尔特大学Deyu Li教授研究团队通过测量没有覆盖Au金属层和覆盖了Au金属层的3C-SiC纳米线的样品的热导率,成功证实了SPhPs对其热导率大小的影响。由SPhPs的预衰减所引起的热传导增加甚至超过了兰道尔基于玻色-爱因斯坦分布所预测极限的两个数量级。这进一步揭示了SPhPs对材料热导率的显著影响,也打开了通过SPhPs调节固体中的能量传输的大门。文章以《Remarkable heat conduction mediated by non-equilibrium phonon polaritons 》为题,发表于Nature 期刊上。 本文中,研究者通过分辨率优于10 nm的近场光学显微镜对其手中的两类纳米线进行了表征。其中S1为缺陷较小的纳米线,而S2则为层错较多的纳米线。通过对纳米线进行865 cm-1中红外激光的赝外差成像(SNOM),研究者成功获得了两类纳米线的纳米级相位成像。如下图所示,在层错较多的Sample S2中,SPhPs的传播衰减非常迅速。而在结构缺陷较少的S1, 这种衰减则要小得多。Sample S1: Sample S2: 随后,作者通过将德国Neaspec公司的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR联用,沿下图图a中的箭头方向对S1采集了610 - 1400 cm-1波数范围内的光谱。这一范围已经包括了3C-SiC纳米线全部的剩余射线谱带。其中对TO 和 LO 频率的较强振幅反馈和这种反馈沿箭头方向的衰减进一步证明了SPhPs在S1中的存在。以上结果表明层错的存在是使其成为SPhPs散射的决定性因素,而这种因素与温度的变化并不相关,进一步证明了在S1中,SPhPs是导致热导率变化的决定性因素。 值得注意的是,为了测量SNOM和Nano-FTIR,两类纳米线都被放置在了300 nm厚的SiO2薄膜基底上,相比单独存在的纳米线,放在SiO2薄膜基底上的两类样品的SPhPs的传播距离都大大减小,而信号衰减速度大幅增加,这对设备采集信号的信噪比和光学成像的空间分辨率都提出了更高的要求。 文中使用的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱能与传统FTIR,ATR-IR的红外光谱一一对应。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,为本实验的红外及光学成像等研究起到了关键性作用。 neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR 综上所述,通过使用Neaspec近场光学显微镜,研究者建立并证明了SPhPs传播和材料热导率变化的关联性。也为将来通过SPhPs调节固体材料的热传导提供了可能性。这种调节可以在很多薄膜材料中抵消尺寸效应并改进固态器件的设计。参考文献:[1]. Pan, Z., Lu, G., Li, X. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature (2023). https://doi.org/10.1038/s41586-023-06598-0
  • 220万!中国科学院大连化学物理研究所近场扫描光学显微镜采购项目
    项目编号:OITC-G220311704项目名称:中国科学院大连化学物理研究所近场扫描光学显微镜采购项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期最高限价交货地点是否允许采购进口产品1近场扫描光学显微镜1套详见采购需求合同签订后6个月内220万元人民币中国科学院大连化学物理研究所是 合同履行期限:合同签署后6个月内到货本项目( 不接受 )联合体投标。
  • 中科院微电子所采购激光共聚焦扫描显微镜与近场光学显微镜
    中国科学院微电子研究所2011年仪器设备采购项目(第四批)招标公告  日 期: 2011年3月15日  招标编号: OITC-G11032057  1、东方国际招标有限责任公司受 中国科学院微电子研究所 (招标人)的委托,就中国科学院微电子研究所2011年仪器设备采购项目(第四批)(以下简称项目)所需的货物和服务,以公开招标的方式进行采购。现邀请合格的投标人就下列货物及有关服务提交密封投标。包号货物名称数量(台/套)是否接受进口产品1近场光学显微镜1是2激光共聚焦扫描显微镜1是  投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。  2、投标人资格条件:  1) 符合《中华人民共和国政府采购法》第二十二条要求   2) 按本投标邀请的规定获取招标文件   3、有兴趣的投标人可从 2011 年 3 月 15 日至 2011 年 4 月 6 日每天上午9:00至下午17:00(北京时间)在东方国际招标有限责任公司1507室查阅或购买招标文件,本招标文件售价为500元/包,如需邮寄另加100元的邮资费用,邮寄过程中产生的任何问题由购买标书人自行负责,售后不退。  4、所有投标文件应于 2011 年 4 月 6 日上午9:30时(北京时间)之前递交至北京市朝阳区北土城西路3号中国科学院微电子研究所办公楼A座西大厅101会议室,并须附有不低于投标金额1%的投标保证金,以招标机构为承受人。  5、兹定于 2011 年 4 月 6 日上午9:30在北京市朝阳区北土城西路3号中国科学院微电子研究所办公楼A座西大厅101会议室进行公开开标。届时请投标人派代表出席开标仪式。  招标机构名称:东方国际招标有限责任公司  地  址:北京市海淀区阜成路67号 银都大厦15层 邮  编:100142  电  话:010-68725599-8447 传  真:010-68458922  电子信箱:zcdou@osic.com.cn  联 系 人:窦志超、张明磊  开户名(全称):东方国际招标有限责任公司  开户银行:招行西三环支行 帐号:862081657710001
  • 1218万!华南理工大学纳米红外光谱及近场光学显微镜等采购项目
    一、项目基本情况1.项目编号:CLF0123GZ07ZC91项目名称:华南理工大学纳米红外光谱及近场光学显微镜预算金额:620.0000000 万元(人民币)最高限价(如有):620.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1纳米红外光谱及近场光学显微镜一套纳米红外光谱及近场光学显微镜主要用于对样品表面形貌、纳米力学、纳米热学、以及微纳米尺度的化学成分分布进行表征,可获得微纳米材料的红外吸收光谱,并且可以得到微纳米尺度上的化学成分分布图。620经政府采购管理部门同意,本项目(纳米红外光谱及近场光学显微镜设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):收到信用证后(300)天内。本项目( 不接受 )联合体投标。2.项目编号:0809-2341HGG14055项目名称:华南理工大学大型结构疲劳试验机采购项目预算金额:205.0000000 万元(人民币)最高限价(如有):205.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1大型结构疲劳试验机1套具体详见采购需求205.00本项目(大型结构疲劳试验机)只允许采购本国产品,具体详见采购需求。本项目采购标的所属行业为: 工业 交付地点:华南理工大学五山校区。合同履行期限:在合同签订后(210)天内完成供货、安装和调试并交付用户单位使用本项目( 不接受 )联合体投标。3.项目编号:GZZJ-ZFG-2023606项目名称:华南理工大学植物活性组分高效制备系统采购项目预算金额:118.0000000 万元(人民币)最高限价(如有):118.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1植物活性组分高效制备系统1套植物活性组分高效制备系统,可实现对细胞、酵母、细菌、藻类等内溶物进行高效提取,并实时监测内溶物的电导率、溶解氧、pH、温度等多项指标。设备操作便捷,稳定,能够满足食品,生物,医药等多领域研究需求。主要应用于果酒果醋果汁等食品加工;化妆品功能活性提取、活性改性;中药组分预处理等研究。人民币118万元本项目只允许采购本国产品。本项目采购标的所属行业为:工业合同履行期限:在合同签订后(90)天内完成供货、安装和调试并交付用户单位使用;本项目( 不接受 )联合体投标。4.项目编号:0809-2341HGG14046项目名称:华南理工大学超快瞬态荧光光谱仪(条纹相机)采购项目预算金额:375.0000000 万元(人民币)最高限价(如有):375.0000000 万元(人民币)采购需求:序号标的名称数量(台/套)简要技术需求或服务要求最高限价万元(人民币)1超快瞬态荧光光谱仪(条纹相机)1具体详见采购需求375.00 经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为: 工业 合同履行期限:关境内货物:在合同签订后(40)天内完成供货、安装和调试并交付用户单位使用;关境外货物:办理免税证明后360天内完成供货、安装和调试并交付用户单位使用;质保期:不少于1年。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月12日 至 2023年09月19日,每天上午9:00至12:00,下午14:00至17:30。(北京时间,法定节假日除外)地点:采联国际招标采购集团有限公司官网(http://www.chinapsp.cn/)方式:详见本招标公告“六、其他补充事宜”。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南理工大学     地址:广州市天河区五山路381号        联系方式:文老师 020-87112962      2.采购代理机构信息名 称:采联国际招标采购集团有限公司            地 址:广州市环市东路472号粤海大厦7、23楼            联系方式:陈女士 020-87651688转分机132或130            3.项目联系方式项目联系人:陈女士/张芷华电 话:  020-87651688转分机132或1304.采购代理机构信息名 称:广东华伦招标有限公司            地 址:广州市广仁路1号广仁大厦7楼            联系方式:何工 020-83172166转823(hualunsibu@163.com)            5.项目联系方式项目联系人:何工电 话:  020-83172166-823
  • 散射式近场光学显微镜(neaSNOM)助力有机半导体的分子取向探究
    导读:布拉迪斯拉发先进材料应用中心(Center of Advanced Material Applications in Bratislava)的科研工作者利用对光致各向异性有不同响应的超高分辨散射式近场光学显微镜-neaSNOM,研究了有机半导体薄膜的分子取向与离散分子结构异质性的关系,揭示了分子取向对分子缺陷的影响。在此过程中,作者自创了一种综合利用振幅和相位信号测量分子取向的方法。上图:利用Neaspec设备表征材料得到的s-SNOM结果 文献解析:近年来, 共轭高分子以及小分子在有机电子设备方面的应用受到广泛关注,这是因为相比于无机半导体,它们在以下方面展现了其潜在优势:应用适配性、生物相容性、以及相对简单的制备过程。简单的制备过程也吸引化学家设计并研发了具有各种不同结构和功能基团的共轭分子,以此来满足有机电子设备的需要。而电导率作为重要的功能指标之一,与分子的取向息息相关。考虑到大多数分子都是各向异性的,分子取向将直接影响其光电特性(也就是能量转换效率)和机械特性。而根据具体应用的不同,设备需要一种特定的分子取向以满足其需要,并且此时其他的分子取向会被视为材料的缺陷。也因此,缺陷分析在有机半导体设备的开发与改进工作中,起到了举足轻重的作用。然而,对尺寸小于100 nm缺陷的判定一直是一块未被充分研究与记录的领域。 光学技术是表征分子取向的主要手段。而衍射限的存在限制了其测量精度,致使得到的光学响应信号体现的只是(精度范围内)很多纳米颗粒的平均情况。面对该问题,德国Neaspec公司历经多年研发出散射式近场光学显微镜(scattering-type scanning near-field optical microscopy,s-SNOM)。该设备突破衍射限(优于10 nm空间分辨率)并完成了超高空间分辨率的纳米成像。它能表征薄膜材料的固有纳米晶体结构、局部多晶型、异质性或应变性以及反应分子取向等信息。尽管近些年技术方面的进步日新月异,利用s-SNOM分析分子取向的工作却迟迟没有进展,眼下只有寥寥几篇的相关报告得以被发表。在本文中,作者深入研究了分子取向,并对离散分子结构的异质性做了分析。在此之上,作者观察到了与表面形貌并不相关的定向缺陷。这些缺陷对有机电子系统的功能性产生了直接的影响。 参考文献[1] Nanoimaging of Orientational Defects in Semiconducting Organic Films, [J]. The Journal of Physical Chemistry C, 2021, 125(17):9229-9235.
  • 成果速递 | 超高分辨散射式近场光学显微镜在超快研究领域最新应用进展
    近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。 前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学化率有重大影响,因此引起了人们的研究兴趣。 2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。 原文导读: ① 在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针的点上,从探针点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV ② 研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。图2:WSe2晶体稳态动力学的时空纳米成像研究。a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析 c: Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。 ③ 为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的个ps内,虚部q2(图3a)突然下降(δq20)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。 为了弄清各种瞬态机制,微分色散关系被研究者引入。先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与抑制耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。图3:WSe2中波导模的微分色散和动力学研究。a: δq2与Δt曲线;b: δq1与Δt曲线 c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系 综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。 neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。 参考文献:[1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020).
