颅脑损伤仪

仪器信息网颅脑损伤仪专题为您提供2024年最新颅脑损伤仪价格报价、厂家品牌的相关信息, 包括颅脑损伤仪参数、型号等,不管是国产,还是进口品牌的颅脑损伤仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颅脑损伤仪相关的耗材配件、试剂标物,还有颅脑损伤仪相关的最新资讯、资料,以及颅脑损伤仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

颅脑损伤仪相关的厂商

  • 南京翰翔科技有限公司成立于2003年,是一家专业从事医疗诊断技术和医疗器械研发的高科技公司,翰翔科技从2009年开始涉足神经科学及脑功能康复领域,在过往的发展历程中,我们脚踏实地,根植于脑损伤的康复及应用,在国际先进理念的引领下,结合移动计算终端+PAAS平台服务创新地推出了适合我国国情,满足我国现有医疗体制要求的基于三级康复的脑损伤数字疗法《PolarisRehab康复系统》,在为广大康复医疗机构以及康复患者带来全新的康复体验的同时,翰翔人锐意进取,不断深耕康复市场,2023年我们通过对外骨骼康复机器人项目进行论证,确立柔性外骨骼康复机器人项目的立项、研发作为公司未来发展方向,我们将秉持软硬件结合,研发和运营相辅相成的发展理念,在康复市场砥砺前行。
    留言咨询
  • 400-860-5168转4586
    响应“中国制造2025”的战略号召,2018 年成立于上海交科科创园内,是一家生物医药实验设备开发销售的高新技术企业。我司致力于在该领域打破国外产品垄断,树立起值得骄傲的中国制造品牌。 公司目前的产品线包括:疾病造模设备、动物呼吸检测、高压低/高氧控制、麻醉机、能量代谢、脊髓/脑损伤仪、宠医医疗器械等,所有产品均为自主研发,同时塔望科技融合生命科学、医学、IT、 电子、机械等领域先进技术,为客户提供量身定制方案,满足个性化的需求。 我们在生命科学、医药研发等领域也在迅速追赶、逐渐超越欧美国家。目前落后于西方的生命科学仪器设备研发制造业也必然在中国创新创造的大背景下,迎来新的超越。这是时代给我们的机会。匠心筑梦,诚信筑塔,严谨求实,展望将来。塔望科技坚守工匠精神,用心做好每一件产品。我们将在这个瞬息万变的黄金时代,为本领域科学家提供值得骄傲和信赖的产品。
    留言咨询
  • 世联博研与世界各国著名的科研制造单位建立了良好诚信的长期合作关系,正以其不断创新的高科技产品、规模化的营销渠道、高效安全的国际联运系统和极具人性化的服务模式,在欧美各日韩研制厂商的强力支持下,使得经营诚信圈日益牢固而坚不可摧。目前,世联博研实现了与合作伙伴资源共享,共同发展,前景非常广阔。 世联博研代理的品牌产品如下: 1.瑞典symcel品牌calsreener量热法细胞代谢和生物能量无标记实时监测分析系统 2.德国celltool品牌Bioram单细胞拉鉴定识别激光拉曼光谱系统 3.匈牙利CellSorter高精准全自动单细胞抓取与实时分析系统 4.美国Opto Fluidics公司NanoTweezer新型激光光镊系统 5.美国Flexcell细胞拉伸力、压力、流体剪切应力加载系统 6.德国nanotherics高效细胞转染系统 7. 美国ScinusCellExpansion贴壁细胞微载体三维扩增系统 8. 加拿大aurora 肌肉机械力特性测试系统 9. 荷兰 Celltainer批量旋转摇摆式一次性生物反应器 10.法国PicoTwist单分子磁镊 11.美国Cellectronic Scientific品牌的NC8电刺激细胞培养仪 12.美国CDF品牌创伤性脑损伤仪
    留言咨询

