当前位置: 仪器信息网 > 行业主题 > >

差示扫描量热同步测定仪

仪器信息网差示扫描量热同步测定仪专题为您提供2024年最新差示扫描量热同步测定仪价格报价、厂家品牌的相关信息, 包括差示扫描量热同步测定仪参数、型号等,不管是国产,还是进口品牌的差示扫描量热同步测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合差示扫描量热同步测定仪相关的耗材配件、试剂标物,还有差示扫描量热同步测定仪相关的最新资讯、资料,以及差示扫描量热同步测定仪相关的解决方案。

差示扫描量热同步测定仪相关的资讯

  • 岛津应用:多层薄膜的可视观察的同步测定
    使用岛津红外显微镜AIM-9000及AIMsolution分析软件,可以在对扫描点进行可视观察的同时,测定该扫描点的光谱。通过可视观察的同步测定可以实时确认各扫描点的图像和光谱。另外,因为AIMsolution分析软件以相同颜色显示各扫描点及其光谱,所以不仅可视觉确认扫描信息,还可以简单地进行大气校正等数据处理和检索操作。 本文向您介绍通过可视观察的同步测定对多层薄膜进行分析的示例。使用AIM-9000、AIMsolution Measurement软件和AIMsolutin分析软件,在每一个操作步骤都可以瞬间获得准确的数据,实现了前所未有的轻松分析。 了解详情,敬请点击《可视观察的同步测定-多层薄膜的透射测定-》
  • 差示扫描量热仪原理简介
    p  差示扫描量热法是在程序控温和一定气氛下,测量流入流出试样和参比物的热流或输给试样和参比物的加热功率与温度或时间关系的一种技术,使用这种技术测量的仪器就是差示扫描量热仪(Differential scanning calorimeter-DSC)。/pp  扫描是指试样经历程序设定的温度过程。以一个在测试温度或时间范围内无任何热效应的惰性物质为参比,将试样的热流与参比比较而测定出其热行为,这就是差示的含义。测量试样与参比物的热流(或功率)差变化,比只测定试样的绝对热流变化要精确的多。/pp  差热分析法是测量试样在程序控温下与惰性参比物温差变化的技术,使用这种技术测量的仪器就是差热分析仪(Differential thermal analyzer-DTA)。DTA是将试样和参比物线性升温或降温,以试样与参比间的温差为测试信号。DTA曲线表示试样与参比的温差或热电压差与试样温度的关系。/pp  现在,DTA主要用于热重分析仪(TGA)等的同步测量,市场上已难觅单独的DTA仪器。/pp  DSC主要有两类:热通量式DSC和功率补偿式DSC。/ppspan style="color: rgb(255, 0, 0) "strong热通量式DSC/strong/span/pp  热通量式DSC是在程序控温和一定气氛下,测量与试样和参比物温差相关的热流与温度或时间关系的一种技术和仪器。热通量式DSC是通过试样与参比物的温差测量流入和流出试样的热流量。/pp  热通量式DSC的测量单元根据所采用的传感器的不同而有所区别。/pp  如下图所示为瑞士梅特勒-托利多公司采用金/金-钯热电偶堆传感器设计的DSC测量单元示意图。传感器下凹的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。热电偶以星形方式排列,以串联方式连接,在坩埚位置下测量试样与参比的温差。试样面和参比面的热电偶分布完全对称。几十至上百对金/金-钯热电偶串联连接,可产生更高的测量灵敏度。传感器的下凹面提供必要的热阻,而坩埚下的热容量低,可获得较小的信号时间常数。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/f02e8309-d24c-4db9-9b02-ba4b239805a5.jpg" title="金_金-钯热电偶堆传感器热通量式DSC测量单元截面示意图.jpg" width="400" height="345" border="0" hspace="0" vspace="0" style="width: 400px height: 345px "//pp style="text-align: center "strong金/金-钯热电偶堆传感器热通量式DSC测量单元截面示意图/strong/pp  如下图所示为美国Waters公司采用的康铜传感器设计的DSC测量单元示意图。康铜是一种铜-镍合金(55%Cu-45%Ni)。康铜与铜、铁、镍/铬等组成热电偶时,灵敏度较高(μV/K较大)。与贵金属铂、金/金-钯等相比,康铜耐化学腐蚀性较差。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/be5eca73-9eb5-41bf-83a6-dd1c6a5325a1.jpg" title="康铜传感器热通量式DSC测试单元示意图.jpg" width="400" height="255" border="0" hspace="0" vspace="0" style="width: 400px height: 255px "//pp style="text-align: center "strong康铜传感器热通量式DSC测试单元示意图/strong/pp  传感器上凸的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。两对热电偶分别测量试样温度和参比温度,测得温差。/pp  热通量式DSC的炉体一般都由纯银制造,加热体为电热板或电热丝。可选择不同的冷却方式(自然或空气、机械式或液氮冷却等)。/pp  热通量式DSC热流的测量/pp  以金/金-钯热电偶堆传感器设计的DSC为例,热流Φ以辐射状流过传感器的热阻 热阻以环状分布于两个坩埚位置下面。热阻间的温差由辐射状排列的热电偶测量。根据欧姆定律,可得到试样面的热流Φ1(由流到试样坩埚和试样的热流组成)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13d50f86-2166-44cc-93f7-4a0dfc48a0e2.jpg" title="DSC-1.jpg"//pp式中,Tsubs/sub和Tsubc/sub分别为试样温度和炉体温度 Rsubth/sub为热阻。/pp  同样可得到参比面的热流Φr(流到参比空坩埚的热流)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/66a68742-b966-4f01-80ea-6940d21e12f9.jpg" title="DSC-2.jpg"//pp式中,Tsubr/sub为参比温度。/pp  DSC信号Φ即样品热流等于两个热流之差:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8b903427-9007-493f-8229-23065fe62ac7.jpg" title="DSC-3.jpg"//pp  由于温差由热电偶测量,因此仍需定义热电偶灵敏度的方程S=V/ΔT。式中,V为热电压。于是得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/54c0c2b1-c913-449b-84db-541255ac821e.jpg" title="DSC-4.jpg"//pp式中,热电压V为传感器信号 Rsubth/subS的乘积称为传感器的量热灵敏度 Rsubth/sub和S与温度有关 令Rsubth/subS为E,E与温度的关系可用数学模型描述。/pp  在DSC曲线上,热流的单位为瓦/克(W/g)=焦耳/(秒· 克)[J/(s· g)],以峰面积为例,热流对时间(s)的积分等于试样的焓变ΔH,单位为焦耳/克(J/g)。/pp  热通量式DSC试样温度的测量/pp  炉体温度Tsubc/sub用Pt100传感器测量。Pt100基本上是由铂金丝制作的电阻。/pp  DSC测试所选择的的升温速率基于参比温度而不是试样温度,因为试样可能发生升温速率无法控制的一级相变。/pp  与热阻有关的温差ΔT对于热流从炉体流到参比坩埚是必需的。该温差通常是通过升高与ΔT等值的炉体温度实现的。炉体温度Tsubc/sub与参比温度Tsubr/sub的时间差等于时间常数τsublag/sub,与升温速率无关。/pp  在动态程序段中,计算得到的温度升高ΔT加在炉体温度设定值上,因而参比温度完全遵循温度程序。/pp  严格来说,试样内的温度与测得的试样坩埚的温度存在微小差别。通过在软件中正确选择热电偶的灵敏度,可补偿该差别。/pp  采用康铜传感器设计的DSC仪器,试样坩埚温度由热电偶直接测量。也需要通过软件中正确选择热电偶的灵敏度,通过修正来获得试样内的温度。/ppspan style="color: rgb(255, 0, 0) "strong功率补偿式DSC/strong/span/pp  功率补偿式DSC是在程序控温和一定气氛下,保持试样与参比物的温差不变,测量输给试样和参比物的功率(热流)与温度或时间关系的一种技术。与热通量(热流)式DSC采用单独炉体不同,功率补偿式DSC以两个独立炉体分别对试样和参比物进行加热,并各有独立的传感装置。炉体材料一般为铂铱合金,温度传感器为铂热电偶。/pp  如下图所示为美国珀金埃尔默公司功率补偿式DSC测量单元的示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c459d34d-d427-453c-acdf-3a462e04e3e4.jpg" title="功率补偿式DSC测量单元示意图.jpg" width="400" height="263" border="0" hspace="0" vspace="0" style="width: 400px height: 263px "//pp style="text-align: center "strong功率补偿式DSC测量单元示意图/strong/pp  由于采用两个小炉体,与热通量式DSC相比,功率补偿式DSC可达到更高的升降温速率。/pp  功率补偿式DSC对两个炉体的对称性要求很高。在使用过程中,由于试样始终只放在试样炉中,两个炉体的内部环境会随时间而改变,因此容易发生DSC基线漂移。/pp  功率补偿式DSC热流的测量/pp  功率补偿式DSC仪器有两个控制电路,测量时,一个控制升降温,另一个用于补偿由于试样热效应引起的试样与参比物的温差变化。当试样发生放热或吸热效应时,电热丝将针对其中一个炉体施加功率以补偿试样中发生的能量变化,保持试样与参比物的温差不变。DSC直接测定补偿功率ΔW,即流入或流出试样的热流,无需通过热流方程式换算。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/4b2384fe-4770-4f1b-af33-e5d731956a4c.jpg" title="DSC-5.jpg"//pp式中,QsubS/sub为输给试样的热量 QsubR/sub为输给参比物的热量 dH/dt为单位时间的焓变,即热流,单位为J/s。/pp  由于试样加热器的电阻RS与参比物加热器的电阻RsubR/sub相等,即RsubS/sub=RsubR/sub,因此当试样不发生热效应时,/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13c863c9-be1e-4808-942f-e0765844b444.jpg" title="DSC-6.jpg"//pp式中,IsubS/sub和IsubR/sub分别为试样加热器和参比加热器的电流。/pp  如果试样发生热效应,则输给试样的补偿功率为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1fa7ba2d-3a0b-4911-a86b-801d2336f395.jpg" title="DSC-7.jpg"//pp设RsubS/sub=RsubR/sub=R,得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/83f06029-71c9-4e13-bf3e-d2c6b64eed1a.jpg" title="DSC-8.jpg"//pp因总电流IsubT/sub=IsubS/sub+IsubR/sub,所以/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/35825b17-b30d-4aa7-9bc8-a8a1ae877397.jpg" title="DSC-9.jpg"//pp式中,ΔV为两个炉体加热器的电压差。/pp  如果总电流IsubT/sub不变,则补偿功率即热流ΔW与ΔV成正比。/ppbr//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongDSC仪器性能评价的重要参数/strong/span/ppstrongDSC仪器的灵敏度和噪声/strong/pp  每个传感器都具有一定的灵敏度。灵敏度是指单位测量值的电信号大小,用每度热电压(V/K)表示。例如,室温时的铜-康铜热电偶的灵敏度约为42μV/K,金-金钯热电偶约为9μV/K,铂-铂铑(10%铑,S型)热电偶约为6.4μV/K。/pp  信号的噪声比灵敏度更加重要,因为现代电子装置能将极其微弱的信号放大,但同时也会将噪声放大。噪声主要有三个来源:量的实际随机波动(如温度的微小波动) 传感器产生的噪声(统计测量误差) 放大器和模-数转换器的噪声。/pp  噪声与叠加在信号上的不同频率的交流电压相一致。因此,对于交流电压,噪声可用均方根值(rms)或峰-峰值(pp)表示。rms值得计算式为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8355adf9-cd1e-46b0-9538-67ac7bd524e4.jpg" title="DSC-10.jpg"//pp式中,n为信号值个数 xsubi/sub为单个信号值 x为平均信号值。/pp  对于正弦振动,pp/rms比为2 (2.83左右) 对于随机噪声,比值为4~5。/pp  灵敏度与检测极限是不同的。检测极限(常误称为“灵敏度”)指可检出的测试信号的最小变化量。检测极限比背景噪声明显要大,如10倍与rms值(或pp值的2倍)。信号和噪声水平决定最终的检测极限。/pp  值得指出的是,通过数学光滑方法可容易地获得低噪声水平,但这样会同时“修剪”掉微弱却真实的试样效应,所以噪声水平低并不一定表示灵敏度高。/pp  TAWN灵敏度最初是由荷兰热分析学会提出的方法,用来比较不同的DSC仪器。TAWN灵敏度测试法测量一个已知弱效应的试样,用峰高除以峰至峰噪声得到的信/噪比来表征DSC仪器的灵敏度。峰高/噪声的比值越高,DSC仪器的灵敏度越好。/ppstrongDSC仪器的分辨率与时间常数/strong/pp  在很小温度区间内发生的物理转变的分辨率(分离能力)是DSC仪器的重要性能特征。分辨率好的仪器给出高而窄的熔融峰,换言之,峰宽应小而峰高应大。/pp  分辨率的表征方法有多种,常用的有铟熔融峰峰高与峰宽比、TAWN分辨率和信号时间常数等。/pp  由铟熔融峰测定的分辨率=峰高/半峰宽,数值越高表明分辨率越好。TAWN分辨率为基线至两峰之间DSC曲线的最短距离与小峰高度之比,数值越低表明分辨率越好。信号时间常数τ定义为从峰顶降到后基线的1/e,即降63.2%的时间间隔。信号时间常数τ是热阻Rsubth/sub与试样、坩埚和坩埚下传感器部分的热容之和(C)的乘积,τ=Rsubth/subC。显然,较轻的铝坩埚可得到较小的信号时间常数。信号时间常数越小,DSC分辨率越好。/p
  • 新升级,新体验,托普叶绿素测定仪全新升级了四大亮点功能!