  • QD中国建成高分辨率散射型近场光学显微镜(NeaSNOM)样机实验室
    2016年6月30日,Quantum Design中国子公司引进德国Neaspec公司的高分辨率散射型近场光学显微镜(NeaSNOM)样机并完成安装测试。该样机实验室可对相关领域科学研究工作者提供真机体验服务,欢迎广大学者拨打010-85120280,或者致信neaspec@qd-china.com预约体验。Quantum Design中国子公司NeaSNOM近场光学显微镜样机实验室 Neaspec公司的NeaSNOM系统是市场一款散射型扫描近场光学显微镜。其化的散射式核心设计技术,打破了传统光学显微镜对入射激光波长的依赖限制,大的提高了光学分辨率,在可见、红外和太赫兹光谱范围内实现了空间分辨率优于10nm的光谱和近场光学图像的测量。NeaSNOM系统中化的照射、收集模块,确保了近场光学显微镜和谱图的可靠性和可重复性,使其成为了纳米光学领域等离子激元、FTIR和太赫兹等热点方向的科研设备。 NeaSNOM 典型应用案例: 1. 纳米结构等离子激元(Plasmonic)研究 2. Nano-FTIR对纳米结构不同材料组分分析 3. 太赫兹对单个晶体管中载体浓度分布成像 更多信息请点击:http://www.instrument.com.cn/netshow/C170040.htm 相关产品: 纳米傅里叶红外光谱仪 Nano-FTIR---具有10nm空间分辨率的纳米红外光谱仪
  • 科学家开发出一种多功能近场显微镜平台,可在高磁场和液氦温度以下工作
    重大的科学突破往往是由新技术和仪器实现的。一种新型的近场光学显微镜,在极端温度和磁场下具有高分辨率成像,可以为量子计算技术和拓扑研究做到这一点。Kim等人提出了一种sub-2开尔文低温磁赫兹散射型扫描近场光学显微镜(cm-THz-sSNOM)。太赫兹sSNOM成像使用照射在小金属尖端上的300微米波长光在纳米尺度上绘制材料,允许以深亚波长,20纳米空间精度测量局部材料特性 - 比所用光的波长小15,000倍。经过几年的努力,研究人员能够展示出一种改进的sSNOM平台,该平台在极端操作条件下具有无与伦比的分辨率能力。“我们在空间,时间和能量方面提高了分辨率,”作者Jigang Wang说。“我们还同时改进了在极低温度和高磁场下的操作。显微镜是通过测量超导体和拓扑半金属来展示的。结果显示了在1特斯拉磁场中9.5开尔文的第一个高分辨率sSNOM图像。显微镜可以帮助开发具有更长相干时间的新量子比特 - 目前受到材料和界面缺陷的限制 - 并提高对拓扑材料基本性质的理解。“重要的是成像到十亿分之一米,千万亿分之一秒和每秒数万亿个光波,以便能够选择更好的材料并指导量子和拓扑电路的制造,”王说。尽管显微镜已经展示了破纪录的测量结果,但研究人员的目标是通过提高灵敏度并使SUV大小的显微镜更加用户友好来进一步改进仪器。相关文章:“A sub-2 kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM),” by R. H. J. Kim, J.-M. Park, S. J. Haeuser, L. Luo, and J. Wang, Review of Scientific Instruments (2023). The article can be accessed at https://doi.org/10.1063/5.0130680.文章展示了研究人员开发的一种多功能近场显微镜平台,可以在高磁场和液氦温度以下工作。研究人员使用该平台演示了极端太赫兹(THz)纳米显微镜的操作,并在低至1.8 K的温度、高达5 T的磁场和0–2 THz的操作下获得了第一个低温磁太赫兹时域纳米光谱/成像。低温磁太赫兹散射型扫描近场光学显微镜(或cm THz-sSNOM)仪器由三个主要设备组成:(i)带有定制插件的5T分对磁低温恒温器,(ii)能够接受超快THz激发的定制sSNOM仪器,以及(iii)MHz重复率,用于宽带太赫兹脉冲产生和灵敏检测的飞秒激光放大器。应用cm THz sSNOM来获得超导体和拓扑半金属的原理测量证明。这些新能力为研究需要极端低温操作环境和/或在纳米空间、飞秒时间和太赫兹能量尺度上施加磁场的量子材料提供了突破。
  • 南方科技大学400万元购买1套低温散射式近场光学显微镜,仅限国产
    8月25日,南方科技大学公开招标购买1套低温散射式近场光学显微镜,预算400万元,仅限国产。  项目编号:SZDL2021339837(0868-2142ZD1010H-D)  项目名称:低温散射式近场光学显微镜(二次招标)  预算金额:400.0000000 万元(人民币)  最高限价(如有):400.0000000 万元(人民币)  采购需求:序号货物名称数量单位备注1扫描近场光学显微成像系统1套拒绝进口2闭循环低温系统1套拒绝进口3超高真空腔体及泵组1套拒绝进口  合同履行期限:签订合同后 180 天(日历日)内交货  本项目( 不接受 )联合体投标。  开标时间:2021年09月07日 14点30分(北京时间)
  • 30mK极低温近场扫描微波显微镜研发核心:attocube极低温纳米位移台
    关键词:低温位移台;近场扫描微波显微镜; 稀释制冷机 背景介绍扫描隧道显微镜(STM)[1]和原子力显微镜(AFM)[2]等基于扫描探针显微术(SPM)的出现使得科学家能够在纳米分辨率下去研究更多材料的物理特性及图形。以这些技术为基础的纳米技术、材料和表面科学的迅速发展,大地推动了通用和无损纳米尺度分析工具的需求。尤其对于快速增长的量子器件技术领域,需要开发与这些器件本身在同一区域(即量子相干区域)中能够兼容的SPM技术。然而,迄今为止,能够与样品进行量子相干相互作用的纳米尺度表征的工具仍非常有限。特别是在微波频率下,光子能量比光波长小几个数量,加之缺乏单光子探测器和对mK端温度的严格要求,更是一个巨大的挑战。近年来,固态量子技术飞速发展迫切需要能够在此端条件下运行的SPM探测技术。技术核心近场扫描微波显微技术(NSMM)[3]结合了微波表征和STM或AFM的优势,通过使用宽带或共振探头来实现探测。在近场模式下,空间分辨率主要取决于SPM针尺寸,可以突破衍射限的限制,获得纳米别的高分辨率图像。NSMM的各种实现方式已被广泛应用于非接触式的探测半导体器件[4],材料中的缺陷[5]、生物样品的表面[6]及亚表面分析,以及高温超导性[7]的研究。但是在低温量子信息领域中的应用还鲜有报道。英国物理实验室NPL的塞巴斯蒂安德格拉夫(Sebastian de Graaf)小组与英国伦敦大学谢尔盖库巴特金(Sergey Kubatkin)教授小组合作开发了一种在30 mK下工作的新型低温近场扫描微波显微镜,同时,该显微镜还结合了高达6 GHz的微波表征和AFM技术,旨在满足量子技术领域的新兴需求。整个系统置于一台稀释制冷机中(如图1(b)所示),NSMM显微镜的示意图如图1(a)所示:在石英音叉上附着了一个平均光子占有率为~1的超导分形谐振器。一个可移动的共面波导被用来感应耦合到谐振器上进行微波的发射和信号的读出。整个系统的核心是德国attocube公司提供的兼容低温的铍铜材质的纳米精度位移台,该小组使用一组ANPx100和ANPz100纳米位移器将样品与针在x,y和z方向上对齐,同时使用一个小的ANPz51纳米位移器进行RF波导的纳米定位和耦合。图1.(a)NSMM显微镜的示意图。(b) 稀释制冷机中弹簧和弹簧悬挂的NSMM示意图。测量结果如图2所示,Sebastian教授演示了在单光子区域中以纳米分辨率进行扫描的结果。扫描的区域与在硅衬底上形成铝图案的样品相同。扫描显示三个金属正方形(2×2μm2)与两个较大的结构相邻,形成一个叉指电容器。叉指电容器的每个金手指有1 μm的宽度和间距,尽管在图2中,由于的形状,这些距离看起来不同。图2. 在30 mK下扫描具有相邻金属垫的交叉指电容器.(a)得到的AFM形貌图。(b) 单光子微波扫描(~1)显示了微波谐振腔的频移,微波扫描速度为0.67 μm/s.(c)高功率微波扫描结果(~270)。(d) 在调谐叉频率(30 kHz)下解调的PDH误差信号,与dfr/dz(~270)成正比。(e) 扫描获得的信噪比(SNR)作为平均光子数的函数。attocube低温位移台德国attocube公司是上著名的端环境纳米精度位移器制造公司。拥有20多年的高精度低温纳米位移台的研发和生产经验。公司已经为各地科学家提供了5000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和扫描器。德国attocube公司的位移器以稳定而优异的性能、原子的定位精度、纳米位移步长和厘米位移范围深受科学家的肯定和赞誉。产品广泛应用于普通大气环境和端环境中,包括超高环境(5E-11 mbar)、低温环境(10mK)和强磁场中(31 Tesla)。图3. attocube低温强磁场纳米精度位移器,扫描器,3DR主要参数及技术特点参考文献:[1]. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982).[2]. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).[3]. Bonnell, D. A. et al. Imaging physical phenomena with local probes: From electrons to photons. Rev. Mod. Phys. 84, 1343 (2012).[4]. Kundhikanjana, W., Lai, K., Kelly, M. A. & Shen, Z. X. Cryogenic microwave imaging of metalinsulator transition in doped silicon. Rev. Sci. Instrum. 82, 033705 (2011).[5]. Gregory, A. et al. Spatially resolved electrical characterization of graphene layers by an evanescent field microwave microscope. Physica E 56, 431 (2014).[6]. Gregory, A. et al. Spatially resolved electrical characterization of graphene layers by an evanescent field microwave microscope. Physica E 56, 431 (2014).[7]. Lann, A. F. et al. Magnetic-field-modulated microwave reectivity of high-Tc superconductors studied by near-field mm-wave. microscopy. Appl. Phys. Lett. 75, 1766 (1999). 更多文章信息请点击:https://doi.org/10.1038/s41598-019-48780-3
  • 超高分辨近场光学显微镜近期重点科研成果速览
    1. 中国科学院 重庆绿色智能技术研究院 Zhongbo Yang等Near-Field Nanoscopic Terahertz Imaging of Single Proteins. Small. Figure 1. Schematic illustration of the THz s-SNOM setup and its use for single biomolecule imaging. Figure 2. THz near-field signals collected on different substrates. a) Time-domain THz electric field signals, and b) corresponding frequency-domain signals collected on graphene, Au, Si, and mica surfaces, respectively. The signals were demodulated at the second harmonics (2 Ω) of the probe oscillation frequency. c,d) The AFM topography images of graphene and Au substrates with 200 × 200 pixels, respectively. The height scale bars of (c) and (d) are the same. 摘要:太赫兹生物成像因其能以无标记、无创伤和非电离的方式获取样品的物理化学信息而颇受瞩目。但是,低介电常数生物分子的反射率问题,使得单分子精度的太赫兹成像仍是一个挑战。针对于此,作者开发了一种方法,利用石墨烯介导的太赫兹频率散射型扫描近场光学显微镜,对单个蛋白分子直接成像。此项研究发现,拥有较高太赫兹反射率和原子平整度的石墨烯基底可以为蛋白分子提供较高的太赫兹对比度。另外,我们还发现对铂探针的轴长优化能增强太赫兹散射近场信号中的振幅信号强度。基于这两个效应,作者同时获得了尺寸只有数纳米的免疫球蛋白G(IgG)和铁蛋白分子的形貌以及太赫兹散射图像。本文中所用的方法为单生物分子的太赫兹成像提供了新思路。2. 