当前位置: 仪器信息网 > 行业主题 > >

晶体分析仪

仪器信息网晶体分析仪专题为您提供2024年最新晶体分析仪价格报价、厂家品牌的相关信息, 包括晶体分析仪参数、型号等,不管是国产,还是进口品牌的晶体分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合晶体分析仪相关的耗材配件、试剂标物,还有晶体分析仪相关的最新资讯、资料,以及晶体分析仪相关的解决方案。

晶体分析仪相关的论坛

  • 非晶体物象分析

    X射线衍射仪能检测出非晶体的物象吗,和检测晶体物象的流程有什么区别,如果能测试出图谱分析检测后的图谱与晶体检测后的图谱分析有何区别?三轴欧拉样品台360°旋转能任意旋转角度吗?

  • 分析仪器常用电子器件——光电池和光电晶体管

    分析仪器常用电子器件——光电池和光电晶体管

    [align=center][font=宋体]分析仪器[/font][font=宋体]常用[/font][font=宋体]电子器件[/font][font=宋体]——[/font][font=宋体]光电池和光电晶体管[/font][/align][align=center][font=宋体]概述[/font][/align][img=,690,627]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012211058106_5057_1604036_3.jpg!w690x627.jpg[/img][font=宋体][font=宋体]光电池和光电晶体管都是基于光生伏特效应的光敏器件,常用于紫外[/font][font=宋体]——可见分光光度计、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的紫外检测器和示差检测器等部件中,将仪器传输的光线信号转换成电信号。与光电管(或光电倍增管)相比较,光电池和光电晶体管可以检测光线波长范围较广,可以涵盖近近红外、紫外直至高能区域,电气噪声低、耗能低、可靠性好、线性范围宽。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体]光电池[/font][font=宋体][font=宋体]的原理是:某些特殊半导体的[/font][font=宋体]P-N结在光线照射情况下,产生新的电子——空穴对,在P-N结电场的作用下移动从而[/font][/font][font=宋体]产生电动势[/font][font=宋体],一般[/font][font=宋体]用于光电转换、光电探测及光能利用等方面[/font][font=宋体][font=宋体],其结构如图[/font][font=宋体]1所示[/font][/font][font=宋体]。[/font][font=宋体][font=宋体]光电池是一种用途较广的光敏器件,具有体积小、寿命长、可靠性高、光谱响应范围宽、低能耗等特征。紫外[/font][font=宋体]——可见分光光度计、浊度计以及[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]紫外和示差检测器等宽波长检测范围的分析仪器中经常会使用光电池器件。[/font][/font][align=center][img=,135,123]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012211058106_5057_1604036_3.jpg!w690x627.jpg[/img][font=宋体]。[/font][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]1 [/font][/font][font=宋体]光电池结构[/font][/align][font=宋体][font=宋体]光电晶体管包括光电二极管和光电三极管。光电二极管内部具有光敏特征的[/font][font=宋体]PN结,工作时一般在P-N结施加反向电压,在无光照的情况下,仅有极低的漏电流流过PN结,即暗电流。当受到光线照射时,漏电流大大增加,称为光电流,光电流随入射光强度的变化而变化,其结构如图2所示。光电二极管的灵敏度较高,频率响应特性较好,与光电池相比更加适合检测高速变化的光信号。[/font][/font][font=宋体]光电三极管的灵敏度比光电二极管更高,常用于光隔离器、光束传感器、光纤等高灵敏度应用场合中。[/font][align=center][img=,280,84]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012211176240_6601_1604036_3.jpg!w690x207.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]光电二极管结构和电路图[/font][/font][/align][align=center][font=Calibri][font=宋体]二极管阵列检测器[/font][/font][/align][font=宋体]作为一种功能更强的紫外检测器,某些分析应用场合下需要[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]装备光[/font][font=Calibri][font=宋体]电二极管列阵检测器,[/font][/font][font=宋体]一般[/font][font=Calibri][font=宋体]表示为[/font]PDA[font=宋体]([/font][font=Calibri]photo-diode array[/font][font=宋体])、[/font][font=Calibri]PDAD[/font][font=宋体]([/font][font=Calibri]photo-diode array detector[/font][font=宋体])或([/font][font=Calibri]Diode array detector[/font][font=宋体],[/font][font=Calibri]DAD[/font][font=宋体])[/font][/font][font=宋体][font=宋体],[/font][font=Calibri]PDA[/font][font=宋体]检测器光学结构如图[/font][font=Calibri]3[/font][font=宋体]所示。[/font][/font][align=center][img=,292,204]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012211238768_3513_1604036_3.jpg!w690x481.jpg[/img][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]二极管阵列检测器的光路结构[/font][/font][/align][font=宋体]来自光源的光线,穿过检测池之后,带有一定吸收的光线被光栅分光后,不同波长的光线照射在二极管阵列器件上。二极管阵列器件由密集排布的数百至上千个微型光电二极管组成,可以同时检测到较宽波长范围下的光谱吸收。[/font][font=宋体]除去获得定量信息之外,二极管阵列检测器还可以快速获得物质光谱信息用以紫外光谱定性,或者色谱峰的三维信息用以进行峰纯度检查。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font]

