当前位置: 仪器信息网 > 行业主题 > >

汽车电子电磁兼容测试仪

仪器信息网汽车电子电磁兼容测试仪专题为您提供2024年最新汽车电子电磁兼容测试仪价格报价、厂家品牌的相关信息, 包括汽车电子电磁兼容测试仪参数、型号等,不管是国产,还是进口品牌的汽车电子电磁兼容测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合汽车电子电磁兼容测试仪相关的耗材配件、试剂标物,还有汽车电子电磁兼容测试仪相关的最新资讯、资料,以及汽车电子电磁兼容测试仪相关的解决方案。

汽车电子电磁兼容测试仪相关的资讯

  • 山东首个汽车电子零部件电磁兼容实验室建成
    新华网山东频道7月12日电 山东省首个汽车电子零部件电磁兼容实验室日前在山东省科学院建成并投入试运行。实验室将面向社会开放,为汽车整车企业及汽车电子零部件企业提供测试服务。  记者从山东省科学院了解到,实验室开展的测试基本涵盖了汽车电子零部件电磁兼容测试的所有项目。这个实验室将面向社会开放,为汽车整车企业及汽车电子零部件企业提供测试服务,同时利用省汽车电子技术重点实验室多年来形成的汽车电子产品设计和测试能力为企业提供汽车电子产品电磁兼容整改服务。  据介绍,随着汽车电子设备数量和种类的不断增加,工作频率的不断提高,汽车内的电磁环境日益复杂,容易发生汽车内部电子设备相互干扰的情况,有可能给汽车的安全行驶造成严重影响。因此,所有装车的汽车电子产品必须经过严格的电磁兼容测试。(完)
  • 山东省建成首个汽车电子零部件电磁兼容实验室
    日前,山东省首个汽车电子零部件电磁兼容实验室在山东省科学院自动化研究所基本建成并投入试运行。  据悉,该实验室为山东省汽车电子技术重点实验室重要组成部分,按国际一流国内先进标准进行建设,拥有标准的3米法半电波暗室、各种用途的屏蔽实验室5间和静电放电测试室以及1个ISO7637实验室。  山东省科学院自动化研究所介绍,实验室配有包括德国R&S公司提供的EMI和EMS测试系统、瑞士EM TEST公司提供的BCI测试系统、ISO 7637测试设备以及静电放电设备等国际先进的检测仪器,可提供辐射发射、传导发射、辐射抗扰度、传导抗扰度、大电流注入、抛负载和瞬变脉冲、静电放电测试等,基本涵盖了汽车电子零部件EMC测试的所有项目,能够满足符合国际相关标准的测试要求,同时也能满足各大汽车厂商等企业标准的要求。  该实验室建成并投入试运行,将为山东省汽车电子技术研发提供完善的检测及测试服务 同时该实验室也将面向社会开放,为山东省汽车整车厂及汽车电子零部件生产商提供检测机测试服务,将对山东汽车行业振兴发展发挥积极的作用。
  • 记电子工业安全与电磁兼容检测中心
    电子工业安全与电磁兼容检测中心(SEC)成立于1984年,隶属于中国电子技术标准化研究所(CESI),是集科研、标准制修订、试验检测于一体的不以营利为目的中立第三方检测机构。     亦庄新办公楼  试验室资质  ——获得中国实验室国家认可委员会(CNAL)认可  ——IECEE认可的CB实验室  ——中国质量认证中心(CQC)签约实验室  ——美国联邦通信委员会(FCC)注册的实验室(注册号96792)  ——美国保险商实验室(UL)认可的第三方数据交换(TPTDP)实验室  ——美国ATCB合作实验室   ——德国莱茵TUV认证机构指定为中国代理实验室  ——挪威Nemko认可实验室(编号ELA178)  ——与IEC/TC101“静电学”对口的国内技术归口单位  ——与IEC/TC108“音视频、信息技术设备和通信领域内电子设备安全”、IEC/TC66“测量、控制和实验室设备安全”对口的国内技术归口单位  ——与IEC/CISPR A分会“无线电干扰测量方法和统计方法”和I分会“信息技术、多媒体和接收机设备的电磁兼容性”对口的国内技术归口单位  认证项目  ——CCC认证 ——CB认证  ——CE认证 ——FCC认证  ——其它 ——自愿认证  试验检测能力  ——信息技术设备(GB4943、GB9254、GB17625.1)和音频、视频及类似电子设备(GB8898、GB13837/GB17625.1),电信终端设备、金融和贸易结算类设备的CCC检测  ——承担相关电子产品的EN、IEC、UL、FCC等标准的摸底试验  安全:  ——承担电子元器件的CCC认证、CQC、CESI自愿认证检测任务  ——信息技术设备(IEC60950/EN60950)、音频、视频及类似电子设备(IEC60065/EN60065)的CB测试  ——整机保护装置熔断器(IEC60127-1,IEC60127-2,IEC60127-3)、热熔断体(IEC60691)、电容器(IEC60252、IEV60384)的CB测试  ——测量、控制和实验室设备(GB4793,等同IEC61010-1)的安全性能检测  ——节能产品评审检测(GB/T15320)  ——充电锂电池性能检测(GB/T18287)  ——安全相关标准的委托检测  电磁兼容:  ——信息技术设备、音视频设备等的委托检测(GB9254、GB13837、GB/T17626系列、GB17625.1、GB1765.2、GB4343、GB4824、FCC part15\18等)  ——军用产品的电磁兼容测试(GJB 151A/152A-97、GJB 151/152-86)  ——屏蔽材料的屏蔽效能测试(SJ20524)  ——方舱、屏蔽室的屏蔽效能测试(GB/T12190)  ——汽车电子(ISO7637、ISO10605、CISPR25、GB/T17619、GB18655、GB/T19951、GB/T21437)     10米半电波暗室     5米全电波暗室  环境:  ——环境试验能力(高、低温、潮湿、振动、冲击、跌落、低气压、阳光辐射、淋雨、沙尘、压力),IP防护等级试验(GB/T2423,GJB150,GB4208)  ——运输包装试验能力:压力试验、跌落试验、堆码试验、淋雨试验、振动试验、碰撞试验(GB/T4857,GB6543,GB/T6544)  ——材料试验能力:瓦楞纸箱、纸板试验:压力试验、戳穿试验、粘合强度、边压试验、含水率、纸板厚度(GB6543、GB6544)  ——可靠性MTBF试验(GB5080.7)  ——材料应力试验(拉伸、压缩、弯曲)  ——缓冲衬垫特性试验:抗压强度、尺寸稳定性、含水率、弯曲强度、密度(QB/T1649,GB/T6342,GB/T6343,GB8811,GB8812,GB8813)  性能:  ——电子元器件/原材料性能试验  其他业务  1.标准培训  安全—GB4943、GB8898、GB4793及相关元器件的标准  电磁兼容—GB9254、GB13837、GB/T17626系列、GB17625.1、GB17625.2、GB4343、GJB151A/152A、ISO7637、ISO10605、CISPR25、GB/T17619、GB18655、GB/T19951、GB/T21437、SJ20524、FCC part15\18等  2.协助制定企业标准  3.对产品的安全设计、电磁兼容设计提供技术指导  4.协助企业申请获得3C认证、自愿认证等的证书  5.协助企业申请CB、FCC、CE、UL、CSA、VDE、TUV等认证  特色  权威——对电子产品的安全与电磁兼容标准的理解和熟悉是我们的主要优势,本检测中心是电子产品安全和电磁兼容的国家标准和行业标准的主要起草和归口单位,对相关标准条款有最终解释权。  专业——检测中心具有经验丰富的工程师40多人,能迅速了解产品在试验中存在的问题,以最快的速度出具试验报告,为客户提供优质服务。  全面——检测中心试验场地约为4000平方米,拥有国际和国内先进检测设备500余台(套)。试验条件达到国际先进水平。
  • 中航电磁兼容性检测中心通过三合一评审