    植物的叶绿素含量是影响作物生长的重要因素同时也反映了作物的生长状况,因此及时准确地检测作物的叶绿素含量,可以监测植株长势、评估水肥状况。传统测量叶绿素的方法是化学分析法,即将叶片采集到实验室,经化学溶剂萃取,再在分光光度计上测定提取液在2个特定波长处的吸光度,根据公式计算叶绿素含量。该方法费时费力且有损检测,而托普全新升级的TYS-B叶绿素测定仪,能便携无损、快速精准测量植物叶片叶绿素SPAD值,帮助科研人员实时监控作物的营养状态,提升工作效率。一、新升级,新亮点,新体验,四大亮点功能速速揭秘1、无损。仪器采用原位非破坏性测量设计,测量时只将叶片插入并合上测量探头,不需要采摘叶片,不会对植物造成伤害,便于后续观察和研究。 2、准确:仪器内置先进的防强光干扰系统,能有效屏蔽外部光线及环境温度对测量结果的影响,确保数据采集的稳定性和准确性。3、快速:一键测量,快速采集,3秒即可出结果,实时传输至到手机/云端平台。4、清晰:高对比度OLED显示屏,在背光及强光环境下仍可清晰显示数据,有效避免眩光的干扰,让数据更直观,查看更方便。二、良好的数据管理系统,带来更全面的畅快体验1、智能互联功能:支持蓝牙实时传输,仪器/手机APP/云平台实时同步测量数据。(数据的实时传输和同步)2、数据分析可视化:可实现数据、折线图、柱状图等多种形式进行数据分析。3、数据管理:手机/PC端可以实时同步数据,并在科研云平台进行多形式数据监管、实时数据、历史数据查看、数据导出和下载、数据共享功能。(云平台--4.0平台科研助手 可视化数据管理)三、TYS-B叶绿素测定仪,主要的技术参数存储:主机2000条数据,可将数据同步到仪器app无限量保存。便携:仪器体积小,重量轻,室内外使用,便于携带和操作。可移动:内置1.5V干电池*2节,使用简单方便,可连续测量5000次,不受地点限制。低电量提醒:剩余20%时系统会进行提醒,确保仪器不会突然关机。 光源波长:2个LED光源,计算两个波长下透射光亮的比值,即SPAD值。测量参数:SPAD、叶面温度测量范围:叶绿素:0.0-99.99SPAD ;叶面温度:0~50℃ 显示:1.3寸OLED显示屏测量精度:SPAD±1,叶面温度±2,测量精度对标进口品牌测量间隔:2秒无论是在农场、温室还是植物研究实验室,叶绿素测定仪都是您不可或缺的农业助手,立即体验托普TYS-B叶绿素测定仪,开启您的智慧农业之旅!
  • 350万!广东腐蚀科学与技术创新研究院同步热分析仪及差示扫描量热仪等仪器采购项目
    项目编号:0809-2240GDC13014A项目名称:广东腐蚀科学与技术创新研究院同步热分析仪及差示扫描量热仪等仪器采购项目(重招)采购方式:竞争性磋商预算金额:350.0000000 万元(人民币)最高限价(如有):350.0000000 万元(人民币)采购需求: 1、项目内容:序号设备名称数量单项限价(元)1同步热分析仪1套402差示扫描量热仪1套603动态热机械分析仪1套754旋转流变仪1套1752、详细技术参数请参阅“用户需求书”中相关内容;3、采购方式:竞争性磋商;4、经财政部门批准,本项目采购的设备接受进口产品参与投标;5、交付地点:广东腐蚀科学与技术创新研究院(广东省广州市);6、交付时间:合同签订后2个月内完成在用户实验室的到货、安装、调试与最终验收。7、本项目不接受备选方案;报价供应商应对项内所有的采购内容进行报价,不允许只对其中部分内容进行报价。合同履行期限:合同签订后2个月内完成在用户实验室的到货、安装、调试与最终验收。本项目( 不接受 )联合体投标。
  • ACS Nano成果速递:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性
    近期,乔治亚大学研究人员成功使用一种新型组合显微镜对二维材料进行了深入分析,该显微镜能够利用纳米的发光,弹性和非弹性光散射测试二维材料,即实现nano-PL、nano-Raman、s-SNOM的同步测量,并将观测的尺度提升到纳米量。乔治亚大学Yohannes Abate教授与研究生讨论neaspec设备[1] 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中[2]。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下( 100天),他们进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。令人惊叹的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 neaSNOM显微镜特的双光束设计,实现了3种不同测量技术在同一样品点的同步测量。该设计允许在单个显微镜中集成nano-PL / Raman和s-SNOM技术,并保持测量的灵敏度。通过 大程度优化s-SNOM信号,这种组合还可以实现非常快速的光束对准,从而获得 佳的PL和Raman信号。 在neaSNOM设备上,集成不同的纳米光学技术进行的相关分析,为深入探索2D合金奠定了基础,也使得neaSNOM成为了一个电子和发光性质测量的优 秀平台。 参考文献:[1]. Imaging technique provides link to innovative products, Science & Technology, February 4, 2021by Alan Flurry[2]. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457
  • 【实验室动态】QD中国北京实验室引进美国PSC非接触亚微米分辨红外拉曼同步测量系统-mIRage样机
    2020年,QD中国迎来了公司的十六个年头。为满足国内日益增长的红外仪器测试需求,更好的为国内的科研工作者提供专业技术支持和服务,Quantum Design中国子公司北京总部的样机实验室迎来了一个新的面孔——美国PSC公司(Photothermal Spectroscopy Corp., 前身Anasys)非接触亚微米分辨红外拉曼同步测量系统 mIRage。 mIRage 红外拉曼同步测量系统是一个全新的光谱测试系统,基于的光热诱导共振(PTIR)技术, mIRage产品突破了传统红外光谱系统的两大难题:1. 无需接触式的ATR部件及AFM探针技术,即可实现亚微米空间分辨的红外光谱和成像分析;2. 非接触的反射测量模式,提供媲美透射模式的IR谱图质量和标准的谱图数据库,大大简化了样品制备和图谱分析过程,并支持厚样品和液体样品的测试。 图 1. mIRage系统及O-PTIR技术原理示意图mIRage采用可调脉冲式中红外激光器激发样品表面,产生光热诱导热膨胀效应,然后将可见光聚焦到样品上作为“探针”探测产生的光热效应,从而实现快速、简易的样品探测,且不接触样品。基于O-PTIR技术,mIRage可支持多种红外测量模式,包括反射模式下高速的单点(图2 A)和线性扫描红外谱图(图2 B)以及亚微米分辨的单一波长下的高光谱成像(图2 C和D),分析样品目标位置上的化学组成及分布。 图2. mIRage系统数据示例(A)单一纤维不同位置的O-PTIR谱图. (B)高分子薄膜红外线性扫描谱图.(C)多层薄膜单一波长下的高光谱红外成像及谱图. (D) 数据存储单元单一波长下的O-PTIR成像, 用于污染检测 另外mIRage可与拉曼联用,实现同时同地相同分辨率的IR和Raman测试(图3A),无荧光风险;且可选配透射模块(图3B),用于观察液体样品,满足科研工作者的不同测试需求。图3. 血红细胞的O-PTIR和Raman同步谱图测试及成像. (B) 透射模式下观察液体样品(上皮细胞) mIRage非接触式亚微米分辨红外拉曼同步测量系统,可以快速,准确的实现样品亚微米尺度的红外光谱和成像检测,被广泛应用于多层薄膜、高分子聚合物、生命科学(骨头,细胞,头发等)、医药、法医鉴定、缺陷分析、微电子污染、食品加工、地质学及考古和文物鉴定等多种应用领域。更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!
  • 350万!广东腐蚀科学与技术创新研究院同步热分析仪及差示扫描量热仪等仪器采购
    项目概况广东腐蚀科学与技术创新研究院同步热分析仪及差示扫描量热仪等仪器采购项目 采购项目的潜在供应商应在广东华伦招标有限公司网站“供应商在线服务”(http://120.25.193.109/)获取采购文件,并于2022年02月21日 14点00分(北京时间)前提交响应文件。一、项目基本情况项目编号:0809-2240GDC13014项目名称:广东腐蚀科学与技术创新研究院同步热分析仪及差示扫描量热仪等仪器采购项目采购方式:竞争性磋商预算金额:350.0000000 万元(人民币)最高限价(如有):350.0000000 万元(人民币)采购需求: 1、项目内容:序号设备名称数量单项限价(元)1同步热分析仪1套402差示扫描量热仪1套603动态热机械分析仪1套754旋转流变仪1套1752、详细技术参数请参阅“用户需求书”中相关内容;3、采购方式:竞争性磋商;4、经财政部门批准,本项目采购的设备接受进口产品参与投标;5、交付地点:广东腐蚀科学与技术创新研究院(广东省广州市);6、交付时间:合同签订后2个月内。7、本项目不接受备选方案;报价供应商应对项内所有的采购内容进行报价,不允许只对其中部分内容进行报价。合同履行期限:合同签订后2个月内。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:1.报价供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)报价供应商应当是具有独立承担民事责任能力的在中华人民共和国境内注册的法人或其他组织或自然人。以相关行政主管部门核发有效的经营许可或设立证明文件(适用于法人或其他组织,包括但不限于市场监督行政主管部门颁发的营业执照或事业单位登记行政主管部门颁发的事业单位法人证书或民政行政主管部门颁发的社会团体登记证或民办非企业单位登记证书)或身份证明文件(适用于自然人,包括但不限于公安行政主管部门颁发的居民身份证或护照)为准,提供相关证明复印件。2) 报价供应商应当具有良好的商业信誉和健全的财务会计制度。以下列证明之一为准:a.2020年度或2021年度含财务报表的财务(状况)报告或汇算清缴报告(适用于在上一年度前成立的法人或其他组织,年度由连续12个历月构成,从1月1日起至12月31日止);b.最近一期财务报表(适用于在上一年度或本财务年度成立的法人或其他组织);c.存款账户开户银行最近一个月内出具的资信证明(适用于法人或其他组织);d.人民银行出具的个人信用报告(适用于自然人);e.以银行出具保函或专业担保机构出具担保函方式缴纳保证金(适用于法人或其他组织或自然人)。3)有依法缴纳税收和社会保障资金的良好记录(提供报价截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料或提供书面承诺书。如依法免税或不需要缴纳社会保障资金的,提供相应证明材料)。4)具备履行合同所必需的设备和专业技术能力(按报价文件格式填报设备及专业技术能力情况或提供书面承诺书)。5)报价供应商参加政府采购活动前三年内,在经营活动中没有重大违法记录(重大违法记录是指报价供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚,其中较大数额罚款是指该项行政罚款达到规定的应当告知当事人有要求举行听证的权利的金额,如果该行政罚款所属的行业行政部门、行政区域对有要求举行听证的权利的金额不一致的,以金额最低的为准)。如无重大违法记录,以书面承诺为准(可参照报价函相关承诺格式内容)。6)供应商必须符合法律、行政法规规定的其他条件(可参照报价函相关承诺格式内容)。2. 供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间,提供网页截图。(以采购代理机构于报价截止日当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)3. 不得参与同一采购项目竞争的供应商(提供资格声明函)1)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一包组报价或者未划分包组的同一招标项目的政府采购活动。如同时参加,则评审时均作无效报价处理。2)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。4.本项目不允许联合体报价。5. 报名并已获取本项目采购文件。三、获取采购文件时间:2022年01月29日 至 2022年02月10日,每天上午9:00至12:00,下午12:00至17:30。(北京时间,法定节假日除外)地点:广东华伦招标有限公司网站“供应商在线服务”(http://120.25.193.109/)方式:网上获取方式(只接受网上支付)。供应商可在下述日期内登录我公司网站“供应商在线服务”(http://120.25.193.109/)购买招标文件。平台操作相关问题请查询网站“通知公告”栏目(http://120.25.193.109/announce/)中“《供应商操作指南》”(我司咨询电话:020-83172166转834,中招电话为:020-83527049 QQ:2127233298)。售价:¥300.0 元(人民币)四、响应文件提交截止时间:2022年02月21日 14点00分(北京时间)地点:广州市广仁路1号广仁大厦6楼开标室五、开启时间:2022年02月21日 14点00分(北京时间)地点:广州市广仁路1号广仁大厦6楼开标室六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1.我公司可提供纸质招标文件和购买招标文件的电子发票。有需要的供应商成功获取网上招标文件后,可在规定的获取招标文件时间段内到我公司现场(广州市广仁路1号广仁大厦7楼)领取纸质招标文件。购买招标文件的电子发票将以短信方式发送到供应商在我公司平台的预留手机号码。联系人:尹小姐,联系电话:020-83172166转0。招标文件一经售出,概不退还。2.需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》(财库[2020]46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)等。八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:广东腐蚀科学与技术创新研究院     地址:广东省广州市黄埔区开源大道136号B2栋        联系方式:扶老师 020-22309440      2.采购代理机构信息名 称:广东华伦招标有限公司            地 址:广州市广仁路1号广仁大厦7楼            联系方式:李工 020-83172166-826            3.项目联系方式项目联系人:李工电 话:  020-83172166-826
  • 每月可释放1.55万亿微塑料!亚微米红外拉曼同步测量系统,助力东南大学新成果