  • 关于分析晶体的疑问

    我知道不同分析晶体的2d值不一样,但是为什么要用不同的材料呢?是不同的特征X射线在不同的材料上产生的衍射不一样吗?谢谢!!

  • 未知晶体结构分析-TEM衍射分析

    未知晶体结构分析-TEM衍射分析

    各位,化学系合成了新晶体,并对晶体作了xrd分析。请我组作了电镜对照分析。分析衍射图得到,只是小女初学电镜,对手中的衍射图有困惑,诚请各位多多赐教!现将衍射图贴出。合成晶体是Eu,Mn,Cd,Sb由四种元素构成的合金。XRD的分析数据:猜测是Orthorombic: a= 4.79Å, b= 12.92Å, c= 45.58Å衍射分析我们按照XRD的Orthorombic作分析,计算的晶格常数和xrd结果少有出入。a= 8.06Å b= 15.98 Å c= 18.74Å2张衍射图:第一张图D1,我们推测是,《001》《100》两个轴向衍射图重叠后的结果,那么由此重叠的衍射图推测晶体存在长周期结构。或者order的固溶体结构?此结论有待各位赐教。http://ng1.17img.cn/bbsfiles/images/2012/06/201206200617_373504_1495726_3.jpg另,请看图D2:得到另外一张存有superlattice的衍射。但卫星点和衍射主点不在同一条直线上。具体原因我无法解释。也请各位赐教!不胜感谢。说明:此次衍射不多,提供的信息有限。但对已有的这几张衍射,我有以上疑惑,提交出来。希望和大家讨论,诚请各位多多赐教!http://ng1.17img.cn/bbsfiles/images/2012/06/201206200618_373505_1495726_3.jpg

  • 【史料】晶体结构分析及其发展(范海福)

    物质的各种宏观性质源出于本身的微观结构。探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。就其本身而言,晶体结构分析是物理学中的一个小分支。这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。 晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。它奠基于物理学的几项重要进展。其中包括1895年W. C. Roentgen发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。 晶体结构分析的方法主要有两大类。这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电了显微成像也可以认为是两上相继的电子衍射过程。因此,可以说衍射分析是晶体结构分析的核心。用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。从衍射实验可以记录下各个方向上衍射波的振幅。但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。 紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。这使人类得以定量地观测原子在晶体中的位置。为此他们两人同获1915年的诺贝尔物理学奖。晶体结构分析最初用于一些简单的无机化合物。对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。 晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。英国从二十年代中期就开始研究有机物晶体结构。但是过了十年多仍未见有重大的突破。原因是当时的分析技术和方法还很原始。于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。如前所述,晶体结构分析中所谓"相位问题"。早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。。上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。它显然适应不了测定复杂的晶体结构的需要。早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。但是它们的诞生后相当长的一段时间里并未发挥很大的作用。原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。 美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。为此Pauling获得1954年的诺贝尔化学奖。英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素 。她因此获得1964年的诺贝尔化学奖。美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。所有这些获奖工作都是以晶体结构分析为研究手段。可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。这里还有一段插曲。原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。 分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。它把遗传学的研究推进到分子的水平。这项工作获得了1962年的诺贝尔生理学和医学奖。另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。这两个蛋白质的晶体结构终于在1960年被测定出来。这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。这一慷慨的支持,过了十五年之后才开始得到回报。顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。