    近日,中航工业电源电磁兼容性检测实验室暨中航工业西北电磁兼容性监督检测中心顺利通过了中国合格评定国家认可委员会、中国国家认证认可监督管理委员会、国防科技工业实验室认可委员会联合组织的国家实验室&ldquo 三合一&rdquo 认可认证现场复评审和扩项评审,标志着该实验室的管理体系建设迈上了一个新台阶、整体检测能力提升到了一个新高度。  作为目前国内唯一一家具有航空电源行业特色的综合性电磁兼容性检测基地,该实验室除具有先进且配套齐全的电磁兼容性测试场地、测试仪器设备外,还配备有航空电源发电机试验配套的拖动系统及相应的试验用风冷、油冷设施,具备对航空电源系统、电子电工产品等依据相关标准开展相应电磁兼容性检测任务的资质和能力。实验室有着完善的质量管理体系,确保了检测工作的规范性,满足委托单位对检测质量的要求。  4月中旬,受中国合格评定国家认可委员会、中国国家认证认可监督管理委员会、国防科技工业实验室认可委员会的委托,由主任评审员孙建凤担任评审组组长,见习评审员李申颖为组员组成评审组,对实验室进行了现场复评审和扩项评审。评审组对实验室的整体运行情况给予好评,认为实验室的质量监督记录完善,现场检查活动描述详细,检测人员的检测能力和技术水平较高,对实验室的整体工作提出表扬,一致同意实验室顺利通过评审。  近年来,随着新技术、新工艺在电子电气产品中的广泛应用,出现了许多新的电磁干扰问题,使人们对电磁兼容的关注度越来越高。该实验室不断提高检测能力和解决实际问题的能力,将检测技术融入科研生产中,切实解决产品研制急需,开展问题解决和预测分析及试验验证,全面提升实验室的技术能力,更好地满足产品研发需求。
  • 欧盟拟统一各成员国电气电子设备电磁兼容性法律
    2012年2月,欧盟通报了“关于统一各成员国有关电磁兼容性的法律的指令提案”。  该委员会提案涉及使管理电气电子设备电磁兼容性基本要求的现行法规(指令2004/108/EC)与新立法框架的规定,特别是与决议No 768/2008/EC保持一致。该提案是与新的立法框架保持一致的一揽子9个欧盟指令的一部分。所提出的修订涉及强化经济运营者的义务,特别是产品的可追溯性,加强通报机构的要求,以及精简保障条款的程序。  详情参见:  http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0765:FIN:EN:PDF
  • 2012电源技术交流论坛--电源电磁兼容、磁技术研讨会
    2012年电源创新技术论坛 电源磁技术、电磁兼容技术技术交流会 2012.9.8 中国· 北京 2012年9月8号,中国电源协会与北京森馥科技有限公司一起在北京举办本年度电源创新技术论坛&mdash &mdash 电源磁技术、电磁兼容技术技术交流会,会议设在北京东三环中国南航明珠大酒店,与会人员300多人,涉及到电源相关各个机构及公司,北京森馥科技作为主要协办单位,特邀请意大利电磁兼容专家Michele 博士一起与大家探讨电源电磁兼容测试技术与方法,并提供电磁兼容设备供大家现场体验。整个会议达到预期效果,大家受益匪浅,2012-9-8下午17:00点圆满结束。
  • 欧洲出台手机充电器电磁兼容新标准
    近日,欧洲电信标准协会(ETSI)公布了普通手机充电器电磁兼容(EMC)标准新草案EN 301 489-34,提出了射频传导和辐射抗扰度的测试水平,目的是确保单机普通外置电源(EPS)能更好地符合无线电频率抗干扰度测试的测试要求,以便减少手机和配件不兼容的风险,同时确保普通外置电源的安全和稳定性能。该草案将成为协调标准,并计划于2013年11月开始采用。  草案与电磁兼容指令相关,并且是涵盖无线电及通讯终端(R&TTE)指令范围内所有无线电和电信终端设备的一系列标准的一部分。  文件中详细说明了可传送数据的手机的普通外置电源的具体电磁兼容性要求。