当前位置: 仪器信息网 > 行业主题 > >

无线吸顶式探测距离红外探测器

仪器信息网无线吸顶式探测距离红外探测器专题为您提供2024年最新无线吸顶式探测距离红外探测器价格报价、厂家品牌的相关信息, 包括无线吸顶式探测距离红外探测器参数、型号等,不管是国产,还是进口品牌的无线吸顶式探测距离红外探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无线吸顶式探测距离红外探测器相关的耗材配件、试剂标物,还有无线吸顶式探测距离红外探测器相关的最新资讯、资料,以及无线吸顶式探测距离红外探测器相关的解决方案。

无线吸顶式探测距离红外探测器相关的论坛

  • 【求助】请教关于非接触式荧光光谱仪的探测距离

    各位大侠有用过非接触式(在线式)荧光光谱仪的吗?能否给解释一下有哪些因素影响非接触式荧光光谱仪的探测距离啊?是否与荧光光谱仪的滤镜、光源的能量、荧光的存活时间有关啊?从资料上看到荧光的平均寿命(能量衰减到1/e)为十的负八次方 秒,是否可以认为荧光的传输距离只有几米(平均寿命*光速)?先谢谢各位大侠了。

  • 抗震救灾,生死救援,生命探测仪简介

    在地震灾害发生后,抗震救灾,生死救援,挽救生命是第一位的。在这次汶川特大地震救援中,生命探测仪发挥了重要作用,现对其进行简要介绍。1 雷达式生命探测仪雷达式生命探测器是借着感应人体所发出超低频电波产生之电场(由心脏产生)来找到\"活人\"的位置。 仪器配备特殊电波过滤器可将其它动物,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测器只会感应到人类所发出的频率产生之电场。仪器配备两种不同侦测杆,长距离侦测杆侦测距离可达500m,短距离20m。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器在碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 雷达式生命探测器目标锁定功能在侦测到人体发出超低频产生之电场后,侦测杆会自动锁定此电场,人体移动时,侦测杆也会跟着移动。另配备雷射光点,提供操作者寻找侦测杆方向。经过计算机的辅助与不断的训练,雷达式生命探测器比较精准、可迅速的找到人体目标,其运用范围相当广泛: 雷达式生命探测器具有如下特点:(1)感应方式:侦测人体心脏所发射之超低频电波产生之电场,此极低频电波为30HZ或以下,其可穿透建筑物钢筋混凝土墙、钢门、树木等,开放空间侦测距离可达500m。 (2)非感应目标:除人体以外之任何动物皆不被侦测。 (3)目标锁定功能:当侦测到人体心脏所发出超低频电波产生之电场后侦测杆会自动锁定此电场,人体移动时,侦杆也会跟着移动。2 电磁波生命探测仪 该仪器采用超宽带无线传输技术,在地震、建筑物坍塌、泥石流、雪崩等灾难现场,无需进入即可帮助消防特勤或抢险救援人员在2 3min内探测到被困人员,最高效率地完成救援任务!整套装置由无线探测发射器和掌上操作显示器组成;它体积小、重量轻、无需探针和线缆、布置操作方便、定位精确、坚固耐用、并具防水功能;不与其它通讯设备产生信号干扰。该仪器配备PDA掌上电脑,方便携带。专业探测软件集成了上千种人体呼吸心跳模式,使探测结果更精确。当探测到幸存者时,能显示其与探测器间的距离。可对现场探测过程做数据记录。可兼容GPS全球卫星定位系统。USB接口可与电脑连接传递数据 无线探测发射器,在废墟瓦砾中探测距离:4.6米内的呼吸活动以及6米内的移动;废墟瓦砾中探测范围:36 m2 2 可视生命探测仪 可视生命探测仪是一种在倒塌建筑废墟或类似的狭窄空间中进行搜寻幸存者的有效设备。他可以精确快速的确定幸存者的位置和其生存状况。该探测设备是由探测杆、探测镜头和插拔式微型液晶显示器组成。探测杆可自由伸缩,尤适合多层废墟探测;顶部的探测镜头可通过手柄进行180度旋转。探测镜头周围有16个冷光发光二极管,在全黑暗背景下,其可视距离最大可达3米。体积轻巧,操作灵活,现广泛应用在救援消防等领域。 该仪器配备1/4英寸彩色CCD的探测镜头,5英寸插拔式TFT高清晰液晶显示器,探测杆可伸缩79~115cm。3 新蛇眼生命探测仪 蛇眼生命探测仪是一种成本低,坚固耐用,手持式,远距离视频监测系统,特别适用于对难以到达的地方进行快速的定性检查,广泛应用于矿山、地震、塌方救援中。采用模块式结构和轻小便携的蛇眼生命探测仪使您的眼睛能看到原来不能看到的地方。这种镜头可以安装在直杆窥镜或光纤窥镜上,灵活的鹅颈弯管上,延伸线缆上,可伸缩的套筒上,或者机械手接头上,高清晰度的全彩色的液晶视频图像帮助您进行快速的定性检查。它还可直接连到一台标准的VCR,进行录像和回放。仪器由0.6m可塑性软探杆、1.2英寸摄像头和4英寸液晶显示器组成,探杆可进行弯曲,更适合狭窄空间的搜寻。摄像头为防水型,可在水下工作,内置照明装置,显示器可固定在腰间或胸前,更方便观看,配备充电电池。另有伸缩探杆和信号发射器/接收器、红外摄像头等附件可选。仪器带音频。 5 红外热成像生命探测仪热成像探测仪的显著特点是它可以完美的帮助救援队员在废墟灾区或其周围定位遇难者的位置。热成像探测仪能够探测并且显示出遇难者身体的热量,从而帮助救援队员很快确定被埋在废墟底下或隐藏在尘雾后面的遇难者的位置。它能经受住救援现场的恶劣条件。 该仪器具有5英寸(127mm)显示屏能够更大更详细的显示图像,BlueLife™ 图像色化处理,用高亮度的蓝色显示皮肤的温度从而快速的探测遇难者,屏幕上完整的数字罗盘显示了可视方向,以便于精确定位遇难者的位置,进行快速营救;该仪器既可用普通电池也可使用充电锂电电池,以及探测仪的带状电池包,仪器仅重1Kg,轻巧的探测仪携带方便,在各种气象条件下都可以使用24h。36度的视角,不仅可以在安全距离外对废墟进行快速扫描,也可以在室内进行有效搜索。 该探测仪既可寻找受伤人员,又可寻找遇难者尸体。同时由于可远距离精确测温,可直观显示煤层表面温度区域分布,高温区一幕了然,因此也可用于探测煤自燃早期发火 6 音频生命探测仪采用特殊的微电子处理器,能够识别在空气或固体中传播的微小震动,适合搜寻被困在混凝土、瓦砾或其他固体下的幸存者,能准确识别来自幸存者的声音如呼喊、拍打、刻划或敲击等。与此同时,还可以将周围的背景噪音做过滤处理。全方位音频传感器,探测频率:1~3000Hz,可同时接收6个传感器信息,可同时波谱显示任意两个传感器信息,配备小型对讲机,能同幸存者对话。7 迷你型音频生命探测仪采用特殊的微电子处理器,能够识别在空气或固体中传播的微小震动,适合搜寻被困在混凝土、瓦砾或其他固体下的幸存者,能准确识别来自幸存者的声音如呼喊、拍打、刻划或敲击等。与此同时,还可以将周围的背景噪音做过滤处理。 全方位音频传感器,探测频率:1~3000Hz,配备小型对讲机,能同幸存者对话。8 无线传输红外视频生命探测仪这是目前国外最先进的无线网络型视频生命探测仪.四台独立的生命探测仪(可单独使用)组成一个救援组配置,另有指挥员终端可以无线方式任意切换查看这四台生命探测仪所捕捉的图象. 该仪器的终端屏幕为3.5英寸彩色LCD,头戴视宽:TFT42英寸(插植运算),无线信号频段:24000 MHz~24680 MHz,信号传送距离:200m。