    导读:近日,东南大学苏宇老师团队和合作者利用非接触亚微米分辨红外拉曼同步测量系统—mIRage研究发现清洁海绵在擦除顽固污渍受磨损时,每月可释放1.55万亿微塑料,这些微塑料可能会污染环境进入食物链。该成果以“Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges”为题,发表于环境领域高水平期刊《Environmental science technology》上。 文中使用的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,因其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量对样品无污染等优势,为本研究提供了关键性技术支持。研究概述:微塑料(MPs)是指小于5 毫米的塑料颗粒,与常见的塑料袋和饮料瓶等塑料制品不同,微塑料常常难以用肉眼观察,而其一旦释放到环境中,就可能会进入食物链,对人体造成未知的健康风险。 日常使用的清洁海绵由三聚氰胺和甲醛的聚合物制成,在使用过程中,会磨损产生环境微塑料纤维(MPFs)。苏宇老师和其合作者购买了三个知名品牌的清洁海绵,反复在不同粗糙度的金属表面摩擦,通过非接触亚微米分辨红外拉曼同步测量系统—mIRage等多种技术手段表征了海绵的结构组成和释放的MPF。结果发现,海绵的密度对微塑料释放有显著的影响,密度越大,微塑料纤维的释放量越少。 实验详情:研究团队使用基于O-PTIR基于光学光热红外全新技术的非接触亚微米分辨红外拉曼同步测量系统—mIRage观察了磨损海绵释放的MPF(直径为7.4 ± 1.2 μm)上的原始聚合物分子结构的变化。获得了亚微米尺度下聚合物的组成和微结构参数。O-PTIR光谱点1 - 4与未磨损海绵的O-PTIR光谱不同。海绵的碳氮双谱带(1558和1506 cm&minus 1)在MPFs(范围从1600到1456 cm&minus 1)中表现出增宽,相对强度略有变化。MPF上1340 cm&minus 1(芳基C-N带)与1558 cm&minus 1(C-N带)的吸收强度之比增加或减少。此外,在磨损海绵的洗涤沃茨中检测到较小的微塑料碎片(3 - 10 μm)(图e),其O-PTIR光谱(图d,点5和6)与长I型MPF(图d,点1)相似。摩擦热不会导致MPF上的聚合物分解,因为海绵磨损期间金属表面的温度升高(从21.5 ° C至24.9 °C)低于三聚氰胺热解引发的阈值(379&minus 387°C。然而,在海绵中存在水和甲醛残留物的情况下,机械能可能通过缩醛胺基团(&minus NH-CH2-NH-)和羟甲基基团(&minus NH-CH2-OH)之间的交替水解和缩合反应,诱导破坏或形成三聚氰胺-三聚氰胺交联。从磨损海绵中释放的微塑料图示。其中 (a)为沉积的海绵磨损颗粒的全景和局部投影图像。(b) 和(c)为S1-S3样品的放大图像(I、II和III型MPF),S4-S6的反射光图像。(d) c和e中位置1 - 6的归一化O-PTIR红外光热光谱。(e)从磨损海绵释放的小微塑料碎片(直径5.8和8.3 μm)的投影、反射光、可见激光和OPTIR光热红外光谱图(1340 cm&minus 1,芳基C-N吸收带)。 基于O-PTIR技术的mIRage产品: 非接触亚微米分辨红外拉曼同步测量系统—mIRage,采用光热诱导共振技术(O-PTIR),突破了传统红外光谱衍射极限,空间分辨率可达500 nm且无散射伪影。创新性的技术使其具备了以下优异的科研级别分析优势:☛ 500nm左右的空间分辨率,无散射伪影;☛ 基本无需样品前处理,样品即放即测;☛ 光源“探针”对样品无污染、无损伤;☛ 可分析固体、液体等多物态样品; ☛ 同时、同位置红外、拉曼光谱共表征,提供相互佐证的分析结果;☛ 光谱表征、光学成像共表征,提供多维度科研分析信息;☛ 微塑料颗粒分析功能,自动搜索微塑料颗粒、自动测量微塑料颗粒尺寸、自动微塑料光谱表征。非接触亚微米分辨红外拉曼同步测量系统—mIRage 样机体验为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,期待与您的合作! 欢迎您通过电话:010-85120277/78、邮箱:info@qd-china.com或扫描下方二维码联系我们。 扫描上方二维码,即刻咨询产品详情!参考文献[1]. Yu Su, Chenqi Yang, Songfeng Wang, Huimin Li, Yiyu Wu, Baoshan Xing,* and Rong Ji. Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. Environ. Sci. Technol. 2024, 58, 10764&minus 10775
  • 技术线上论坛| 11月24日《半导体器件痕量有机污染分析--亚微米分辨红外拉曼同步测量系统》
    报告简介: 半导体器件,尤其是高密度的集成电路,常见的污染莫过于微粒和有机化学品污染。该类污染物常落于器件的关键部位并毁坏器件的功能成为致命缺陷。目前微粒的量度尺寸已经降到亚微米,这种亚微米的小尺寸污染检测与鉴别尚未有高效准确的表征手段。有机化学品污染以多种形式存在,如人的皮肤油脂,净化室空气,机械油,清洗溶剂等。如何在凹凸不平的集成电路微区里发现并鉴定有机化学品污染,提升器件良品率,已成为众多科研工作者的研究课题。传统的傅里叶变换红外光谱FTIR/QCL一直是半导体器件污染的常用表征手段,但该技术在关键问题的表征上存在一些局限性,例如空间分辨率(10-20 μm) 较差和对10 μm的样品测试灵敏度较低、坚硬的金属界面可能会损坏ATR探针、以及污染出现在凹凸/狭隙内,使得ATR接触式测量难以实现。所以,如何在亚微米分辨率别和非接触条件下,实现芯片/半导体器件的有机缺陷和污染物的识别和表征是非常重要以及创新的一种手段。PSC (Photothermal Spectroscopy Corp. )公司研发的亚微米分辨红外拉曼同步测量系统mIRage将特的光学光热红外(O-PTIR)技术与同步拉曼光谱技术相结合,直接解决了上述挑战。该系统具有500 nm的亚微米红外空间分辨率、非接触无损测量、免样品制备、高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度)、商业数据库检索匹配等优点,已广泛应用于半导体/芯片器件的痕量有机污染分析。在本次讲座中,我们将以半导体污染物的分析检测为例,深入探讨传统FTIR和mIRageTM O-PTIR显微光谱技术的区别和特点,并通过一系列非常有挑战性的样品测试结果和分析来展示红外+拉曼同步显微光谱技术的特功能与优势, 希望对您的研究工作有所帮助。 直播入口:您可以通过扫描下方二维码直接进入直播界面,无需注册。扫码预约观看报告时间:2021年11月24日 14:00 主讲人:赵经鹏 博士赵经鹏,博士,毕业于法国科研中心,主要研究方向为高分子聚合物及纳米材料物化性能表征等相关研究工作,在Quantum Design中国公司负责非接触亚微米分辨红外拉曼同步测量系统(mIRage)和台式X射线精细结构吸收谱(easyXAFS)等相关产品的技术支持及市场拓展等工作。技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 炸裂舞台!7月31日 DSC差示扫描量热新技术发布会,梅特勒托利多带来革新体验
    热分析技术,作为一种在程序控制温度下测量物质物理性质与温度之间关系的方法,被广泛应用于化工、冶金、地质、建材、燃料、轻纺、食品、生物等多个领域。它不仅能够快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,还为无机、有机及高分子材料的物理及化学性能研究提供了重要手段。回溯历史,梅特勒托利多于1964年便成功推出世界上第一台商品化的同步热分析仪TA1。它的问世标志着热分析技术从实验室走向工业应用,成为推动科学进步和工业发展的重要力量。经过六十年的不断发展和创新,梅特勒托利多已在热分析技术领域取得了举世瞩目的成就。2024年7月31日,梅特勒托利多将重磅推出差示扫描量热仪DSC 5+,并于仪器信息网视频号独家播出。DSC 5+不仅继承了前代产品的优秀基因,更在性能、易用性和智能化方面实现了全面升级。这款采用双引擎设计的差示扫描量热仪,将为用户带来前所未有的分析体验,推动热分析技术迈向新的高度。梅特勒托利多DSC5+热分析超越系列品牌:梅特勒托利多型号:DSC5+活动亮点:&bull 新品揭幕:DSC 5+首次公开亮相,展示其在性能、易用性和智能化方面的卓越表现。&bull 技术分享:梅特勒托利多的技术专家将深入解析DSC 5+的技术特点和应用优势,为用户带来前沿的科技知识。&bull 互动体验:现场设置互动环节,让用户亲身体验DSC 5+的操作流程和分析效果,感受科技带来的便捷与高效。&bull 行业交流:邀请来自材料科学、化学工程、生物医学等领域的专家学者和企业代表共同探讨热分析技术的最新进展和未来趋势。活动日程:时间内容主讲人职务 14:00-14:02开场曲雯清品牌合作伙伴主持人14:02-14:12梅特勒托利多线下路演、公司介绍14:12 -14:15热分析技术的创新基因 Jonathan McManus梅特勒托利多热分析业务全球负责人 14:15-14:35热分析技术的创新历程祁锋梅特勒托利多热分析业务高级经理14:35-15:15双擎量热,革新体验——差示扫描量热仪DSC 5+新品介绍李雄梅特勒托利多热分析业务产品市场及应用主管15:15-15:20DSC 5+ 技术展示Matthias Wagner 梅特勒托利多热分析业务集团产品经理 15:20-15:25DSC 5+ 新品揭幕仪式及真机演示15:25-15:28产品宣传视频15:28-15:30活动结束曲雯清品牌合作伙伴主持人报告人简介李雄,博士,梅特勒托利多热分析部门产品市场及应用主管。于2011年郑州大学获工学学士学位,2017年东华大学获工学博士学位,期间CSC国家公派留学马德里康普顿斯大学,2018年入选上海市青年科技英才扬帆计划。长期致力于高分子新材料的研发,以及材料热分析技术的研究。在国际顶级学术期刊发表SCI论文20余篇,以第一作者的TOP期刊论文6篇(合计影响因子50)。现于梅特勒托利多热分析部门从事各行业新材料的热物性研究、热分析技术的高阶与前沿应用。报告摘要主要介绍:DSC 5+的基本原理和特色、差异化技术特点、解读高度自动化模块、新品应用及给客户带来的价值
  • 基础医学院差式扫描量热仪结果公告(合同包 1 )
    一、项目编号:[350300]ZMGC[CS]2022002二、项目名称:基础医学院差式扫描量热仪三、采购结果合同包1:供应商名称供应商地址中标(成交)金额厦门联信诚有限公司中国(福建)自由贸易试验区厦门片区华昌路132号B1-1办公楼8楼A区398,500.00元四、主要标的信息合同包1(基础医学院差式扫描量热仪的合同包1):货物类(厦门联信诚有限公司)品目号品目编号及品目名称采购标的品牌规格型号数量单位单价(元)金额(元)1-1生物、医学样品制备设备差示扫描量热仪TADSC251台398,500.00398,500.00五、评审专家名单:采购人代表:林伟评审专家:陈剑雄 、 王雪容六、代理服务收费标准及金额:代理服务费收费标准:1、招标代理服务费按差额累计法计算收取(具体缴纳比例为:30万以下的部分1800元缴纳;中标金额在30万—100万元的部分按0.6%缴纳)。2、中标服务费缴纳账户:开户名—福建正茂工程造价咨询有限公司莆田分公司,开户行—中国建设银行股份有限公司莆田分行,账号—35001632433052516383。3、评审专家劳务报酬由采购人支付,评审专家劳务报酬的标准按《莆田市财政局转发福建省财政厅关于规范福建省政府采购评审专家劳务报酬标准的通知》(莆财购[2017]20号)执行。代理服务费收费金额:合同包1基础医学院差式扫描量热仪的合同包1:2391元收取对象:中标(成交)供应商七、公告期限自本公告发布之日起1个工作日。八、其他补充事宜3家供应商均通过资格性及符合性审查,为合格供应商。九、凡对本次公告内容提出询问,请按以下方式联系。1.采购单位信息名称:莆田学院地址:莆田市城厢区学园路兴安新村36号联系方式:159387304012.采购机构信息名称:福建正茂工程造价咨询有限公司地址:福建省莆田市城厢区龙桥街道荔城中大道2576号二层联系方式:150800904323.项目联系方式项目联系人:潘玲玲电话:15080090432福建正茂工程造价咨询有限公司2023年03月23日
  • 英国科学家将差示扫描量热法与热显微镜相结合 用于分析材料的能量变化和光学特征
    英国哈德斯菲尔德大学的Gareth Parkes博士和英国Linkam Scientific Instruments的Duncan Stacey将差示扫描量热法与热显微镜相结合,用于分析材料的能量变化和光学特征。用于本研究的设备的标记照片。 A) 光学 DSC450,b) Linkam 成像站(立体显微镜),c) 高分辨率数码相机,d) 运行 LINK 的 PC,e) 控制器单元,f) 液氮泵单元,g) 触摸屏控制和 h) 液氮储罐© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353了解材料在不同条件下的行为方式对于优化它们在几乎所有应用中的使用至关重要,从工业聚合物到药物研发。热显微镜等热分析方法使研究人员能够观察材料在反应过程中的光学和物理转变。通过集成其他技术,例如差示扫描量热法(DSC),还可以测量能量变化(焓)。DSC是最广泛使用的热分析技术之一,用于测量与材料热转变相关的温度和热流。虽然它可以用来测量几乎任何随着能量变化而发生的反应,但DSC是非特异性的。因此,它必须与其他方法(如热显微镜)结合使用,以直接观察相变,如固-固转变以及聚变反应和分解。尽管结合DSC和热显微镜具有明显的优势,并且可以使用集成这两种方法的系统,但令人惊讶的是,使用同步DSC热显微镜分析各种材料的研究很少。数码显微镜质量的提高和实验室可用计算能力的提高可能会在未来几年引起人们对这项技术的更大兴趣。由Gareth Parkes博士领导的英国哈德斯菲尔德大学热方法研究中心(TMRU)的研究人员研究了将热通量 DSC板结合到热台中以允许对同一样品进行DSC-热显微镜测量的使用,同时。在本文中,我们探讨了这项技术在获取有关各种材料的光学和焓性质信息方面的优势——这些材料的选择是基于它们显示出光学跃迁和/或能量变化并涵盖广泛的系统这一事实。新型热系统在本研究中,最近引入的DSC-热显微系统用于研究硝酸铷的相变和聚乙烯的氧化。这是第一次在同一仪器上使用DSC和热显微镜分析这些材料。光学DSC450系统包括一个集成到热台中的热通量DSC板、一个T96-S温度控制器单元和LINK软件(如上图所示)。该系统在-150至450°C的温度范围内运行。热显微成像是通过与立体显微镜耦合的高分辨率数码相机获得的。聚合物的热稳定性聚乙烯为了更好地了解聚合物材料的氧化降解及其对高温稳定性的影响,TMRU小组对超高分子量聚乙烯 (UHMWPE)进行了氧化诱导时间(OIT)实验。采用光学DSC450系统将样品温度控制在30-205°C之间,并在惰性氮气气氛下分析OIT效应,然后在等温期间切换到干燥空气。在起始温度Tonset 109.9°C时观察到UHMWPE的熔化(如下图左所示),DSC曲线表明放热氧化的开始。同时使用热显微镜,光学显微照片能够以光学方式观察这些过程并与DSC曲线相关联。随着氧化降解的开始,研究人员可以看到液态聚合物熔化后表面质地的变化。OIT测试显示了预期的DSC曲线,但在氧化开始时发生的表面形态细微变化的其他信息通过光学方式揭示。正在对超高分子量聚乙烯(UHMWPE)样品进行氧化诱导试验。DSC曲线(蓝色实线)和温度程序(红色虚线)已绘制为时间的函数。垂直线表示气体何时从N2切换到空气。选定的显微照片(标记为t0和 a-c)链接到 DSC配置文件© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353使用DSC450(Linkam Scientific)分析硝酸铷。差示扫描量热法(DSC)(下)和感兴趣区域 (ROI)强度(上)曲线绘制为温度的函数。选定的显微照片(标记为a、b)链接到DSC和ROI配置文件© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353可视化相变硝酸铷显示出多种多晶型转变的材料通常是有用的温度校准标准,因为它们能够覆盖很宽的温度范围。在这项研究中,该小组评估了硝酸铷的多晶型转变,这是一种在150-280°C温度范围内具有三种不同固态转变的材料。 DSC曲线显示三个峰对应于固-固转变,最终峰对应于样品熔化(如上图左所示)。来自热显微镜的相应感兴趣区域(ROI)轮廓显示与由样品反射光强度(RLI)变化引起的一系列步骤相同的转变。这些结果表明,当样品保持无色时,在辨别相变时,将热显微术中的RLI与DSC结合使用的好处。TMRU的小组还使用DSC450研究了低温校准标准,阐明了温度循环对材料的影响。未来的应用本研究中的实验证明了DSC和热显微镜的互补性,以及同时热分析在揭示某些材料的复杂热过程方面的好处。DSC-热显微术可以在材料研究中提供更丰富的信息,因为光学图像有助于解释通常复杂和重叠的DSC曲线。预计该技术将在聚合物和制药领域变得越来越流行。TMRU的研究小组目前正在探索DSC450的独特设计是否有助于通过光学手段研究材料的导热性。