颅脑损伤仪相关的仪器

  • 一.简介颅脑及脊髓损伤是神经外科最常见的疾病,在全身各部位创伤中,创伤性脑损伤死残率高居第一位。长期以来,创伤性脑损伤的研究收到学者们的广泛关注。XR1200型电动颅脑脊髓打击器利用动物建立相应的脑损伤模型和脊髓损伤一直是认识和研究创伤性颅脑损伤发病机制与临床救治的一个重要组成部分。颅脑脊髓打击器是上海欣软信息科技有限公司自主研发的用于对实验动物的颅脑施加精准定量打击的装置,可以重复实现不同程度的脑损伤和脊髓损伤,综合性能达到先进水平。该颅脑脊髓打击器通过尖端带有不锈钢的打击器快速打击暴露好的颅脑或脊髓,然后立即上抬撞头,不会造成二次撞击,重复性好。通过自动定位仪快速定位。脑损伤撞击仪能够精确控制皮层的的凹陷深度,可以自行选择撞击头的打击力度度和撞击头的停留时间。主要针对脑皮质挫伤模型。是神经损伤研究机构最受欢迎的损伤模型制作工具。电子大脑皮质挫伤撞击仪的组件有: 坚固的铝架,动物平台,撞击控制器和撞击头。创伤性颅脑损伤仪使用高级的线性马达驱动撞击头,并由控制器来控制撞击参数,实现不同程度的损伤。撞击头的组件部分有含感应器,可以确定速率、撞击深度及撞击停留。这些撞击参数完全可以重复实现。电动创伤性脑损伤撞击仪撞击头的直径有几种不同的规格,撞击力度可以选择控制,适用于小鼠、大鼠、兔、犬、猴等动物。 XR1200型电动颅脑脊髓打击器技术参数:1、电动定位仪行程:X轴300mm,Z轴:300mm,Y轴100mm(选配件)2、重复精度:0.02mm3、定位控制器:液晶显示4、撞击力度:50~800千达因可调5、撞击深度:0-10mm可调6、撞击压迫时间:0.1~300s7、撞击头尺寸:1.5、2.5、4mm8、工作环境:5-40度9、适用动物:小鼠、大鼠、兔、犬、猴等动物
    留言咨询
  • 大鼠颅脑损伤仪 400-860-5168转4032
    创伤性脑损伤(traumatic brain injury,TBI)是神经外科常见的疾病,是导致创伤患者伤残及死亡的主要原因。研究脑损伤后的神经生化、神经病理生理等方面的变化,可为探索行之有效的脑保护治疗提供帮助,将有助于提高颅脑损伤患者的生存率及生存质量。故建立各种便于观察和施加干预因素、控制性佳、可分级、可复制性好并符合人类脑创伤特点的创伤性脑损伤模型,是目前创伤性脑损伤的研究热点。 动物颅脑损伤仪可以分为细胞损伤控制仪,电子脑皮质挫伤撞击仪及液压冲击损伤仪。这三种产品已经广泛应用于世界范围内的颅脑创伤研究中心,是目前唯一的颅脑创伤模型制作的金标准。 液压颅脑损伤仪(液压型动物颅脑损伤仪,大鼠/小鼠颅脑损伤仪)颅脑损伤仪(FPI)是一种能够产生可控制和可测量压力的仪器,主要用于小动物的神经研究,如大鼠。根据行为与生理发生变化的不同要求,它可以对脑部或皮质层产生多种程度的创伤。在生物机械学、神经核行为学、组织病理学、病理生理学研究方面,液压能够模拟产生多种轻微到中等的脑创伤的动物模型。产品组成:Ø 摆锤Ø 信号调节器Ø 压力传感器及与其连接的金属中空软管Ø 树胶圆筒及圆筒固定器(圆筒内充满液体)Ø 光电开关Ø 金属底座产品类型:Ø FP301:可提供0-100psi(6.9atm)的冲击压,也可升级为提供0-250psi(17.3atm)冲击压的系统。Ø FP302:信号调整器可与电脑连接,压力波形可显示在电脑上,并可记录实验内容和实验报告,自动测量峰值压力。脑损伤精度撞击器(动物脑损伤仪、皮层定位精度撞击器、动物大脑皮层损伤仪)Precision Cortical Impactor适合于大鼠、小鼠等动物,模拟动物的大脑外伤和脊髓伤害。主要技术特点:* 撞击速率0-6m/s;* 撞击深度0-5mm;* 可设置停留时间(毫秒);* 可360°旋转;* 7种不同规格的撞击针;产品组成:* 控制装置:连接软件和驱动马达;* 驱动马达:连接冲击针;* 冲击针:7种不同规格的撞击针,从1-5mm,特殊规格可定制;* 铰链支架臂:用来控制驱动马达,有两种型号(medium/large);* 控制软件:可调节冲击速率、冲击深度和停留时间; 控制撞击装置的竖直撞击; 记录每次撞击的数据; 查看、记录、导出数据。自由落体脑损伤模型打击器是用于制作大鼠小鼠的脑损伤模型,对大鼠和小鼠的脑部进行定位后,定点定力地打击大小鼠的脑部,造成大小鼠脑损伤,仪器操作简单,原理经典,自由落体脑损伤模型打击器按自由落体原理制作的一打击器,主机用于动物脑损伤模型的制作。自由落体脑损伤模型打击器由撞针、砝码、金属管和脑定位仪四部分组成。撞针直径4.5mm,高度20mm,打击棒重40克和20克两种,金属套管高度30cm。技术指标1、X、Y、Z轴人工自由调节2、撞针直径4.5mm3、金属管高度30mm4、打击棒重40克和20克两种5、金属套管高度30cm6、适用动物:小鼠、大鼠、豚鼠、兔、猫、狗等请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 动物颅脑损伤仪 VCU 400-860-5168转1674