  • 主动红外探测器的应用特点

    主动红外探测器由红外发射机、红外接收机和报警控制器组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。主动式红外探测器遇到小动物、树叶、沙尘、雨、雪、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。由于光束较窄,收发端安装要牢固可靠,不应受地面震动影响,而发生位移引起误报,光学系统要保持清洁,注意维护保养。因此主动式探测器所探测的是点到点,而不是一个面的范围。其特点是探测可靠性非常高。但若对一个空间进行布防,则需有多个主动式探测器,价格昂贵。主动式探测器常用于博物馆中单体贵重文物展品的布防以及工厂仓库的门窗封锁、购物中心的通道封锁、停车场的出口封锁、家居的阳台封锁等等。

  • 安防新设备被动红外探测器

    被动红外探测器:采用被动红外方式,已达到安保报警功能的探测器。被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。 被动红外探测器越来越多的被应用于安防领域,能够探测到当前区域内有没有移动的人等目标。 与其他红外探测器不同的时,被动红外探测器采取被动的方式,即自身不附加红外辐射光源,本身也不发射任何能量。目标在探测渔区内移动,会引起某一个立体防范空间内的热辐射的变化,而红外热辐射能量的变化能够灵敏的被被动红外探测器感应到,从而发出报警。 被动红外探测器一般由光学系统、红外传感器、报警控制器等构成。被动红外探测器安装好后,某一区域内的热辐射量量对于探测器来说基本上是不变的。尽管背景物体(如墙、家具等)也会散发出红外辐射能量,但由于能量很小不会触发报警。可当有人等移动目标进入该区域后,红外热辐射值会产生显著的变化。红外传感器的探测波长范围是8~14m,包括人体的红外辐射波长。探测器接收到这些信号后,将信号处理并送往报警控制器,最终触发报警,达到安防的目的。

  • 红外光电探测器的应用有哪些?

    大家好,哪位大侠能说一下近红外光电探测器的应用有哪里?红外的光电探测器有InGaAs(铟镓砷), Ge(锗), PbS(硫化铅), PbSe(硒化铅),MCT等。铟镓砷象640*512 ,320*256,主要会用到什么上面?请大侠们指导一下,先谢谢喽tangtang:论坛规定不给留联系方式,可站短联系。

  • 【求助】求红外探测器

    小弟想要一个能检测波长为3.3um的热释电红外探测器,但在网上查了很久,发现都是些检测波长在5-14um的探测器。哪位大侠知道哪种型号的探测器能满足我的需求啊?劳烦告诉我型号啊,感激不尽哦!

  • 处女贴:请教红外探测器选型问题

    处女贴,请各位多多指导。是这样,我在做一个项目,就是用红外探测器获取红外信息,然后通过串口传入电子控制单元,在电子控制单元进行红外图形处理,识别出人体。应用场景是用在汽车上,来探测哪个位置有人,来进行分区调节温度。电子控制单元现在已经调试好了,接口也都通了,但在红外探测器选型上没经验。所以请教:1.该红外探测器仅仅是可以获取人体附近的红外线就可以。不需要成品。因为成本核算的原因。2.探测器要有一定的捕获角度3.批量采购的话,成本要在百元以下。因为是要量产的。多谢!

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 非制冷势垒型InAsSb基高速中波红外探测器

    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XB?n势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。[align=center][size=18px][back=#ffff00][b]材料生长、器件制备和测试[/b][/back][/size][/align]通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(101? cm?3)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(101? cm?3)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(101? cm?3)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm2的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。[align=center][size=18px][back=#ffff00][b]结果与讨论[/b][/back][/size][/align][b]材料质量表征[/b]图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm2的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 ?和2.1 ?。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/92230b98-4dac-4ee0-aeaa-282dcd342995.jpg[/img][/align][align=center][color=#0070c0]图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片[/color][/align][b]器件的变温暗电流特性[/b]图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R?A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R?A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/a8f8001f-cd03-42f4-a32f-8b1acc94131d.jpg[/img][/align][align=center][color=#0070c0]图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R?A随反向偏压的变化曲线;(c)R?A随温度倒数变化曲线[/color][/align][b]器件暗电流的尺寸效应[/b]由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R?A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10? Ωcm。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/e7fba8aa-eabe-40a4-a863-6ebcdd264744.jpg[/img][/align][align=center][color=#0070c0]图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R?A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R?A随台面直径的变化;(d)(R?A)?1与周长对面积(P/A)变化曲线[/color][/align][b]器件的结电容[/b]图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/c09b63df-6442-42f2-b548-df4f539db6eb.jpg[/img][/align][align=center][color=#0070c0]图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。[/color][/align][b]器件的射频响应特性[/b]通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/95acbbf7-8557-4619-b4cd-5829d636aced.jpg[/img][/align][align=center][color=#0070c0]图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/541829b0-a336-4b7e-a75b-0a15f8dfd06a.jpg[/img][/align][align=center][color=#0070c0]图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线[/color][/align]图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。[align=center][size=18px][back=#ffff00][b]结论[/b][/back][/size][/align]通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm2,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10? Ωcm,对照的nBn器件的表面电阻率为3.1×103 Ωcm,而pBn和nBn的R?A体积项的贡献分别为16.60 Ωcm2和5.27 Ωcm2。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。[b]论文链接:[/b][url]http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157[/url][来源:MEMS][align=right][/align]

  • 求红外光谱仪所用探测器

    欲买用于NDIR红外分析的探测器,推荐几款性价比好的 热释电探测器, 热电偶和热电堆也行, 碲镉汞探测器也行 发一份详细资料到信箱augustcool214@sina.com.cn,谢谢 最好有报价(大概)