标准还对测量方法和EMC发射做出了详细的说明,包括普通外置电源整体机壳、DC电源输出端口、AC电源输入端口、谐波电流以及电压波动和闪变等。  电磁兼容是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。检验检疫部门专家称,“电和磁无时无刻不影响着人们的生活及生产,电磁能的广泛应用,推动了工业的迅速发展和进步。为了防止一些电子产品产生的电磁干扰影响或破坏其他电子设备的正常工作,一些发达国家和组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准。”
  • 欧洲出台手机充电器电磁兼容新标准
    近日,欧洲电信标准协会(ETSI)公布了普通手机充电器电磁兼容(EMC)标准新草案EN 301 489-34,提出了射频传导和辐射抗扰度的测试水平,目的是确保单机普通外置电源(EPS)能更好地符合无线电频率抗干扰度测试的测试要求,以便减少手机和配件不兼容的风险,同时确保普通外置电源的安全和稳定性能。该草案将成为协调标准,并计划于2013年11月开始采用。  草案与电磁兼容指令相关,并且是涵盖无线电及通讯终端(R&TTE)指令范围内所有无线电和电信终端设备的一系列标准的一部分。  文件中详细说明了可传送数据的手机的普通外置电源的具体电磁兼容性要求。标准还对测量方法和EMC发射做出了详细的说明,包括普通外置电源整体机壳、DC电源输出端口、AC电源输入端口、谐波电流以及电压波动和闪变等。  电磁兼容是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。检验检疫部门专家称,“电和磁无时无刻不影响着人们的生活及生产,电磁能的广泛应用,推动了工业的迅速发展和进步。为了防止一些电子产品产生的电磁干扰影响或破坏其他电子设备的正常工作,一些发达国家和组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准。”  在此,检验检疫部门提醒企业,应仔细研读新颁布的手机充电器电磁兼容标准,尽快采取应对措施,在企业条件允许情况下进行技术和原材料的升级。另外,为了确保产品满足买家要求,切莫忽视产品出口前的EMC检测,可寻求可靠的检测机构,或向检验检疫机构咨询。
  • 韩国近日发布KC标志的无线产品须再加测电磁兼容测试
    根据韩国无线电研究所(RRA)于2011年1月所发出的第2011-2号公告,自2011年7月1日起申请KC标志的无线产品须再做电磁兼容的测试,凡于6月30日后送交RRA的申请案,皆须做电磁兼容的测试。  该要求适用范畴为所有无线产品,相关技术标准采用欧盟ETSI EN标准。
  • 2011年7月4日森馥科技电磁兼容讨论会
    2011年7月4号,森馥科技组织北京电磁兼容相关行业在北京开展电磁兼容技术讨论会,森馥科技邀请意大利PMM厂家Michele博士现场做技术讨论,会议中讨论目前标准最新标准的颁发与更新,接收机的未来发展,测量不确定度报告的因素考量以及BCI电流注入测试方法的介绍,最后各位专家参观森馥科技电磁兼容实验室,整个会议大家收获很大,同时对这次讨论会的组织方森馥科技非常满意,多次表示谢意。
  • 2012年电源产品电磁兼容技术研讨会将举办
    2012-9-8号中国电源协会与北京森馥科技有限公司共同举办2012中国电源产品电磁兼容技术研讨会,邀请意大利电磁兼容博士迈克尔先生及国内电源设计技术专家一起探讨电磁兼容技术在电源产品中的应用技术。  一、具体涉及到如下内容:  电磁兼容在电源设计中的应用  电源产品电磁兼容测试标准及测试内容  电源电磁兼容测试技术方法  未来电源电磁兼容技术发展  电磁兼容测试主要仪器  二、主要参加人员  1.电源设计及相关产品设计工程师  2.电磁兼容测试工程师  3.标准协会人员  4.检测及认证机构相关人员  5.相关产品质量控制人员  6.