    创伤性脑损伤(Traumatic Brain Injury,TBI)是神经外科最常见的疾病,是导致创伤患者伤残及死亡的主要原因。研究脑损伤后的神经生化、神经病理生理等方面的变化,可为探索行之有效的脑保护治疗提供帮助,将有助于提高颅脑损伤患者的生存率及生存质量。 VCU动物颅脑损伤仪分为液压冲击损伤仪(FPI),细胞损伤控制仪(CIC)和电子脑皮质挫伤撞击仪(eCCI)。这三种产品已经广泛应用于世界范围内的颅脑创伤研究中心,是目前颅脑创伤模型制作的金标准。同时FPI损伤仪还可应用到眼科损伤模型,CIC细胞损伤仪可以应用到其它种类细胞损伤模型的制作。 液压颅脑损伤仪(FPI)液压冲击损伤仪(Fluid Percussion Injury)主要针对神经创伤机制研究。它成为全球研究神经创伤广泛使用的仪器,可以重复一致地产生液压冲击损伤(FPI)。 系统优点:可方便的排除气泡 角度刻度可方便观察撞击角度 集成压基准力输出,方便校准。精确输出冲击压力 配备高精度的压力传感器电子颅脑损伤仪(eCCI)电子大脑皮质挫伤撞击仪 (electric Cortical Contusion lmpactor),主要针对脑皮质挫伤模型,是神经损伤研究机构最受欢迎的损伤模型制作工具。动物平台可以和各种立体定位仪搭配使用。由VCU大学设计制作的电子大脑皮质挫伤撞击仪,主要针对脑皮质挫伤模型。其组件有:坚固的铝架、动物平台、撞击控制器和撞击头。动物平台可以和各种立体定位仪搭配使用。由高级线性马达驱动的撞击头,可以由控制器来控制撞击参数,实现不同程度的损伤。撞击头含有感应器,可以确定速率、撞击深度及撞击停留。 . 与传统Feeney' s自由落体硬膜外撞击方法相比有以下优点:可精确连续地控制撞击速度,并获得实际撞击深度和停留时间等参数,而非重量差异很大的撞击。可精确重复制作挫伤损伤模型,减少动物死亡,使实验过程更加直观,可控。The eCCI is constructed with a sturdy aluminum frame to maximize rigidity, thereby ensuring impact accuracy. The support base, animal platform and impactor head are anodized to prevent oxidation and assure equipment longevity. Product assembly includes the base and support frame, and adjustable animal positioner with an aluminum animal platform to be used in conjunction with a variety of stereotactic mounts. This model utilizes the enhanced linier motor driven impactor and controller. The enhanced impact head also houses a photo-optic sensor to determine velocity, impact depth and dwell, and is extremely reproducible.细胞颅脑损伤仪(CIC) 细胞损伤控制仪(CI採取电子式控制,適合morphologic、病理理及培养组织损伤后的机制、形态学、病理性。细胞损伤控制仪是针对Flexcell Int’l corp具有专利的tissue culture system。细胞损伤控制仪平均把压缩气体送到每个culture wells,以造成培养组织牵张性的损伤,损伤的严重程度是依据气体在密闭的culture well进出的量,细胞损伤控制仪(CIC)是可以搭配Flex ® 29.45cm2 culturing trays I (针对VCU早期的细胞损伤控制仪)和BioFlex® 57.75cm2 culturing trays。因为根据所採用的细胞种类、损伤的程度、培养的狀況,受损后的细胞或许会因为上述因素死掉或要修护,所以VCU的细胞损伤控制仪(CIC)很適合应用在下列领域:细胞受损、修护,死亡,药物介入的反应。 Depending on the cell type, the degree of injury and the culture conditions, the injured cells may die or repair. Therefore, the system can be employed to study the responses to trauma, including cell injury, repair, death or pharmacologic intervention.The CIC II has been designed for use with a patented, commercially available tissue culture system from Flexcell International Corp. in Hillsborough, N.C. Tissue cultures are grown in culturing wells with stretchable Silastic® membrane bottoms. The CIC II regulates the flow of compressed gas to rapidly pressurize individual culture wells, causing a radial stretch injury to the culture. Injury severity is determined by controlling the flow of gas in and out of the sealed culture well and the peak pressure is captured to provide an accurate indicator of radial stretch.The CIC II accepts both the Flex I® 29.45cm2 culturing trays, which were used with the earlier CIC Model 94A, and the BioFlex® 57.75cm2 culturing trays.
    留言咨询