  • 火焰探测器的工作原理与紫外线探测器的渊源

    火焰探测器的工作原理与紫外线探测器的渊源

    火焰探测器又称感光式火灾探测器,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。下面工采网小编给大家介绍一下火焰探测器工作原理。火焰燃烧过程释放紫外线、可见光、红外线,在特定波长、特定闪烁频率(0.5HZ-20HZ)具有典型特征,有别于其他干扰辐射,阳光、热物体、电灯等辐射出的紫外线、红外线没有闪烁特征。火焰探测器工作原理是通过检测火焰辐射出的特殊波长的紫外线、红外线及可见光等,同时配合对火焰特征闪烁频率来识别,来探测火焰。一般选用紫外光电二极管、紫外线探测器、紫外线传感器等作为探测元件。[img=,446,450]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011704_01_3332482_3.jpg!w446x450.jpg[/img]紫外线探测器是将一种形式的电磁辐射信号转换成另一种易被接收处理信号形式的传感器,光电探测器利用光电效应,把光学辐射转化成电学信号。光电效应可分为外光电效应和内光电效应。外光电效应器件通常指光敏电真空器件,主要用于紫外、红外和近红外等波段。具有内增益的外光电效应器件包括光电敏倍增管、像增强器等光敏电真空器件,它们具有极高灵敏度,能将极微弱的光信号转换成电信号,可进行单光子检测,其灵敏度比内电光效应的半导体器件高几个量级。内光电效应分为光导效应和光伏效应。光导效应中,半导体吸收足够能量的光子后,把其中的一些电子或空穴从原来不导电的束缚状态激活到能导电的自由状态,导致半导体电导率增加、电路中电阻下降。光伏效应中,光生电荷在半导体内产生跨越结的P-N小势差。产生的光电压通过光电器件放大并可直接进行测量。根据光导效应和光伏效应制成的器件分别称为半导体光导探测器和光伏探测器。最后给大家介绍三款性能非常优秀的紫外线探测器和紫外线二极管,都是应用在火焰检测和防紫外辐射源等领域的顶尖产品。[b]德国SGLUX 紫外光电探测器 - TOCON_ABC1[img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]基于碳化硅的宽频紫外光电探测器,带有集成放大器TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射和火焰检测领域。[b]紫外光电探测器TOCON_ABC1特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有集中器镜头盖0…5 V电压输出峰值波长是280 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 pW/cm2[b]德国SGLUX 紫外光电探测器 - TOCON_ABC10[/b][img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射、淬火控制和火焰检测领域。[b]紫外光电探测器TOCON_ABC10特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有衰减器0…5 V 电压输出峰值波长是290 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 mW/cm2[b]德国SGLUX 紫外光电二极管 - SG01D-5LENS[img=,394,291]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_01_3332482_3.jpg!w394x291.jpg[/img]SiC 具有独特的特性,能承受高强度的辐射,对可见光几乎不敏感,产生的暗电流低,响应速度快和噪音低。这 些特性使SiC成为可见盲区半导体紫外探测器的最佳使用材料。SiC探测器可以一直工作于高达170°C(338°F)的温度中。信号(响应率)的温度系数也很低, 0,1%/K。由于噪音低(fA级的暗电流), 能够有效地检测到极低的紫外辐射强度。请注意这个装置需要配置相应的放大器。(参见第3页中的典型电路)。SiC光电二极管有七个不同的有效敏感面积可供选择,从0.06 mm2 到36 mm2。标准版本是宽频UVA-UVB-UVC。四个滤波版本导致更严格的感光范围。所有光电二极管都有密封的金属外壳(TO型),直径为5.5mm的TO18 外壳或9.2mm 的TO5外壳。进一步的选项是2只引脚(1绝缘,1接地)或3只引脚(2绝缘,1接地)。[b]德国SGLUX 紫外光电二极管 SG01D-5LENS 特点[/b]宽频UVA+UVB+UVC, PTB报道的芯片高稳定性, 用于火焰检测辐射敏感面积 A = 11,0 mm2TO5密封金属外壳和聚光镜, 1绝缘引脚和1接地引脚10μW/cm2 峰值辐射约产生350 nA电流[b]德国SGLUX 紫外光电二极管 SG01D-5LENS参数:[/b][b][img=,690,365]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_02_3332482_3.jpg!w690x365.jpg[/img][/b][/b][/b]

  • 近红外光电探测器主要应用有哪些?

    大家好,哪位大侠能说一下近红外光电探测器的应用有哪里?近红外的光电探测器有InGaAs(铟镓砷), Ge(锗), PbS(硫化铅), PbSe(硒化铅)等。铟镓砷象640*512 ,320*256,主要会用到什么上面?请大侠们指导一下,先谢谢喽联系电话:13649264285邮箱:zhangwenjuan@fy-ic.com

  • 关于红外探测器的探测率D*

    D*=(A*f)^0.5/NEP,其中A是探测器光敏元面积,f是电子学带宽,NEP是噪声等效功率。相信大家都知道,光谱成像在探测器光敏元上不可能只占一个像元,而是有一定面积的,请问此时计算D*,A 是用一个像元的面积还是光谱所占的面积?

  • 【原创】光电导探测器主要应用范围

    [size=4] photoconductive detector 利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。 1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为 λc=hc/Eg=1.24/Eg (μm) 式中 c为光速。本征光电导材料的长波限受禁带宽度的限制。在60年代初以前还没有研制出适用的窄禁带宽度的半导体材料,因而人们利用非本征光电导效应。Ge、Si等材料的禁带中存在各种深度的杂质能级,照射的光子能量只要等于或大于杂质能级的离化能,就能够产生光生自由电子或自由空穴。非本征光电导体的响应长波限λ由下式求得 λc=1.24/Ei 式中Ei代表杂质能级的离化能。到60年代中后期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半导体材料研制成功,并进入实用阶段。它们的禁带宽度随组分x值而改变,例如x=0.2的HG0.8Cd0.2Te材料,可以制成响应波长为 8~14微米大气窗口的红外探测器。它与工作在同样波段的Ge:Hg探测器相比有如下优点:①工作温度高(高于77K),使用方便,而Ge:Hg工作温度为38K。②本征吸收系数大,样品尺寸小。③易于制造多元器件。表1和表2分别列出部分半导体材料的Eg、Ei和λc值。 通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实用性器件还要考虑性能、工艺、价格等因素。常用的光电导探测器材料在射线和可见光波段有:CdS、CdSe、CdTe、Si、Ge等 在近红外波段有:PbS、PbSe、InSb、Hg0.75Cd0.25Te等 在长于8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。 可见光波段的光电导探测器 CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属全密封型结构,玻璃窗口与可伐金属外壳熔封。 器件灵敏度用一定偏压下每流明辐照所产生的光电流的大小来表示。例如一种CdS光敏电阻,当偏压为70伏时,暗电流为10-6~10-8安,光照灵敏度为3~10安/流明。CdSe光敏电阻的灵敏度一般比 CdS高。光敏电阻另一个重要参数是时间常数 τ,它表示器件对光照反应速度的大小。光照突然去除以后,光电流下降到最大值的 1/e(约为37%)所需的时间为时间常数 τ。也有按光电流下降到最大值的10%计算τ的 各种光敏电阻的时间常数差别很大。CdS的时间常数比较大(毫秒量级)。 红外波段的光电导探测器 PbS、Hg1-xCdxTe 的常用响应波段在 1~3微米、3~5微米、8~14微米三个大气透过窗口。由于它们的禁带宽度很窄,因此在室温下,热激发足以使导带中有大量的自由载流子,这就大大降低了对辐射的灵敏度。响应波长越长的光,电导体这种情况越显著,其中1~3微米波段的探测器可以在室温工作(灵敏度略有下降)。3~5微米波段的探测器分三种情况:①在室温下工作,但灵敏度大大下降,探测度一般只有1~7×108厘米瓦-1赫;②热电致冷温度下工作(约-60℃),探测度约为109厘米瓦-1赫 ③77K或更低温度下工作,探测度可达1010厘米瓦-1赫以上。8~14微米波段的探测器必须在低温下工作,因此光电导体要保持在真空杜瓦瓶中,冷却方式有灌注液氮和用微型制冷器两种。 红外探测器的时间常数比光敏电阻小得多,PbS探测器的时间常数一般为50~500微秒,HgCdTe探测器的时间常数在10-6~10-8秒量级。红外探测器有时要探测非常微弱的辐射信号,例如10-14 瓦;输出的电信号也非常小,因此要有专门的前置放大器。[/size]

