当前位置: 仪器信息网 > 行业主题 > >

稳定同位素标记代谢组学分析

仪器信息网稳定同位素标记代谢组学分析专题为您提供2024年最新稳定同位素标记代谢组学分析价格报价、厂家品牌的相关信息, 包括稳定同位素标记代谢组学分析参数、型号等,不管是国产,还是进口品牌的稳定同位素标记代谢组学分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合稳定同位素标记代谢组学分析相关的耗材配件、试剂标物,还有稳定同位素标记代谢组学分析相关的最新资讯、资料,以及稳定同位素标记代谢组学分析相关的解决方案。

稳定同位素标记代谢组学分析相关的方案

  • 高盐水的稳定同位素分析
    该系列文章由三部分组成,本文为第二篇,探讨了 Picarro 分析仪、系统和配件如何确保对具有挑战性的海水和高盐水样品实现准确测量。第一篇文章海水的水稳定同位素测量介绍了多实验室间的研究结果,该研究旨在评估与同位素比质谱 (IRMS) 测量相比,在结果一致性和测量值上,光腔衰荡光谱 (CRDS) 所得测量结果的质量。本篇文章报道了对 CRDS 用于高盐水分析的评估。
  • 激光剥蚀-稳定同位素比质谱在树轮碳同位素分析中的应用
    树轮常用于研究气候变化与环境演变,通过对其稳定同位素的分析,可揭示生态系统碳—水—氮变化特征及相互作用。树木在生长发育中响应环境变化,将环境信息通过水/空气/土壤中的碳、氢、氧转化为树木年轮的同位素比值变化,从而为重建环境变化提供了一份可靠的“档案”。古气候变化研究载体有树轮、石笋、海洋/湖泊沉积物和冰芯等。其中树轮样本具有两大优势:1)定年精确,分辨率可以到年;2)树轮年表的每一部分都可以和其它树木(年表)重叠搭接,能够获取平均值。稳定碳同位素:气孔导度、光合速率氧氢同位素:温度、叶片蒸腾作用
  • 稳定同位素比质谱在食品溯源中的应用
    同位素溯源技术是国际上目前应用于追溯不同来源食品和实施产地保护的有效工具之一,在食品溯源领域有着广阔的应用前景,在国际上纷纷开展此领域的研究。本文着重阐述了稳定同位素比质谱在食品溯源中的应用。
  • 树木年轮原位分析利器—激光剥蚀-稳定同位素比质谱系统
    英国Sercon质谱公司与英国Swansea大学的科学家合作开发了一套激光剥蚀-燃烧-气相分离-稳定同位素比质谱 系统用于树木年轮中的δ 13C的原位分析,以年为单位重构了过去的气候变化情况。这些数据结合EA-IRMS所得到的δ 13C值就可以高分辨的对在生长季节树叶与树干的分馏的情况进行评价,进而可对一年内δ 13C的变化情况进行研究。
  • "食"战演练,稳定同位素技术助力维护餐桌上的粮食安全
    近年来,国内学者利用稳定同位素技术对大米的产地溯源和真实性研究取得了很多成果,其基本原理是不同来源的大米受空间、气候等因素影响,稳定同位素比值表现出不同的组成特征,通常涉及的同位素有C、H、O、N和S等,然后再结合相应的化学计量学模型可以对不同国家或不同地区的大米进行准确判别。白杨*等人总结了近年来在大米产品溯源和鉴定方面的一些研究成果,如下表。
  • 骨生物磷灰石中结构碳酸盐稳定同位素结果的方法相应变化
    Z Metcalfe 等人认为使用几种常用的分析方法,从危地马拉和苏丹的考古骨骼的生物磷灰石中获得稳定的碳和氧同位素值(δ 13 C,δ 18 O)。对于苏丹样品,不同的方法平均产生的δ 13 C值在± 0.1‰之内,δ 18 O值在± 0.7‰之内,样品的热重分析(TGA)采用Linseis的L81。
  • Food Chemistry | 构建中国大米C/H/O稳定同位素的景观图