颅脑损伤仪相关的资讯

  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤个硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。相关研究于2021年5月发表在Nature子刊Nature communications上,题为《Sulfide catabolism ameliorates hypoxic brain injury》,该研究由美国马萨诸塞州总医院以及哈佛医学院共同完成。该研究团队一开始的研究方向并不是寻找可以治疗脑卒中的靶点,他们的研究方向是「人体冬眠」,就像以往科幻电影里的那种,得了某种不治之症,然后进行冷冻或者其他技术的冬眠,等待科技进步以后,再次复苏。一开始,他们是要寻找可以对小鼠进行催眠的物质,锁定在了H2S。期初,吸入H2S的小鼠进入了一种「冬眠」状态,体温下降,无法动弹。但是,令人惊讶的是,小鼠很快就对吸入H2S的影响产生了耐受性。到了第五天,他们行动正常,不再受到H2S的影响。更有趣的现象是,研究团队发现,对H2S耐受的小鼠,对缺氧也能非常好的耐受。因而研究团队提出了SQOR基因在耐缺氧中起发挥重要作用的假设。实验方法描述所有小鼠都被饲养在12小时的昼/夜循环中,温度在20-25°C之间,湿度在40%-60%之间。 -间歇性H2S吸入- 小鼠暴露于80 ppmH2S的空气中连续5天,每天4小时。实验过程中实时监测H2S浓度和FiO2。每天在H2S吸入前后测量直肠温度,以检查H2S对体温的影响。 -CO2产生量的测量- 最后一次的吸入空气或H2S24小时后,在对照组或硫化物预处理小鼠中测量二氧化碳的产生。将小鼠放置在全身体积描记系统内,并测量二氧化碳的产量。 -小鼠的缺氧和缺氧耐受性- 为了测量缺氧耐受性,在最后一次空气或H2S吸入24小时后,将小鼠放入透明的塑料室中。然后,用低氧气体混合物以1 L/min连续冲洗腔室,以达到所需的FiO2。在缺氧暴露期间连续观察小鼠最多60 min,当小鼠出现严重痛苦迹象(扭动或发作、呼吸频率低于6/分钟和尿失禁)时,将其取出,用5%异氟烷安乐死并视为死亡。 -组织采集- 将小鼠采用异氟醚麻醉,呼吸机机械通气。用空气或缺氧气体混合物通气3 min后,将小鼠进行安乐死,开始取材。实验数据a:对照组和硫化物预处理组(SPC)小鼠的体温b:二氧化碳产生率(VCO2) c:血浆中硫化物的浓度d:血浆中的硫代硫酸盐、脑组织中的硫化物浓度f:脑组织中的硫代硫酸盐、 g:存活率h:小鼠在5% O2低氧下的VCO2i:常氧和5%低氧下,脑组织中的硫化物j:per sulfide,k NADH/NAD+比l:乳酸水平。m脑组织中的SQOR相对表达量,n、o:脑组织和心脏组织中 SQOR蛋白水平p、q:离体脑线粒体的氧气消耗速率 (OCR)r:计算得到的 ATP转换率。地松鼠的缺氧耐受性和硫胺分解代谢增强研究团队用RNA沉默SQOR,发现可增加大脑对缺氧的敏感性,而神经元特异性SQOR的表达可阻止缺氧诱导的硫化物积聚、生物能衰竭和缺血性脑损伤。SQOR可改善神经元细胞的线粒体功能降低线粒体的SQOR基因的表达,不只是大脑,而且心脏、肝脏对缺氧的敏感性都增加了。硫化物清除剂的作用通过药物清除硫化物,可维持缺氧神经元的线粒体呼吸过程,使小鼠耐受缺氧。该研究阐明了硫化物分解代谢在缺氧时能量平衡中的关键作用,并确定了缺血性脑损伤的治疗靶点。 在自然界中很多强有力的证据可以证明该研究的结论。例如,已知雌性哺乳动物比雄性哺乳动物更能抵抗缺氧,而前者的SQOR水平更高。当女性的SQOR水平被人为降低时,她们就更容易缺氧(雌激素可能是观察到的SQOR增加的原因),例如更年期。此外,一些冬眠动物,如地松鼠,对缺氧有很强的耐受性,这使得它们能够在冬季身体新陈代谢减缓的情况下生存下来。一只地松鼠的大脑比同样大小的老鼠的SQOR高出100倍。该研究的主要研究者说:“人脑的SQOR水平非常低,这意味着即使是少量的H2S积累,就可以影响神经元的健康。我们希望有一天我们研发出像SQOR一样有效的药物,这些药物可以用来治疗缺血性中风,以及心脏骤停引起的缺氧。 -塔望科技-解决方案- 全身体积描记系统小鼠放置于体积描记器内,可以实时监测呼吸,也可进行低氧干预、H2S暴露。可进行低氧耐受实验,也可监测动物的 耗氧量、CO2产生量、呼吸代谢率等。全身暴露染毒系统可以进行长期H2S暴露染毒、低氧实验等。动物能量代谢系统可以综合评估动物不同处理后的各种表型变化:进食量、进水量、进食进水模式、活动量、耗氧量、CO2产生量、呼吸代谢率等。动物低氧高氧实验系统各种常压/低压/高压下的缺氧/高氧实验。可进行恒定低氧,也可进行间歇低氧。 -相关文献- Marutani E, Morita M, Hirai S et al. "Sulfide catabolism ameliorates hypoxic brain injury".[J]. Nat Commun 12, 3108 (2021). &bull end &bull