  • 【原创】装备先进探测器,如今拾荒很给力

    【原创】装备先进探测器,如今拾荒很给力

    现如今什么都讲究个专业,连拾荒这种看似纯体力活也得靠技术。现在废金属越来越不好找了,加上废铁废铜价格一直不错,拾荒队伍也日益庞大,竞争越来越激烈。来自山东郯城的拾荒人孟某花了一千多元钱购置了一只金属探测器,使得他近日的经济效益大增。据孟某引见,废金属越来越不好找了,他便学着同行的样子从外地购置了这种“先进仪器”。曾经运用了20多天,“产量”翻了好几倍,共拾取了500多公斤废金属。他还透露,这种仪器在青岛曾经有七八台了。 在长沙,遇到枯水期的湘江里也吸引了许多装备精良的来寻宝。http://ng1.17img.cn/bbsfiles/images/2010/12/201012231553_269346_2194003_3.jpg 据说,这种探测器全长约1.5米,操作时按下按钮,一旦发现有金属,指针就会转动,探测器就会发出“嘟嘟”的蜂鸣声,金属的体积越大,蜂鸣声也就越大。据拾荒者引见,除了这种小型的,还有一种大的,探测的深度到达3米。探测器对铁、铝、铜等金属很敏感,半个香烟盒大小的金属埋在地下也能探测出来。

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 美制成超快高敏石墨烯光电探测器 可广泛用于生化武器探测、机场安检等技术领域

    中国科技网讯 据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然·纳米技术》杂志上。 科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。 而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。 通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。 研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。 新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。 虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。(张巍巍) 《科技日报》(2012-06-06 二版)

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 【求助】如何选择FTIR的红外探测器

    大家好!我是新人,昨天通过同学推荐才知道这个网站的,我非常喜爱这个网站,希望它能在大家的努力下变得更加出色^_^. 我现在跟随导师做一个项目,是通过FTIR测量MEMS器件的沟槽深度。在选购红外探测器时,有两样选择,一个是MCT,一个是DTGS。两种探测器的光谱相应范围基本上都符合要求(当然DTGS的要稍大一些),但MCT的灵敏度和响应速度要更快一些,不过需要氮冷。从实验经费考虑,导师比较倾向于选购DTGS。但是我查阅国外相关实验的资料时,发现他们用的基本上都是MCT,所以很犯难。如果大家有这方面的相关经验和资料的话,请不吝赐教,谢谢! 另外,不知道有没有人有AMS公司的IR3000的资料,我这里搜集到的只有比较简单的一些数据,如果可以告知一二的话,小弟不胜感激。 希望能和大家成为好朋友!^_^

  • 找本中文版的红外探测器一书

    找本中文版的红外探测器一书【序号】:1【作者】:[color=#444444]Antoni Rogalski 著[/color]【题名】:[color=#444444]《红外探测器》原书第二版中文版[/color]【年、卷、期、起止页码】:[color=#333333]840[/color]页【全文链接】:[color=#333333][url]https://www.yqdaw.com/daw17057p11.html[/url][/color]

  • 我国成为第2个紫外单光子探测器技术拥有国

    一根燃烧的蜡烛1秒钟可以发射出100亿亿个以上的光子,要探测到能量如此小的单个紫外光子一直是世界技术难题。记者昨天获悉,南京大学电子科学与工程学院长江特聘教授陆海为首的研究团队近来获得突破,在国内首先研制出超灵敏度的固体紫外单光子探测器,从而使中国成为继美国之后第二个掌握这一核心技术的国家。  “自然界中波长小于280纳米的紫外光几乎为零,所以我们探测它相当于在暗室中探测光,只要发现一个小光点就一定是目标。”陆海介绍说,可探测400纳米以下紫外辐射的紫外光探测器,是火焰探测、环境监测、生物医药、空间科学等领域所急需的关键部件,也是关系到国家安全的关键技术,可以用来检测海上油污、卫星遥感监测雾霾等。  光子是光的最小能量量子,也是光作为信息载体的最小传输单位。一根蜡烛1秒钟释放出的超100亿亿个光子中,假设紫外光子只占万分之一,那么在完全不考虑飞行损耗的情况下,1公里以外,面积为1平方厘米的镜头1秒钟只能接收到1000个紫外光子。专门用来捕捉这些“小家伙”的单光子探测器一直是世界各国研究和竞争的焦点。  陆海举例说,导弹的飞行尾焰中存在像指纹一样的特殊紫外光谱成分,但距离越远能够传输过来的紫外光就越微弱。利用超灵敏度紫外单光子探测器就有可能在上千公里以外探测和分辨出来袭飞弹,为反制或者规避提供宝贵时间。之前,国际上只有美国罗格斯大学、弗吉尼亚大学、通用电气研发中心三家美国单位成功研制碳化硅单光子探测器。而南大研究团队此次获得突破后,跻身成为第四家。  南大研究团队研制出的紫外单光子探测器,基于碳化硅半导体芯片技术,能灵敏捕捉到紫外单光子,并且打破了过去依赖于超低温条件的瓶颈。“我们的探测器在150℃下仍能正常工作,这是原来任何单光子探测技术都无法达到的。”陆海说。这一突破也引起了国际关注,欧洲的《今日半导体》杂志专门长文报道了南大的这一研究成果。  同时,该探测器有显著的成本优势,有望向民用领域大规模推广,比如高压输电线和高铁供电线路上出现电晕、污闪时,可用其远程检测和定位。“目前,紫外火灾报警器用的真空紫外光敏管,综合成本很高。”陆海拿出一枚耳钉大小的器件介绍说,未来用如此小的单光子探测器件,不仅造价更便宜,而且防爆、使用寿命更长。  眼下,南大研究团队在该领域的部分研究成果已开始进入产业化阶段。过量的紫外线照射易诱发皮肤癌,韩国三星公司日前发布的Note4手机就装备了微型紫外线传感器,受到消费者欢迎。而南大研究团队正在和华为合作的贴片封装紫外探测器,尺寸比米粒还小,也将安装到手机或智能手环中,藉由它,用户可随时随地检测所处环境的紫外线强度,以及时防护。

  • 【分享】半导体探测器

    【分享】半导体探测器

    半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,晶体管电子学的发展促进了半导体技术的发展。半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型(下图由左至右)。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291643_192752_1615922_3.jpg[/img]