  • 日本电子全球同步升级热场发射扫描电镜
    2007年2月9日,日本电子全球同步升级热场发射扫描电镜。型号由原来的7000F升级为7001F。升级后马达台五轴马达控制成为标准配置。配合长寿命浸没式热场发射电子枪等诸多专利技术,成为日本电子株式会社电子光学仪器中的又一亮点。
  • 前沿科技 | 全新亚微米红外&拉曼同步测量关键技术助力多层薄膜内部组成分析
    包装薄膜材料常使用传统红外光谱进行表征,但传统FTIR通常只能测单一红外光谱,不具备样品红外光谱成像功能或成像空间分辨率受红外波长限制,高也仅为5-10 μm。在实际应用中,层状材料越来越薄,这对常规FTIR技术的空间分辨率提出了大的挑战。 全新光学光热红外光谱技术光学光热红外光谱技术(O-PTIR)可在非接触反射模式下对多层薄膜进行亚微米的红外表征,同时探针激光器会产生拉曼散射,从而以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像。基于光学光热红外光谱技术的非接触亚微米分辨红外拉曼同步测量系统的工作原理是:光学光热红外光谱技术通过将中红外脉冲可调激光器与可见探测光束结合在一起,克服了红外衍射限。将红外激光调谐到激发样品中分子振动的波长时,就会发生吸收并产生光热效应。如图1所示,可见光探针激光聚焦到0.5 μm的光斑尺寸,通过散射光测量光热响应。红外激光可以在一秒钟或更短的时间内扫过整个指纹区域,以获得红外光谱。图 1. 非接触亚微米分辨红外拉曼同步测量系统 红外和拉曼光谱的光束路径示意图。 红外&拉曼同步测量传统的透射红外光谱通常不能用于测量厚样品,因为光在完成透射样品之前会被完全吸收或散射,导致几乎没有光子能量到达检测器。由于光学光热红外光谱技术是一种非接触式技术,因此非接触亚微米分辨红外拉曼同步测量系统可以对较厚的样品进行红外测量,大地简化了样品制备过程,提升了易用性。在图2中,作者使用非接触亚微米分辨红外拉曼同步测量系统针对嵌入环氧树脂中的薄膜样品横截面进行了分析。图2线阵列中各点之间的数据间隔为500 nm。 由于非接触亚微米分辨红外拉曼同步测量系统与传统FTIR光谱具有好的相关性,因此可以使用现有的光谱数据库搜索每个光谱。对红外光谱的分析对照可以清楚地识别出不同的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。图 2.上:薄膜横截面的40倍光学照片;中:红外光谱从标记区域收集;下:同时从标记区域收集拉曼光谱。 化学组分分布的可视化成像当生产层状薄膜时,产品内部的化学分布是产品完整性的重要组成部分。非接触亚微米分辨红外拉曼同步测量系统特地实现了高分辨率单波长成像,以突出显示样品中特定成分的化学分布。非接触亚微米分辨红外拉曼同步测量系统可以在每层的特吸收带处采集图像,以此实现显示层的边界和界面的观察。图3展示了多层膜截面的光学图像。从线阵列数据可以看出,中间位置存在一个宽度大约为2 μm的区域,该区域与周围区域的光谱差异很大。红色光谱显示1462 cm?1处C-H伸缩振动显著增加。图3. 上:薄膜截面的40倍光学照片;下:标记表示间距为250 nm的11 μm线阵列。红外单波长成像使我们能够清晰地可视化层状材料的厚度和材质分布,如图4所示。从图像中可以看出,非接触亚微米分辨红外拉曼同步测量系统红外显微镜可以在非接触状态下进行反射模式运行,以佳的空间分辨率提供单波长图像。图4. 红外单波长成像层状材料的成分分布。 总结通过同时收集红外和拉曼光谱,科学家发现非接触亚微米分辨红外拉曼同步测量系统可被广泛用于分析各种多层膜。收集的光谱与传统的FTIR光谱显示出 99%相关性,并且可以在现有数据库中进行搜索。此外,使用非接触亚微米分辨红外拉曼同步测量系统进行单波长成像可实现亚微米分辨率样品中组分的可视化。通过该技术,我们可以更好地了解薄膜材料的整体构成。总体而言,非接触亚微米分辨红外拉曼同步测量系统次提供了可靠且可视化的亚微米红外光谱,目前它已在高分子、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境、物证分析等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。
  • 差示扫描量热仪的扩展
    p  差示扫描量热仪除常规的热通量式DSC和功率补偿式DSC外,还有数种特殊的应用形式。/ppstrong超快速差示扫描量热仪/strong/pp  超快速DSC是最新发展起来的创新型快速差示扫描量热仪,采用动态功率补偿电路,属于功率补偿式DSC的一类。/pp  瑞士梅特勒-托利多公司于2010年9月推出了世界上首款商品化超快速差示扫描量热仪Flash DSC(中文名称:闪速DSC)。升温速率可达到2400000K/min,降温速率可达到240000K/min。/pp  闪速DSC的心脏是基于微机电系统(micro electro mechanical systems-MEMS)技术的芯片传感器,传感器置于有电路连接端口的陶瓷基座上。如图所示为闪速DSC芯片传感器和测量原理示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/b5b7573d-a532-4a86-95d9-b7ec0e2ba93d.jpg" title="闪速DSC芯片传感器和测量原理示意图.jpg" width="400" height="325" border="0" hspace="0" vspace="0" style="width: 400px height: 325px "//pp style="text-align: center "strong闪速DSC芯片传感器和测量原理示意图/strong/pp style="text-align: center "1.陶瓷板 2.硅支架 3.金属连线 4.电阻加热块 5.铝薄涂层 6.热电偶/pp  试样面和参比面各有电阻加热块,加热块由动态功率补偿控制。补偿功率即热流由排列于样品面和参比面的各8对热电偶测量。热电偶呈星形对称排列,可获得平坦和重复性好的基线。样品面和参比面由涂有铝薄涂层的氮化硅和二氧化硅制成,可保证传感器上的温度分布均匀。传感器面厚约2.1μm,时间常数约为1ms,可保证快速升降温速率下的高分辨率。/pp  在常规DSC中,为了保护传感器,将试样放在坩埚内测试,坩埚的热容和导热性对测量有显著影响。典型的试样质量为10mg。在闪速DSC中,试样直接放在丢弃型芯片传感器上进行测试。试样量一般为几十纳克(ng)。由于试样量极小,必须借助显微镜制备试样。/pp  闪速DSC能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,如在注塑过程中快速冷却时出现的结构 极快的升温速率可缩短测量时间从而防止结构改变。不同的降温速率可影响试样的结晶行为和结构,因此闪速DSC是研究结晶动力学的很好工具。闪速DSC在其升、降温低速段可与常规DSC交叠,如闪速DSC的最低升温速率为30K/min、最低降温速率为6K/min。因此,闪速DSC与常规DSC可互为补充,达到极宽的扫描速率范围。/ppstrong高压差示扫描量热仪/strong/pp  将DSC炉体集成于压力容器内,可制成高压差示扫描量热仪。高压DSC一般有3个气体接口,各由一个阀门来控制:快速进气口用来增压 炉腔吹扫气体入口用于进行测试过程中的气流控制 气体出口用于进行压力控制。测试炉内的实际压力由压力表显示。通过压力和气体流量控制器,可实现静态和动态程序气氛下的精确压力控制。/pp  加压将影响试样所有伴随发生体积改变的物理变化和化学反应。在材料测试、工艺过程开发或质量控制中,经常需要在压力下进行DSC测试。高压DSC仪器扩展了热分析的应用。/pp  压力下进行DSC测试可缩短分析时间,较高压力和温度将加速反应进程 可模拟实际反应环境,在工艺条件下测试 可抑制或延迟蒸发,将蒸发效应与其他重叠的物理效应及化学反应分开,从而改进对重叠效应的分析和解释 可提高气氛的浓度,加速与气体的多相反应速率 可在特定气氛下测量,如氧化、无氧条件或含有毒或可燃气体(如氢气) 可通过不同压力下的实验,更精确地测试吸附和解吸附行为。/ppstrong光量热差示扫描量热仪/strong/pp  光量热组件与DSC结合,可生成DSC光量热仪,测量材料在不同温度下用一定波长的光照射引发固化反应所产生的焓变。主要应用于材料的光固化领域,测试光引发的反应。可用于研究各种光敏材料的光效应,如光活性固化过程、光引发反应以及紫外线稳定剂影响、加速测试或老化研究中聚合物稳定性的光强度效应。/pp  如图所示为光量热DSC仪光学部分的示意图。光源一般为紫外线,也可为其他光源,如可见光。通过遮光器的开闭来控制光照时间,光强度由光源控制。光由光纤透过石英炉片(用作炉盖)照射到试样和参比坩埚上,由DSC传感器测量固化反应焓。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/2da48264-bd5e-4dc3-8c3f-1cea1d15ca90.jpg" title="光量热DSC系统的光学设计示意图.jpg" width="400" height="421" border="0" hspace="0" vspace="0" style="width: 400px height: 421px "//pp style="text-align: center "strong光量热DSC系统的光学设计示意图/strong/ppstrong差示扫描量热仪显微镜系统/strong/pp  DSC与装备有摄像技术的显微镜的结合可生成DSC显微镜系统,在DSC加热或冷却过程中可对试样进行光学观察,得到与DSC测试同步的图像信息。这种图像信息对于DSC测试到的现象作出精确的解释往往非常有用,而且显微镜能对极少或无焓变的过程摄录信息,达到极高的测试极限。/pp  典型的应用有粘合剂或固体涂料的流延性测试,薄膜或纤维收缩的光学观察,药物或化学品从溶液结晶、热致变色、汽化、升华及安全性研究,食物脂肪和食用油的氧化稳定性、与活性气体的反应,等等。/ppstrong温度调制式差示扫描量热法/strong/pp  DSC的传统温度程序是以恒定的速率将试样升温或降温。温度调制式差示扫描量热法的升温速率以更复杂的方式变化,是在线性温度程序上叠加一个很小的调制温度。/pp  典型的温度调制式DSC方法有等温步阶扫描法、调制DSC法和随机调制DSC法3种。/pp  等温步阶扫描法的温度程序由一系列等温周期步阶组成。调制DSC方法的温度程序为在线性温度变化上叠加一个周期性变化(通常为正弦)的调制,也可叠加其他调制函数(如锯齿形)。随机调制DSC为最先进的温度调制式技术,它的温度程序是在基础线性升温速率上叠加脉冲形式的随机温度变化。/pp  温度调制技术的优势在于可将热流分离为两个分量,一个对应于试样的比热容,另一个对应于所谓的动力学过程,如化学反应、结晶过程或蒸发过程等。/p
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。非接触式亚微米分辨红外拉曼同步测量系统
  • 赛普环保发布BOD快速测定仪新品