电源相关行业人员…  三、会议举办及参加形式  会议以专家主讲和听众讨论的形式,持邀请信函到会议举办前台登记、或提前电话预约,请提前准好相关讨论问题与专家讨论。  四、会议地址及联系方式  地址:北京南航明珠商务酒店(国贸桥东南角),北京市朝阳区东三环中路10号  联系电话:13521348443、13501083950  如有其它疑问及时联系。  北京森馥科技有限公司  Safety Test Technology(Beijing)Co.Ltd  地址:北京市朝阳区北苑东路清河营郊野公园西北门A座  电话:400 668 6776 - 804 传真:400 668 6776 - 818
  • “100家实验室”专题:访机械工业(北京)可靠性试验及电磁兼容检测中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。2011年1月14日,仪器信息网工作人员参观访问了本次活动的第六十四站:机械工业(北京)可靠性试验及电磁兼容检测中心,检测中心市场部负责人张建忠先生热情接待了仪器信息网到访人员。  机械工业(北京)可靠性试验及电磁兼容检测中心(以下简称“检测中心”)成立于2006年,隶属于机械工业仪器仪表综合技术经济研究所,是由国家投资建设的专业从事各类产品环境适应性试验、电磁兼容(EMC)试验、IP防护等级测试认证、安规认证、MODBUS和PROFIBUS-PA协议设备检测认证、电子/电气/可编程电子安全系统和安全仪表系统的功能安全评估等试验的综合性国家级实验室。可为信息技术设备、测量控制和实验室用电气设备、军用电子元器件、电工电子产品等提供相应的技术服务,并出具权威的检测报告。  检测中心通过了中国合格评定国家认可委员会(CNAS)认可、具有中国国家认证认可监督管理委员会办法的资质认定计量认证证书(CMA),是中国机械工业联合会批准并授权的机械工业测量控制设备及网络质量检测中心,中国质量认证中心(CQC)委托检测实验室及TÜ V莱茵技术(上海)有限公司认可实验室。  张建忠先生介绍说:“最初实验室的成立是认识到通信设备检测的市场需求。而随着人们对生产安全的重视,设备的可靠性检测市场需求越来越大。检测中心会继续以市场为导向,发展特色业务,引入新的检测项目。目前,检测中心设有多个实验室,拥有各类先进的检测仪器设备四百多台套,检测人员都拥有硕士或博士学位。而工业通信网络试验是检测中心的特色业务。”  全面的可靠性检测项目  张建忠先生介绍说:“在检测中心承担的业务中,可靠性试验是主要业务,检测中心拥有相关的仪器及检测人才,能够为仪器仪表行业、电力行业、通信行业的广大客户提供环相应的服务。”  (1)环境适应性类试验  据介绍,检测中心能够进行的环境适应类试验包括:高低温试验、湿热试验、温度变化、交变湿热、温度冲击/冷热骤变试验、宽温变试验、盐雾腐蚀/锈蚀试验、振动冲击跌落试验等。可以按照相关标准的试验方法对各类电子设备、仪器仪表、军用电子产品进行气候环境试验、特殊环境试验及机械环境试验。高加速冲击试验台快速温变环境试验箱  (据介绍,普通同类仪器降温速度在3-4℃/min, 该设备降温速度在10℃/min,2012年检测中心将为该仪器配置液氮系统,降温速度会达到30℃/min。)德国原装高低温湿热环境试验箱  (2)电磁兼容类试验  “电磁兼容是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。近两年来,随着国际、国内贸易的进一步繁荣,广大企业的产品线越来越丰富,为了减轻企业研发、测试负担,检测中心于2010年正式推出电磁兼容(EMC)检测服务。目前,检测中心拥有GTEM小室、屏蔽室和全套电磁兼容测试设备。”传导发射、传导骚扰抗扰度的标准电磁屏蔽室GTEM小室(主要用于设备对所在环境中存在的电磁干扰的抗扰度测定)  (3)IP防护等级试验  “IP防护等级系统是由国际电工协会(IEC)所起草,将电器依其防尘防湿气之特性加以分级。