  • 大连化物所开发出柔性可穿戴长波红外光热电探测器

    [color=#000000]近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。[/color][color=#000000]仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/d9f98d30-33d3-4a5f-ae64-7284b6ef766d.jpg[/img][/align][color=#000000]光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作([/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]Adv. [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]M [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b][color=#0070c0]ater. [/color][color=#0070c0][/color][/b][/i][/url][color=#000000],2022;[/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902044][i][b]Adv. Mater [/b][/i][/url][color=#0070c0][i][b].[/b][/i][/color][color=#000000],2019;[/color][url=https://www.nature.com/articles/s41467-018-07860-0][i][b]Nat. Commun. [/b][/i][/url][color=#000000],2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。[/color][color=#000000]在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。[/color][color=#000000]相关研究成果以“[b]Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”[/b]为题,发表在[b]《先进材料》[/b][i](Advanced Materials)[/i]上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)[/color][color=#000000]文章链接:[/color][url=https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911][b]https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911[/b][/url][来源: 中国科学院大连化物所][align=right][/align]

  • 【分享】“凤凰号”火星探测器携带七种探测仪器

    “凤凰号”火星探测器携带七种探测仪器 “凤凰号”探测器是一个由3条腿支持的平台,平台直径1.5米,高约2.2米,其中心是一个多面体仪器舱,舱左右两侧各展开一面正八边形太阳能电池阵,跨度5.52米。与“火星极地着陆器”相比,“凤凰号”探测器的最大变化是提高了太阳能电池的性能。 “凤凰号”探测器将携带7种科学探测仪器,分别是: (1)机械臂(RA) 它是“凤凰号”探测器上最重要的设备,用以挖取火星表面及表面下层的土壤样品。它将挖得的样品送入着陆器搭载的“显微镜电化学与传导性分析仪”和“热与气体分析仪”中进行化验分析。 机械臂长2.35米,有4个自由度,末端装有锯齿形刀片和波纹状尖锥,能在坚硬的极区冻土表面,挖掘1米的深坑。机械臂还可为装在臂上的相机调整指向,引导测量热与电传导性的探测器插入土壤。 (2)显微镜电化学与传导性分析仪(MECA) 它是在“火星勘探者”计划中用的仪器基础上略加改进而成,包括湿化学实验室、光学显微镜、原子力显微镜和热与电传导性探测器4台仪器,用以检测土壤的元素成分以及给土壤样品拍摄成像。 (3)热与气体分析仪(TEGA) 它包括微分扫描热量计和质谱仪两部分,用以对土壤样品的吸热和散热过程进行观测记录,并对加热后释放出的挥发物进行分析。 (4)表面立体成像仪(SSI) 用以测绘高分辨率的地质图和机械臂作业区地图,进行多光谱分析和大气观测。 (5)机械臂相机(RAC) 用以拍摄机械臂采集的土壤样品的高分辨率图像,分析土壤颗粒的类型和大小。 (6)火星下降成像仪(MARDI) 用以在“凤凰号”下降过程中拍摄火星表面,堪察着陆点附近的地质情况。 (7)气象站(MS) 这是为“凤凰号”着陆器惟一专门研制的新仪器。它由激光雷达和温度压力测量装置两部分组成,用以了解当地大气的特性。

  • 单独背散射探测器和高位探测器(混合二次电子和背散射电子)选择问题

    最近单位采购,一直纠结于某款热场电镜和冷场电镜。热场电镜的景深十分出色,但分辨率较为一般,除二次电子探测器(低位和高位)外,还配了单独的背散射电子探测器、主流能谱仪、五轴马达台、红外CCD相机。。。冷场电镜的景深也不错,分辨率十分出色,出二次电子探测器外,背散射电子的探测功能通过高位探测器改变偏压实现,不是那么主流的能谱仪、三轴马达台。。。价格估计两家都做得蛮拼的。各位前辈有没有什么建议?

  • 石墨烯结合量子点制成高灵敏光电探测器

    中国科技网讯 据物理学家组织网5月16日(北京时间)报道,西班牙塞西斯光学技术研究所用石墨烯结合量子点成功研发出一种混合型光电探测器,灵敏度是其同类探测器的10亿倍。研究人员指出,该研究预示了石墨烯在光学传感器和太阳能电池领域的新应用。相关论文发表在最新一期《自然·纳米技术》上。 石墨烯在光电子学和光电探测应用领域极有潜力,具有光谱带宽广、响应迅速的优点,但缺点是光吸收能力弱,缺乏产生多倍载荷子的增益机制。目前的石墨烯光电探测器响应度(一定波长的光在入射功率作用下的输出电流)在0.01A/W以下。 研究人员解释说,所需要的是一种迫使更多光被吸收的方法,石墨烯吸收光的效率仅为3%。为了提高光吸收率,他们转向了量子点。量子点是一种纳米晶体,能根据自身大小吸收不同波长的光。从本质上讲,光电探测器是一种把少量光转化为微小电流的设备,通过检测电流来确定有多少光进入了设备,或者直接用该电流产生其他反应,比如辅助产生摄影图像。 为了制造光电探测器,研究小组首先用标准的胶带法剥离出一层石墨烯作底片,用纳米印刷术在上面印上微小的黄金电极,然后用喷雾瓶将硫化铅晶体喷在上面。这些胶状晶体包含了各种大小的颗粒,几乎能吸收所有波长的光。他们用不同波长的光来照射探测器,检测其电阻和电量。 在制造量子点时,要保证在量子点和石墨烯之间实现配位体交换最大化,最大困难是找到合适的材料组合。研究人员说,他们经多次试验,终于使内量子效率达到了25%。在探测器中,量子点层中的光强烈而且可调,生成的电荷传导到石墨烯,在此电流多次巡回,响应度达到了107A/W。 研究人员还指出,在这种光电探测器基础上,还能造出更多新设备,如数字摄像机、夜视镜以及其他多种传感器设备。(记者 常丽君) 总编辑圈点 石墨烯极高的导电性着实令科学家着迷,也因此激发了科学家利用石墨烯来设计超高速光电探测器。传统的硅基光电探测器不能折叠,也不便宜,而且不够灵敏。多年来,一种便宜、可折叠的光电探测器一直是科学家们的梦想。单层石墨烯似乎可以胜任。然而单层石墨烯吸收光子的能力比硅还差,仅有3%的光子被吸收。而当量子点附着在其表面时,其吸收光子的能力可神奇地提高到50%。这样一来,可以穿在身上的电子产品或许真的不再是梦了。 《科技日报》(2012-05-17 一版)