    新型SPN BOD-220A快速测定仪 ------低浓度地表水BOD检测的创新与突破? 自我公司220系列微生物电极法BOD快速测定仪问世以来,得到广大用户的支持与信任,在此向所有支持过我们的行业专家、提出宝贵意见的产品使用老师表示由衷的感谢!产品发展历程2002年推出半自动BOD快速测定仪2006年推出24位全自动型BOD快速测定2010年推出便携式BOD快速测定仪2012年完成全系列产品的品质提升及性能优化用户意见及反馈我公司对用户反馈的BOD快速测定仪产品本身及使用中遇到的问题进行了总结归纳,集中在以下几方面1、地表水监测数据偏低,特别是冬季低温环境下地表水BOD测定值甚至为零。(自主研发的溶氧补偿电极:能同步测量溶氧绝对值和溶氧变化值,校正了以往测样过程中水样溶解氧过饱和所带来的测量误差,从而消除待测水样中溶解氧绝对值变化的影响。更有效的保证了BOD测量结果的准确性)备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。2、微生物膜活化需要更加快捷,同时使用人需要仪器更加快速响应。(专用生物膜弹性支撑装置: 加快了微生物膜的活化效率,缩短生物膜的上机活化时间;独特的结构设计消除了测样时气泡等带来的负面干扰,同时溶氧绝对值更高,从而有效提高了测量精度以及稳定性。)3、电脑控制软件的设置及操作需要更加简便(更美观的外观设计,操作更方便。七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作)4、微生物传感器改用固态导电凝胶替代Kcl电解液,响应速度不变,性能更加稳定,延长电极使用寿命(专利号:ZL 2014 2 0278587.8)5、全新的智能操作软件,可兼容WIN7~WIN10系统,具有故障报警功能,降低意外故障对仪器造成的损失6、定位系统采用光耦和伺服电机闭环系统,保障进样时更稳定的性能及更高的精度,按顺序采样,样品无遗漏7、加装气体质量流量传感器,实时监测气体流量,确保进气量恒定;并实现了气量流量异常报警实时反馈。 处理方案:(根据上述反馈的情况和建议,我公司从检测原理上的完善、微生物筛选及成膜技术、零部件的质量性能提高、软件的人性化及用户体验等诸方面进行了改进。)第一、地表水测定值的原因分析及解决方案 经我公司技术人员分析研究,造成地表水BOD测量数值偏低的最主要的原因在于样品中的溶解氧高于清洗缓冲液中的溶解氧,这是BOD快速测定仪的测量原理不同于传统五日生化法之所在。 五日生化法是计算待测水样中消耗的溶解氧,而微生物电极快速测定法是以清洗缓冲液中的溶氧水平为基准,因此待测水样的溶氧水平会影响微生物传感器的BOD测量精度。原来以前的研究认为,通过气泵曝气可以保证进入微生物传感器的样品中溶解氧可以保持恒定,现经分析发现:当待测水样溶氧偏低时由于仪器有气泵曝气,不影响BOD测量精度;但是当待测水样中溶解氧偏高甚至过饱和时,一般需经过长时间回温才能消除,气泵曝气未能消除过高的溶解氧、而过高的溶解氧会给微生物传感器叠加一个溶氧变化值,给BOD的测量带来负偏差,这就是地表水BOD测定值偏低的根本原因。解决方案: 据此,我们在微生物传感器前增加了一只溶解氧电极,待测水样先进入溶氧电极的流通池再进入微生物传感器的流通池,将待测水样的溶氧绝对值及与清洗缓冲液间的溶氧差值作为函数变量对微生物传感器所测BOD值进行修正,大量实验数据表明,经过修正仪器的BOD测定值与五日生化法数据更为接近,突破了低浓度地表水的BOD测定的瓶颈。建立的修正函数关系表述如下:BOD(修正值)=F(DO) +F(ΔDO)+ BOD 备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。 F(DO)-----根据待测水样溶氧绝对值建立的修正函数 F(ΔDO)------根据待测水样中溶氧与清洗缓冲液的溶氧之差值建立的修正函数 BOD------微生物传感器的BOD实测值 原理示意图新型BOD快速测定仪的原理流程如(图一)所示:其中器件8为突破创新点--流通式溶解氧测量装置。第二、微生物菌种的培养及制膜工艺优化根据用户意见,我公司通过长期探索,使用BOD专用菌种,通过与国家级科研院所合作,采用高通量筛选技术,菌种制备中 ,改进了微生物培养的培养基质、乳化剂材料、分离及干燥工艺,通过先进的克隆制备技术和转接种技术,使新的微生物菌种既具备高效的生化降解能力,又具有良好的耐毒性抗干扰适应性, 同时制订相关技术路线和批次检验方法标准,有效保证菌株的有效性和一致性。在微生物膜的制备中采用比浊分光检测技术控制菌量,保证了微生物膜中菌量的一致性。另外通过二次低温冷冻干燥,保证微生物膜可长期保存,微生物的复水活化率达到98%以上, 微生物膜的活化时间也大为缩短,现仅需两天左右 测量稳定性及使用寿命亦有所提高。第三、零部件性能提高 1、液量控制: 所采用蠕动泵具有更高的流量控制精度2、气量控制: 加装气体质量流量传感器,实时监测气体流量,气量可调节且确保恒定,可实现气量流量 异常实时报警功能。3、传感器结构的小改进带来性能的大提高: 专用的生物膜弹性支撑装置,更大增加了微生物膜的活化效率,有效提高了测量精度以及稳定性。同时缩短了上机活化时间4、全自动进样器(24位)的性能提高: 定位系统采用光耦和伺服电机闭环系统,保障进样器具有更稳定的性能及更低的故障率;按顺序采样,样品无遗漏。第四、全新的软件设计1、七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作。嵌入式32位闪存微控制器,操控方便灵活。2、计算机上位机软件设计更加人性化,可人机对话方式设定及调整各项参数,可将检测数据与LIMS系统对接。整机也已申请已向国家知识产权局申请专利保护。申请号或专利号:201920122590.3。发明创造名称:BOD快速测定仪。 创新点:我公司对用户反馈的BOD快速测定仪产品本身及使用中遇到的问题进行了总结归纳,集中在以下几方面1、地表水监测数据偏低,特别是冬季低温环境下地表水BOD测定值甚至为零。(自主研发的溶氧补偿电极:能同步测量溶氧绝对值和溶氧变化值,校正了以往测样过程中水样溶解氧过饱和所带来的测量误差,从而消除待测水样中溶解氧绝对值变化的影响。更有效的保证了BOD测量结果的准确性)备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。2、微生物膜活化需要更加快捷,同时使用人需要仪器更加快速响应。(专用生物膜弹性支撑装置: 加快了微生物膜的活化效率,缩短生物膜的上机活化时间;独特的结构设计消除了测样时气泡等带来的负面干扰,同时溶氧绝对值更高,从而有效提高了测量精度以及稳定性。)3、电脑控制软件的设置及操作需要更加简便(更美观的外观设计,操作更方便。七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作)4、微生物传感器改用固态导电凝胶替代Kcl电解液,响应速度不变,性能更加稳定,延长电极使用寿命(专利号:ZL 2014 2 0278587.8)5、全新的智能操作软件,可兼容WIN7~WIN10系统,具有故障报警功能,降低意外故障对仪器造成的损失6、定位系统采用光耦和伺服电机闭环系统,保障进样时更稳定的性能及更高的精度,按顺序采样,样品无遗漏7、加装气体质量流量传感器,实时监测气体流量,确保进气量恒定;并实现了气量流量异常报警实时反馈。BOD快速测定仪
  • 差示扫描量热法(DSC)用于测试聚丙烯部件的可靠性
    聚丙烯(PP)是一种廉价的结晶聚合物,易于被塑造成不同的形状,并且非常坚固,具有耐化学腐蚀和防水性能。因此,它是生产最广泛的塑料之一,可用于包装,可作为混凝土结构的添加剂、电缆的绝缘层,还可用作医用防护设备(如口罩)的原材料。差示扫描量热法用于评估聚丙烯的热性能通过加热塑料直至熔融而使聚丙烯部件塑造成型。由于随后的冷却会影响材料的结晶度,因此必须进行控制以确保获得合适的材料性能,如脆性。差示扫描量热法(DSC)可用于评估聚丙烯的温度依赖性以及冷却曲线和添加剂对材料结晶度的影响。日立测试了几件聚丙烯样品,以演示如何使用差示扫描量热法测试聚丙烯在不同加工条件下的性能变化情况。实验装置我们使用商用聚丙烯片材作为样品,并使用日立推出的DSC7020仪器评估其热性能。第一项测试旨在评估晶体结构的温度依赖性。为此,我们评估了分别经历4种不同热处理过程的4件聚丙烯样品: 样品1:未处理样品2:加热至110ºC,随后淬火样品3:加热至115ºC,随后淬火样品4:加热至120ºC,随后淬火。随后在差示扫描量热仪中依次对每件样品进行评估。将它们在氮气气氛下以10ºC/ min的速度从室温加热至200ºC。差示扫描量热法的测试结果如下图所示:从结果可看出,所有样品均在160ºC左右出现吸热峰,这与聚丙烯的熔融状态相对应。如果查看右边显示放大部分的曲线图,则可看出4条曲线之间的差异。未处理的样品所对应的曲线是平滑的,而经热处理的样品所对应的曲线则显示出非常小的吸热峰,非常接近其相应的热处理温度。这表明每种热处理会产生不同的晶体结构。通过优化注塑成型线温度,可控制最终产品的机械性能以及与其相关的加工成本。接下来,我们将使用差示扫描量热法评估聚丙烯不同冷却曲线的结晶时间。相同的聚丙烯样品在氮气气氛下被加热至200ºC熔化。随后将它们淬火至不同温度,并在该温度下保持15至50分钟。下图显示了在不同淬火温度下的差示扫描量热法测量结果。该图表明聚丙烯结晶会在每个保持温度下有一个放热峰。保持温度越低,则峰越尖,结晶时间越短。相反,如若在淬火过程中保持温度越高,则峰越宽,结晶时间越长。这是因为较高的温度使结晶更加困难,从而增加了结晶时间。由于结晶时间的增加会减慢生产速度并可能影响最终产品的性能(例如脆性),因此对其进行优化至关重要。最后,我们将演示如何使用差示扫描量热法评估添加剂对结晶性能的影响。使用A和B两件不同的聚丙烯样品,其中样品B含有添加剂。将两件样品加热至200ºC,随后在125ºC的保持温度下淬火。下图显示了差示扫描量热法的输出信息:可看出这两件样品完成结晶所需的时间有明显差异。含有添加剂的样品(B)在2分钟内完成结晶,而样品A则需要更长的时间。采用此方法可实现按照所用添加剂对结晶效果进行评估。由于添加剂很昂贵,因此需确保所使用的是正确的添加剂,并且用量准确,从而为最终的产品提供所需的性能。经上述实验证实,差示扫描量热法在优化聚丙烯成型过程中的处理时间和温度方面的作用至关重要。了解更多关于日立差示扫描量热仪系列的信息此次分析所使用的仪器是DSC7020,这是一种高灵敏度、多功能的分析仪,可用于多种应用领域,包括聚合物表征。差示扫描量热仪系列包含一项独特的熔炉设计,能提供顶*级的基线平整度,以及一个RealView摄像系统,可在屏幕上实时显示材料性能。
  • 差示扫描量热法(DSC)用于测试聚丙烯部件的可靠性
    聚丙烯(PP)是一种廉价的结晶聚合物,易于被塑造成不同的形状,并且非常坚固,具有耐化学腐蚀和防水性能。因此,它是生产最广泛的塑料之一,可用于包装,可作为混凝土结构的添加剂、电缆的绝缘层,还可用作医用防护设备(如口罩)的原材料。差示扫描量热法用于评估聚丙烯的热性能通过加热塑料直至熔融而使聚丙烯部件塑造成型。由于随后的冷却会影响材料的结晶度,因此必须进行控制以确保获得合适的材料性能,如脆性。差示扫描量热法(DSC)可用于评估聚丙烯的温度依赖性以及冷却曲线和添加剂对材料结晶度的影响。日立测试了几件聚丙烯样品,以演示如何使用差示扫描量热法测试聚丙烯在不同加工条件下的性能变化情况。实验装置我们使用商用聚丙烯片材作为样品,并使用日立推出的DSC7020仪器评估其热性能。第一项测试旨在评估晶体结构的温度依赖性。为此,我们评估了分别经历4种不同热处理过程的4件聚丙烯样品: 样品1:未处理样品2:加热至110oC,随后淬火样品3:加热至115oC,随后淬火样品4:加热至120oC,随后淬火。随后在差示扫描量热仪中依次对每件样品进行评估。将它们在氮气气氛下以10oC/ min的速度从室温加热至200oC。差示扫描量热法的测试结果如下图所示:从结果可看出,所有样品均在160oC左右出现吸热峰,这与聚丙烯的熔融状态相对应。如果查看右边显示放大部分的曲线图,则可看出4条曲线之间的差异。未处理的样品所对应的曲线是平滑的,而经热处理的样品所对应的曲线则显示出非常小的吸热峰,非常接近其相应的热处理温度。这表明每种热处理会产生不同的晶体结构。通过优化注塑成型线温度,可控制最终产品的机械性能以及与其相关的加工成本。接下来,我们将使用差示扫描量热法评估聚丙烯不同冷却曲线的结晶时间。相同的聚丙烯样品在氮气气氛下被加热至200oC熔化。随后将它们淬火至不同温度,并在该温度下保持15至50分钟。下图显示了在不同淬火温度下的差示扫描量热法测量结果。该图表明聚丙烯结晶会在每个保持温度下有一个放热峰。保持温度越低,则峰越尖,结晶时间越短。相反,如若在淬火过程中保持温度越高,则峰越宽,结晶时间越长。这是因为较高的温度使结晶更加困难,从而增加了结晶时间。由于结晶时间的增加会减慢生产速度并可能影响最终产品的性能(例如脆性),因此对其进行优化至关重要。最后,我们将演示如何使用差示扫描量热法评估添加剂对结晶性能的影响。使用A和B两件不同的聚丙烯样品,其中样品B含有添加剂。将两件样品加热至200oC,随后在125oC的保持温度下淬火。下图显示了差示扫描量热法的输出信息:可看出这两件样品完成结晶所需的时间有明显差异。含有添加剂的样品(B)在2分钟内完成结晶,而样品A则需要更长的时间。采用此方法可实现按照所用添加剂对结晶效果进行评估。由于添加剂很昂贵,因此需确保所使用的是正确的添加剂,并且用量准确,从而为最终的产品提供所需的性能。经上述实验证实,差示扫描量热法在优化聚丙烯成型过程中的处理时间和温度方面的作用至关重要。了解更多关于日立差示扫描量热仪系列的信息此次分析所使用的仪器是DSC7020,这是一种高灵敏度、多功能的分析仪,可用于多种应用领域,包括聚合物表征。差示扫描量热仪系列包含一项独特的熔炉设计,能提供顶*级的基线平整度,以及一个RealView摄像系统,可在屏幕上实时显示材料性能。预知更多关于差示扫描量热法测试聚合物材料表征的信息,请参加7月28日下午14:00-15:00关于“热分析的基本原理及案例分析”的网络讲堂。详情请关注”日立分析仪器“官方微信公众号。
  • 技术线上论坛 | 11月12日《全新亚微米红外拉曼同步测量系统在生命科学领域的前沿应用》
    [报告简介]众所周知,荧光显微成像是生命科学研究中被广泛采用的一类成像方法,这些成像方法通过激发和检测荧光实现,通常需要对待测样品进行荧光标记,而荧光标记物会在某些条件下影响被标记物的正常功能,此外,生物体中的多种物质无法使用特异性染料或抗体进行标记,因此生物无标记成像技术受到了广泛关注。红外光谱能够在无需任何标记的情况下实现对物质原位的结构分析。但是由于目前红外技术本身的限制,红外光谱设备很难对含有大量水分的组织或液体中的活体细胞进行分析。近期,一种全新的非接触式红外拉曼同步测量技术的出现克服了目前现有红外技术的短板,能够帮助您实现: ▪ 测量液体环境中活细胞内的红外光谱信号测量;▪ 原位研究细胞中蛋白的构象变化;▪ 组织切片的组成分析;▪ 原位研究细胞或组织切片中的药物分布。 本次报告将向大家介绍全新一代非接触式红外拉曼同步测量系统的技术原理及非接触式红外技术在生命科学领域的应用。结合近国际相关研究进展,进一步阐述如何利用该系统来实现液体环境红外测量、无标记组分分析等实验。 报告现场可进行免费预约测样,欢迎您报名参会,亲自体验生物无标记红外光谱成像检测新技术![直播二维码]扫描上方二维码,无需注册,即刻进入预约界面![主讲人介绍]胡西 生物学博士都医科大学 药物分析学博士,加州大学洛杉矶分校(UCLA)博士后,研究期间主要从事干细胞诱导和神经细胞分化及ALS相关病变研究。在Quantum Design中国公司生物科学团队,担任席应用科学家,对单细胞显微操作及生物光谱成像等领域具有非常丰富的经验。[报告时间]开始 2021年11月12日 14:00结束 2021年11月12日 14:30[精选案例]神经元中淀粉样蛋白聚集机理研究近日,瑞典隆德大学的Klementieva教授团队与美国PSC的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统,在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为(图1B和C),这是以往的实验技术手段所不可能实现的。该技术是在非接触模式下工作,不会对神经元造成损伤,这在研究脆弱或粘性的物质时显得尤为重要。另外,该技术还能获得亚微米尺度的红外光谱,且不含由于背景失真或米氏散射造成的散射伪影。新的技术进步表明,全新的非接触式亚微米分辨红外测量系统现在可以用来做活细胞成像,并保持相同的亚微米空间分辨率。在这种情况下,全新的非接触式亚微米分辨红外测量系统有望在β片层结构在活神经元的突触附近的化学成像中发挥关键作用,并提供一个新的机会来研究神经毒性淀粉样蛋白如何从一个患病的神经元传播到一个健康的神经元,揭示阿尔茨海默症的形成和发展机制。 图1. (A)非接触式亚微米分辨红外测量系统实物图;(B)亚微米红外成像示意图:神经元树突的AFM形貌图,其中神经元直接在CaF2基底下生长。非接触式亚微米分辨红外测量系统采用两束共线性光束: 532 nm可见(绿色)提取光束和脉冲红外(红色)探测光束,样品的光热响应被检测为样品由于对脉冲红外光束的吸收而引发的绿色光部分强度的损失,使红外检测的空间分辨率提高到≈500 nm. (C) 小鼠大脑皮层初神经元, 在CamKII促进下表达为tdTomato荧光蛋白,使得神经元结构填满红色,图片标尺为20 μm。(D) 图C区域放大图片,箭头指示树突上的神经元刺Super‐Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons. Advanced Sciences,DOI: 10.1002/advs.201903004 ■ 水中活细胞的红外光谱成像研究 ■ 红细胞的红外光谱成像研究■ 小鼠骨骼中的蛋白质分布研究[技术线上论坛]http://www.qd-china.com/zh/n/2004111065734