华中科技大学 Chao Chen等Terahertz Nanoimaging and Nanospectroscopy of Chalcogenide Phase-Change Materials. ACS Photonics 2020.Figure 2. THz near-field setup and imaging experiments. (a) Schematics of the THz s-SNOM setup with a bolometer used as a detector. The inset shows an illustration of the finite dipole model for the layered sample. (b) Approach curve, showing the amplitude signal s2 on c-GST as a function of tip–sample distance. The mark h1/e represents the position at which the signal decays to 1/e of its maximum. The inset displays an optical microscope image of the AFM tip above the sample. The red dotted squares mark the c-GST areas. (c) AFM topography image (top panel) of GST on a silicon oxide substrate, which includes amorphous and crystalline states. Near-field amplitude (s2, middle panel) and phase (φ2, bottom panel) images at 1.89 THz. (d) Topography, (e) near-field amplitude, and (f) phase line profiles (shown as solid symbols) taken from the corresponding images in c. The red solid lines are smoothed curves based on the experimental data. Horizontal dashed gray lines are a guide for the eye. 摘要:硫属化物相变材料(PCMs)在太赫兹(THz)频率下会发生光学声子共振现象,这个效应可被用于研究相变的基本特性,并产生很强的介电对比度,使其可被用于太赫兹的光子学应用。在本文中,我们证明可以通过频率可调的太赫兹散射型扫描近场光学显微镜(s-SNOM)研究PCM的声子。其具体方法为对包含非晶相和结晶相的PCM样品进行太赫兹纳米光谱成像。我们观察到材料的声子特征使其产生了很强的s-SNOM信号,以及重要的是,非晶态和结晶态PCM的光谱之间存在明显的差异,这使我们可以在纳米尺度上高信度地区分PCM的不同相。我们还发现可以通过增加针的半径来增强以信号强度和频谱对比度为标志的光谱特征。综上所述,我们用太赫兹s-SNOM成功构建了基于局部声子光谱的纳米结构以及化学组成的图谱。3. 中国地质大学-武汉 Zhigao Dai等人Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun..Figure 1. a Schematic diagram of edge-tailored PhPs in α-MoO3. The edge orientation is defined as angle θ with respect to the [001] direction. Green arrows indicate the incident PhPs waves launched by the laser-illuminated (purple curve arrows) AFM tip and reflected by the edge (red line). b Angle-dependent ke isofrequency contour of PhPs in α-MoO3 at ω = 889.8 cm−1. The solid lines and points stand for experimental results concluded from Fig. 1c. The green and black dotted arrows illustrate the incidence wavevector ki and Poynting vector Si, respectively. Generally, ki and Si are non-collinear. The reflected Poynting vector Se (solid arrows) is not parallel to the reflected wavevector ke (different color solid arrows) but antiparallel to Si. σ is the open angle. c Real-space imaging of edge-tailoring PhPs at angle-dependent α-MoO3 edges (length L: 2.5 µm width W: 200 nm sample thickness d: 210 nm, L and W defined in the Ed1). d s-SNOM line traces along the direction perpendicular to the edges in Ed1-Ed5. e Near-field amplitude s(ω) of PhPs on isosceles triangle α-MoO3 nanocavities with bottom edge perpendicular to the [001] crystal direction (height length: 4.33 μm thickness: d = 175 nm) The angles between adjacent sides of the series of triangles with respect to the [001] direction are approximately 7.5°, 15°, 30°, 45°, and 60°, respectively. 摘要:高度受限和低损耗的化子在石墨烯和六方氮化硼上是沿平面各向同性传播的,这使得对光的控制被限制在了有限的自由度内。而以α-MoO3 and V2O5为代表的新兴双轴范德华材料则展现出了特的化传播特性,它们的辅助光轴是在平面上的。利用这种强平面各向异性,作者通过空间纳米成像观测到了α-MoO3纳米腔的图样内有着受边界导向的双曲化子。并且发现边界的夹角和结晶方向对其光学响应信号有着举足轻重的影响,这对调整化图样的参数是至关重要的。基于此,通过调整α-MoO3纳米腔的几何构型,我们观测到了双曲化子会延边界传播并且会调整自身传播方向的特性以及与之对应的化子绕行禁区。而这种双曲化子的寿命和性能指数则受到纳米腔边界宽高比的限制。4. 国防科学技术大学 Jiangyu Zhang 等人Light-induced irreversible structural phase transition in trilayer graphene. Sci. & App..Figure 4. Raman mapping and s-SNOM imaging of the light-induced structural phase transition in MLG. (a) Optical microscopy image of MLG sample #125. (b) AFM image and height profile of graphene. (c) Raman maps of the integrated G peak intensity (position: 1576 cm−1, width: 5 cm−1) before laser irradiation and (d) after laser irradiation. The laser power is 20 mW, and the exposure time is 34 min. (e) s-SNOM image of graphene after laser irradiation. (f) Magnified s-SNOM image of graphene. Graphene domains with different stacking orders show different contrasts in the s-SNOM image. The marked regions I, II, and III correspond to ABC stacking, ABA stacking and mixed ABC + ABA stacking domains, respectively. The red arrows in (e, f) highlight the additional mixed ABC + ABA stacking domains that were not resolved in the Raman maps. (g) Raman spectra of different graphene regions taken from the marked solid dots before laser irradiation and (h) after laser irradiation摘要:晶体结构对相关材料的物理性质有着深刻的影响。因此,即使化学组成相同(比如石墨烯和金刚石),我们也可以通过生成具有特定对称性的晶体,来很大范围内调整它们的特性。而当晶体的结构相可以通过外部刺激动态改变时,更多有意思的可能性出现在了我们面前。这样的材料特性虽不常见,但却能引发很多喜人的现象,例如相变记忆效应。具体到三层石墨烯,它有两种常见的堆叠结构(ABA和ABC),二者都具有特的电子能带结构,并展现出了与众不同的特性。而这两种堆叠结构的三层石墨烯里的畴壁,则展现出了新的迷人的物理效应,比如说量子谷霍尔效应。科研工作者在三层石墨烯的相工程上投入了大量的精力。不过,操纵畴壁以实现对材料局部结构和特性的调控仍然是一个难题。本文通过实验表明,通过激光照射可以实现结构相之间的转换,并在三层石墨烯中构建各种形状的畴壁。这种能够控制畴壁位置和方向的能力,使得我们能够更好地调整石墨烯的局部结构相和特性,并为可定制原子结构,电子以及光学特性的人造二维材料的生成提供了一种简洁且有效的路径。 5. 华中科技大学 Peining Li等人Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat.Commun..Figure 2. Near-field imaging of polariton evolution in a hBN metasurface. a Schematic of the near-field nanoimaging experiment. b, c Near-field images measured at two different frequencies, ω = 1415 cm−1 (HPhP region) and ω = 1510 cm−1 (EPhP region). White arrows indicate the polariton fringes observed on the metasurface. 摘要:通过光子耦合激发和偶物质激发所产生的化子可以沿具有双曲线色散或椭圆色散的各向异性超表面传播。而在双曲线色散与椭圆色散之间的转换过程中(对应拓扑结构的转换),有各种有趣的现象被观测到,比如光子态密度的增强、化子的沟道效应和超透镜效应。在本文中,作者从理论角度和实验角度分别研究了这种拓扑结构的转换,单轴红外声子超表面中的化耦合和其强烈的非局域响应信号,以及六方氮化硼 (hBN) 纳米带的光栅。 通过超高分辨红外10纳米成像,研究者观察到了六方氮化硼中余辉带里合成的横向光学声子的共振(即纳米带强烈的集体性近场耦合),这触发了从双曲线色散向椭圆色散的拓扑转换。作者还表征并可视化了跃迁频率附近深亚波长通道模式的空间演化,该模式作为一种准直化子为超透镜和无衍射传播打下了基础。6. 山西大学 PengjuYang 等人Rational electronic control of carbon dioxide reduction over cobalt oxide. J. Cat..Figure 2. (a) XPS Co 2p of Co3O4 and Co3O4/Al-1(1 wt% Co3O4), (b) XPS Al 2p of Co3O4/Al-1 and Al-1, (c-d) the S-SNOM optical image of Co3O4/Al-1(1 wt% Co3O4) and SNOM amplitude S3 of lines A-E.摘要:选择性地将二氧化碳(CO2)还原为燃料和化学品是通过碳中和发展可持续性能源经济的重点所在。而其中CO2的活化则是重中之重。考虑到电子迁移是这一过程的决速步骤,通过调节CO2还原催化剂的电子结构来增强其活性则显得更为关键。不过,人们对催化剂的电子特性与活性的内在关系的理解还不是很深入,这也限制了高效CO2还原催化剂的有理论支撑的设计。本文中,作者设计了一种以铝作为电子供体的催化剂-缘体-金属系统,并以此来调节氧化钴(Co3O4)催化剂的电子结构。这样,铝中的电子便可以高效地通过一种超薄且自主形成的Al2O3缘层穿入Co3O4。实验和理论结果毫无疑问确证了Co3O4的高电子密度有利于CO2的吸收和活化,并同时降低了COOH的生成能垒,尤其是CO*中间体的解吸能垒,这大大加速了CO2到CO的光还原反应的动力学进程。相比Co3O4,Co3O4/Al2O3-Al中的Co的周转频率要高出很多。其表观量子产率在420纳米处能高达3.8%,这一数字超越了大部分文献中对催化剂的记述。另外,Co3O4 中电子密度的提高也有效地抑制了析氢竞相反应。同时对CO的筛选性也从Co3O4的57.9%提高到了Co3O4/Al2O3-Al的82.4%。值得注意的是,通过控制Al的含量和粒径我们还可以合理调节催化剂的催化效率。综上,该项研究建立了催化剂的电子结构与其对 CO2 还原反应的催化活性之间的联系。并且,作者提出的这种Al2O3-Al结构,还有潜力成为其他非均相催化剂电子效应研究的全新平台。7. 中山大学 Yan Shen等人Pyramid-Shaped Single-Crystalline Nanostructure of Molybdenum with Excellent Mechanical, Electrical, and Optical Properties. ACS Appl. Mater. Interfaces.Figure 6. Optical properties of the pyramid-shaped single-crystalline Mo nanostructures. (a, b) AFM topography and the corresponding optical near–field amplitude (third harmonics, at excitation of 633 nm) images of a typical individual, respectively the insets are the structural models that help to understand this sample’s geometric features. 