  • 化学发光免疫分析仪用探测器的9个常见问题解析

    化学发光免疫分析仪用探测器的9个常见问题解析

    化学发光免疫分析仪是极微弱光探测应用的典型设备,光子计数探头是化学发光免疫分析仪产品中主要的探测器类型。本文列举了一些化学发光免疫分析仪中与探测器相关的常见问题,并以滨松光子计数探测器为例进行了详细解析。[b][color=#cc0000]PMT在使用中有什么需要注意的安全问题?[/color][/b]1. 高压问题光子计数探头内部有1000V左右的高压,滨松公司已经做了良好的屏蔽,所以在正常使用情况下,不会有高压电击的问题,不建议可以进行探头拆解,如果拆解使用谨防高压损伤。2. 曝光损坏问题光子计数探头核心是光电倍增管,光电倍增管受到强光照射以后,会发生光敏效应,造成光子计数探头一段时间内的暗计数上升,一般在不通电的情况下,这种暗计数上升是可恢复的,需要在暗环境下静置一段时间,为加快这种恢复,可以加电在环境下静置。但是如果是带电见强光的话,可能会对PMT造成不可恢复的损坏。带电见强光是造成光子计数探头损坏的主要原因,对于这种损失我们也叫曝光损坏。3. 光窗挤压问题光子计数探头的光窗就是PMT的窗口,都是属于玻璃易碎产品,不允许大力挤压,其中有部分光子计数探头的光窗和外壳基本上在一个平面上,安装过程中要特别注意避免对光窗的挤压。[b][color=#cc0000]都说PMT对光很敏感,有可能被强光打坏,那么如何判断什么样的光对于PMT是会造成损伤的“强光”?[/color][/b]1. 对于没有通电的PMT,如果被夏天中午的太阳直射,就会造成永久损伤——所以说,只要环境光显著地弱于夏天中午的太阳直射(如日常的室内环境),是不会对没有通电的PMT造成永久损伤的。2. 对于已经通电的PMT,如果被满月的月光直射,就能使其输出饱和——所以说,强于满月月光直射的环境光对于已经通电的PMT是需要避免的。 需要强调的是,以上提到的都是会对PMT造成损伤的光强;为了在使用中得到高信噪比,PMT需要非常严格的避光,具体要求可以参考以下“测试中发现背景高/信噪比不好,从PMT的角度,有可能有哪些原因?”的问题解析。[b][color=#cc0000]测试中发现背景高/信噪比不好,从PMT的角度,有可能有哪些原因?[/color][/b]1. 漏光影响暗计数是光子计数探头的主要参数,影响暗计数因素主要有温度、漏光等因素,大部分在应用中遇到的暗计数高、本底高的问题,都是由于漏光引起的,PMT是非常灵敏的探测器,对于单光子信号就有非常好的响应,我们通常会收到客户的说法,例如:“在晚上我把灯关掉,还是暗计数很高呀;”“我没有拆开给你们提供的窗口纸呀;”“光窗我是用黑胶带贴上的”。类似这样的避光是远远不够的,远远没有达到光子计数探头要求的工作环境,光子计数探头要求的绝对暗室,不允许有任何的光线透过,所以在光子计数探头使用过程中完全避光应该是最基本的要求。如果仅仅是评价暗计数测试时候建议用黑布进行多层的包裹,并且上电稳定半小时以后进行暗计数评价。2. 温度对暗计数的影响另外一个影响暗计数的因素就是温度,工作温度升高热电子发射加剧,暗计数上升,温度降低,暗计数下降,对于化学发光免疫分析中使用的光子计数探头,一般情况温度下降到10℃以下,暗计数就变化很小了。下图为滨松H10682典型的暗计数和温度的关系图请参考。[align=center][img=,364,403]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211113230530_6115_2194_3.png!w364x403.jpg[/img][/align]3. 暗计数对化学发光免疫分析仪的影响暗计数特性和仪器的检测下限有关系,常温下(25℃)光子计数探头的暗计数都在150cps以内,而化学发光试剂发光要远强于这个数值,所以在常规的试剂体系和设备中暗计数都不会对测试造成太大影响。全自动化学发光设备中由于有温浴系统,温度一般会高于25℃,暗计数会有所上升,对于大部分的设备中都影响不大,不过在设备设计过程中要充分考虑到充分散热,尽量使得光子计数探头安装到远离热源的地方,并且做好通风散热。[b][color=#cc0000]滨松的光子计数探头的输出线性如何?如果我的化学发光仪需要更大的线性范围有没有什么方案?[/color][/b]动态范围是化学发光免疫分析仪的关注的一个重要参数,也是光子计数探头的重要参数。1. 光子计数探头线性光子计数探头的动态范围受到光电倍增管、放大电路等因素的影响,考虑到成本、功耗,一般情况下滨松的光子计数探头设计最大输出线性为5Mcps或者6Mcps,这样的线性范围完全可以满足化学发光免疫分析仪的使用。下图是滨松H10682典型是线性曲线。[align=center][img=,416,319]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211119139310_5058_2194_3.png!w416x319.jpg[/img][/align][align=center]H10682线性输出曲线[/align][align=left]2. 线性校正 [/align][align=left]一般情况下光子计数探头最大线性输出5-6Mcps就可以满足客户的使用,但是有个别客户提出在特殊的试剂下,需要更高的线性输出上限,一般情况下遇到这种情况下有两种处理方法:[/align][align=left]1)对试剂进行稀释,稀释以后进行测试,可以有效的降低光产额;[/align][align=left]2)对光子计数探头的输出进行线性校正,就像我们上面提到的滨松CH326配合CH297-011,在输出线性校正前,最大输出线性为6Mcps如果使用滨松CH297-011内嵌的线性校正功能最大线性输出可以达到20M,当然H10682配合CH297-011也可以实现这个功能。下图是线性校正前后滨松H10682的最大输出:[/align][align=center][img=,420,319]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211114478710_507_2194_3.png!w420x319.jpg[/img][/align][align=center]线性校正前后滨松H10682的最大输出特性曲线特性曲线[/align][align=left]另外我们也提供线性输出校正公式供用户参考,参考公式如下:[/align][align=center][img=,521,257]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211120378522_8346_2194_3.jpg!w521x257.jpg[/img][/align][align=center]N:真实计数(cps,count per second) M:测量计数(cps,count per second) t:脉冲分布率(s)[/align][align=left][/align][align=left][b][color=#cc0000]化学发光仪中PMT的安装有什么讲究?[/color][/b][/align][align=left]1. 距离 [/align][align=left]安装距离是一个用户问的比较多的问题,安装距离主要会影响PMT的探测率,例如图5所示同样面积的探测器距离点光源越远,如果不加其他光学系统的情况下,探测效率越低,而在化学发光免疫分析仪中,一般情况是直接探测,不加其他的光学系统,所以我们建议是靠近样品池,这样会保证比较好的光耦合效果。如果是安装空间有限制,可以考虑使用光纤,但是使用光纤会带来耦合效率的降低,不是特别推荐。[/align][align=center][img=,546,533]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211122145829_9433_2194_3.jpg!w546x533.jpg[/img][/align][align=center]安装距离对探测效率影响示意图[/align][align=left]2. 探测窗口大小 [/align][align=left]在全自动化学发光免疫分析仪中,大部分采用直径为1cm左右的圆形的试管,也有其他的异形的试管,当然还有使用微孔板的反应器。在化学发光免疫分析仪中使用的典型产品滨松H10682光窗尺寸为φ8,CH326光窗尺寸为φ25,一般情况下,建议用户使用PMT80%的有效面积,这样在光子计数中的能够保证比较好的稳定性和一致性,φ8mm接近试管尺寸,建议使用光窗小于φ8mm,这样可以避免由于试管和PMT的对齐问题,造成的台间差。