    近日,浙江省农业科学院,省部共建国家重点实验室、农业农村部农产品信息溯源重点实验室,质量营养所袁玉伟研究员、张永志副研究员为通讯作者,联合数农所盛美玲博士为第一作者,中国水稻所张卫星等为同一作者,首次利用地理环境相似性原理,构建中国大米CHO稳定同位素的景观图和预测模型。该预测模型可以预测水稻稳定同位素的空间分布,从而丰富和补充同位素参考数据库,对大区域范围内的水稻原产地鉴定提供了数据支撑。该篇研究成果发表在《Food Chemistry》。
  • 使用 Agilent VistaFlux 对软骨肉瘤细胞系进行 13C-谷氨酰胺定性代谢流分析
    在缺少动态信息的情况下,代谢组学数据的解读通常十分复杂,这是因为在相应代谢物丰度未发生改变时,某个通路的代谢流可能已经发生显著变化。稳定同位素示踪(定性代谢流分析)的巨大潜力有助于解决这些状况,以便更深入地了解生物系统。在定性代谢流分析中,将稳定同位素示踪剂(通常含有 13C、15N 或 2H)引入生物系统, 导致下游代谢物的同位素模式(同位素异数体分布)发生改变。该方法尤其适用于易于 引入稳定同位素示踪剂的细胞模型,对产生的标记模式及示踪剂掺入动力学的分析将提供对酶功能、途径依赖、基因表达和蛋白功能变化效应的洞察。 Agilent MassHunter VistaFlux 软件旨在设计一套完整的工作流程,帮助科学家进行定性代谢流分析,助于高分辨率准确质量数 TOF 和 Q-TOF LC/MS 数据的处理和可视化。软件提供的工具可进行特征提取、同位素掺入分析、同位素异数体丰度分析、天然丰度校正、统计学分析以及数据在通路中的可视化。
  • Picarro应用系列—— 海水和高含盐量水中稳定同位素的精度测量与准确度优化
    Picarro盐衬管是一种使用简便、价格经济的附件,能够保护Picarro同位素分析仪系统免受汽化器中盐积聚的影响。Picarro水稳定同位素分析系统用于分析离散水样品,由自动采样器(A0325)、高精度汽化器(A0211)和L2130-i或L2140-i光腔衰荡光谱(CRDS)水同位素分析仪组成。这是一种比同位素比值质谱仪(IRMS)更经济、更易用、测样速度更快的解决方案,能够在水文学、海洋科学和古气候学等一系列研究应用中实现精准的同位素测量。
  • 苏鲁造山带洮坑超高压变质岩的地质年代学和稳定同位素研究(英文原文)
    对苏禄造山带桃坑地区超高压榴辉岩和花岗片麻岩进行了锆石U-Pb测年、矿物Sm-Nd等时测年和O、H同位素分析。除了异构18 O损耗露头规模,矿物对氧同位素温度测量表明,在榴辉岩相820到560° C下可得耐火石榴石和锆石,且保存平衡分馏。锆石的超高压变质岩有低δ 18O值-1.3至4.2‰,低于正常的地幔中锆石5.3± 0.3‰。U-Pb不谐合曲线18O贫锆石原岩和变质岩年份分别为770± 23Ma和214± 9Ma。因此,18O贫锆石结晶自中新元古代低18O岩浆,其前驱体在活动裂隙区熔融前经历了高温大气热液蚀变。采用气相色谱-质谱在线技术测定了氢同位素组成和水浓度。结果显示所谓的无水矿物δ D值为-121 - 为58‰,羟基类矿物质的值为-62‰羟基轴承矿物质,与超高压变质火成岩原岩经高温蚀变、重熔后加入大气水相一致。在所谓的无水矿物中,以分子水和结构羟基的形式检测到百万分之百的水,给深层俯冲大陆地壳含水量(除了含水矿物)估算提供了一个重要的依据。一个Gt-Wr-Pl Sm-Nd等时线年代为214± 10Ma,与锆石U-Pb测年和对应的O同位素等时线的结果相吻合。因此,这两个年龄都可以解释为高压榴辉岩相在初次掘出时再结晶的时间。锆石过度生长和Nd-O同位素再平衡的流体呈现过程在这一退行期表现明显。另一方面,对应于石榴石和钾长石中O同位素之间的不平衡状态,得到了一个Gt-Kfs Sm-Nd 等时线164± 11Ma,。这一时期晚于三叠纪碰撞造山运动,因此与大陆俯冲和掘出的过程没有关系,表明碰撞后阶段的流体活动受限制。因此,高变质岩中共存矿物间的O同位素平衡或不平衡状态,为矿物Sm-Nd定年的有效性提供了直接的检验。