  • 绍兴市上虞杭州湾工业园区投资发展有限公司281.70万元采购差示扫描量热,量热仪
    基本信息 关键内容: 差示扫描量热,量热仪 开标时间: 2022-01-24 09:00 采购金额: 281.70万元 采购单位: 绍兴市上虞杭州湾工业园区投资发展有限公司 采购联系人: 周女士 采购联系方式: 立即查看 招标代理机构: 浙江天平项目咨询有限公司 代理联系人: 陈锦钟 代理联系方式: 立即查看 详细信息 浙江天平项目咨询有限公司关于绍兴市上虞杭州湾工业园区投资发展有限公司杭州湾上虞经济技术开发区反应风险评估联合实验室—绝热量热仪大体积样品测试系统、差示扫描量热仪DSC采购及安装项目(第二次)的非政府采购招标公告 浙江省-绍兴市-上虞区 状态:公告 更新时间: 2022-01-01 招标文件: 附件1 项目概况 杭州湾上虞经济技术开发区反应风险评估联合实验室—绝热量热仪大体积样品测试系统、差示扫描量热仪DSC采购及安装项目(第二次)招标项目的潜在投标人应在政采云平台http://www.zhengcaiyun.cn/获取招标文件,并于 2022年01月24日 09:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:TPYQ2021004X 项目名称:杭州湾上虞经济技术开发区反应风险评估联合实验室—绝热量热仪大体积样品测试系统、差示扫描量热仪DSC采购及安装项目(第二次) 预算金额(元):2817000 最高限价(元):2430000,387000 采购需求: 标项一 标项名称: 绝热量热仪大体积样品测试系统 数量: 1台 预算金额(元): 2430000 简要规格描述或项目基本概况介绍、用途:详见采购需求。 备注: 标项二 标项名称: 差示扫描量热仪DSC 数量: 1台 预算金额(元): 387000 简要规格描述或项目基本概况介绍、用途:详见采购需求。 备注: 合同履约期限:标项 1、2,合同签订之日起180日历天完成到货安装及调试并经验收合格。 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:2022年01月01日至2022年01月24日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,法定节假日除外) 地点:政采云平台http://www.zhengcaiyun.cn/ 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年01月24日 09:00(北京时间) 投标地点(网址):政采云平台http://www.zhengcaiyun.cn/ 开标时间:2022年01月24日 09:00 开标地点:绍兴市上虞区公共资源交易中心三楼 373 开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件,若供应商参与投标,自行承担投标一切费用。2.标前准备:各供应商应在开标前应确保成为浙江省政府采购网正式注册入库供应商,并完成CA数字证书办理。因未注册入库、未办理CA数字证书等原因造成无法投标或投标失败等后果由供应商自行承担。供应商将政采云电子交易客户端下载、安装完成后,可通过账号密码或CA登录客户端进行投标文件制作。在使用政采云投标客户端时,建议使用WIN7及以上操作系统。注:供应商先要申领CA,取得CA后需要在政采云平台进行绑定,CA相关操作可参考《CA管理学习专题》。完成CA数字证书办理在资料齐全的情况下预计7个工作日左右,建议供应商获取招标文件后立即办理。《CA管理学习专题》:https://edu.zcygov.cn/luban/ca?utm=web-government-front.380aac0a.0.0.fc2b6aa0b6e211ebbdb0dd007730dd44《CA驱动和申领流程》:http://zfcg.czt.zj.gov.cn/bidClientTemplate/2019-05-27/12945.html3.投标文件制作:① 应按照本项目招标文件和政采云平台的要求编制、加密并递交投标文件。供应商在使用系统进行投标的过程中遇到涉及平台使用的任何问题,可致电政采云平台技术支持热线咨询,联系方式:400-881-7190。② 投标人通过“政采云”平台电子投标工具制作投标文件。《电子投标工具》:http://zfcg.czt.zj.gov.cn/bidClientTemplate/2019-09-24/12975.html《供应商-政府采购项目电子交易操作指南》:(需登录账号后查看)https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r4.供应商在法定质疑期内应一次性提出针对同一采购程序环节的质疑。否则质疑将不予受理。5.投标人可指派授权代表递交备份文件,授权代表递交备份文件需携带法定代表人授权书原件,于投标截止时间前到达开标地点递交。6.特别提醒① 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的国企采购活动。② 除单一来源采购项目外,为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。7.进入上虞区公共资源交易场所,需进行测温、查验健康码,并佩戴口罩。请各投标人,根据省、市、区相关防疫要求,做好个人防疫工作。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:绍兴市上虞杭州湾工业园区投资发展有限公司 地 址:上虞区 传 真: 项目联系人:周女士 项目联系方式:13989527873 2.采购代理机构信息 名 称:浙江天平项目咨询有限公司 地 址:浙江省绍兴市上虞区百官街道江东北路588号百官广场11楼 传 真: 项目联系人:陈锦钟 项目联系方式:13587399711 附件信息: 303.5K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:差示扫描量热,量热仪 开标时间:2022-01-24 09:00 预算金额:281.70万元 采购单位:绍兴市上虞杭州湾工业园区投资发展有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:浙江天平项目咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 浙江天平项目咨询有限公司关于绍兴市上虞杭州湾工业园区投资发展有限公司杭州湾上虞经济技术开发区反应风险评估联合实验室—绝热量热仪大体积样品测试系统、差示扫描量热仪DSC采购及安装项目(第二次)的非政府采购招标公告 浙江省-绍兴市-上虞区 状态:公告 更新时间: 2022-01-01 招标文件: 附件1 项目概况 杭州湾上虞经济技术开发区反应风险评估联合实验室—绝热量热仪大体积样品测试系统、差示扫描量热仪DSC采购及安装项目(第二次)招标项目的潜在投标人应在政采云平台http://www.zhengcaiyun.cn/获取招标文件,并于 2022年01月24日 09:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:TPYQ2021004X 项目名称:杭州湾上虞经济技术开发区反应风险评估联合实验室—绝热量热仪大体积样品测试系统、差示扫描量热仪DSC采购及安装项目(第二次) 预算金额(元):2817000 最高限价(元):2430000,387000 采购需求: 标项一 标项名称: 绝热量热仪大体积样品测试系统 数量: 1台 预算金额(元): 2430000 简要规格描述或项目基本概况介绍、用途:详见采购需求。 备注: 标项二 标项名称: 差示扫描量热仪DSC 数量: 1台 预算金额(元): 387000 简要规格描述或项目基本概况介绍、用途:详见采购需求。 备注: 合同履约期限:标项 1、2,合同签订之日起180日历天完成到货安装及调试并经验收合格。 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:2022年01月01日至2022年01月24日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,法定节假日除外) 地点:政采云平台http://www.zhengcaiyun.cn/ 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年01月24日 09:00(北京时间) 投标地点(网址):政采云平台http://www.zhengcaiyun.cn/ 开标时间:2022年01月24日 09:00 开标地点:绍兴市上虞区公共资源交易中心三楼 373 开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件,若供应商参与投标,自行承担投标一切费用。2.标前准备:各供应商应在开标前应确保成为浙江省政府采购网正式注册入库供应商,并完成CA数字证书办理。因未注册入库、未办理CA数字证书等原因造成无法投标或投标失败等后果由供应商自行承担。供应商将政采云电子交易客户端下载、安装完成后,可通过账号密码或CA登录客户端进行投标文件制作。在使用政采云投标客户端时,建议使用WIN7及以上操作系统。注:供应商先要申领CA,取得CA后需要在政采云平台进行绑定,CA相关操作可参考《CA管理学习专题》。完成CA数字证书办理在资料齐全的情况下预计7个工作日左右,建议供应商获取招标文件后立即办理。《CA管理学习专题》:https://edu.zcygov.cn/luban/ca?utm=web-government-front.380aac0a.0.0.fc2b6aa0b6e211ebbdb0dd007730dd44《CA驱动和申领流程》:http://zfcg.czt.zj.gov.cn/bidClientTemplate/2019-05-27/12945.html3.投标文件制作:① 应按照本项目招标文件和政采云平台的要求编制、加密并递交投标文件。供应商在使用系统进行投标的过程中遇到涉及平台使用的任何问题,可致电政采云平台技术支持热线咨询,联系方式:400-881-7190。② 投标人通过“政采云”平台电子投标工具制作投标文件。《电子投标工具》:http://zfcg.czt.zj.gov.cn/bidClientTemplate/2019-09-24/12975.html《供应商-政府采购项目电子交易操作指南》:(需登录账号后查看)https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r4.供应商在法定质疑期内应一次性提出针对同一采购程序环节的质疑。否则质疑将不予受理。5.投标人可指派授权代表递交备份文件,授权代表递交备份文件需携带法定代表人授权书原件,于投标截止时间前到达开标地点递交。6.特别提醒① 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的国企采购活动。② 除单一来源采购项目外,为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。7.进入上虞区公共资源交易场所,需进行测温、查验健康码,并佩戴口罩。请各投标人,根据省、市、区相关防疫要求,做好个人防疫工作。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:绍兴市上虞杭州湾工业园区投资发展有限公司 地 址:上虞区 传 真: 项目联系人:周女士 项目联系方式:13989527873 2.采购代理机构信息 名 称:浙江天平项目咨询有限公司 地 址:浙江省绍兴市上虞区百官街道江东北路588号百官广场11楼 传 真: 项目联系人:陈锦钟 项目联系方式:13587399711 附件信息: 303.5K
  • 热点资讯 | QD中国独家引进美国PSC公司非接触式亚微米分辨红外拉曼同步测量系统
    mIRage O-PTIR (Optical Photothermal Infrared) 光谱仪是由美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司) 新发布的一款应用广泛的亚微米空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射限,其空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。目前,大多数的红外光谱空间分辨率受限于红外光的衍射限,只有10-20 μm,且依赖于红外光波长,而mIRage O-PTIR凭借其有的技术克服了上述问题,将空间分辨率提升至500 nm;该仪器还采用可调的脉冲式中红外激光激发样品表面,产生光热诱导膨胀效应,并以可见光为“探针”探测样品聚焦区域的光学效应,可实现无接触式地快速简易测量,避免了传统全反射模式下的散射像差和交叉污染 mIRage在反射模式下所得谱图与透射模式下FTIR完全一致,大的简化了样品制备问题,无需制备薄片,直接测试较厚样品,大大提高测试效率;另外mIRage红外光谱仪可以选配透射模式,十分适用于液体样品和一些特殊混合样品,大的扩展了应用范围;值得注意的是mIRage还可与拉曼光谱联用,实现同时同地相同分辨率的IR和Raman测试,且无荧光风险,能够帮助研究者更快速全面的确定所分析样品的化学组成信息。mIRage红外光谱仪可以快速准确地对样品进行亚微米尺度的红外光谱和成像分析,被广泛应用于高分子、生命科学、医药合成、微电子器件有机缺陷分析、物证分析等,更多的应用领域还在不断开发中,期待与您的合作!mIRage技术参数波谱范围模式探针激光 样品台小步长 样品台X-Y移动范围 IR (1850-800 cm-1)反射532 nm 100 nm 110*75 mm IR (3600-2700 cm-1) 透射Raman (3900-200 cm-1) 反射 重要应用实例分析: 1. 高分子领域亚微米线IR扫包埋于树脂中的聚苯乙烯球 2. 生命科学领域红血细胞的IR和Raman图谱分析透射模式下水中活细胞的亚微米mIRage图谱和成像3. 医药领域药物/高分子混合物分析4. 缺陷分析薄膜缺陷探测5. 物证分析单根纳米纤维不同区域的mIRage图谱6. 其他应用工业应用科研应用• 医疗 • QA、QC质控分析 • 聚合物 • 文物鉴定 • 化工 • 有机污染 • 药学 • 陨石 • 微电子 • 缺陷分析 • 考古学• 纤维 • 石油勘探 • 犯罪侦查 • 土壤• 地质学 • 食品加工 • 纺织业 • 海洋科学 产品用户和发表文章目录[1] Ji-Xin Cheng et al., Sci. Adv. 2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.