如果使用φ25mm的产品,就不用考虑对齐问题,也可以保证探测率。 [/align][align=left]3. 窗材 [/align][align=left]一般在应用反应皿(试管)和光子计数探头窗口之间不需要加任何的隔离窗口材料,但是有些用户考虑到隔离、污染、腐蚀等因素,希望在窗口和光子计数探头进行隔离,如果有这种需求,我们建议使用石英玻璃作为窗材,并且要求窗口和光子计数探头窗口之间保持3mm以上的距离。 [/align][align=left]4. 光子计数探头接地 [/align][align=left]光子计数探头要安装到一个暗室系统中,大部分用户会用金属材质进行暗室系统的设计,利用探头提供的固定位进行探头固定。一般情况下,在化学发光分析仪设计中整个机架都要进行接地处理,暗室也和大地相连。由于探头的外壳和内部电路地相连,下如果探头外壳再和大地相连的话,可能会带来干扰,所以在探头安装时候,我们建议探头外壳不要和大地连接,采用绝缘连接,或者暗盒系统采用聚四氟乙烯的外壳。[/align][align=left][/align][align=left][b][color=#cc0000]从探测器的角度,如何校正同一型号化学发光仪的台间差?[/color][/b][/align][align=left]台间差是设备品控的重要指标,设备台间差和设备的各个部件的台间差是相关的,光子计数探头作为化学发光免疫分析仪的重要部件,它的输出差异也会对设备的台间差造成影响,怎么去减小或者消除这种差异是用户经常遇到的问题。 [/align][align=left]1. 软件校正 [/align][align=left]光子计数探头是目前来说测试极微弱光能力最强的探测器,是目前化学发光免疫分析中唯一的探测器选择,正常工作环境下探头灵敏度完全可以满足设备探测器下限信噪比的需求,对于同一个探测器,输出的结果能够反应被探测光的强度和变化,一般情况下这种变化是线性的,所以说对于一个探测器来说只要满足探测信噪比,满足输出线性,输出不受采集设备的现在,输出的绝对值大小就变的没有意义了。 在这个前提下,我们建议用户用标准试剂对每台设备进行一致性标定,在光子计数探头的输出基础上进行系数的校正,在线性范围内只需要一个系数校正即可,如果是在非线性区,需要根据实际输出情况进行校正。[/align][align=center][img=,600,386]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211126257756_6569_2194_3.jpg!w690x444.jpg[/img][/align][align=center]标准试剂校正 [/align][align=left]2. 光子计数探头出厂控制 [/align][align=left]虽然我们上面介绍了光子计数探头的只要满足信噪比情况下,台间差可以通过软件进行修正,不过也有用户希望在探头上做挑选控制,北京滨松根据用户要求,出厂前对光子计数探头例如滨松CH326进行灵敏度挑选,在内部测试条件下,可以将灵敏度离散型控制在±10%以内。[/align][align=left][/align][align=left][b][color=#cc0000]在实际使用中,PMT探头有寿命问题么?其灵敏度还会受什么因素影响?[/color][/b][/align][align=left]1. 寿命问题 [/align][align=left]光电倍增管的寿命只与输出的总电荷数有关,我们定义光子计数探头灵敏度下降50%的时间为光子计数探头的寿命。光子计数法是光电倍增管用于极微弱光探测的一种方法,相比于常规的模拟法应用,一般情况下光子计数探头平均输出电流要小很多,所以说光子计数法寿命非常长,可以达到几十万小时,在正常的工作状态下化学发光免疫分析仪设备,不需要太多考虑光子计数探头的寿命问题。 [/align][align=left]2. 温度对灵敏度影响 [/align][align=left]光电倍增的灵敏度受温度的影响,在可见光波段温度升高,光电倍增管灵敏度下降,光子计数探头也继承了光电倍增管的特性,下图所示 滨松H11123温度灵敏度变化曲线,可以看到每升高10℃灵敏度会下降2-3%。[/align][align=center][img=,690,344]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211130122400_5469_2194_3.jpg!w690x344.jpg[/img][/align][align=center]光电倍增管灵敏度随工作温度变化曲线[/align][align=left][color=#cc0000][/color][/align][align=left][b][color=#cc0000]在化学发光仪的设计中,如何减小电磁干扰对光子计数探头的影响?[/color][/b][/align][align=left]EMC特性是医疗设备必须考虑的问题,不仅仅是安全的问题,更重要的EMC对于设备稳定性的影响。滨松光子计数探头充分考虑到EMC特性的,虽然目前还没有针对光电倍增管或者光子计数探头的EMC标准,不过滨松在光子计数探头的设计和开发过程中有严格的内控指标和测试。对于光子计数探头的EMC特性主要体现下电磁干扰对光子计数探头输出稳定上的影响。 [/align][align=left]1. 磁场对光子计数探头输出的影响 [/align][align=left]光电倍增管有空间电子运动,所以在磁场作用下,电子轨迹会发生改变,影响光电倍增管的输出特性,并且不同方向的磁场影响的大小也是不同的,同样光子计数探头输出也会收到磁场影响,下图是滨松H10682输出受磁场影响的典型曲线。在全自动化学发光免疫分析仪中有大量的电磁阀和蠕动泵,这些器件在工作的时候都会产生磁场,这种磁场是光子计数探头干扰磁场的主要来源。滨松的在设计光子计数探头时候已经做了部分的磁屏蔽措施,如果用户在另外增加磁屏蔽处理起到的作用也有限,所以我们建议客户不再进行额外的屏蔽处理。距离降低磁场影响非常有效的手段,我们建议用户要尽量把探测器原理磁场干扰源,一般要求在10cm以上。[/align][align=center][img=,690,482]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211132565670_8776_2194_3.jpg!w690x482.jpg[/img][/align][align=center]H10682受磁场影响输出曲线[/align][align=left]2. 信号干扰 [/align][align=left]磁场会对输出信号造成影响,但是在化学反光免疫仪设计中并不是最棘手的问题,信号输出不稳定、波动、跳点才是最难处理的,并且一般在遇到类似问题的时候很难找到问题所在。对于信号干扰的问题,我们建议用于在设备设计之初就要进行考虑。一般要注意以下几个方面: [/align][align=left]a) 电源选择,我们建议用户选择正规的有EMC认证的电源给光子计数探头进行供电; [/align][align=left]b) 运动控制、探测电路、线路隔离; [/align][align=left]c) 光子计数探头外壳与机壳隔离; [/align][align=left]d) 信号输出线排布不横穿、横跨电磁干扰源; [/align][align=left]e) 做好整体机壳的屏蔽、接地,防止周围大功率用电器干扰。[/align][align=left][/align][align=left][b][color=#cc0000]滨松有没有针对探测器评价用的稳定光源产品?[/color][/b][/align][align=left]用户一直希望有一个稳定的光源产品能够用于探测器的评价以及设备的标定,基于需求滨松开发了稳定光源产品,一个是试管状、一个是试剂卡状,型号分别为L11416和L11494,图9是产品的基本信息,具体的产品技术信息可以参考滨松的产品样本。[/align][align=left]在这里想说明,稳定光源产品仅仅是一个能够实现稳定输出的光源,由于内部使用LED作为发光器件,所以光谱是一种窄线光谱,与化学发光试剂发光的光谱不是完全相同,所以一般不用于设备一致性的标定。我们定位这个产品主要是评价探测器的输出稳定性、评价设备的输出稳定性,用户可以根据自身的需求,进行产品的选择购买。[/align][align=left][/align][align=center][img=,690,499]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211137111824_6299_2194_3.png!w690x499.jpg[/img][/align]