  • 质谱流式样本染色后储存于-80℃的稳定性测试
    质谱流式技术利用稳定的金属同位素标记抗体,可以在单细胞分辨率下同时检测超过40个生物学指标,显著提高了对生物样本的分析维度。本文通过测试抗体染色后样本在低温储存后的分群结果,评估质谱流式抗体试剂的使用稳定性,旨在展示Starion星瀚?质谱流式系统及其配套试剂的优异性能。
  • LI-7825应用案例 | 基于CO2同位素研究植物和土壤碳动态
    了解科罗拉多州立大学的Michelle Haddix和Aaron Prairie如何使用LI-7825 CO2同位素/NH3痕量气体分析仪研究植物和土壤碳动态。他们借助LI-7825进行多种实验研究,其中包括植物生长室内的同位素标记实验和培养的土壤微生物实验。
  • 质谱流式系统Starion星瀚?的日内和日间稳定性测试
    质谱流式技术利用稳定的金属同位素标记抗体,可以在单细胞分辨率下同时检测超过40个生物学指标,显著提高了对生物样本的分析维度。本文通过对比Starion星瀚?在不同时间产生的淋巴细胞分群结果,评估其在临床应用场景中的批次间稳定性,并与荧光流式细胞仪(贝克曼库尔特DxFLEX,苏械注准20182400262)的检测结果进行比较,旨在展示Starion星瀚?质谱流式系统的优异性能。
  • CHNS稳定性同位素比值的同时测定
    一次做样,同时测量几个元素的同位素比值,会给同位素比值分析带来极大的方便性。 但是难点在于:1. CNS的含量差异很大,C的含量通常很高,但是N,S的含量通常很低。如果想同时测定这几种元素,需要同位素质谱具有很好的线性范围。2. 燃烧过程中H元素将转化为水,但是水不能直接进入质谱分析,必须是H2的形式。那Elementar是如何解决此难题的呢?请参阅附件中的文件。
  • 北大西洋稳定碳同位素季节性的详细观察
    北大西洋在气候变化中发挥着重要作用,尤其是因为它对二氧化碳的吸收和自然碳的封存非常重要。其地表水中的二氧化碳浓度,随季节和年际时间尺度变化,主要受海气交换、温度变化和生物生产/呼吸的驱动,最终决定了海洋的二氧化碳汇/源功能。稳定碳同位素特征的变异性可以提供进一步的洞察,并有助于提高对表层海洋碳系统控制的理解。在这项工作中,一个光腔衰荡光谱仪(G2131-i)被耦合到一个经典的,基于平衡仪的pCO2系统上,这个系统安装在在北美和欧洲之间的亚极地北大西洋的一个定期航班上。2012年至2014年,在连续测量温度、盐度和fCO2的同时,获得了3年的航面δ 13C(CO2)数据时间序列。我们对二氧化碳和 δ 13C(CO2)进行热驱动和非热驱动分解。对表层海洋δ 13C(CO2)的直接测量使我们能够估计质量流量,以及在海气交换过程中的稳定碳同位素分馏。当大陆架浅层上的二氧化碳质量流量在1–2 mol CO2⋅ m− 2⋅ year− 1和在开阔海域为2.5-3.5 mol CO2⋅ m-2⋅ year-1的范围内,CO2通量同位素特征为:海面的范围为-2.6± 1.4‰,在西部为-6.6± 0.9‰,在开阔海域东部为-4.5± 0.9‰。
  • 硅酸盐矿物氧同位素组成的激光分析
    对于红外激光系统和紫外激光系统, 由于它们加热样品的反应机理完全不同, 决定了它们在稳定同位素地球化学分析中的不同使用范围。根据对CO2 激光系统分析地球化学样品的实践, 发现对结果产生干扰的因素有:(1)石英的粒径效应 (2)微量样品接收电压过低 (3)分子筛的吸附能力 (4)系统中的吸附水 (5)14N19F+对δ 17O 值的影响。由于石英的粒径效应而导致细粒石英(粒径250 μ m)的δ 18O 值偏低, 可以采用不聚焦激光的快速加热法来解决。由于样品量太少而决定了样品气体接收电压过低, 导致δ 18O 值出现系统偏高或偏低, 可以利用校正曲线对结果进行校正。分子筛吸附性能的下降会产生氧同位素的分馏, 因此确定分子筛的使用寿命非常重要。系统中的吸附水利用氟化物试剂预氟化来去除, 重要的是应避免在预氟化的过程中产生大量的HF 腐蚀激光系统的BaF2 窗口玻璃并与部分矿物样品发生反应。