  • 【分享】晶体结构分析及其发展

    范海福 中国科学院,物理研究所,北京,100080物质的各种宏观性质源出于本身的微观结构。探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。就其本身而言,晶体结构分析是物理学中的一个小分支。这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。 晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。它奠基于物理学的几项重要进展。其中包括1895年W. C. Roentgen发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。 晶体结构分析的方法主要有两大类。这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电了显微成像也可以认为是两上相继的电子衍射过程。因此,可以说衍射分析是晶体结构分析的核心。用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。从衍射实验可以记录下各个方向上衍射波的振幅。但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。 紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。这使人类得以定量地观测原子在晶体中的位置。为此他们两人同获1915年的诺贝尔物理学奖。晶体结构分析最初用于一些简单的无机化合物。对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。 晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。英国从二十年代中期就开始研究有机物晶体结构。但是过了十年多仍未见有重大的突破。原因是当时的分析技术和方法还很原始。于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。如前所述,晶体结构分析中所谓"相位问题"。早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。。上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。它显然适应不了测定复杂的晶体结构的需要。早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。但是它们的诞生后相当长的一段时间里并未发挥很大的作用。原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。 美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。为此Pauling获得1954年的诺贝尔化学奖。英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素 。她因此获得1964年的诺贝尔化学奖。美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。所有这些获奖工作都是以晶体结构分析为研究手段。可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。 英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。这里还有一段插曲。原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。 分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。它把遗传学的研究推进到分子的水平。这项工作获得了1962年的诺贝尔生理学和医学奖。另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。这两个蛋白质的晶体结构终于在1960年被测定出来。这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。这一慷慨的支持,过了十五年之后才开始得到回报。顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。

  • 【求助】再求晶体硅片的相关分析标准!!!

    再次苦求以下硅的测量方法,拜托了!多谢!!!  GB/T 1557-1989 硅晶体中间隙氧含量的红外吸收测量方法  GB/T 1558-1997 硅中代位碳原子含量红外吸收测量方法  GB/T 4058-1995 硅抛光片氧化诱生缺陷的检验方法  GB/T 4059-1983 硅多晶气氛区熔磷检验方法  GB/T 4060-1983 硅多晶真空区熔基硼检验方法  GB/T 4061-1983 硅多晶断面夹层化学腐蚀检验方法  GB/T 4298-1984 半导体硅材料中杂质元素的活化分析方法  GB/T 4326-1984 非本征半导体单晶霍尔迁移率和霍尔系数测量方法  GB/T 6616-1995 半导体硅片电阻率及硅薄膜薄层电阻测定非接触涡流法  GB/T 6617-1995 硅片电阻率测定扩展电阻探针法  GB/T 6618-1995 硅片厚度和总厚度变化测试方法  GB/T 6619-1995 硅片弯曲度测试方法  GB/T 6620-1995 硅片翘曲度非接触式测试方法  GB/T 6621-1995 硅抛光片表面平整度测试方法  GB/T 6624-1995 硅抛光片表面质量目测检验方法  GB/T 11073-1989 硅片径向电阻率变化的测量方法  GB/T 13388-1992 硅片参考面结晶学取向x射线测量方法  GB/T 14140.1-1993 硅片直径测量方法 光学投影法  GB/T 14140.2-1993 硅片直径测量方法 千分尺法  GB/T 1414l-1993 硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法  GB/T 14142-1993 硅外延层晶体完整性检验方法腐蚀法  GB/T 14143-1993 300~900μm硅片间隙氧含量红外吸收测量方法  GB/T 14144-1993 硅晶体中间隙氧含量径向变化测量方法  GB/T 14145-1993 硅外延层堆垛层错密度测定干涉相衬显微镜法  GB/T 14146-1993 硅外延层载流子浓度测定汞探针电容一电压法  GB/T 14847-1993 重掺杂衬底上轻掺杂硅外延层厚度的红外反射测量方法  GB/T 14849.1-1993 工业硅化学分析方法 1,10-二氮杂菲分光光度法测定铁量  GB/T 14849.2-1993 工业硅化学分析方法 铬天青-S分光光度法测定铝量  GB/T 14849.3-1993 工业硅化学分析方法 钙量的测定  GB/T 15615-1995 硅片抗弯强度测试方法