摘要:特定的几何形貌与改进过的晶体特性对微纳米尺度材料的开发来说是举足轻重的。不过,对于高熔点钼来说,想高质量地生成同时具有单晶特性和预设形貌的结构是很困难的。在本文中,作者通过一种热蒸发技术和与之对应的实验调控,生成了金字塔形的单晶结构钼。而之后细致的材料表征工作则表明其生长机理遵循的是一个包括MoO2分解、Mo 沉积、岛状单晶形成、层状成核和竞争性生长在内的连续性过程。此外,经测量还发现这种生成物有着非常的物理性能。比如通过机械性能的测量,发现纳米结构的钼展现出了远高于其块体材料的纳米压痕硬度、弹性模量和拉伸强度。而在电子特性的测量中,这种材料的单体结构则展现出了非常的电传输特性,其电导能达到约0.16 S。所制备的0.02平方厘米的膜材料展现出了大电流电子发射特性,其大电流达到了33.6毫安,其电流密度则达到了1.68安每平方厘米。同时,通过光学特性的测量,该团队发现这种结构展现了明显的电磁场定位和增强效应,这使其作为基底材料,非常适合应用于表面增强拉曼散射(SERS)。作者还进一步讨论了对应的结构与响应信号之间的关系。文章中提到的,包括微纳米尺度,每个晶粒中所蕴含的单晶特性,以及材料的金字塔形貌在内的,这些纳米结构钼的基础特性,都对其物理特性有着正面的影响。8. 香港理工大学 Xin Hu等人Infrared Nanoimaging of Surface Plasmons in Type-II Dirac Semimetal PtTe2 Nanoribbons. ACS Nano..Figure 6. Near-field images and plasmonic properties of sub-10 nm PtTe2 tapers. (a) Topography of the PtTe2 taper (NT1) with a thickness of 10.4 nm. The inset is the height profile along the white dashed line. (b) Experimental near-field image of NT1 at the laser frequency of 2500 cm–1 (λ0 = 4 μm). (c) Simulated image of the near-field standing-wave pattern corresponding to (b). The standing-wave patterns in the PtTe2 tapers are mimicked by Enf = E0 + r1 exp(2ikspx1) + r2 exp(2ikspx2), where x1 and x2 are the perpendicular distances from an arbitrary point in the taper to its two edges. The propagation constant ksp = (2.264 + 0.884i)k0, supposing the permittivity of the 10.4 nm PtTe2 film is identical to the bulk permittivity, and E0 = 1, r1 = r2 = 0.2. (d) Topography of NT2 with a thickness of 5–7 nm. The inset is the height profile along the black dashed line. (e) Near-field optical image of NT2 at the laser frequency of 1400 cm–1 (λ0 = 7.14 μm). (f) Near-field optical image of NT2 at the laser frequency of 2500 cm–1. The domains in NT2 have different layers (L) ranging from 10L (∼5 nm) to 13L (∼7 nm). All scale bars are 1 μm. 摘要:由二维过渡金属二硫属化物制成的拓扑狄拉克半金属(TMDCs),因其电子传输特性,在电子和光电设备领域的应用得到了广泛的关注。作为具有强层间相互作用的范德华材料,这种半金属被期望可以用于支持尚未被实验证明的层相关等离子体化激元的存在。在本研究中,作者利用近场纳米成像展示了II型铂碲狄拉克半金属(PtTe2)纳米带和纳米薄片中的中红外等离子体波的延迟和衰减。从近场驻波图像中总结出的PtTe2纳米带(厚度为15到25纳米)的等离子体模式衰减色散关系被应用于MIR区的PtTe2介电常数拟合,其结果表明自由载流子和狄拉克费米子都参与了中红外光和物质的相互作用。而对超薄(小于10纳米)PtTe2等离子体模式的湮灭的观察和分析使作者发现是PtTe2与本征层相关的光电特性导致了其无近场共振图像的现象。以上结果为应用TMDC进行MIR区的光电探测和调制铺展了道路。9. 上海微系统所&长春光机所 Weiliang Ma等人Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater..Figure 2. a–c, Near-field amplitude images s3 of an α-V2O5 flake with thickness d = 105 nm at incident frequencies ω0 = 1,031 (a), 1,026 (b) and 1,020 cm−1 (c). Scale bar in c, 2 μm. d–f, Profiles along the [100] (green lines) and [001] (blue lines) directions, extracted from the near-field amplitude images in a–c, respectively. λp[100] and λp[001] are the polariton wavelengths along the [100] and [001] directions, respectively. g, Dispersion of PhPs along the [100] (green symbols) and [001] (blue symbols) directions in the RB1. Grey lines are guides for the eye. Grey shaded areas indicate the spectral regions outside the RB. a.u., arbitrary units.Figure 3. a, Illustration of the α-V2O5 lattice structure (orthorhombic) where the red spheres represent oxygen atoms, the blue atoms represent vanadium atoms, and the blue pyramids show the polyhedral structure defined by the oxygen atoms. The crystal structure consists of bilayers of distorted VO5 pyramids stacked along the [010] direction via vdW interactions (interlayer distance c = 0.44 nm). b, nanoFTIR spectral line scans along the [100] and [001] directions of a α-V2O5 flake showing s3/s3, Au (near-field amplitude s3 normalized on Au, s3,Au) as a function of distance between the tip and the flake edge. Solid horizontal lines mark the approximate transversal optic (TO) phonon modes in α-V2O5 (TO1, 975 cm−1 TO2, 770 cm−1), separating RB1–3. Dashed lines are guides for the eye of signal maxima. The flake thickness is d = 245 nm. c, Illustration of the α’-(Na)V2O5 lattice structure (orthorhombic) where the red spheres represent oxygen atoms, the blue atoms represent vanadium atoms, the yellow atoms represent sodium atoms and the blue pyramids show the polyhedral structure defined by the oxygen atoms. The crystal structure consists of bilayers of distorted VO5 pyramids with sodium atoms intercalated and stacked along the [010] direction via vdW interactions (interlayer distance c = 0.48 nm). d, nanoFTIR spectral line scans along the [100] and [001] directions of a α’-(Na)V2O5 flake showing s3/s3, Au (near-field amplitude s3 normalized on Au, s3,Au) as a function of distance between the tip and the flake edge. The solid horizontal line approximately mark the transversal optic phonon mode in α’-(Na)V2O5 (TO, 950 cm−1), defining RB’1. The flake thickness is d = 150 nm. The scales in the colour bars of b and d are linear.摘要:性范德华晶体中的声子化子——一种光与晶格振动的耦合——是有在纳米尺度上控制能量流动的有力候选者,因为它们有着很强的限制场、各向异性的传播方式和皮秒的超长寿命。不过,它们狭窄且只适用特定材料的光谱响应范围——也就是剩余射线带——大地限制了其技术应用。在此,在α-V2O5范德华半导体中嵌入钠原子,能增宽其剩余射线带,并因此让受激声子化子展现出低的损耗率(寿命为4± 1皮秒),这个数值已经与其在非插层晶体(寿命为6± 1皮秒)中的表现相近。作者预计这种嵌入方法也能被应用于其他范德华晶体,从而提供一种新的利用声子化子增宽中红外区域频谱的方法。10. 中国科学技术大学 Xinzhong ChenMoiré engineering of electronic phenomena in correlated oxides. Nat. Phys..Figure 3. a,b, Infrared near-field image of a curved moiré pattern (a) and the corresponding simulation (b). The simulation is generated by multiplying two periodic striped patterns representing MSs and DSs. The white and black dashed lines in b indicate the MS and DS orientations, respectively. c, Line profiles from the blue dashed lines in a and b, exhibiting high consistency between the experimental and the simulated contrast. a.u., arbitrary units. d,e, Infrared near-field image and corresponding AFM image, respectively, showing alternating moiré and non-moiré regions across the LAO twin boundaries (indicated by red dashed lines). The white solid line in e is the AFM height profile. f, Line profile of the nano-infrared contrast along the blue dashed line in d. The different signal levels are marked ‘C’, ‘D’ and ‘M’, which represent constructively strained, destructively strained and mixed strained regions, respectively. g, Simulation of the image in d with the moiré pattern only visible on the right-hand side. Note that the MSs (orientation indicated by white dashed lines) change orientation across the LAO twin boundary (red dashed line), while the DSs (orientation indicated by black dashed lines) are consistently along the LAO [100] direction. The simulation details are shown in Extended Data Fig. 8c. 