  • 文献解读丨矿化胶原骨材料修复大鼠颅骨损伤
    研究背景 颅骨除了容纳、支持和保护脑组织,在头面部外形的塑造方面也承担了一定的责任。在严重的颅脑外伤、脑出血、颅内占位等情况下,需要紧急开颅手术缓解颅内高压,术后则会遗留颅骨缺损的问题,给患者的身心造成了严重的影响。颅骨成形术对颅骨缺损的修复和脑神经功能的恢复都有重要的意义。但用于颅骨成形术的传统生物材料都有着各自的优缺点,至今没有一个理想的解决方案,特别是传统生物材料都不能降解的致命缺陷对于儿童颅骨缺损的修复尤其不利,因此设计制备一种具有成骨活性的生物可降解颅骨修复材料非常迫切。 颅骨修复与其它长骨修复有较大的差异,主要表现在以下三个方面。 首先,颅骨修复除了需要快速成骨,还需要足够的力学支撑发挥保护作用,这就使得材料的孔隙率、孔径和力学强度之间产生了很难平衡的矛盾。 其次,颅骨的发育是膜内成骨作用的过程。在膜内成骨的过程中,骨髓间充质细胞在不形成软骨的情况下就直接分化为成骨细胞,紧接着形成包括额骨、顶骨以及部分枕骨的一系列扁平骨。这样一个相对复杂的成骨方式也决定了颅骨修复较其它长骨的修复更为困难。并且在颅脑外伤、肿瘤等原因造成的颅骨缺损中,硬脑膜常被损坏而缺损,对骨修复的过程更增加了困难。 再者,颅骨除了本身容纳、保护脑组织的作用外,还兼具塑形美容的作用,且颅骨的形状较复杂,个性化要求高,而传统的的人工骨材料规格单一、不可定制。因此,研发一种新的人工骨材料满足颅骨修复的特殊要求势在必行。 方法与结果 该研究采用复合支架的形式,将仿生矿化胶原与可降解生物相容性高分子材料——聚己内酯结合起来,采用溶剂造孔的方式,制备了一系列具有不同孔径分布及孔隙率特征的可植入骨修复支架材料。采用大鼠颅骨临界骨缺损动物模型对各组材料在体内的生物相容性及成骨性能进行评价,筛选出成骨性能最佳且力学强度可以接受的材料。 图1 不同孔结构特征支架SEM形貌及孔径统计分布 其中,最为重要的评价环节为影像学评价,已确定各个实验组之间在不同时间点的成骨情况差异。该研究中采取了Micro-CT(inspeXio SMX-90CT Plus, Shimadzu,日本岛津无损检测)透视并扫描4%多聚甲醛固定24h后的样本,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 图2 岛津Micro-CT三维重构结果 图3 根据Micro-CT结构计算的相对成骨体积 术后各组大鼠典型的Micro-CT扫描三维重建结果如图2所示。术后4周,模型组大鼠仅有少量针状骨结构位于缺损区,G1、G2、G4组大鼠骨桥位于缺损边缘,G3组大鼠骨桥部分通过缺损。术后8周,空白对照组大鼠缺损区中心有较多针状骨结构,边缘存在骨桥结构。G1、G2、G4组大鼠骨桥部分通过缺损,G3组大鼠骨桥通过缺损最长点。术后12周,模型组大鼠骨桥部分通过缺损,而G1、G2、G3、G4各组大鼠骨桥均通过了缺损最长点,而G3、G4组密度更接近于周围的骨组织,尤其是G3组,95%以上区域已成骨,部分缺损边界已显示不清。 定量分析通过三维重建软件测算出各组大鼠缺损部位的成骨体积,如图3所示。各组大鼠成骨体积在4周,8周,12周时都与空白对照组有显著性差异(P0.05),并且在各个时间点,G3组(pMC 1:10)矿化胶原基颅骨修复材料较G1、G2、G4组成骨体积更多,差异有统计学意义(P0.05)。 图4 Micro-CT重构的矢状位结果 术后各组大鼠Micro-CT正中矢状位影像如图4所示。术后4周,空白对照组缺损区边缘极少量点状高密度影,各实验组缺损区密度均匀增高,颅骨内面靠近硬膜一侧密度较对侧增高更明显。术后8周,空白对照组缺损区可见少量片状密度增高影,各实验组缺损区出现较大面积条状或片状密度增高影,且密度与周围骨质相近。