  • 本以为高端的气体分析仪也越来越差了!

    说说进口分析仪的质量滑坡的现状吧先说说仕富梅,2002年,单位购进6台仕富梅4100,除了出现显示屏故障外,一直运行稳定,就没换过配件;04、05年买了12台,两台4100二氧化碳分析仪故障频发;2010买了11台,到现在,换过电源板两块,一块保修期内,换过CPU板,也是保修期内;换过按键板,处理检测器温控两台,N2O基本就不能用,现在有一台purity检测器不稳定,停电再开零点、量程就跑,幅度在9%左右。以上是表面现象,看看网站速度怎么样,贴几张照片,各位看看,仕富梅4100的电路板配件的缩水状况。电源板,原来的贴片电阻、电容、晶体管,变成了普通的元件。

  • 有晶体硅太阳能电池分析的吗?

    最近我们公司新买了台Hitachi S4800,用于晶体硅太阳能电池的分析。太阳能电池的尺寸较大(可达156mm×156mm),而样品台的尺寸很小(最大只有1 inch),因此只能从太阳电池上取一小块区域进行观察。但是取样面临这两个问题:一是由于太阳能电池易碎,而我们没有专门的取样工具,通常采用直接敲碎的方法取样,结果很难取到想要观察的区域;二是取到的样品的断面很不平整,很不好观察。所以想请大家推荐取样的方法或工具,以及获取平整断面的方法,谢谢大家。

  • 请教:这样能够进行高岭土晶体测定及含量分析吗?

    第一次接触XRD,做的是高岭土的x衍射以及荧光光谱分析。荧光光谱分析给出的是元素的百分比。x射线做出了一堆衍射图及数据,但我不会分析……我主要想获得高岭土中的各种晶体以及其含量。请问由上述的数据可以达到目的吗?怎么做呢?如附件的衍射文件。其荧光光谱数据则如下: 元素SIO2AL2O3FE2O3K2OMGOCAONA2OTIO2SO3P2O5MNOCLV2O5CR2O3ZNOZRO2SRORB2OCUONIOPBOY2O3BAONB2O5烧失量 质量含量(%)43.729 28.659 3.981 2.402 0.239 0.521 0.084 0.347 3.269 0.760 0.019 0.025 0.025 0.003 0.005 0.003 0.078 0.004 0.022 0.007 0.034 0.000 0.167 15.618 还请各位TX不吝赐教。谢谢。

  • 想结合HRTEM的傅立叶变换和粉末XRD对此种晶体进行一些分析,比如取向啊,对应的晶面

    各位大侠,我以前是学化学的,现在博士课题改做材料,故此材料学方面我有很多不懂的地方,所以下面我问的问题可能非常低级可笑,大家不要笑话我,还请秉着救死扶伤的心情解救我。我最近对贝壳珍珠层进行一些研究,分别做了珍珠层粉末(文石型的碳酸钙晶体)的HRTEM和XRD,得到了一些HRTEM照片,但是没有同时做选区电子衍射,我想结合HRTEM的傅立叶变换和粉末XRD对此种晶体进行一些分析,比如取向啊,对应的晶面啊,但是我在材料晶体学以及TEM、XRD方面的知识太欠缺了,所以空拿着一堆图谱不知道从何下手,故此向各位请教,我该如何着手分析,希望大家给我个思路,不吝赐教!!谢谢!!!