  • 【分享】电离室探测器

    电离室ionization chamber  由处于不同电位的电极和限定在电极之间的气体组成,通过收集因辐射在气体中产生的电子或离子运动而产生的电讯号来定量测量电离辐射的探测器。  分为脉冲电离室和电流电离室,前者可记录单个辐射粒子的电离辐射,主要用于重带电粒子的能量和注量或注量率的测量,后者则用来记录大量辐射产生的平均效应,用于测量X射线,γ光子束,β射线和中子束的注量、注量率和剂量。  是一种核辐射探测元件。一般为圆柱形,电离室中间有一个柱状电极,它与外壳构成一个电容器。在电离室的两极加上电压,可以收集放射性射线作用产生的电离电流。根据电离电流的大小可以确定放射性活度。按照被测射线种类不同,电离室可分为α电离室、β电离室和γ电离室。[1]  一种最早的测量核辐射的气体电离探测器之一,早在191—1914年间,就用它成功地发现了宇宙线.最简单的电离室由两块平行板构成,一块接几百至几千伏正高压,一块通过电阻接地.当带电粒子经过时,使两板之间气体电离,正离子飞向阴极,电子飞向阳极.两板上产生感应电荷,在接地的电阻上就形成一脉冲信号.由于电子飞行速度比离子要大三个量级,电子将快速到达阳极,在到达前,由于是正反离子对共同贡献,脉冲上升,随着电子减少和离子被阴极吸收,脉冲慢慢下降,直到正离子被吸收.由此可见,电离室相当于简单的放电线路,不同的电离室就是选择不同的值iPiP设计出来的.如果离子收集时间为+(约为103C秒),电子的]收集时间为-(约为106+C秒),当取时,为离子脉冲H]iP]电离室,它收集了全部电子和离子,可以用它来测量带电粒子的能量.当取-<<+时为电子电离室,它比较快,可]iP]以用来测量带电粒子的强度.但由于它的脉冲辐度与离子对产生地点有关,不能直接用它来测能量.为了把电离室做得又快又能测能量,人们把它改进成屏栅电离室,可以在重离子物理中测量重带电粒子能量并鉴别粒子,也可改进为圆柱形脉冲电离室,既可测能量,又可作记数器.[编辑本段]正文  一、电离室工作原理  电离室是一种探测电离辐射的气体探测器。  气体探测器的原理是,当探测器受到射线照射时,射线与气体中的分子作用,产生由一个电子和一个正离子组成的离子对。这些离子向周围区域自由扩散。扩散过程中,电子和正离子可以复合重新形成中性分子。但是,若在构成气体探测器的收集极和高压极上加直流的极化电压V,形成电场,那么电子和正离子就会分别被拉向正负两极,并被收集。随着极化电压V逐渐增加,气体探测器的工作状态就会从复合区、饱和区、正比区、有限正比区、盖革区(G - M区)一直变化到连续放电区。  所谓电离室即工作在饱和区的气体探测器,因而饱和区又称电离室区。如图11-1所示,在该区内,如果选择了适当的极化电压,复合效应便可忽略,也没有碰撞放大产生,此时可认为射线产生的初始离子对N0恰好全部被收集,形成电离电流。该电离电流正比于N0,因而正比于射线强度。加速器的监测探测器一般均采用电离室。标准剂量计也用电离室作为测量元件。电离室的电流可以用一台灵敏度很高的静电计测量。  不难看出,电离室主要由收集极和高压极组成,收集极和高压极之间是气体。与其他气体探测器不同的是,电离室一般以一个大气压左右的空气为灵敏体积,该部分可以与外界完全连通,也可以处于封闭状态。其周围是由导电的空气等效材料或组织等效材料构成的电极,中心是收集电极,二极间加一定的极化电压形成电场。为了使收集到的电离离子全部形成电离电流,减少漏电损失,在收集极和高压极之间需要增加保护极。  当X射线、γ射线照射电离室,光子与电离室材料发生相互作用,主要在电离室室壁产生次级电子。次级电子使电离室内的空气电离,电离离子在电场的作用下向收集极运动,到达收集极的离子被收集,形成电离电流信号输出给测量单元。  二、电离室的主要性能  (一) 电离室的灵敏度  一般说来,电离室的灵敏度取决于电离室内的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量。由于电离室内的气压近似为一个大气压,那么,也可以说其灵敏度正比于空气体积,因而这个体积又称“灵敏体积”,对于测量照射量(空气比释动能)的电离室,其电流服从下式的规律  或者写为:  式中  SC — 电离室的灵敏度(灵敏因子)  [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]IC[/color][/url] — 电离室的电离电流A  — 照射量率Ckg s(Akg)  V — 电离室的灵敏体积  a — 常数,与电离室的材料和空气密度有关,对于空气等效电离室α≈1.2×10   因此随着电离室体积增大,灵敏度增高。  (二) 电离室的能量响应  如上所述,电离室的响应(灵敏度)正比于空气比释动能率(照射量率),而不受其他影响,例如不应随能量的变化而变化,不应随温度的变化而变化等。但是由于电离室本身不能完全由空气制作,不能完全等同于空气,当辐射的能量改变后,电离室的响应(灵敏度)也随之改变,这种特性称之为能量响应。  对于剂量测量的电离室,能量响应是极为重要的性能参数:而对于剂量监测的电离室虽然也关心能量响应,但不是非常重要。  (三) 电子平衡  在加速器辐射和空气的相互作用中,加速器的光子不能直接引起电离,而是通过光电吸收、康普顿散射和电子对生成作用损失能量,产生次级电子。加速器的初级电子虽然引起电离,但是引起空气电离的主要还是次级电子。加速器光子或初级电子在与物质的作用中首先产生次级电子,而作为电离室,进入电离室空气空腔的次级电子主要在电离室的壁中产生的。由于壁的材料的密度比空气大得多,产生的电子也多,因此随着壁厚的增加,进入电离室空气灵敏体积的次级电子增加,当电离室壁厚增加到一定程度,电离室壁对次级电子的阻挡作用开始明显,并最终使得进入灵敏体积的次级电子和逃出灵敏体积的次级电子相等,我们便称这种状态为“电子平衡”,或称“电子建成”。广义的说,所谓电子平衡,是指进入测量体积元的次级电子能量等于离开该体积元的次级电子能量。当射线的能量高时,次级电子的能量也高,穿透的材料厚度增大,达到电子平衡的厚度也增大。  一般来说,只要包围收集体积空气的材料的厚度大于次级电子最大射程,电子平衡条件就可基本满足。我们稍微详细点分析。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制