术后12周,空白对照组可见条状密度增高影,各实验组缺损区域密度升高影面积较前明显增加,尤其是G3、G4组,缺损区大部分已被高密度影所占据,且密度和周围正常骨质非常相似。 图5 缺损区组织HE染色 图5所示为术后各组大鼠颅骨正中矢状位石蜡切片HE染色结果,新生成骨被染成密度均匀的粉红色。可以看到4周时,缺损区仅少量点状成骨,各实验组缺损区材料内部可见较密集的斑片状新生成骨。术后8周,对照组新生成骨较少,各实验组新生成骨由斑片状连接成长条状,部分跨越缺损区,新生成骨位于颅骨内侧面硬膜外层。术后12周,对照组缺损区可见部分条状新生成骨,各实验组材料内部和边缘皆有新骨形成,可观察到明显的骨小梁结构,尤其是G3组材料几乎完全降解,大部分被新生的自体骨结构所替代,尤其是靠近硬膜一侧,新生骨结构已与周围正常骨的结构相同。 总结与讨论 本部分研究采用大鼠颅骨临界骨缺损动物模型评价了不同溶剂配比的矿化胶原颅骨修复材料在体内的成骨性能。从影像学、组织学不同角度观察了材料诱导骨长入的过程,并进行了定量分析,筛选出成骨性能和力学强度达到最佳平衡的骨材料溶剂配比,既可以保证一定的力学强度,并且诱导成骨作用最好,为进一步颅骨修复材料的研发奠定了基础。 文献题目:《Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model》使用仪器:岛津5SMX-90CTPlus-1909第一作者:王硕原文链接:https://doi.org/10.1016/j.msec.2019.110186 声明 1、文章来源:Materials Science & Engineering C2、因篇幅有限,仅显示第一作者。3、本文不提供文献原文,如有需要请自行前往原文链接查看。4、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • CFDA:仙灵骨葆口服制剂或致肝损伤
    p  国家食品药品监督管理总局(CFDA)日前发布了第七十二期《药品不良反应信息通报》,提示关注仙灵骨葆口服制剂引起的肝损伤不良反应。/pp  仙灵骨葆口服制剂是一类补肾壮骨药,具有滋补肝肾、接骨续筋、强身健骨的功效,临床上用于骨质疏松和骨质疏松症、骨折、骨关节炎、骨无菌性坏死等。/pp  国家药品不良反应监测数据分析结果显示,仙灵骨葆口服制剂可能导致肝损伤风险,临床表现包括乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等,并伴有谷丙转氨酶、谷草转氨酶、胆红素等升高,严重者可出现肝衰竭,长期连续用药、老年患者用药等可能会增加这种风险。/pp  strong国家食品药品监督管理总局建议内容如下:/strong/pp  (一)医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品,对有肝病史或肝生化指标异常的患者,应避免使用仙灵骨葆口服制剂。/pp  (二)患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。/pp  (三)药品生产企业应当加强药品不良反应监测,及时修订仙灵骨葆口服制剂的药品说明书,更新相关的用药风险信息如不良反应、禁忌、注意事项等,以有效的方式将仙灵骨葆口服制剂的用药风险告知医务人员和患者,加大合理用药宣传,最大程度保障患者的用药安全。/pp  strong配发问答/strong/pp  1、仙灵骨葆口服制剂的主要成份是什么?主要用于治疗什么疾病?/pp  仙灵骨葆口服制剂的成份包括淫羊藿、续断、丹参、知母、补骨脂、地黄。/pp  该品种具有滋补肝肾,接骨续筋,强身健骨的功效,临床上用于治疗骨质疏松和骨质疏松症,骨折,骨关节炎,骨无菌性坏死等。/pp  2、仙灵骨葆口服制剂导致的肝损伤有哪些风险因素?/pp  长期连续用药或老年患者出现肝损伤的风险有所升高。肝功能不全或合并使用其他可能导致肝损伤的药物等也可能增加仙灵骨葆口服制剂的肝损伤风险。/pp  3、如何降低仙灵骨葆口服制剂的肝损伤风险?/pp  医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品。有肝病史或肝生化指标异常的患者应避免使用仙灵骨葆口服制剂。/pp  患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。/ppbr//p