  • 【分享】银的晶体结构和红外光谱分析

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95989]((Hnbc)2Ag2(en)2)∞制备、结构和红外光谱分析[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95990](Ag(dnbc)(dapn))2H2O的制备、晶体结构和红外光谱分析[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95991]Ag(lll)晶面上甲基碘化物和亚甲基碘化物的红外光谱研究(美国).[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95992]配合物{(Ag.(C2H8N2))(C7H4NO4)H2O}n合成、晶体结构及红外光谱分析[/url]

  • 拉曼分析晶体

    请问,晶体表面的配位情况怎么与键的振动类型相对应啊?比如说TiO2, Ti和O的配位与Ti-O振动类型(伸缩振动,弯曲振动)怎么对应啊?请各位大神指点,感激万分!!

  • 【资料】在线分析仪…电化学篇…氧化锆分析仪(收集)

    【资料】在线分析仪…电化学篇…氧化锆分析仪(收集)

    第一节:氧化锆分析仪的测量原理一、氧化锆的导电机理:电解质溶液靠离子导电,具有离子导电性质的固体物质称为固体电解质。固体电解质是离子晶体结构,靠空穴使离子运动导电,与P型半导体空穴导电的机理相似。[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811131206_118150_1605035_3.jpg[/img]纯氧化锆(ZrO2)不导电,掺杂一定比例的低价金属物作为稳定剂,如氧化钙(CaO2)、氧化镁(MgO)、氧化钇(Y2O3),就具有高温导电性,成为氧化锆固体电解质。为什么加入稳定剂后,氧化锆就会具有很高的离子导电性呢?这是因为,掺有少量CaO2 的ZrO2混合物,在结晶过程中,钙离子进入立方晶体中,置换了锆离子。由于锆离子是+4价,而钙离子是+2价,一个钙离子进入晶体,只带入了一个氧离子,而被置换出来的锆离子带出了两个氧离子,结果,在晶体中便留下了一个氧离子空穴。例如:(ZrO2)0.85 (CaO2)0.15这样的氧化锆(氧化锆的摩尔分数为85%、氧化钙的摩尔分数是15%),则具有7。5%的摩尔分数的氧离子空穴,是成了一种良好的氧离子固体电解质。

  • 【分享】晶体分析软件-PDFgetX2

    晶体分析软件-PDFgetX2PDFgetX2 is a GUI driven user friendly program to obtain the [url=http://www.totalscattering.org/][u][color=#800080]atomic pair distribution function (PDF)[/color][/u][/url] from X-ray powder diffraction data。

  • 【转帖】能量色散光谱分析仪与波长色散光谱分析仪的区别

    能量色散分析仪只有一个探测器,它对测量X射线能量范围是不受限制的,而且这个探测器能同时测量到所有能量的X射线。也就是说只要激发样品的X射线的能量和强度能满足激发所测样品的条件,对一组分析的元素都能同时测量出来。一般有以下三种基本类型的探测器可用于测量X射线:密封式或流气式充气探测器、闪烁探测器、半导体探测器。 能量色散的条件是当样品被激发后产生的X射线通过窗口进入探测器探测器把X射线能量转换成电荷脉冲,每个X射线光子在探测器中生成的电荷与该光子的能量成正比。该电荷被转换成电压脉冲,当这些电压脉冲经充分放大后,被送入脉冲处理器,脉冲处理器把这些代表着各个元素的模拟信号再转换成为数字信号,由计算机进行分类,分别存入多道分析器(MCA)的相应通道内,一般使用1024-2048道MCA。这些通道覆盖了分析的整个能量范围。 波长色散分析仪是用多个衍射晶体分开待测样品中各元素的波长,由此对元素进行测量。晶体被安装在适当位置,以满足布拉格定律的要求。 X射线荧光分析和其它光谱分析一样,也是一种相对分析。这就是说,要有一套参考标样,这些参考标样能够在可能感兴趣的范围内覆盖所测元素。首先对这些标样进行测量,记录欲分析元素的强度,建立浓度(含量)、强度(CPS)校准曲线,存入处理数据的计算机,供以后分析同一类型未知样品时使用。 最简单的校准线是直线,强度与浓度的依赖关系反映仪器的灵敏度。 另外由于校准线要在很长一段时间内使用,所以应对仪器的漂移作出调整,尽管这种漂移不大,但它确实存在。这可以通过对每个分析元素选用高、低两个参考点来实现。制备若干被称作SUS(调整样)的特殊样品,它们含有适量的分析元素,有很好的长期稳定性。利用它们可以求出高、低强度值。