摘要:近段时间,摩尔纹工程被视为控制凝聚态系统中量子现象的有效途径。在范德华异质结构中,莫尔纹可以通过相邻原子层之间的晶格错位形成,并因此产生长程电子有序的结构。到目前为止,摩尔工程只在堆叠范德华多层结构上有所应用。而在本文中,作者描述了一种在LaAlO3基底上外延生长的原型性磁阻氧化物薄膜La0.67Sr0.33MnO3中产生的电子摩尔纹。通过扫描探针纳米成像,作者观察到了薄膜中应变调制的两种不同的非公度纹的共存和互相影响所产生的微观摩尔纹。其净效应表现为La0.67Sr0.33MnO3的电子电导率和铁磁性直到细观尺度都会受周期性摩尔纹的调制。我该研究工作为在应力外延材料中获得定制的电子纹理的空间图样开辟了一条潜在的道路。11. 纳米中心 Xiangdong GuoEfficient All-Optical Plasmonic Modulators with Atomically Thin Van Der Waals Heterostructures. Adv. Mater..Figure 2. The all-optical graphene plasmon waveguide modulation with a thickness of only several atomic layers. a) Schematic diagram of band alignment and the physical mechanism of photocarrier transfer in the hole-doped graphene/MoS2 heterostructure under visible light irradiation. b,c) Near-field images of a graphene/MoS2 heterostructure on SiO2 substrate in the b) absence and c) presence of 633 nm laser irradiation (6 mW cm−2). Dashed lines indicate the graphene edge. d) The plasmon signals extracted from the cut-lines (red and blue lines) in (b) and (c), respectively.摘要:全光调制器正越来越受瞩目,这主要是因为它高速度,低损耗,与高带宽的本征特性,使其在未来的信息通讯技术中可以很好地为对应的电气元件做更新换代。但是,其较大的能量消耗与尺寸使得其光子间相互作用较弱,从而阻碍了其在非线性光学上的广泛应用。在本文中,作者通过在石墨烯中掺杂含有光生载流子的单层MoS2生成了原子薄度石墨烯-MoS2异质结构,形成了一种高效全光中红外等离子体波导和自由空间调制器。44 cm-1等离子的调制也通过LED得以呈现,其光强度可以低达0.15 mWcm-1,这一数值比通用的石墨烯非线性全光调制器要低4个数量(≈103 mWcm-2)。异质结构中光生载流子的超高速迁移以及复合的速率使得石墨烯等离子体的超高速调制成为了可能。作者认为,基于范德华异质结构的带有芯片可集成性和深亚波长光场限制性的高效全光中红外等离子体调制器的开发或许向片上全光器件应用的实现迈出了重要的一步。 12. 华中科技大学 Peining Li等人Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons. Adv. Mater..Figure 4. Thickness dependence of h-BN waveguide modes. a) Schematics of the experiment. b) Near-field amplitude images s3 of h-BN waveguides of same nominal width w = 1 µm and different thicknesses d at ω = 1430 cm−1. c) Wavevector of the waveguide modes as a function of thickness. Symbols indicate experimental wavevectors measured at the edge (triangles) and at the center (circles) of the waveguide. The solid and dashed lines show wavevectors obtained with the full-wave simulations. The dotted red line is a guide to the eye. The inset shows line profiles from 16 nm thick waveguide at edge (gray) and center (blue) as indicated by arrows in (b). d) Schematic comparison of dielectric and hyperbolic volume waveguide modes near cutoff, when the thickness of the waveguide is decreased. 摘要:范德华(vdW)材料因其所含有的各种化子,成为了新兴的纳米尺度光操纵用材料平台。凭借范德华材料的层状结构,这些化子在薄片当中呈双曲线色散和纳米体制御模式。另一方面,它们在薄片边缘则呈面制御模式。然而令人意想不到的是,这些模式在以典型的线性波导结构为代表的带状材料上的导向正全方位地亟待研究。作者就六方氮化硼带中双曲声子化子的传播方式的研究成果做了详细的报告。通过纳米红外成像,作者观测到了各种模式。尤其是展现出截止宽度的重要的体波导模式。并且有趣的是该截止宽度可以通过降低波导厚度来减小。除此之外,该团队还观察到了具有不同频率和波导宽度的面模式杂化以及演化。而重点是,作者发现对称杂化面模式并没有展现出任何截止宽度,这让任意窄带里的化子都呈线性波导。另外,研究者的实验数据也支持了相关的模拟结果,这为我们在未来的光子器件应用中担当重任的线性波导双曲化子的理解打下了坚实的基础。13. 清华大学 Shuai Wu等Super-Slippery Degraded Black Phosphorus/ Silicon Dioxide Interface. ACS Appl. Mater. Interfaces.Figure 3. Chemical structure of the BP/SiO2 interface. (a) AFM amplitude image and (b) phase image (scale bars: 2 μm) after the motion of the degraded BP flake on the SiO2 substrate. (c) Normalized nano-FTIR phase (φ) spectroscopy plots of the degraded BP surface, residuals on the substrate, and fresh BP flake (exfoliated within 30 min) in the region of 900–1100 cm–1. (d) {1H-31P}1H double CP spectra of the BP/SiO2 sample the first contact time (tCP1) was set to 5 ms, and the variable second contact time (tCP2) is indicated on each spectrum. 摘要:二维(2D)材料与二氧化硅(SiO2)/硅(Si)基底之间的界面,通常被看做是固固机械接触。这在微系统和纳米工程的结构设计与性能优化时,常常会被特别强调。不过,如何理解基于2D材料的系统的界面结构与动力学仍然是一个悬而未决又无法绕过的问题。在本研究中,由于在常态降解时引入了羟基,一层在界面内可流动的水被插入了降解黑鳞(BP)薄片与SiO2/Si基底之间。因此,作者得到了一个滑度高的降解BP/SiO2界面。通过实验测定,其界面剪切应力(ISS)可低达0.029 ± 0.004 MPa,这一数值已可与非公度刚性晶体接触比肩。通过分析核磁共振波谱仪和原位X射线光电子能谱仪进行的结果,该团队发现界面内的液态水的存在是剪切应力低的超高滑度BP/SiO2界面的形成主因。这一发现证明了降解BP和水分子之间存在着强烈的互相影响,并表明纳米BP膜在生物基润滑领域有着广泛的应用潜力。14. 北京理工大学 Tao Yan等人Facile preparation and synergetic energy releasing of nano-Al@RDX@Viton hollow microspheres. Chem. Eng. J..Figure 4. Topography (a) and near-field amplitude image of the microsphere at frequency ω = 923 cm−1 (b), 1131 cm−1 (c) and 1168 cm−1 (d). Line profiles of infrared signal extracted at the position indicated by the red dashed line (e).摘要:为了提高含能材料的反应速率,电喷雾技术被应用于双溶剂法集成纳米铝(nAl)和氟橡胶(Viton)的重结晶环三亚基三硝胺 (RDX)微球的开发。其形貌特征与化学异质性的测试结果表明电喷雾生成的微球是空心的,并有RDX均匀地分布在其中。而且RDX的纳米晶体是紧密地附着在nAl@Viton骨架的两侧的,这增大了不同组分之间的接触面积。另一方面,对微球的热分析则表明,通过减小微球分解的表观活化能,nAl颗粒能够加速能量的释放。实验结果表明电喷雾nAl@RDX@Viton,因其各组分的特征结构和协同作用,比物理混合物具有更短的激光点火延迟和更剧烈的燃烧火焰。15. 上海光机所 Lulu Chen等人Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial Absorber. RSC Adv..Figure 5. (a) Experimental absorptivity of the GST absorber between two states. The black line and red line are for the a-GST and c-GST sample. (b) The simulated spectra for the total and each layer of the c-GST absorber. Inset: the magnetic field distribution at the resonance wavelength. (c–f) Experimental and simulated near-field amplitude |Ez| and phase φz images mapped at the spectral positions C and C1.摘要:具有可调性的超材料吸收器在中红外吸收的应用领域具有广阔的前景。虽然研究者们提出了各种控制吸收的方法,如何深入分析和呈现吸收机制的物理图像仍是值得期待且有意义的。在本文中,作者利用近场光学显微镜展示了多谐振模式诱导下的带宽可调超材料吸收器的实验空间近场分布。该吸收器由双倍尺寸的单元结构与金属镜片构成,二者由Ge2Sb2Te5 (GST)薄垫片加以分割。为了获得清晰的物理图像,作者利用由四个方形谐振器组成的混合单元结构,在 7.8 μm 和 8.3 μm 处产生两个吸收峰。当GST薄膜从非晶态转变为晶态时,共振的中心波长呈现红移趋势。而无论GST处于那种相态,我们都分别在其吸收频率下观察到了吸收器产生的近场振幅和相位的光学信号。综上,本研究为光学可调吸收的控制打下了科学理论的基础,并展现了其潜在的应用前景。16. 中国科学技术大学 Wenhao Zhang and Yuhang ChenVisibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging. Opt. Expr..Figure 1. (a) Schematic illustration of the experimental s-SNOM setup for investigating the visibility of buried structures in a multilayered architecture. The underneath structures are patterned on a metal film and they are covered with a thin polymer layer. A pseudoheterodyne detection method is employed to obtain background-free near-field optical signal. (b) Schematic illustration of the dipole model for a simple theoretical analysis.Figure 7. Subsurface nano-imaging by s-SNOM. The sample is a patterned silicon substrate covered by the glue from a double-side tape. (a) Topography. (b) The third harmonic s-SNOM amplitude. The inset is a zoomed view of the area sketched by the dashed rectangle. (c) Sectional profiles of the topography and amplitude images. The two profiles are taken from the same position as guided by the dashed line in topography. 