颅脑损伤仪相关的方案

  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤?收录于合集#呼吸研究33个#低氧实验环境3个图片硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。
  • 基于成像光谱技术对苹果斑点及损伤快速识别研究
    采用高光谱图像技术检测苹果的黑白斑区域及损伤区域,以实现苹果黑白斑、损伤区域快速识别的目的。运用高光谱成像技术,运用最小噪声分离、植被指数等方法等,均可有效地识别水果损伤与斑点区域,但最小噪声分离方法较为复杂,运算速度较慢,不适合在工业生产上进行应用,而植被指数算法简单,仅利用2个波段进行四则运算即可实现水果损伤和斑点的快速识别。
  • 基于成像光谱技术的橙子斑点及损伤快速识别研究
    高光谱成像技术应用于水果斑点及损伤区域的快速识别已体现出其“图谱合一”的优越性。水果损伤和水果表皮的斑点颜色虽然能用肉眼一一识别,但是在工业生产用,仅靠人力去一一挑选无损伤、无斑点的水果,既费时费力费财。利用成像高光谱技术,获取不同水果的光谱反射率,查找出其损伤、斑点的特征波段,利用特征波段构建植被指数从而实现水果损伤、斑点区域的快速有效的识别,并达到自动化挑选优质水果的目的

颅脑损伤仪相关的资料

颅脑损伤仪相关的试剂

颅脑损伤仪相关的论坛

  • 褪黑素联合神经干细胞3D移植促进大鼠颅脑损伤的修复

    【序号】:3【作者】:方煊宇【题名】:褪黑素联合神经干细胞3D移植促进大鼠颅脑损伤的修复【期刊】:西南大学【年、卷、期、起止页码】:2020【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkyRJRH-nhEQBuKg4okgcHYpRQmPqn9Cd1hYQd3dLCoxO0J8XYRH0LQZVFjVspOatq&uniplatform=NZKPT

  • 减轻中风对大脑损伤临床试验首获成功

    中国科技网讯 加拿大一个临床医学研究小组证明,由克里姆比尔神经医学中心迈克尔·泰米安斯基博士研发的一种神经保护剂药物可有效保护大脑减轻中风损伤效应。试验成果在线发表于10月9日《柳叶刀·神经医学》网站上,同时预测该中风药物成效的实验研究成果亦同步发表在《科学·转化医学》杂志上。 该项具有里程碑意义的临床试验,由卡尔加里大学霍奇基斯脑研所迈克尔·希尔博士领导,是一次随机、双盲、由加拿大和美国多个研究中心参与的试验。该研究评估了NA-1药物对曾接受神经介入治疗脑动脉瘤而引发轻微中风的患者的疗效。动脉瘤患者在接受此种介入治疗后,90%以上的患者会出现缺血性中风,但通常并不会引起明显的神经性伤残。 在试验中,受试者被随机抽取接受Tat-NR2B9c或安慰剂治疗。结果表明,接受Tat-NR2B9c治疗的患者,因脑动脉瘤修复术后造成的大脑损伤程度有所下降。该药物在脑动脉瘤破裂患者身上也取得了良好的临床试验效果。而在安慰剂对照组中,只有68%的患者取得了较好的效果。 希尔博士表示,为研发此类药物,人们此前已做过成千次的尝试,但最终均未能成功地将实验室里的成果转化到人体上。该临床试验成果是中风研究的一次飞跃。泰米安斯基博士认为,此次试验首次证明了,以提高大脑对中风抵御能力而设计的这种药物,在人体中展现了降低中风损伤效应的功效。此次临床试验也为血管性痴呆症等其他脑损伤的治疗提供了借鉴。(冯卫东) 《科技日报》(2012-10-16 二版)