  • 亚微米红外拉曼同步测量技术助力生物材料对骨组织矿化的研究取得重要进展!
    由于红外光谱技术对于分子结构的敏感性,能够在无任何标记的情况下实现对生物样品成分的鉴定和分布解析,对于不便于荧光标记的生物组分鉴别十分有利,使得其在生命科学领域的应用越来越广泛。 近期Maryam Rahmati等人使用亚微米红外拉曼同步测量技术在Materials Today上报道骨生物材料对骨骼再生的研究中成功揭示了红外显微镜在组织样品分析中的潜力。众所周知,生物骨骼有机材料能够模仿天然组织功能,是作为受损骨骼良好的替代物。Maryam等通过设计两个富含脯氨酸的无序肽(IDP2和IDP6)并将它们添加到SmartBone(SBN)生物杂交替代物中,成功合成了具备改善由于植入物导致的组织矿化问题的新型材料。通过对家猪开颅损伤后8周和16周愈合情况的研究,作者团队发现这种材料能够很好的帮助颅骨愈合,如下图所示。研究富含脯氨酸的无序肽的成骨和生物矿化作用。(a)四组监测骨愈合情况的代表图包括假手术、SmartBone(SBN)、SBN + P2和sbn+P6(n = 8)。(b,c) mCT分析骨容积比的代表图像和统计数据(Obj. V/TV)、骨表面/体积比(Obj.S/Obj.v)和骨表面密度(Obj.S/TV),比例尺: 4 mm,(N = 8)。(d–g)研究钙化样品的矿化/非矿化的代表图像和统计数据。(h)碱性磷酸酶(ALP)和抗酒石酸酸性磷酸酶(TRAP)染色法研究脱钙骨中成骨细胞和破骨细胞的活性。 本文中作者认为通过亚微米红外拉曼同步测量技术检测,能够很好的评估IDP的结构变化,因为该技术能够很好的对组织进行高精度成像,并且不受组织粗糙度的影响。通过1037 cm-1的红外图分析,能够很好区别不同区域的磷酸酯和磷酸铵的分布。并通过数据对比实验组与对照组的分布来看,能够看到实验组的骨骼具有良好的矿化。对比1660 cm-1 和1546 cm-1的红外吸收峰可以证明肽发生了构象转变,而且这种转变是与磷酸盐的分布呈现明显相关的。说明了该材料具备良好的医疗价值,同时也说明了亚微米红外拉曼同步测量技术在评估植入生物材料和构象的影响中具备高的潜力。用亚微米红外拉曼同步测量技术研究IDP对的成骨和生物矿化效应的影响及其构象变化。红外40X光学图像和其上标记点的红外光谱(下)。两个单波长图像(1037/1660 cm-1)的比例图,突出显示了在光谱中观察到的富含矿物质和胺的区域。 美国Photothermal Spectroscopy Corp公司经多年潜心攻关,研发出的非接触亚微米分辨红外拉曼同步测量系统—mIRage凭借其有的亚微米红外拉曼同步测量技术能够直接对样品表面进行红外光谱测试,并且不受到水的干扰,该设备成功将红外光谱的空间分辨率提升至亚微米(~500 nm);得益于其非接触式测量特性,该系统无需制备薄片,直接测试较厚样品,大地简化了制样过程、提高测试效率;同时可实现无接触式地快速简易测量,有效避免了传统ATR模式下的散射像差和交叉污染。且该设备在反射模式下所得谱图与透射模式下FTIR完全一致,还可以选配透射模式,十分适用于液体样品和一些特殊混合样品,大的扩展了光热红外在生命科学领域的应用范围(如图1所示)。亚微米红外拉曼同步测量系统,工作原理及钙化乳腺组织的红外成像图 这项先进技术让mIRage有别于传统的红外测试设备,能够对生命科学领域的常用样本,诸如细胞爬片,病理组织切片,单细胞细菌等有良好的兼容性,并让活细胞观测成为可能。除此之外,mIRage还可与拉曼光谱进行联用,实现同时同地相同分辨率的IR和Raman测试,且无荧光风险,能够帮助研究者更快速全面的确定所分析生物样品的化学组成信息。 亚微米红外拉曼同步测量技术在生命科学领域应用的显著优势:☛ 亚微米的空间分辨率;☛ 可直接获取液体中活细胞的红外成像;☛ 灵敏度高,可直接观测单细胞 (如细菌、哺乳动物细胞等);☛ 无米氏散射干扰,即使在细胞边缘也不受影响;☛ 高的光谱分辨率;☛ 无需直接接触即可测量软组织的红外光谱;☛ 可实现红外和拉曼同步测量;☛ 可实现超过10 μm厚的样品测试,直接置于载玻片上观察分析;☛ 可配置化的红外光源;
  • 差示扫描量热仪温度如何校准呢?
    dì一篇 简要描述   差示扫描量热仪的差热分析法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。第二篇 标定物的选择   不定期的进行温度校正,以保证测试准确度。根据样品的实际测试温度,选择标定物。标定物选择的原则:标定物的外推温度与样品待测项目的温度要比较接近,以保证测试的准确性。  下表为常用标定物的熔点及理论热焓数值。标准物质理论熔点℃理论熔融热焓J/g铟In156.628.6锡Xi231.960.5锌Zn419.5107.5一、测试仪器:久滨仪器2020年升级款JB-DSC-600差示扫描量热仪第三篇 温度校准操作步骤1、打开电脑,将仪器数据线与电脑连接,插上仪器电源,打开仪器背面的开关打开软件,点击菜单栏中设备信息—管理员通道—456进入—输入理论和测量值—保存2、关机重启、重新打开软件、仪器,连接成功后再次测量锡的熔点值,若实际测量的温度若不在231.9±1℃范围内,重复上述操作,直到锡的熔点值在231.9±1℃范围内为止。第四篇 技术参数温度范围室温~600℃温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min任意可选控温方式升温、恒温、降温(PID温度调节)DSC量程0~±600mW自动切换DSC灵敏度0.01mg恒温时间建议<24h气体控制氮气、氧气(仪器自动切换)气体流量0~300ml/min显示方式24bit色,7寸大屏幕液晶显示参数标准配有标准校准物(锡),带一键校准功能,用户可自行对温度进行校准电源AC 220V 50HZ或定制软件软件可以设置数据采集频率,适应各分辨率电脑屏幕;支持笔记本,台式机,支持WIN2000、XP、WIN7、WIN8、WIN10等操作系统,可以导出EXECL数据包、PDF报告
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对 10 μm的样品测试灵敏度较低、坚硬的金属界面可能会在接触样品表面时损坏ATR探针,以及污染可能在凹凸的区域,甚至在狭窄的缝隙内,使得ATR接触式测量难以实现。所以,如何在亚微米分辨率别和非接触条件下,实现芯片/半导体器件的有机缺陷和污染物的识别和表征是非常重要以及创新的一种手段。此外,许多样品的厚度小于100 nm,这在传统的FTIR测量中也是不可能实现的。 仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
  • DSC差示扫描量热仪在医药行业起着举足轻重的作用
    DSC差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。  药品在研发生产过程中,必须监控其物化性质,如纯度、晶型、稳定性和安全性,以确保药物具有预期的药性,热分析是必不可少的一环。  热分析具有用量少、方法灵敏、快速的特点,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。自从上世纪六十年代商业DSC产品出现以来,因DSC测定药物纯度快速、准确易于操作,这项技术已被广泛接受。DSC池体的响应时间和温度测量对于纯度的准确分析至关重要。功率补偿型DSC因其炉体小(1g),响应时间极快,而且其使用铂电阻测温精度高、准确好,因而非常适合纯度的准确测量。  目前在医药领域DSC差示扫描量热仪通过测量药物热焓和温度随程序温控的变化,可以进行药物纯度,药物的多晶及亚稳态、无定形态的研究,优化冷冻干燥,进行脂质检测、蛋白质变性。所以DSC差示扫描量热仪在新药研制、中间体检测、zui佳配方的选择、药物稳定性的预测、药物质量优劣的评价等方面,起着举足转重的作用。  在食品生产体系中,食品在加工过程中经常需要经受加热或冷却,而从差示扫描量热仪得到的量热信息何以直接用于了解视频在加工或贮存过程中可能经历的热转变。比如我们可以研究油和油脂的起始温度、熔化焓、结晶、老化等,也可以观察淀粉的凝沉、糊化或食品中其他物质的玻璃化等,从而为开发新食品提供参考。那么DSC差示扫描量热仪有哪些特点呢?1、全新的炉体结构,更好的解析度和分辩率以及更好的基线稳定性。2、数字气体质量流量计自动切换两路气体流量,数据直接记录在数据库中。3、仪器可采用七寸大屏幕液晶显示,图谱、曲线一目了然。4、双温度探头,确保高精度和重复性
  • 2019年差示扫描量热仪招标采购中标情况年中盘点
    p  strong仪器信息网讯/strong 差示扫描量热仪,是在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系的仪器。差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽、分辨率高、试样用量少,适用于无机物、有机化合物及药物分析。/pp  仪器信息网对2019年上半年公开招标采购的差式扫描量热仪(不含同步热分析仪)中标情况进行统计整理,并解析差式扫描量热仪采购市场动向。/pp  截至2019年6月30日,根据统计数据,2019年上半年差示扫描量热仪中标45套,总中标金额超1100万元,涉及的采购单位43家。采购单位的主力是高校院所和检测中心,占比超过97%,而公司企业采购仅有3家。/pp  从strongspan style="color: rgb(255, 0, 0) "地域/span/strong上看,北京采购5套,数量最多。江苏、江西、浙江次之,都为4套。广东、山西、上海、四川、天津等省份,采购数量为3套。综合来看,GDP排行靠前的省份相应的采购数量较多。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 240px " src="https://img1.17img.cn/17img/images/201907/uepic/b2acee75-456e-4f9e-8647-e6faa9f6914d.jpg" title="1.png" alt="1.png" width="400" height="240" border="0" vspace="0"//pp  从span style="color: rgb(255, 0, 0) "strong月度中标数量/strong/span上看,2-3月,可能受到新年假期的影响,中标数量较低;其他月份的月度中标量均在10套/月左右,并且自2月份以来,差式扫描量热仪的需求一直呈现稳定增长态势,预期下半年中标量有可能将超过60套。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 240px " src="https://img1.17img.cn/17img/images/201907/uepic/e4bda117-df95-4bec-8f12-73872c5d3ebc.jpg" title="2.png" alt="2.png" width="400" height="240" border="0" vspace="0"//pp style="text-align: center "strong style="text-align: center "部分厂商仪器主要中标型号/strong/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center"tbodytr style=" height:18px" class="firstRow"td width="207" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"仪器品牌/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"主要中标型号/span/p/td/trtr style=" height:16px"td width="207" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="16"pspan style="font-family:宋体"岛津/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="16"pa href="https://www.instrument.com.cn/netshow/C122210.htm" target="_self"spanDSC-60 Plus/span/a/p/td/trtr style=" height:18px"td width="207" nowrap="" rowspan="2" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"梅特勒/spanspan-/spanspan style="font-family:宋体"托利多/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanFlash DSC2+/span/p/td/trtr style=" height:18px"td width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pa href="https://www.instrument.com.cn/netshow/C241909.htm" target="_self"spanDSC3/span/a/p/td/trtr style=" height:18px"td width="207" nowrap="" rowspan="2" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"珀金埃尔默/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanDSC4000/span/p/td/trtr style=" height:18px"td width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pa href="https://www.instrument.com.cn/netshow/C73306.htm" target="_self"spanDSC8000/span/a/p/td/trtr style=" height:18px"td width="207" nowrap="" rowspan="2" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanTA/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanDSC250/span/p/td/trtr style=" height:18px"td width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspanDSC25/span/p/td/trtr style=" height:18px"td width="207" nowrap="" rowspan="2" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"耐驰/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pa href="https://www.instrument.com.cn/netshow/C196669.htm" target="_self"spanDSC214/span/a/p/td/trtr style=" height:18px"td width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pa href="https://www.instrument.com.cn/netshow/C10143.htm" target="_self"spanDSC204F1/span/a/p/td/trtr style=" height:18px"td width="207" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pspan style="font-family:宋体"北京恒久/span/p/tdtd width="125" nowrap="" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18"pa href="https://www.instrument.com.cn/netshow/C269396.htm" target="_self"spanHSC-4/span/a/p/td/tr/tbody/tablep  从span style="color: rgb(255, 0, 0) "strong中标仪器均价/strong/span上看,进口产品均价基本都在30万以上,国内产品价格都在10万左右。进口产品和国内产品的价格差距较大。虽然进口产品的价格较高,但采购者更青睐于进口产品。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 241px " src="https://img1.17img.cn/17img/images/201907/uepic/f53a4227-b05b-493f-85d3-1b638146f89b.jpg" title="4.png" alt="4.png" width="400" height="241" border="0" vspace="0"//pp  除了上述几家,采购差式扫描量热仪还有哪些优质厂商值得考虑?/pp  日立、马尔文、林赛斯、盈诺、久滨仪器、理学、大展、菁仪、NanoTemper、HEL、和晟、依阳等。/ppspan  延伸阅读:/span/ppspanspan  /span/spana href="https://www.instrument.com.cn/news/20190704/488315.shtml" target="_self"2019年热重分析仪招标采购中标情况年中盘点/a/ppspanspan  /span/spanbr//p