  • 使用 Agilent 4500 系列 FTIR 利用稳定同位素技术评估母乳喂养婴儿的母乳摄入量
    世界卫生组织建议婴儿出生后的前六个月内应通过母乳进行喂养,之后才可摄入其他食物,这一建议与联合国千年发展目标一致。一直以来,婴儿实际母乳摄入量的评估都存在一定的困难,因为传统方法通过称量婴儿进食前后的体重进行的评估比较耗时且可能 影响喂养方式。 20 世纪 80 年代,人们开发出一种使用非放射性氧化氘作为追踪分析物测定婴儿母乳摄入量的方法。在该方法中,由母亲服下氧化氘 ( 2H2O) 药丸,然后取母亲和婴儿的唾液样 品,测量母亲体内 2H2O 同位素的减少量与婴儿体内同位素的含量随时间的变化。氧化氘 随母乳喂养过程传递给婴儿,由此可以测定婴儿摄入的母乳量。 可采用两种分析方法测定唾液中氧化氘的含量:同位素比质谱仪 (IRMS) 和傅立叶变换红外光谱仪 (FTIR)。前一种技术更灵敏,但仪器非常昂贵且需要较强的专业知识才可操作。 FTIR 方法需要消耗大量的氧化氘,但示踪物成本较低,该方法所用仪器的成本也比较低, 且更易于维护。因此,在预算有限的地区优选 FTIR 方法。
  • Picarro同位素分析仪与全自动EOSENSE土壤呼吸室联用,研究土壤N2O,CO2和CH4排放通量
    N2O,CO2和CH4的稳定同位素分析是更好地了解土壤生产和消费途径的宝贵工具。文中,我们介绍了使用两个不同的光腔衰荡光谱仪(CRDS),通过与12个自动土壤通量室联用对N2O,CO2和CH4进行连续稳定同位素分析。
  • 助力碳达峰——莱伯泰科大气甲烷碳氢同位素分析解决方案已准备好
    今年3月23日,我国与欧盟、加拿大共同举办第五届气候行动部长级会议。生态环境部部长黄润秋强调:“十四五是中国实现碳达峰、碳中和的关键时期。中方将采取更加有力的政策措施,制定并实施碳排放达峰行动方案,落实控制二氧化碳排放目标,加大对甲烷等其他温室气体的控制力度,推进全国碳市场建设运行,大力推动低碳技术创新应用,持续推进经济社会发展全面绿色转型。(生态环境部)CH4是大气中仅次于CO2的第二大温室气体。进入工业化时代以来,大气中CH4的浓度相比18世纪增加了近一倍之多(2018年1858 ppb)。因此,了解CH4的形成途径和排放源对于提供有效的CH4控制措施至关重要。 CH4的自然排放源包括湿地土壤、反刍动物消化系统以及自然地质源。而约60%的CH4 排放则归因于人类活动,主要包括能源开采、生物质燃烧、农业(包括水稻种植)、天然气管道输送泄露等。由于各因素贡献率评估相对较为困难,因此需要一种高效的检测手段来准确识别CH4的源和汇。 这其中稳定同位素比质谱仪作为一种强大的示踪工具,有其独特的优势。早期富集大气中CH4 用于测量时,需进行多次“离线”手动气体净化,过程非常耗时。而近年广泛应用“定制化”GC-连续流IRMS自动净化分析技术,使得这一情况得以改善。Sercon开发了与稳定同位素比质谱仪 (CG-2022) 适配的CryoGas多功能气体净化富集装置,这是一款结合GC、低温捕集、热解/燃烧和连续流 IRMS 的商用自动化同位素分析系统,用于对低至大气浓度的CH4-δ 13C、CH4-δ 2H进行高精度、高通量检测。莱伯泰科作为Sercon公司在中国区的代理,在中国长期设立服务网点,为用户提供全面的售后支持及服务,同时还可提供多种稳定同位素比质谱相关配件、耗材。
  • 微量样品中 U 同位素 MC-ICP-MS 测定研究进展