摘要:以纳米分辨率探测被膜材料覆盖的结构有着很高的重要性。在本研究中,作者用散射型扫描近场光学显微镜(s-SNOM)探索了影响面下材料对比度和结构可见度的因素。作者生成了一种包含不同掩埋结构的多层结构参考样品,用来做s-SNOM成像。还研究了近场光学对比度对结构几何形状、尺寸和覆盖层厚度的影响。结果表明区分掩埋狭缝图样比具有相同临界尺寸的圆孔更容易。s-SNOM能够在100多纳米厚的聚基丙烯酸酯层下感知材料之间的差异,其面下空间分辨率可以好过100纳米。17. 华中科技大学 Dong Wei等人Optical modulator based on the coupling effect of different surface plasmon modes excited on the metasurface. Opt. Mater. Expr..Figure 6. SEM, AFM and near-field lightwave intensity distribution of the NRANC metasurface. (a) SEM images of a metasurface sample, (b) near-field lightwave intensity distribution on the sample, (c) near-field lightwave intensity distribution along red dashed line. The white dashed lines are the outlines of the nano-apertures. The red dotted line is the trendline of the electric intensity distribution curve. (d) AFM image of the metasurface sample. 摘要:作者设计并生成了一种由带中央纳米柱的纳米脊孔阵列(NRANC)构成的超表面光学调制器。研究者还细致地研究了,分布在纳米脊孔的每个纳米点和中央纳米圆柱外缘上的局域表面等离子体(LSPs),与在周期性超表面上生成的表面等离子体激元(SPPs),这二者之间的耦合效应。这种锥形结构可用于入射能量的集中与局部光场的增强。而在其上的感应电偶子则可以调节反射或透射特性。这种在NRANC 上形成的LSPs的耦合效应将增强表面感应电偶子,并进一步调节NRANC的光学特性。通过改变超表面的几何参数,可以调整LSPs模式的谐振频率,并观察到透射峰的平移,以及让增强因数达到1.4×103。另一方面,LSPs和SPPs之间的耦合则会激发法诺共振。在可见光和红外范围内调整照射激光的入射角则能调节SPPs的激发,并因此引起相对较大的透射光谱变化。于是通过进行近场光学测量,可以观察到包括表面感应电荷信息在内的近场光学特性,以及在45°入射的633纳米TM激光照射下的一个小(x方向上,约96纳米)且亮的热点。综上,作者研究中构建的NRANC超表面突出了其在类似彩色滤光片、反射镜、表面增强拉曼等方面的潜在应用前景。
  • 近场声学显微镜成熟商品的“中国创造”——访中科院上海硅酸盐研究所殷庆瑞研究员
    2011年3月7-14日,中科院上海硅酸盐研究所研制的纳米热学-声学显微镜成像系统亮相国家“十一五”重大科技成就展,并引起了业内人士、专业媒体多方面关注。据了解,该项目负责人殷庆瑞研究员以自行研制的材料和器件为核心技术,已成功研发出多台具有自主知识产权的大型科学仪器设备,如扫描电声显微镜(SEAM)、扫描探针声学显微镜(SPAM)、扫描热学显微镜(SThM)、激光-光声测量仪、超声雾化器等。  其中,扫描电声显微镜创新性地将电子显微术(SEM)与声学显微术(SAM)“合二为一”,被称为该领域全球唯一成熟的商品化扫描电声显微镜,现已荣获国家技术发明二等奖、国际工业博览会银奖以及中科院自然科学一等奖等殊荣。目前,该款仪器已成功更新至第IV代,分辨率达到200nm,在国内相关的企事业单位得到了实际应用,并出口到美国、德国、日本、台湾、新加坡等地,成为“我国大型科学仪器出口到发达国家和地区的一个成功范例”。  近日,仪器信息网就声学显微镜成像技术与仪器的研制、应用、产业化等问题,专门采访了中科院上海硅酸研究所殷庆瑞研究员。中科院上海硅酸盐研究所殷庆瑞研究员潜心数载攻难关 成功研发世界先进水平扫描电声显微镜  扫描电声显微镜是一种多功能、高分辨率的显微成像仪器,兼具电子显微术高分辨率和声学显微术非破坏性内部成像的特点,拥有广阔的市场应用前景。殷庆瑞研究员瞄准市场需求,创造性地把电子光学技术、弱信号检测技术、图像处理技术及计算机技术有机融为一体、先后研制出具有自主知识产权的四代扫描电声显微镜,并获得国内外多项大奖。  对于扫描电声显微镜的研发初衷,殷庆瑞研究员回忆到:“1979-1981年,我被派往英国牛津大学的Clarendon实验室和材料系做访问学者。在那里,我发现同行们都是自行研制仪器做科研,发现的物质结构或实验结果也颇具创新性。相比之下,国内大多是购买现成仪器搞科研,实验结果自然也雷同,很难有创新的成果。因此我决定回国后要结合具体的科研工作,按照自己的新思路,研发新仪器、建立新方法。  “回国后,我最开始研制成功的是激光-光声测量仪,为定量表征薄膜压电性能、功能陶瓷弱相变行为和自发极化剖面分布提供了新技术,解决了当时薄膜材料性能表征的关键技术难题,获得了中科院自然科学奖二等奖。之后,我又研发出了超声雾化器,在日化工业、陶瓷制备方面得到了成功应用。”扫描电声显微成像系统  在提到扫描电声显微镜的研发历程时,殷庆瑞研究员则说到:“在国家‘863’计划的支持下,我们课题组1988年在国内率先开展了扫描电声显微镜及其相关器件、材料、成像理论和应用研究,这几乎与国际同步。随后几年,整个研发团队潜心研究,攻克各类技术难关,终于研制出了扫描电声显微镜。截至目前,我们已先后完成了SEAM-I型、II型、III型、IV型四代电声成像系统的研制,分辨率已达到200nm,总体技术指标和功能均处于世界先进水平。”  同时,殷庆瑞研究员补充到:“扫描电声显微镜可以用‘二合一’来形容,既能利用电子束探测物质的表面信息,又可以借用声波记录下物质的内部模样,兼具电子显微术高分辨率和声学显微术非破坏性内部成像的本领,可原位同时观察基于不同成像机理的二次电子像和电声像,实现‘二合一’!”  这项成果成功将电子显微术、声学显微术、数字信号处理和高灵敏度传感技术相结合,现拥有4项国家发明专利和一项国外发明专利, 更是荣获了2005年度国家技术发明二等奖、2006年度国际工业博览会银奖以及2010年度中科院自然科学一等奖。积极推进商品化 成为我国大型仪器出口成功范例  近年来我国科技经费投入持续增长,每年取得的科技成果有3万多项,但多数成果却陷入了“成果-证书-鸡肋”的尴尬状况。虽然目前科学成果商品化面临诸多问题,但也有不少成功范例,殷庆瑞研究员扫描电声显微镜的成功商品化便是其中之一。据悉,目前该项成果已被推广到国内外数十家单位,被誉为“全球唯一成熟的商品化扫描电声显微镜”。  科研成果要实现商品化,自然离不开应用开发。据殷庆瑞研究员介绍,扫描电声显微镜的横向分辨率、纵向分辨率、探测器灵敏度以及图像质量均处于国际领先水平,在评价电子陶瓷、金属、半导体、无机材料、复合材料以及功能器件时能够获得常规手段难以得到的信息,彰显了扫描电声显微成像技术在信息产生、检测和显示等方面的独特优势,当年前来访问的德国乌帕塔大学电子光学系主任巴克先生与新加坡国立大学电子光学专家彭教授也被这一独特优势深深折服。  殷庆瑞研究员介绍:“目前,国内外科学家正是通过使用我们的扫描电声显微镜在各自研究领域内已获得了许多重大的新发现。例如,德国科学家Kohler博士首次在马氏材料上发现了铁磁畴结构及其相应的机理解释;日本筑波大学Kojima教授则首次获得了蝶形BaTiO3晶体电畴结构电声像;美国宾州大学Hang He博士和Ruyan Guo教授在不同材料上获得了铁弹畴、180°反平行周期结构畴的复合畴形态的电声像,并认为电声成像技术是研究功能材料机电耦合效应的一种独特方法;清华大学彭海东博士则观察到了金属-陶瓷复合涂层表面和亚表面显微结构的电声像。正是利用扫描电声显微镜独特的成像机理获得诸如此类的应用成果不胜枚举,而这么多的成功应用又极大地推动了扫描电镜的商品化进程。”  对于扫描电声显微镜的产业之路,殷庆瑞研究员谈到:“最初在仪器研发成功后,我们只是停留在一种‘自给自足’状态,并没有真正地实现规模化生产,也没有主动去开拓市场。后来通过国内外的学术交流,我们收到了第一张订单,而对方竟来自电子显微镜的诞生地和主要产地——德国,这极大地鼓励了我们要把样机商品化的信心,尤其在近几年,中科院一直强调科研创新以及‘产学研用’合作。因此,我们积极与上海市高新技术成果转化服务中心联系,并与国内几家仪器公司建立了合作关系,共同推进扫描电声显微镜的商品化。而在厂商接手过程中,我们也并没有撒手不管,听之任之,而是从实验数据、应用开发再到技术培训、售后维修,我们都全程参与。双方互相信任,通力协作,推动了科研成果向产业化发展。”  我国大型科学仪器历来依靠进口,而随着扫描电声显微镜的技术升级与商品化成熟,“中国创造”的扫描电声显微镜在中国大陆、台湾、美国、德国、日本、荷兰、新加坡等发达国家和地区的实验室里都能够找到,被誉为“我国大型科学仪器出口到发达国家和地区的成功范例”。超越“二合一” 实现电-声-热显微镜一体化  当今材料科学朝着纳米及精细复合方向发展,功能器件则越来越小型化、集成化,这就对材料及功能器件的评价表征方法提出了日益严峻的考验;为应对这一挑战,殷庆瑞研究员课题组“二合一”的科研工作还在一直持续着,已成功研制出扫描探针声学显微镜与扫描热学显微镜,现正在研发电-声-热显微镜“三合一”技术。  近年来,在扫描电声显微镜的基础上,殷庆瑞研究员又带领课题组突破传统声学成像技术的概念,成功研发了低频(300Hz-3KHz)、高分辨率(10nm)扫描探针声学显微成像(SPAM),使低频声学成像技术拓展到了纳米级分辨率水平。  对此,殷庆瑞研究员表示:“原子力显微镜(SPM)只能用于检测材料表面,而声学显微镜却可以用于材料的缺陷分析、电子结构、微区弹性等性能测试方面。随着纳米技术深入发展,我和我的团队想到了将声学技术与原子力显微镜结合,研发出了扫描探针声学显微镜。这项成果可以克服现有SPM只能获得材料表面结构和性质的不足,实现了材料表面及亚表面结构和物性的原位实时检测,在微、纳米材料和器件无损分析方面的应用前景十分广阔。目前,该仪器已被日本国家材料研究所、德国应用科学技术大学、北大、清华、南大等知名院校纷纷选择使用。”  而扫描热学显微镜(SThM)则是殷庆瑞研究员继SPAM之后对扫描探针显微术的又一项重大突破。该仪器主要利用材料的温度、热导率等变化进行成像,从而获得样品表面热分布和相关热物理性质的一种微纳米尺度的测试技术,适用于材料微区的热学性能表征。  殷庆瑞说到:“目前,国外科学家已分别研制出原子力显微镜与电、光、磁3种技术分别结合的显微成像仪器。而我们之前已研发出了扫描探针声学显微镜,因此把目光投向了扫描热学显微镜。在国家‘973’计划的支持下,我们在2010年成功研制出了扫描热学显微镜,目前在微电子器件、材料等领域已得到了日益广泛的应用。”扫描探针近场压电-声学-热学显微成像系统  最后,在谈到课题组下一步的研发计划时,殷庆瑞研究员提出:“我们打算研发电、声、热一体化的扫描电镜,更加集成化、综合化、实用化,而这也是当今科学仪器发展的一个大方向。我相信,这款仪器将更加适用于物质介观和微观层次上的特性表征,对相关材料、器件与显微成像技术领域的发展,也将是一个极大地推动作用。”  后记:  美国NASA高级材料物理专家John博士曾这样评价,中科院上海硅酸盐所这个团队在电声成像的研究和应用方面已经成为世界的领导者。他们把电声成像扩展至实用阶段,而这项工作对该领域的影响是深远的。  的确如此,殷庆瑞研究员课题组将理论研究、材料制备器件设计、仪器研制与实际应用相结合,开发出独具特色的“二合一”新仪器,并积极推进相关科研成果的商业化,取得了一定的经济效益和良好的社会效益。因此我们有理由相信,殷庆瑞研究员和他的团队下一个“电-声-热显微镜一体机”必将在日益发展的纳米科学时代能够“大放异彩”!  采访编辑:刘玉兰  殷庆瑞研究员个人简介:  殷庆瑞研究员,1965年毕业于东南大学(南京工学院)无线电工程系。同年9月分配至中国科学院硅酸盐研究所工作至今。期间,1979-1981年在英国牛津大学Clarendon物理实验室访问学者,1989年在日本东京大学应用化学系客座研究员,2003年在德国乌帕塔大学电子工程系访问教授。  他主要从事电子陶瓷材料物理性能、器件设计以及光声学、电声成像和扫描探针声学显微术方面的研究。他在国内外重要刊物上已发表论文300余篇,专著两本(80余万字),英文版专著一本(Spring ),译著两本。获得国家技术发明二等奖、三等奖各一项,国际工业博览会银奖一项,中国科学院自然科学一等奖、二等奖各一项,中国科学院科技进步一等奖一项、省部级三等奖两项,国内外专利十余项。  他曾兼任同济大学教授、香港理工大学智能材料中心国际顾问委员会委员、国家基金委员会重大项目首席科学家、国家“863”计划新材料领域专家委员会委员、美国IEEE高级研究员、亚洲铁电学联合会理事、亚洲电子陶瓷联合会理事和国际铁电学杂志编委等学术职务,并当选美国纽约科学院院士和国际陶瓷科学院院士。  他曾先后获得上海市劳动模范、全国“五一”劳动奖章、国家“863”计划十五周年先进个人、中国科学院研究生院杰出贡献教师等荣誉称号。  他曾担任过中国科学院硅酸盐所科技处处长、所长助理和副所长,以及中国科学院无机功能材料开放实验室以及国家重点实验室学术委员会副主任等职务。
  • 港城大AEnM:钙钛矿太阳能电池效率和稳定性大幅提升?离不开超高分辨散射式近场光学显微镜的助力!