  • 晶体、非晶体等概念的分别

    首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。 斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 解析晶体结构!!

    请教各位,做出来的新东西,想解析一下晶体结构,应该从何开始啊?有什么比较通用的软件吗?想学习一下!!!

  • 晶体矿物差热分析

    晶体矿物差热分析

    谁知道固体白钠镁矾的失水温度以及形成硫酸镁硫酸钠时的温度?条件是不加水,只是晶体集合体下面是两个不同纵坐标的差热图[img=,527,296]http://ng1.17img.cn/bbsfiles/images/2017/08/201708171049_01_3259450_3.png[/img][img=,690,414]http://ng1.17img.cn/bbsfiles/images/2017/08/201708171053_01_3259450_3.png[/img]

  • 动态水分吸附仪在晶体潮解性质研究中的应用

    近期读到一篇关于晶体潮解动力学的研究论文,采用动态水分吸附仪对于潮解点的判定和潮解动力学的研究分析非常深入。最近对这一课题很感兴趣,希望做类似研究的各位多多讨论。文章摘要如下:晶体材料及其混合物的潮解动力学传热模型Heat transport model for the deliquescence kinetics of crystalline ingredients and mixturesNa Li a, Lynne S. Taylor b, Lisa J. Mauer a, *a Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United Statesb Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States关键词:吸附速率,晶体材料,潮解,传热Key words: Sorption rate, crystalline ingredients, deliquescence, heat transport 摘要:当环境的相对湿度超过潮解点RH0时,易潮解的晶体发生一级溶解过程。对于压片易潮解材料,潮解的速率随着RH超出RH0差值的增加而加速;但是,迄今还没有关于晶体食物材料粉末的潮解动力学模型被发表。本文采用一种多样品重量法水分吸附仪SPSx测定了常见的粉末食品材料(如柠檬酸、氯化钠、蔗糖、果糖、山梨糖醇和木糖醇)及其混合物的水分吸附速率。水蒸气的吸附速率与样品的直径、温度和组成有关。实验证明样品压片的潮解传热模型能够成功的应用于粉末材料和其混合物,其实验结果进一步的论证了潮解的理论基础,为在可控的恒湿箱内预测潮解过程中的水分吸附速率提供了有力的工具。Abstract:Deliquescent crystalline solids undergo the first order dissolution process of deliquescence when the environmental relative humidity (RH) exceeds the deliquescence point (RH0). The rate at which deliquescence occurs increases as the RH increases above the RH0 in compressed disks of select deliquescent ingredients; however, a kinetic model for the deliquescence of powdered crystalline food ingredients and blends thereof has not been published. The water vapor sorption rates of commonly used powder food ingredients (citric acid, sodium chloride, sucrose, fructose, sorbitol, and xylitol) and blends were determined using a multi-sample gravimetric moisture sorption analyzer. The water vapor sorption rate was dependent on sample radius, temperature, and sample composition. The heat transport model for the deliquescence of compressed disks was successfully extended to the powder ingredients and blends. Such results enable further understanding of fundamental theories of deliquescence and provide a useful tool in the prediction of water vapor uptake rate during deliquescence in controlled RH chambers.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制