  • 看似六四分账 实则差距悬殊——2019年差示扫描量热仪中标盘点
    p  strong仪器信息网讯/strong 差示扫描量热法是在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系,使用差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。/pp  仪器信息网对2019年全年公开招标采购的差示扫描量热仪中标情况进行统计,数据整理自千里马和中国政府采购网的差示扫描量热仪的中标数据。经统计,去除与仪器中标无关及重复中标公告信息,最后整理得差示扫描量热仪仪器中标公告170条(同一批采购记为一条,变更、磋商等不重复计入,流标、废标不计入,不包含同步热分析仪中标)。以下统计仅为中标统计,受限于时间、资源等,难免有疏漏之处,仅供读者参考。(以下币种单位均为人民币元RMB)/pp  据统计,2019年差示扫描量热仪中标数量为178台(套)以上,中标金额评估在7000万元以上 如果以其中全部明确公示出单台差示扫描量热仪中标数量和单价(或总价并可计算单价)的110则公告来计算单台(套)差示扫描量热仪的平均中标金额,总中标金额约5000万元,总数量116台,因此计算得单台差示扫描量热仪的平均中标金额约43.02万元。/pp  整理170条差示扫描量热仪中标公告,发现北京发布中标公告次数最多,其次为广东、上海、江苏、四川、浙江等,次数较高的地区一定程度说明这些地区的差示扫描量热仪成交量较高。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 378px " src="https://img1.17img.cn/17img/images/202001/uepic/c62eb4ce-de35-4923-bb99-b5cb40ecefa7.jpg" title="各地区发布的中标公告次数统计 单位:次.png" alt="各地区发布的中标公告次数统计 单位:次.png" width="500" height="378" border="0" vspace="0"//pp style="text-align: center "各地区发布的中标公告次数统计 单位:次/pp  整理170条差示扫描量热仪中标公告,发现高校的中标次数占比最高,占65% 其次为政府部门和科研院所,两者合计占比约26%。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 358px " src="https://img1.17img.cn/17img/images/202001/uepic/8e6c5494-fecc-46f6-be17-b2452c34472d.jpg" title="差示扫描量热仪中标采购单位类型分析.png" alt="差示扫描量热仪中标采购单位类型分析.png" width="500" height="358" border="0" vspace="0"//pp style="text-align: center "中标采购单位类型分析/pp  在全部明确公示出差示扫描量热仪中标单价(或公布出总价及数量并可计算出单价)的公告中,差示扫描量热仪单台中标价格最高:150万;差示扫描量热仪单台中标最低:2.15万。/pp  整理123条含中标单价(或可计算单价)的中标公告,发现公告中30万-40万的区间比例最高,其次为40万-50万、50万-60万、20万-30万的区间。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 342px " src="https://img1.17img.cn/17img/images/202001/uepic/0f660924-f6e8-4d20-9c3e-495406703b97.jpg" title="差示扫描量热仪中标单价分析.png" alt="差示扫描量热仪中标单价分析.png" width="500" height="342" border="0" vspace="0"//pp style="text-align: center "中标单价分析/pp  本次收集整理的170条中标信息中,主要涉及10个品牌(按拼音首字母排序):北京恒久、岛津、马尔文、梅特勒-托利多、耐驰、珀金埃尔默、日本理学、塞塔拉姆、上海盈诺、沃特世-TA。然而,从中标统计上来看,进口品牌占据了60%以上的国内差示扫描量热仪中标市场;如果算上未进行公示的品牌部分,进口产品在中标市场的占比甚至有可能高达90%以上。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 300px " src="https://img1.17img.cn/17img/images/202001/uepic/73d80db6-ffed-4bae-a921-9ae819367524.jpg" title="进口产品占比.png" alt="进口产品占比.png" width="500" height="300" border="0" vspace="0"//pp style="text-align: center "国产与进口对比/pp  以下为各品牌中标最多的型号:/ptable border="0" cellspacing="0" cellpadding="0" width="548" style="border-collapse: collapse " align="center"tbodytr style=" height:18px" class="firstRow"td width="149" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center" valign="middle"p style="text-align:center"span style=" font-family:宋体 color:#444444"仪器类型/span/pp style="text-align:center"span style=" font-family:宋体 color:#444444"(点击进入仪器专场)/span/p/tdtd width="149" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center" valign="middle"p style="text-align:center"span style=" font-family:宋体 color:#444444"仪器品牌/span/pp style="text-align:center"span style=" font-family:宋体 color:#444444"(点击了解品牌详情)/span/p/tdtd width="249" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center" valign="middle"p style="text-align:center"span style=" font-family:宋体 color:#444444"仪器型号/span/pp style="text-align:center"span style=" font-family:宋体 color:#444444"(点击进入仪器专场)/span/p/td/trtr style=" height:18px"td width="149" rowspan="10" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center" valign="middle"p style="text-align:center"a href="https://www.instrument.com.cn/zc/63.html" target="_self"spanspan style=" font-family:宋体 color:#666666 text-underline: none"span差示扫描量热仪/span/span/span/a/p/tdtd width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH101731/" target="_self"span style="font-family:宋体"北京恒久/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/C269396.htm" target="_self"spanHSC-4/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH100277" target="_self"span style="font-family:宋体"岛津/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/C11705.htm" target="_self"spanDSC-60 Plus/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH100646/" target="_self"span style="font-family:宋体"马尔文/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/C216017.htm" target="_self"spanMicroCal PEAQ-DSC/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="http://www.instrument.com.cn/netshow/SH100270/" target="_self"span style="font-family:宋体"梅特勒/spanspan-/spanspan style="font-family:宋体"托利多/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/C241909.htm" target="_self"spanDSC 3/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://image.instrument.com.cn/ad/adweb/AdCount/Click?ADMID=30268&ADFID=14838" target="_self"span style="font-family:宋体"耐驰/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/C196669.htm" target="_self"spanDSC 214/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH100168/" target="_self"span style="font-family:宋体"珀金埃尔默/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/C73752.htm" target="_self"spanDSC 8500/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH102204/" target="_self"span style="font-family:宋体"日本理学/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/zc/63.html" target="_self"spanDSCvesta/span/a/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH101322/" target="_self"span style="font-family:宋体"塞塔拉姆/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspana href="https://www.instrument.com.cn/netshow/C289468.htm" target="_self" style="text-align: -webkit-center white-space: normal "Setline DSC/a/span/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH103723/" target="_self"span style="font-family:宋体"上海盈诺/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspana href="https://www.instrument.com.cn/zc/63.html?AgentSortId=8158&SampleId=&IMShowBigMode=&IMCityID=&IMShowBCharacter=&SidStr=" target="_self" style="text-align: -webkit-center white-space: normal "DSC-500B/a/span/p/td/trtr style=" height:18px"td width="149" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pa href="https://www.instrument.com.cn/netshow/SH100670/" target="_self"span style="font-family:宋体"沃特世/spanspan-TA/span/a/p/tdtd width="249" nowrap="" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="18" align="center"pspana href="https://www.instrument.com.cn/netshow/C246956.htm" target="_self" style="text-align: -webkit-center white-space: normal "Discovery DSC25/a/span/p/td/tr/tbody/tablepspan  目前,差示扫描量热仪市场主要被进口品牌占据,而国产产品在技术创新等方面还较难和进口产品相抗衡,主要着眼于中低端的差示扫描量热仪市场,希望未来国内差示扫描量热仪产品也能着力向上,推出更具竞争力的新产品span。/span/span/p
  • 差示扫描量热仪:探索物质热性质的得力助手
    差示扫描量热仪,简称DSC,是一种用于研究物质在加热或冷却过程中的热效应和物理性质变化的精密仪器。它广泛应用于材料科学、化学、生物科学等领域,为科研工作者提供了重要的研究手段。上海和晟 HS-DSC-101 差示扫描量热仪差示扫描量热仪通过测量样品与参比物之间的热流差异,揭示物质在温度变化过程中的热行为。这种仪器能够精确地测定物质的熔点、玻璃化转变温度、结晶度等关键参数,从而帮助研究者深入了解物质的性质。在材料科学领域,差示扫描量热仪发挥着举足轻重的作用。通过DSC分析,研究者可以评估材料的热稳定性,优化材料的合成工艺,以及开发新型功能材料。此外,DSC还可用于研究高分子材料的热降解行为,为材料的安全使用提供有力保障。在化学领域,差示扫描量热仪同样具有广泛的应用。它可以用于研究化学反应的热效应,揭示反应的动力学过程和机理。同时,DSC还可以用于筛选和优化化学反应条件,提高反应的效率和产物纯度。在生物科学领域,差示扫描量热仪同样发挥着重要作用。它可以用于研究生物大分子的热稳定性,为药物设计和生物工程提供重要依据。此外,DSC还可用于研究生物材料的热行为,为生物医学领域的发展提供有力支持。总之,差示扫描量热仪作为一种重要的热分析仪器,为科研工作者提供了深入了解物质热性质的有力工具。随着科学技术的不断发展,DSC将在更多领域发挥重要作用,推动人类社会的进步。
  • 全国屠宰加工标准化技术委员会发布《畜禽肉品质检测 挥发性盐基氮、pH、嫩度、颜色同步测定 可见-近红外光谱法》等6项农业行业标准征求意见稿
    各委员、各有关单位及专家:按照农业行业标准制修订计划,全国屠宰加工标准化技术委员会组织完成了《畜禽肉品质检测 挥发性盐基氮、pH、嫩度、颜色同步测定 可见-近红外光谱法》等6项农业行业标准征求意见稿的起草工作,现公开征求意见。请于2023年10月14日前反馈修改意见,如无意见也请复函说明。感谢您对我们工作的支持!联系人:曲 萍 高胜普电 话:010-59194776传 真:010-59194667E-mail:tuzaibiaozhun@163.com地 址:北京市朝阳区麦子店街20号楼421室中国动物疫病预防控制中心(农业农村部屠宰技术中心)屠宰标准处邮 编:100125附件:1. 农业行业标准《畜禽肉品质检测 挥发性盐基氮、pH、嫩度、颜色同步测定 可见-近红外光谱法》(征求意见稿)及编制说明2. 农业行业标准《畜禽屠宰加工设备 畜同步检验输送设备》(征求意见稿)及编制说明3. 农业行业标准《畜禽屠宰加工设备 羊剥皮设备》(征求意见稿)及编制说明4. 农业行业标准《畜禽屠宰加工设备 兔屠宰成套设备技术条件》(征求意见稿)及编制说明5.农业行业标准《畜禽屠宰加工设备 病死畜禽和病害畜禽产品化制成套设备技术条件》(征求意见稿)及编制说明6. 农业行业标准《肉类真空贴体包装技术规范》(征求意见稿)及编制说明7.农业行业标准意见反馈表附件1-附件7.zip
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制