    在核鉴定,核安全和环境应用方面,对铀同位素比值测定因样品之间的同位素差异大,234U和236U的丰度低而具有极大挑战性。在某些应用领域,U含量较少,可以在较低 U 含量下进行工作,并且可以防护。样品引入系统与检测系统的发展使得 MC-ICP-MS 以更高精度分析微量样品成为可能。在此,我们对Elemental Scientifc apex ? 去溶系统、microFAST MC 双环进样流动注射系统以及 Thermo Scientifc NEPTUNE Plus MC-ICP-MS 系统的组合进行评价。该进样系统可以高效处理微量的样品,高效溶剂去除可以极大限度地减少氢化物对236U的干扰。ICP 高效的采样效率通过使用热电公司采样锥实现。热电公司 1013Ω 放大器技术可以实现小离子束更高精度的测量并提供高信噪比和在很宽的线性范围(1 Kcps-30Mcps)内稳定的信号输出。对于纳克量级的低浓缩铀和贫化铀标准,235U 通过 1013Ω 方法技术检测。微量同位素 (234U、236U) 通过具有 RPQ 滤质透镜的 SEM 离子计数器进行检测。对于大约 20 ng 的样品量的样品,微量同位素利用 1013Ω 放大器检测,235U 利用标准的 1011Ω 的放大器检测。为了说明该装置的应用,我们分析了一组环境粒子,使用三个同位素比值作图进行溯源,结果更为可靠。
  • GCMS同位素内标法测定水中多溴二苯醚
    本文使用岛津GCMS-QP2020 NX气相色谱质谱联用仪建立了水中8种多溴二苯醚的测定方法。量取1000 mL水样,加入13C同位素提取内标,经萃取、净化、浓缩定容后加入13C同位素进样内标,上机进行分析,内标法进行定量。实验结果显示:在2~100 µg/L(BDE-209浓度为20~1000 µg/L)浓度范围内校准曲线线性良好,相关系数大于0.999。次低浓度点标液连续进样6次,峰面积RSD%范围在3.84~8.72%之间,精密度优良。加标实验中,加标浓度为5 µg/L(BDE-209浓度为50 µg/L),各组分回收率在88.72~114.94%之间。本方法使用13C标记的同位素内标定量,准确可靠,可用于水中多溴二苯醚的测定。
  • 微量采样方法及锶、铷同位素的高精密分析,在岩石学地质学上的应用
    单晶体的微研磨可产生微克级的固体样品,可用于之后的同位素分析,并得出重要的岩石成因信息。从样品所在位置的上下组织结构在研磨前便可充分评估,因此可得特殊的细节。而这种细节,在大块岩石分析时,不容易被发现。这里,我们提供一种综合方法,可精细分析由微克固体样品精炼得到的ng-量级的Rb、Sr。物理取样技术,是基于电脑数控微钻机器(Micromill),专门用于晶体材料的复杂堆积和生长结构的取样。分离Sr、Rb并用于TIMS和MC-ICPMS分析的化学过程,将分别呈现。这些分析技术也会被评估。虽然耗时久,机械取样、方便溶解、化学分离并TIMS分析,仍是高精密度分析Sr同位素组成的*方法,针对大部分的地质材料,很大范围的Sr浓度、Rb\Sr比及基体类型。应用这些技术,可以得到外部浓度2.S.D,精度为50ppm的负载,3ng的Sr。我们用2个样品,验证了此技术的有效性。*个样品来自智利Panacota火山的<50ka单长石晶体,得出87Sr/86Sr同位素比小至0.00006,在放射性Sr向内生长可被忽略的条件下,可被溶解。第二个样品来自28.4Ma的凝灰岩(Colorado),表明Rb、Sr的同位素稀释测量方法的有效性,并计算87Rb/86Sr,并用于年代校正,以便建立单晶和地带的87Rb/86Sr不同的比率。我们证明,凝灰岩中的黑云母晶体表现出Sr同位素变化超出分析误差范围,因此其晶体的同位素并不平衡,也无法建立等时线年龄。另一方面,我们的同位素稀释测试方法的准确度也被验证,可用于获取Rb-Sr地质学信息,并提供结晶时的87Sr/86Sr的同质性。
  • AMP 选择性吸收 Cs 后进行离子交换分离,使用 ICP-MS/MS 准确测定环境样本中 135Cs 和 135Cs/137Cs 同位素比