    在绿色能源的发展得到各国越来越多的重视与青睐的今天,光伏科技和太阳能电池的产业成长与技术研发成为了工业界和学术界共同的焦点。而这其中被广泛关注的当属使用具有钙钛矿结构的材料所合成的太阳能电池。钙钛矿结构是具有通式ABX3结构的一类化合物,除了CaTiO3外,还有BiFeO3、CsPbI3也具有这一结构。基于钙钛矿结构材料所合成的电池则一般被统称为有机-无机杂化钙钛矿太阳能电池(PVSCs)。在光伏领域的研究中,钙钛矿太阳能电池因其能量转化率在近几年的飞速提高而备受关注。其中的佼佼者更是可以达到25%的能量转化率。 然而,在我们期待上述的有机-无机杂化钙钛矿太阳能电池从实验室走向工业应用的时候,一个无法回避的问题出现在了研究者的面前:这种电池的环境敏感性非常之高。在电池的使用过程中,其性能稳定性和使用寿命很容易被环境湿度,环境热度,环境光照所影响,且这种影响多为负面影响。也就是说,要想让PVSCs能够被大规模应用,其环境耐性必须得到改进。 针对上述问题,香港城市大学Fengzhu Li于今年(2022年)4月在Advance Energy Materials中发表了等离激元局域光热现象调控钙钛矿太阳能电池应力以提升效率和稳定性的研究工作。该课题组发现二氧化硅包覆的金纳米管(GNR@SiO2)可有效提高钙钛矿太阳能电池的性能,尤其通过减小材料生成过程中所产生的残留应变,在维持电池高效转化率(23%)的前提下,大幅提高了电池的工作稳定性。这种GNR@SiO2有着8.2 nm的平均直径和40 nm的平均长度。其中的二氧化硅外壳结构的厚度在15 nm左右。图1. 作者所生成的GNR@SiO2的 (a) TEM与EDS扫描图样 (b)直径和长度的分布统计 在通过标准流程测得生成的太阳能电池的能量转化效率可以达到23%之后,接下来研究者的关注点则聚焦到了GNR@SiO2对电池稳定性——也就是钙钛矿材料层的稳定性的提高之上。在此研究中,Neaspec研发的近场光学显微镜起到了至关重要的作用。科研者利用此设备获取了相关材料基于中红外激光吸收的形貌图(光学成像)和与之对应的纳米傅里叶红外光谱结果。实验使用了一台相干宽波长中红外激光器,通过Neaspec近场光学显微镜将激光聚焦于镀铂金AFM针,从而表征了四组参照薄膜材料:(a)新生成的钙钛矿结构材料(PVK)(b)新生村的掺杂了GNR@SiO2的PVK(c)经过疲劳测试的PVK(d)经过疲劳测试的GNR@SiO2的PVK。图2 实验原理示意图和Neaspec近场光学显微镜AFM照摄像头在测试四组材料时的光学镜头成像。 在PVK所对应的中红外成像和纳米傅里叶红外光谱中,信号的产生主要源自材料里的脒结构中的非对称碳氮键的拉伸模式的变化。所有之后的分析都是基于上述四种材料所产生的这种信号(对应材料中脒的浓度也就是材料的降解程度)。下图a-d对应四种材料的1700 cm–1 中红外激光成像结果。而为了研究疲劳测试对材料稳定性的影响,研究者在每个结果中都选取了5个数据点,直接进行纳米傅里叶红外光谱的测试 (下图 e-h)。研究者通过对比发现,在没有掺杂GNR@SiO2的PVK中,疲劳测试使得材料的脒含量降到了原来的45%。而通过掺杂GNR@SiO2,PVK中的则能维持在原来的75%。可见,掺杂GNR@SiO2有效地减慢了PVK薄膜材料的降解和损耗速度。而使得这一结果得以获得的,正是Neaspec的近场光学显微镜可以同时对样品进行中红外成像和纳米傅里叶红外吸收谱分析的这一特性。图3 四组参照薄膜材料的中红外成像结果以及对应图上5个数据点的纳米傅里叶红外光谱结果参考文献:[1]. Fengzhu Li, Tsz Wing Lo, Xiang Deng, Siqi Li, Yulong Fan, Francis R. Lin, Yuanhang Cheng, Zonglong Zhu, Dangyuan Lei*, Alex K.-Y. Jen*, Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells, Advanced Energy Materials,DOI: 10.1002/aenm.202200186
  • 扫描近场光学显微技术(SNOM)书写的发展史诗
    “扫描近场光学显微技术” 早由科学研究工作者Edward Hutchinson Synge提出。根据观察到的在一定压力下电弧发出的通过孔径仅为100nm的强聚焦平面光,他认为,利用这种小孔径可以使光在样品表面进行逐点扫描成像,同时采集被测量物质的光学信息,并大胆预测这一技术的实现将是照明探测研究领域中的巨大突破。在1956年和1972年,John A.O' Keefe与Ash and Nicholls进一步完善了该理论,并提出小孔探测原件尽可能接近样品表面将有助于该技术的实现。1984年,台利用可见光辐射进行测量的近场光学显微镜由Pohl等制造并使用,该显微镜通过探针在样品表面保持数十纳米的距离采集反馈信息,并在两年后实现了高分辨成像。 然而,传统近场光学显微镜由于瑞利衍射限(Rayleigh limitation),其分辨率不仅受到孔径尺寸的制约,也受到入射光波长1/2的限制。因此,对于sub-um的纳米材料检测成像时,传统近场光学显微镜只能采用有限波长范围的可见光,且难以获得高清图像信息。在中红外领域,近场光学显微技术对纳米结构几乎没有用武之地。 散射式近场光学显微镜利用AFM探针对激光光束聚焦照明,在针附近激发一个纳米尺度的增强近场信号区域。当针接近样品表面时,由于不同物质的介电性质差异,近场光学信息将被改变。通过背景压制技术对采集的散射信号进行解析,就能获取到样品表面的近场光学谱图并进行成像。该技术突破了传统孔径显微的限制,其分辨率仅由AFM探针针的曲率半径决定。 德国Neaspec公司提供的新一代近场光学显微镜NeaSNOM采用了这一散射式技术,高分辨率可达10nm,并通过式的赝外差数据分析模式,同时解析强度和相位信号,解决了纳米材料尤其是在红外光谱范围的近场光学成像难题。 利用赝外差技术实现了近场光学显微镜对强度和相位的同时成像 近五年以来(2011年至今)散射式近场光学显微技术在局域表面等离子激元,无机材料表面波传导,二维材料声子化,近场光电流,半导体载流子浓度,高分子材料鉴别和生物样品成像等领域研究得到了广泛的应用,已然成为推动光学物理、材料应用发展的重要工具。 2016年,A.Y. Nikitin等通过波长10-12μm激发裁剪后的石墨烯纳米谐振器,得到了大量共存的Fabry–Perot mode信息。通过理论分析其两种等离子模式,即sheet plasmon和edge plasmon,发现后者体积仅为激发波长的10^-8倍。并通过理解edge plasmon的原理,可以促进一维量子发射器的开发,等离子激元和声子在中红外太赫兹探测器的研究,纳米图案化拓扑缘体等领域的进一步发展。 文章中5nm厚SiO2上的不同尺寸(394 × 73 nm (a), 360 × 180 nm (b) and 400 × 450 nm (c))石墨烯纳米谐振器,在11.31μm波长下的近场成像 石墨烯由于其特性能被广泛的认可为具发展潜能的下一代光电设备材料,然而其纳米别性能的变化影响了宏观行为,高性能石墨烯光电器件的开发受到了大制约。AchimWoessner等结合红外近场扫描纳米显微镜和电子读取技术,实现了红外激发光电流的成像,并且精度达到了数十纳米别。通过研究边际和晶界对空间载流子浓度和局域热电性质的影响,实验者证明了这一技术对封闭石墨烯器件应用的益处。 近场光电流的工作原理示意图以及中从晶粒间界处得到的光电流实际测量结果 NeaSNOM是市场一款散射型扫描近场光学显微镜,化的散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。 NeaSNOM中嵌入的一系列化探测和发光模块,保证了谱图的可靠性和可重复性,成为纳米光学领域热点研究方向的科研设备。 【NeaSNOM样机体验与技术咨询,请拨打:010-85120280】 相关产品:超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/C170040.htm纳米傅里叶红外光谱仪:http://www.instrument.com.cn/netshow/C194218.htm
  • 2020年全球显微镜市场将达95.4亿美元
    近日, Grand View Research发布了全球显微镜市场研究报告。报告显示:2013年的全球显微镜市场容量为56.8亿美元,从2014年至2020年的年均复合增长率预计为7.7%,到2020年全球显微镜市场容量预计将达到95.4亿美元。  政府以及私人机构加大纳米技术、半导体等新兴应用领域的研发投资推动了显微镜的市场需求。在微型晶体管芯片和量子点制造领域,高分辨率显微镜的使用率提高,以及在新兴的亚太和拉美市场存在尚未开发的机遇,将是促进显微镜市场未来增长的重要动力。  2013年,生命科学应用主导着整个市场,占总需求的30%。显微镜在新药研究和开发、组织诊断、组织和细胞的微观结构研究中的应用增长,促进了显微镜在这些应用中的市场需求。  2013年,光学显微镜的市场容量占显微镜市场总容量的40%,主要是由于它们的高市场渗透率,除此之外,显微镜相对来说成本较低,因此在一些研发经费有限的小型、中型实验室拥有较高的使用率。  电子显微镜预计是这个市场领域最具吸引力的产品。由于扫描电镜呈现出很高的图像分辨率,因而在生命科学、材料科学和纳米技术领域的应用需求在不断增长中,并将驱动未来电镜市场的增长。  纳米技术是显微镜市场增长最快的应用需求。基于纳米技术的研发,以及公共和私营机构对于小型化设备和特殊纳米系统研发的投资,使得对高分辨率显微镜的需求不断增长。  报告中涉及的主要的显微镜仪器供应商有:徕卡、日立高新、FEI、蔡司、奥林巴斯、CAMECA SAS、Danish Micro Engineering、布鲁克和NT-MDT公司。通过部分特定的研发支出以及和高校、研究实验室的战略性合作来开发新产品,是仪器厂商采取的关键的可持续性战略。  该研究报告中所涉及的显微镜包括:倒置显微镜、体视显微镜、相衬显微镜、荧光显微镜、共焦扫描显微镜、近场扫描显微镜、透射电镜、扫描电子显微镜、扫描探针显微镜及其他。  涉及的显微镜应用领域包括:材料科学、纳米技术、生命科学、半导体和其他。  研究涉及的区域:北美、欧洲、亚太区和其他地区。(编译:秦丽娟)
  • 2014年全球显微镜市场达40.658亿美元
    根据MarketsandMarkets最新发布的市场报告显示:2014年全球显微镜市场为40.658亿美元,到2019年将增长到57.56亿美元,年均复合增长率为7.2%。  随着全球对于纳米技术的关注,政府和企业资金的良好支持,以及技术进步,如高分辨率显微镜、高通量技术和数字化显微镜等都在推动显微镜市场的增长。然而,高端显微镜昂贵的价格、美国政府征收的消费税,以及医疗器械沉重的关税都阻碍着这一市场的增长。  按照产品类别来分,显微镜市场分为光学显微镜、共聚焦显微镜、电子显微镜和扫描探针显微镜。光学显微镜进一步划分为荧光显微镜(FM)和超分辨率显微镜。荧光显微镜分为全内反射荧光显微镜(TIRF)、荧光共振能量转移显微镜(FRET)、荧光漂白后恢复显微镜(FRAP)、以及荧光寿命成像显微镜(FLIM)。  超分辨显微镜分为随机光学重建显微镜(STORM)、结构化照明显微镜(SIM)、受激发射损耗显微镜(STED)、相干反斯托克斯拉曼散射显微镜(CARS)、光活化定位显微镜(PALM)和可逆饱和光荧光转移显微镜(RESOLFT)。共聚焦显微镜包括多光子显微镜和旋转盘共聚焦显微镜。  电子显微镜分为扫描电子显微镜(SEM)和透射电子显微镜(TEM)。  扫描探针显微镜(SPM)则分为扫描隧道显微镜(STM)和原子力显微镜(AFM),以及近场光学显微镜(NSOM)。2014年,光学显微镜占全球显微镜市场最大的份额,达到39.5%。  显微镜的应用市场分为半导体、生命科学、纳米技术和材料科学。其中纳米技术是增长最快的应用市场。根据终端用户划分,显微镜市场分为学术机构、生产制造和其他(政府研究机构和私营实验室),其中学术机构是占市场份额最大的终端用户。  根据区域划分,显微镜市场分为北美、欧洲、亚太和其他地区(RoW)。其他地区包括巴西、阿根廷、墨西哥和其他拉美地区。2014年,北美地区的显微镜市场份额最大,其次是欧洲。预计未来5年,这两个市场的增长率都为低个位数。  然而,亚太区预计将保持较高的增长率,因为这一区域有着巨大的投资机遇。亚太区显微镜市场的增长将来自于中国、澳大利亚,以及中东地区的国家。(编译:秦丽娟)
  • 研究机构称:2018全球显微镜设备市场达62亿美元
    据Transparency Market Research调查显示:显微镜设备(包括光学、电子和扫描探针显微镜。应用市场包括半导体、生命科学、纳米技术、材料科学)2011全球市场价值在30亿美元,并预期在2018年达到62亿美元,2012至2018年的复合年均增长率为11.0%。  显微镜设备市场的增长主要来自于全球纳米技术研究的增加。随着纳米技术在材料科学、半导体和生命科学等领域的广泛应用,它促使政府及在全球范围内的企业,通过公共财政来支持其研究和发展。纳米技术同其他精密制造行业,如半导体和医疗设备制造业,促进了先进显微镜的使用,这也驱动了显微镜设备市场的发展。此外,由当地或外国公司在中国、印度等国家成立越来越多的半导体生产企业,也促进了显微镜设备市场的增长。  在显微镜设备的各种应用领域中,半导体行业显微镜设备市场2011年所占的份额最大,并预计在未来几年依然维持其最大的份额,由于微电子产业半导体芯片小型化的不断发展,将成为显微镜设备市场增长的重要动力。  2011年,北美拥有的显微镜设备市场份额超过35%。由于专注于纳米技术和生命科学等行业的研究,加上这一地区大的联邦和企业充足的资金供应,使之成为显微镜设备的重要市场。然而,亚洲的显微镜设备市场复合年增长率最快,预计有望在2018年成为全球最大的显微镜设备市场。半导体产业的迅速增长,越来越多的半导体生产企业的成立将成为这一地区显微镜设备市场增长的重要驱动力。  扫描探针显微镜预计在2012-2018年内呈现最高的复合年增长率,主要由于其适用于导体或绝缘体样品,并且由于其高分辨率,扫描探针显微镜拥有更好的表面成像功能。  2011年,奥林巴斯占据了光学显微镜最大的市场份额,而日立高新技术公司荣登电子显微镜市场首位。其他重要的显微镜设备制造企业包括:FEI、尼康、JEOL、徕卡、卡尔蔡司等。  报告所涉及的显微设备产品包括:光学显微镜(倒置显微镜、体视显微镜、相衬显微镜、荧光显微镜、共焦扫描显微镜、扫描近场光学显微镜) 电子显微镜(扫描电镜、透射电镜) 扫描探针显微镜(扫描隧道显微镜、原子力显微镜)。  显微设备应用市场包括:半导体、生命科学、材料科学、纳米技术,其他。  显微设备市场区域包括北美、欧洲、亚洲,世界其他地区。编译:秦丽娟
  • 美科学家结合X射线和显微镜进行精细实验
    美国能源部阿贡国家实验室的科学家若斯近日宣布:他们已经通过同时使用X射线分析和高精度显微镜,能够同时判定物质接近原子级的物理结构和化学构成。这项研究为运用于能源的各种材料开辟了新路径。  扫描隧道显微镜(STM)能让研究人员在原子级看到更大范围的不同材料。但是只能大概看见原子在哪里,并不能提供化学或者磁性方面的信息。若斯最近的一项研究弥补了这一缺陷。他带领的团队综合了阿贡实验室的高级光子源、纳米材料中心和电子显微镜中心所提供的资源,发明了X射线同步加速器扫描隧道显微镜技术。该技术将X射线同步加速器(由高级光子源提供)同STM结合在一起。该团队曾用一个小铜样品检测该技术的局限和优势。只用加速器达不到STM能检测到空间分辨率,但是把两者结合起来就能得到研究者期望的数据。  若斯坚信这项技术能帮助科学家和工程师开发新一代的催化剂、纳米磁系统和太阳能电池。对于催化剂,有这种程度的分辨率可以根据个别催化剂显示活性部位在哪里,而且能准确地看到这种反应是怎样发生的。对于太阳能电池,能得到目前降低它效率的表面杂质的更好图像。  若斯预测这项新技术将最终能够研究各个原子的电子化学和磁性能。  基于这项研究的报告《X射线同步加速器扫描隧道显微镜:同步辐射诱导铜远近场转换的指纹图谱》刊登在《先进功能材料》上。