颅脑损伤仪相关的耗材

  • 非损伤微测系统专用流速传感器
    一、产品介绍 1、非损伤微测系统专用流速传感器(组织样品专用传感器8-10um) 型号:XY-CGQ01 价格:68元/支,10支起订 本传感器适用于测定组织样品的所有离子传感器,特别针对Cl-、NO3-、NH4+测试时信号采集不稳定而开发出的新型传感器,使得测定上述三种离子时,信号的稳定性大大提高。 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:8-10微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 响应时间:300毫秒 空间分辨率:5微米2、非损伤微测系统专用流速传感器(组织样品专用传感器4-5um) 型号:XY-CGQ-01 价格:68元/支,10支起订 用于非损伤测量组织样品专用的流速传感器 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:4-5微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 响应时间:300毫秒 空间分辨率:5微米3、非损伤微测系统专用流速传感器(细胞样品专用传感器1-2um) 型号:XY-CGQ-02 价格:79元/支,10支起订 用于非损伤测量细胞样品专用的流速传感器 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:1-2微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 响应时间:300毫秒 空间分辨率:5微米4、膜电位专用流速传感器 型号:XY-CGQ-03 价格: 51元/支,10支起订 专门用于测量膜电位的流速传感器 技术参数: 材料:硼硅酸盐玻璃微管 导液丝:有 长度:50毫米 尖端直径:1-2微米 末端直径:外径1.5毫米/内径0.84毫米 管壁厚度:0.33微米 响应时间:300毫秒 空间分辨率:5微米5、离子交换剂微容器(LIX Holder 载体) 型号:XY-LIX-01 价格: 34元/支,10支起订 装载离子交换剂的微量容器 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:35-45微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米 6、膜电位专用流速传感器 型号:XY-CGQ-04 价格: 34元/支,10支起订 用于传感器动态校正 技术参数: 材料:硼硅酸盐玻璃微管 长度:50毫米 尖端直径:10微米 末端直径:外径1.5毫米/内径1.05毫米 管壁厚度:0.225微米
  • 颅脑微量注射器配件IMS-3
    颅脑微量注射器配件IMS-3是Narishige公司专业为颅脑注射实验应用而设计的微量注射器。 颅脑微量注射器配件IMS-3特点 颅脑微量注射器与立体显微操作器(如SM-15)联合适合使用可精确注射试剂或液体到样品颅脑中。 采用不同规格的注射筒(?5mm- ?10mm),可随意调整注射体积和容量。 颅脑微量注射器配件IMS-3规格 可适用注射器 ?5 - ?10mm 移动范围 细 40mm 全方位旋转旋钮: 500μm 尺寸/大小 W50 × D30 × H120mm, 110g
  • 22G/23G/24G/26G微量给药双套管 双导管
    产品介绍 微量给药套管由导管、导管帽、注射内管、锁紧螺帽和导管配套使用。采用不锈钢作为流体给药管道将其直接埋在组织内保证生物相容,动物实验长期留置观察时通过导管帽钢线保证组织不渗进基座孔内;需给药时拔出套管帽即可给药或下电极,如需更小流量通过注射内管给药。为降低植入套管对动物的损伤,我们根据不同体重制定相应基座主管尺寸:鼠 400um-650um、狗猴650um-800um。 为满足用户两种药液同时注射需求而研发微量给药双套管,可以用于颅脑内双侧植入适用于两种不同或相同的药物在两个不同的位置注射。 订购信息序号型号名称名称间距P值:mmD1尺寸:OD×ID123M8110/M8111/M8112基座/注射内管/导管帽芯0.8-3.00.64*0.45224M8120/M8121/M8122基座/注射内管/导管帽芯0.7-3.10.55-0.38326M8130/M8131/M8132基座/注射内管/导管帽芯0.6-3.20.48*0.34427M8140/M8141/M8142基座/注射内管/导管帽芯0.5-3.30.41*0.255M5M8003锁紧螺母——5.5*76M5M8004导管帽——5.5*77定制:0731-818550133.5-6——
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制