    本文使用反应气 N2O,开发出可快速准确稳定测定环境中 ppt级别的 135Cs 和 135Cs /137Cs 同位素比的 ICP-MS/MS 方法,其检出限可以达到 0.01ppt 以下,并将此方法成功应用于核岛第一核电站事故相关的土壤、垃圾和苔藓样品中 135Cs 和 137Cs的准确测试。安捷伦新一代 ICP-MS/MS 平台可以轻松控制所有反应,获得十分精准的同位素测试结果,通过极高的化学分辨能力以及丰度灵敏度,获得极为准确的 Cs 同位素精度比,为核辐射工作者提供了一种更简单高效的研究核污染物鉴别的新示踪物和新测试方法。
  • 用于岩石学和地质年代学的单晶尺度锶和铷同位素的微采样和高精度分析方法(英文原文)
    在岩浆岩中,将单晶微晶化以得到微量的固体样品进行同位素分析,可以从晶体(尤其是长石)中获得重要的成岩信息。由于可以在钻前充分评估样品区域的纹理背景,因此可以获得特殊的细节。在大块岩石尺度上进行分析时,这些信息是未知的或丢失的。在此,我们提出了一种综合的方法来*分析从矿物中提取的微量固体样品中纯化的铷和锶的钠含量。物理采样技术是基于计算机数控(CNC)钻样机(Micromill?),新设计的专门针对复杂增生的采样和增长结构。物理采样技术是基于计算机数控(CNC)钻样机(Micromill分别介绍了用于TIMS和MC-ICPMS分析的Sr和Rb分离的化学方法,并在微钻产生的样品尺寸较小的情况下评估了这些分析技术的性能。物理采样技术是基于计算机数控(CNC)钻样机Micromill机械取样、常规溶出和化学分离,再经TIMS分析,虽然费时,但仍是测定大多数地质材料中Sr同位素组成的最准确和最*的方法,其范围广泛,包括Sr浓度、Rb/Sr比值和基体类型。使用这些技术,可以实现长期的2 S.D.外部精度50ppm的负载尺寸小至3ng Sr。物理采样技术是基于计算机数控(CNC)钻样机Micromill我们用两个例子证明了这些技术的有效性。首先从 50 ka单一长石晶体Parinacota火山(智利)显示,87 Sr / 86锶同位素范围可达0.00006,微量的放射锶可以忽略不计。第二种是来自科罗拉多28.4Ma鱼峡谷凝灰岩,用于演示同位素稀释测量Rb和Sr含量计算87Rb/86Sr的效用,从而对87Sr/86Sr比值进行定年校正,以建立单晶或区域之间87Sr/86Sr的变化。我们证明了鱼峡谷凝灰岩中的黑云母晶体的sr同位素变化远远超过了分析误差,因此所涉及的晶体并不处于同位素平衡状态,不能用来建立等时年份。另一方面,我们同位素稀释测量的精度可以用来测量铷、锶。
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法. 研究发现中国国家标准物质研究中心研制的以铜为基体的标准样品GBW02137(青铜)中Pb同位素组成均一(208Pb/204Pb=37.9661± 0.0005 (2 s), 207Pb/204Pb=15.5770± 0.0002 (2 s), 206Pb/204Pb= 17.7462± 0.0002 (2 s)), 可作为原位微区分析黄铜矿、古钱币等含铜基体样品中Pb同位素组成的外部标准物质和监控样品(QC), 为矿床成因研究提供原位微区的Pb同位素地球化学制约, 亦可为利用古钱币、青铜器等中的Pb同位素来研究矿料来源、古代工艺、文化交流等. 利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 同位素技术在环境和生态上的应用