  • TESCAN和WITec联合发布RISE显微镜新品
    仪器信息网讯 2014年4月2日上午,在analytica 2014举办期间,TESCAN ORSAY和WITec公司联合举行新品发布会,两家公司合作研发、并推出了显微镜新品RISE Microscopy。新品RISE Microscopy  RISE是Raman Imaging Scanning Electron的缩写,RISE Microscopy是一款新颖的显微镜技术,在一个集成的显微镜系统中结合了共焦拉曼成像和扫描电子显微镜技术。这种独特的组合为显微镜用户对样品进行综合表征,提供了明显的优势。电子显微镜是一个很好的表征纳米范围内样品表面结构的可视化技术,而共焦拉曼成像是表征样品化学和分子组成的成熟光谱方法。RISE Microscopy还可以同时得到样品的2D、3D图像,以及样品中分子化合物组成的可视化分布结果。TESCAN ORSAY公司CEO Jaroslav Klí ma  TESCAN是一家捷克公司,23年前成立。TESCAN的产品包括热发射系统、LaB6系统、场致发射系统、FIB和等离子体FIB系统。目前已经在全球60多个国家安装了1600多台扫描电镜(SEM)。TESCAN ORSAY公司是TESCAN和法国公司ORSAY PHYSICS合并建立的一家跨国公司。WITec公司CEO Joachim Koenen 博士  WITec成立于1997年,总部位于德国乌尔姆,主要开发、生产、销售共聚焦拉曼光谱、原子力显微镜,近场光学显微镜等仪器。目前在全球拥有53名员工,年销售额为1100万欧元,每年以15%的速度在增长。在美国、日本、新加坡和西班牙地区拥有分支机构。
  • 国内首套真空太赫兹波段近场光学显微系统在电子科技大学太赫兹中心成功安装
    太赫兹有着光明的应用前景,还是一片未开垦的处女地。电子科技大学太赫兹中心自成立以来,为太赫兹科学研究搭建了更高的合作发展平台,也标志着我国以“国际前沿、”为目标的太赫兹科学研究迈入了崭新阶段。2018年6月,应电子科技大学太赫兹中心对真空环境下进行太赫兹近场光学研究的需求,QD中国工程师配合德国neaspec公司立即展开积响应并为客户量身定制了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM),并已成功安装。 图1:电子科技大学太赫兹中心安装调试现场 图2:真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM) 电子科技大学太赫兹中心原有一套大气环境太赫兹波段近场光学显微系统(THz-neaSNOM),空间分辨率~50nm、宽太赫兹时域近场响应波段0.5-2.2THz。由于更进一步的科研需要,客户需在更加严格的真空条件下进行太赫兹实验。为了满足客户的实验需求,德国neaspec公司在原有大气环境THz-neaSNOM的基础上,结合新的低温散射式近场光学显微镜(Cryo-neaSNOM)技术,设计了新的真空腔体系统,改进了原子力显微镜布局,并重新设计了光路,终成功研发出了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)。该套系统成功地继承了德国neaspec公司THz-neaSNOM的设计优势,采用保护的双光路设计,完全可以实现真空环境下太赫兹波段应用的样品测量。HV-THz-neaSNOM在实现30nm高空间分辨率的同时,由于采用0.1-3THz波段的时域太赫兹光源(THZ-TDS),也可以实现近场太赫兹成像和图谱的同时测量。这大地满足真空环境中太赫兹近场光学研究的需求,可以减少大气中水对太赫兹波段的吸收影响,能更好地保持样品的洁净,为用户进一步集成真空设备提供了基础。 图3:系统理论培训 图4:现场实时操作培训 太赫兹波有强的穿透性,对不透明物体能完成透视成像,用来做半导体材料、生物样品等的检测是其应用趋势之一。该套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)的集成,将在生物应用、半导体元器件和相变材料载流子等研究及领域都有着广阔的应用前景,有望为广大太赫兹科研工作者提供更多实际研究工作中的便利和支持。
  • 复旦纳米固流法:光学显微镜分辨率提升至45纳米
    复旦大学材料科学系武利民课题组研究设计开发了一种新的纳米粒子组装方法——纳米固流体法,首次实现了将高折射率的二氧化钛纳米粒子组装成能工作于可见光波段的超材料光学器件。相关研究成果已发表于《科学进展》。  目前,绝大多数超材料采用金属材料来制备,这些金属超材料可较好地工作于微波和太赫兹波段。但在更高频率的近红外,特别是可见光波段,金属会吸收过多的光线并造成显著的能量损耗,从而限制了金属超材料在近红外和可见光波段的应用。因此,低损耗的非金属超材料的制备与应用是国际超材料研究领域的热点之一。  据悉,武利民课题组通过将15纳米的锐钛矿二氧化钛纳米粒子组装成半球形和超半球形固体浸没超透镜,在常规的光学显微镜下实现了45纳米的超分辨率显微成像,大大突破了光学显微镜的极限分辨率200纳米,并揭示了二氧化钛纳米粒子间的近场耦合效应在该可见光超材料中的重要作用。  这项研究提供了一种在纳米尺度操纵可见光的途径,未来将该组装方法与纳米印迹、微纳流体等技术结合,有望制备出紧凑、低成本的超材料光学器件,应用于隐身、光子计算机、近场光学检测及太阳能利用等领域。
  • 一文带您了解扫描探针显微镜发展史
    扫描探针显微镜(Scanning Probe Microscope,SPM)的发展历史是一段引人注目的科学进步历程,奠定了纳米科学和纳米技术的基础。自20世纪80年代以来,SPM的出现和保存,不仅使科学家能够以原子和分子的精度观察和操控材料,还推动了许多相关领域的研究。以下是SPM发展关键里程碑:1980年代初 - 扫描隧道显微镜(STM)的发明1981年:德国物理学家格尔德宾宁(Gerd Binnig)和海因里希罗雷尔(Heinrich Rohrer)在 IBM 苏黎世研究实验室发明了扫描隧道显微镜(STM)。STM 的发明标志着扫描探针显微镜技术的开端。[1]宾宁罗雷尔世界上第一台扫描隧道显微镜[2]1986年:宾宁和罗雷尔因发明 STM 获得诺贝尔物理学奖。他们的工作证明了 STM 可以以原子级分辨率成像,从而开启了对物质结构的新认识。1989年:IBM科学家展示了一项能够操纵单个原子的技术。他们使用扫描隧道显微镜,将35个单个氙原子排列在镍冷晶体基板上,拼出了公司首字母缩写的三个字母。这是原子首次被精确地定位在平面上。[3]用 35 个氙原子拼写出“IBM”1980年代中期 - 原子力显微镜(AFM)的发展1986年:格尔德宾宁、卡尔文夸特纳(Calvin Quate)和克里斯托弗格贝尔(Christoph Gerber)发明了原子力显微镜(AFM)。AFM 可以在非导电材料上工作,扩展了 SPM 技术的应用范围。[4] AFM 利用探针与样品表面之间的范德华力进行成像,可以在真空、空气和液体环境中操作,因此在材料科学和生物学研究中具有广泛的应用。第一台原子力显微镜原子力显微镜原理图1990年代 - 扫描探针显微镜的扩展与多样化1. 磁力显微镜(MFM):磁力显微镜(MFM)在20世纪80年代末至90年代初被发明,通过使用带有磁性涂层的探针,测量探针与样品表面磁力相互作用,实现了纳米尺度高分辨率磁畴成像。这一创新使研究人员能够深入了解材料的磁性特性。低温强磁场磁力显微镜在微结构缺陷中的研究2. 静电力显微镜(EFM):静电力显微镜(EFM)由斯蒂芬库尔普斯(Stephen Kalb)和霍斯特福尔默(Horst F. Hamann)在20世纪80年代末至90年代初发明,通过带电探针测量静电力变化,实现纳米尺度高分辨率电学成像。EFM被广泛应用于研究半导体材料、电荷存储器件和纳米电子学等领域。3. 近场扫描光学显微镜(NSOM 或 SNOM):近场光学显微镜(NSOM)由埃里克贝茨格(Eric Betzig)和约翰特劳特曼(John Trautman)在20世纪80年代末至90年代初发明。NSOM使用带有亚波长孔径的光纤探针,通过限制光在极小区域内并扫描样品表面,获取高分辨率的光学图像,广泛应用于材料科学、生物学、化学和半导体研究等领域。NSOM的一般原理2000年代至今 - SPM 技术的进一步发展和应用1. 高分辨率和高灵敏度:随着探针技术、控制系统和数据处理技术的发展,SPM 的分辨率和灵敏度不断提高。2. 多功能化探针:开发出具有特定化学、机械、磁性或力学性质的探针,使得 SPM 可以进行更为多样化的表征和操作。3. 多模式成像:结合多种成像模式,可以同时获得样品的多种性质信息。结合多种模式的扫描探针显微镜4.晶圆级成像:随着集成电路规模的急剧增加,需要对大型样品成像。加工在晶圆上的芯片5. 在生物学中的应用:SPM 在生物分子和细胞研究中的应用越来越广泛,可以直接观测生物大分子的结构和动力学过程。未来展望扫描探针显微镜的技术仍在不断发展,新的技术和应用不断涌现。由致真精密仪器研发的多功能原子力显微镜和晶圆级原子力显微镜支持大尺寸样品的表征,并集成集成磁力、压电力、扫描开尔文以及液相等多物性分析功能,具有极低的噪声水平,并具备基于深度学习的智能化数据处理分析。致真精密仪器未来将继续致力于更高分辨率、更快的成像速度和更强的多功能化的SPM设备研究,以满足科学研究和工业应用的需求。致真公司自主研发的多功能原子力显微镜AtomEdge集成AI的智能分析算法 高度及粗糙度、宽度、粒子智能分析参考文献:[1] Binnig, G., & Rohrer, H. (1982). Scanning tunneling microscopy. Surface Science, 126(1-3), 236-244.[2] https://commons.wikimedia.org/wiki/File:First_STM.jpg[3] https://en.wikipedia.org/wiki/IBM_%28atoms%29[4] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930-933.本文由致真精密仪器原创,转载请标明出处. 致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。 致真精密仪器通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“产品包含原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 显微镜前的坚守
    王红,航空技术领域的高级工程师。刚过不惑之年的她,文静高雅,言谈举止,充满学者的风度与气质。1990年,从北京航空航天大学金属材料专业毕业的王红,走进了南方航空工业有限公司。 &ldquo 守护产品的质量是我的天职&rdquo 材料的理化检测与失效分析技术,是航空发动机制造中至关重要的一环。 王红从事的工作,就是做理化检测及失效分析。王红一进厂,就像钉子一样,牢牢地钉在这个岗位上。24年来,显微镜成了她的&ldquo 火眼金睛&rdquo 。凭着雄厚的知识功底和技术能力,任何瑕疵都无法从她的眼皮底下溜掉。 2006年底,公司某型号钛合金叶轮锻件毛坯力学性能不合格,无独有偶,另一型号发动机也先后出现压气机部件断裂、裂纹重大故障。为锁定问题所在,王红在查阅大量国内外资料的同时,对锻件性能进行了系统分析。在车间,王红自己动手磨制试样、制备断口,为了找到其典型的疲劳特征,需要对断口反复清洗观察,显微镜的放大倍率从几倍到上百万倍。王红连续花了5天时间,蹲在车间跟踪热加工全过程,每天都到凌晨3时才回家。她掌握上百组数据后,重新调整了工艺规范,锻件性能问题得到成功解决。 紧接着,在电子显微镜下,王红又开始对压气机部件断裂、裂纹故障进行分析、王红整整花了3、4个月时间,在无数个复杂的断口中找到了首断件,并对&ldquo 症&rdquo 下&ldquo 药&rdquo ,从而杜绝了故障的再次发生。 认真、细致的敬业精神,使王红从一名冶金分析技术员,迅速成长为物理冶金分析技术的一级专家。 &ldquo 要赶上世界同行,必须加快技术创新&rdquo &ldquo 要赶上世界同行,就必须加快技术创新&rdquo ,王红深感自己肩上担子的分量。 2007年,在公司某新型号航机国产化研制进行中,有个核心部件在锻造过程中遇到技术瓶颈。王红带领团队经过一个月的连续奋战,终于找到关键突破点,胜利实现了该型发动机核心部件的国产化。 去年,公司有两批共40多件外购钛合金锻件,需要对表面进行局部改进。由于零件大,空间小,晚上试验,难度很大。这种试验需要人工直接在零件上磨制,一次试验下来,需要对零件翻动数次。王红的双手都磨出了血泡,但她一声不吭,经过几个通宵的试验分析,找到了创新工艺的依据,锻件全部合格交付。这次试验,为公司避免了几百万元经济损失。 近3年,王红的团队硕果累累:完成新机预研技术分析726项、失效分析496项、技术攻关86项,发表部级以上论文30余篇,获省部级以上成果12项。 &ldquo 干科研,就是要不断挑战难题&rdquo &ldquo 南方&rdquo 人有自己的&ldquo 航空梦&rdquo ,王红明白,自己会遇到的难题会越来越多。 王红面临的第一个难题,就是负责建立国家级理化检测实验室。成立过程中,王红遇到了前所未有的困难,光标准制定就花了整整一年时间。她必须跟踪世界一流水平找参数,找依据,翻译的英文资料就有三大本。接着,王红又组织编制了300余份理化检测实验室的管理系统文件。实验室获得国家级资质后,又顺利获得加普惠材料控制实验室资质及通过Nadcap认证。 &ldquo 钛合金蓝色阳极化工艺技术&rdquo ,是航空材料领域的世界性难题。如何把这种技术运用到军用航空发动机上,是&ldquo 南方&rdquo 人多年的期盼。 几年前,王红果断地接下这一攻关项目,她带领自己的团队,奋战了近两年时间,目前,项目已通过评审,并成功用于科研生产。 坚守,是一种信念;坚守,是圆梦的动力。王红在显微镜下的坚守,正是为让自己的&ldquo 航空梦&rdquo 承接历史,对接未来!
  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制