    由robert Michener 和 Kate Lajtha编辑 自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样, 理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。 从历史视角的方法 每一个不同的元素,制备样品的方法都不一样。稳定同位素分析的目标是使得样品定量的转变成合适的纯气体(比如CO2,N2或者H2等)使得质谱能够分析。硫可以以SO2或者SF6的方法分析。通常,有机样品首先被干燥(或者在60℃的烘箱中或者冷冻干燥),并且被碾压成粉末。样品可以被保存在一个密闭容器中,使得他们保持干燥。如果对样品的碳元素感兴趣,但是样品中含有无机碳的话,样品需要首先被酸化(通常使用1NHCL,即便有很多用户使用稀释的磷酸) 有机样品中的C和N 早起的同位素测定中,大多数研究者使用氧化反应要不就是“离线”或者“在线”,将有机样品燃烧成气体。 现在均转变成在线的方式,通过元素分析仪连接同位素质谱的装置。1-20mg(或者更多)的样品被称量后,用锡纸包好,放在样品盘上。样品会在氧气流中,在高温下燃烧,然后燃烧的气体被氦气流带到吸附阱上进行分离成H2O,N2,CO2等。感兴趣的气体然后被导入到质谱中进行分析。这就是目前所知的连续流分析模式。 碳酸盐和溶解无机碳 无机碳样品与100%磷酸反应在真空下反应,使其完全转化为纯CO2。这使得可以同时分析C13和O18,条件是磷酸是纯的,并且不能有水。 水样中的溶解无机碳,通过酸化水样并且搅拌水样,在部分真空下产生CO2样品,然后分离纯化该气体。该样品制备原则可以被用来制备血液中的生物碳酸盐。 关于上诉样品的最新方法使用了自动的连续流系统。不需要估计瓶子中的碳酸盐,氦气在酸化之前已经代替了瓶子中的所有气体。在一个反应时间之后,CO2气体被转移到样品环中,然后使用氦气做载气导入到质谱中。一个相似的方法使用在水中DIC的测定中。 氨和水中的硝酸盐δ 15N 早期的溶解无机氮分析中,水样中的氨被分离,使用各种蒸汽蒸馏技术或者使用扩散技术等。所有的步骤使得水中的pH变化,然后将氨气被一个酸trap捕获。蒸馏技术比较适合于大量水中含有痕量氨气的情况,可以使用盐水溶液,大概每个样品需要30分钟。一旦氨气被收集在酸阱中,沸石将会用来从溶液中转移出氨气。在所有的方法中,需要小心NH3在每个阶段的收集也纺织分馏。硝态-N可以使用同样的技术蒸馏在使用还原剂将水中的硝酸根还原为氨气。 水中氧 水中氧的分析主要有两种:水平衡法和元素分析仪-同位素质谱法。 水平衡法: 氘: 水平衡法和EA-IRMS方法。 硫: 测定硫的办法,取决于样品的初始状态,核心是将硫转变成SO2还是SF6。 SF6的优势是F只有一个同位素原子,但是技术上转化有点复杂,所以大部分的实验室使用SO2气体。 大部分的方法都是将硫分离出来然后采用氧化硫成溶液中的硫酸盐。硫酸盐可以使用10%的氯化钡转变成BaSO4沉淀。在这里,样品可以氧化为SO2气体并且导入到质谱中进行检测。 连续流的方法:在元素分析仪中,高温下燃烧S,然后进入柱子分离。之后SO2被导入到质谱中进行分析。
  • 采用三价钛还原法分析硝酸盐氮氧同位素-德国元素elementar
    溶解态硝酸盐的同位素分析是环境科学的一个重要应用,与目前的细菌反硝化法和叠氮化镉法相比,新型的三价钛还原法用于硝酸盐同位素分析大大降低了样品预处理的技术门槛。
  • 基于 Orbitrap GC-MS 的非靶向代谢组学
    本项研究展示了新型 Thermo Scientific? Orbitrap? GC-MS 完整非靶向代谢组学工作流程,检测了大鼠模型中的生物标记物,以判定其死亡时间。死亡时间(PMI)推断是法医调查中一项最关键也是最困难的任务,尤其当尸体温度与周围环境温度达到平衡后。由于当前用于确定 PMI 的方法不精确性且以目视检查尸体为主。因此,建立一种实验方法,使用耐用生物标志物推断死亡时间可辅助法医调查。该 GC-MS 装置使用基于 Orbitrap 的检测器,得到超高质量数分辨率、亚 ppm 质量数精度、宽动态范围以及一定的扫描速度,用于有效定量极复杂代谢组学样品。高分辨率、稳定的质量数精度和快速的扫描速度是进行稳定的数据解卷积的关键因素,以检测重叠 TIC 峰中的化合物,进行非靶向代谢组学分析。电子轰击电离(EI)裂解模式也适合基于应用广泛的 NIST 库和 Wiley 库进行匹配,以识别化合物,同时为更深入的表征提供精确质量数。
  • 利用LA-MC-ICP-MS原位微区精确测定硫化物和硫单质中的硫同位素组成(英文原文)
    硫同位素在地球科学的多个领域中是一种重要的地球化学示踪剂。在这项研究中,采用257nm飞秒(fs)和193nm ArF准分子纳秒(ns)激光剥蚀系统结合Neptune Plus MC-ICP-MS,研究了不同基质富硫矿物(硫化物和元素S)中激光和等离子体等离子体诱导的同位素分离法。与ns-LA-MC-ICP-MS相比,在相似的仪器条件下,fs-LA-MC-ICP-MS具有更高的灵敏度(1.4-2.4倍),在相同的信号强度条件下,具有更好的精度(~1.6倍)。此外,与ns激光相比,fs激光对S同位素分离的影响更小,对基质的依赖性更小,瞬态同位素比更稳定。由于更小的粒子尺寸和飞秒激光更低的热效应,使用fs-LA-MC-ICP-MS可以得到更佳的测定结果。这一点可以通过P-S-1(IAEA-S-1压粉球团)和PPP-1(苏霍伊原木矿床中黄铁矿单晶)的剥蚀坑和喷射的气溶胶来证明。在*灵敏度条件下,fs-LA-MC-ICP-MS仍然存在等离子体诱导的同位素分离(基体效应)。然而,针对S同位素分析,在低较低的组成气体流速(0.52-0.54Lmin-1)稳定等离子体条件较*灵敏度条件(0.6Lmin-1)下,基体效应显著降低。这可以归结为粒子不仅在较高的温度下以较低的组成气体流速进入ICP,停留时间更长,从而使粒子雾化效率更高,同时在等离子体中加入4-6mL min-1 N2也能增强稳定性。此外,在稳定的等离子体条件下,对六种不同基体的参考材料使用fs-LA-MC-ICP-MS在20-44 µ m光斑处不使用基体匹配校准进行测定,测定结果与参考值一致。验证了该方法非常适用于在高空间分辨率条件下利用非基体匹配分析提供高质量的硫元素和硫化物原位微区同位数据。
  • 中国大陆科学钻探200-4000 m采集的岩心样品的超高压变质岩氧同位素(英文原文)
    对苏鲁造山带超高压变质岩进行了氧同位素研究。目标样本包括深达200至4000米的各种岩性(主要是榴辉岩和片麻岩),岩性之间有五个连续的岩心段。结果显示矿物成分中的δ 18O的值从10.41-9..63‰不等。榴辉岩和片麻岩频繁交替的岩层中,不同的δ 18O值的变化是渐进的,与岩性无关。石英与其他矿物之间存在平衡和不平衡O同位素分馏现象。需要特别注意的是相邻样本之间δ 18O值与距离之间的关系。结果表明对应于大陆碰撞期间产生的*流体流动性,不同岩性和相同岩性的O同位素在20 ~ 50cm的尺度上存在异质性。在掘出过程中,角闪石逆变质作用引起了部分矿物的矿物反应和O同位素间的不平衡。δ 18O与岩相在榴辉岩和片麻岩接触处存在明显变化,也能反映不同岩相之间流体活动比较活跃。尽管逆行现象普遍存在,但逆行流体在稳定同位素组成中具有内部缓冲作用。逆行液起源于氘核,由结构羟基的减压析出液衍生而来。虽然局部外部流体在断层及岩性变化带存在,但是它仍以内部原始形式存在于被掘出的板岩中。角闪石相后退后也发生了流体流动,但只影响长石和云母的O同位素组成。前元形态学原岩推断异构δ 18O值是由于不同程度的大陆碰撞之前大气水岩相互作用。δ 18O值存在的最低深度可达3300米,大别苏禄造山带地表露头岩石有大面积δ 18O残留,新元古代华南地块北缘至少有6.6万km3的超地壳岩石与大气水相互作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制