检测中心可以进行IP54、IP55、IP65、IP66、IP67、IP68防护等级认证及测试服务。”淋雨试验室系列装置  (淋雨实验室配有可编程控制的不锈钢材料的垂直淋雨、摆管淋雨、防喷、防溅、水浸等防水试验设备,可根据国际或国家标准、行业标准、客户要求等条件进行测试、试验。)1立方米沙尘试验箱  (4)电气安全试验  “电气安全试验室是检测中心的重要实验室之一,目前可以进行GB4943/IEC60950《信息技术设备的安全》、GB4793/IEC61010《测量、控制设备及实验室用电设备的安全》的全项目测试。可以对信息技术设备产品,测量、控制和实验室用设备产品进行安全试验(包括CE认证)和CQC标志认证检测,可以对办公设备产品进行节能认证检测。”电气安全实验室  (5)灼热燃烧试验  “检测中心拥有齐全的灼热然烧试验设备,包括维卡软化点温度测定仪、漏电起痕试验仪、灼热丝试验仪、大电流起弧引燃试验仪、灼热燃油试验仪、热丝引燃试验仪等。”漏电起痕实验仪热丝引燃实验仪  亚洲独有的PROFIBUS和MODBUS试验室  张建忠先生表示:“工业通信网络试验是检测中心的特色业务,目前检测中心拥有亚洲独有的PROFIBUS和MODBUS试验室。这两个试验室是工业自动化领域,国内首家通过中国合格评定认可委员会认可的工业控制网络和现场总线测试实验室。建立这样的实验室成本并不是很高,但是其技术含量比较高,对于人员和设备的要求也很高。”  PROFIBUS和MODBUS试验室是工业自动化领域国内首家通过中国合格评定国家认可委员会(CNAS)认可的工业控制网络和现场总线测试试验室,在国家授权的测试范围中首次在国内将控制网络PROFIBUS 和MODBUS纳入国家实验室认可体系,从而为这两项工业通信技术在国内的应用和相关产品开发提供了有力的保证。MODBUS试验室  (MODBUS 试验室于2006 年4月获得了MODBUS IDA国际组织授权,可按GB/T 19582.1、GB/T 19582.2、GB/T 19582.3标准,用 MODBUS测试系统对工业自动化产品进行通信一致性和互操作性认证测试。)PROFIBUS试验室  (PROFIBUS试验室于2007年10 月获得了PNO国际组织授权,可按 GB/T 20540.1、GB/T 20540.2、 GB/T 20540.3、GB/T 20540.4、 GB/T 20540.5、GB/T 20540.6标准及PROFIBUS PA行规 V3.01,用 PROFIBUS测试系统对工业自动化产品进行通信一致性和互操作性认证测试。)PNO国际组织授权证书  附录:机械工业(北京)可靠性试验及电磁兼容检测中心  http://www.bjkkx.com/
  • 北京信测和上海计量院共同举办电磁兼容测量不确定度技术研讨会(上海)
    电磁兼容测量不确定度技术研讨会 随着电磁兼容测试技术的不断发展,测量不确定度逐渐成为判断受试设备是否符合相关标准的关键性指标,它反映了电磁兼容测试的可信度。 CISPR 现要求在所有的电磁兼容测试报告中体现测量不确定度,我国也推出了相对应的标准。上海市计量协会 EMC 专业委员会经过研究,决定举办一期电磁兼容测量不确定度技术研讨会,针对电磁兼容&ldquo 降低 EMI 测试的不确定度&rdquo 进行详细的理论及实际举例分析。例如:数字技术的大量应用对降低测试不确定度的贡献,新技术如光纤等在测试中降低不确定度的分析等。 兹定于 2010 年 6 月 23 日(星期三)下午 1:00-5:00 在上海科学会堂一号楼二楼 1202 室召开电磁兼容测量不确定度技术研讨会,会上将邀请意大利电磁兼容专家 Mario Monti (世界首台全数字式测量接收机 PMM9010 的设计者、负责 Narda 的 EMI 接收机、电磁场测试设备以及数字通讯测试设备等多项设计制造者)作有关专题讲解。请有关单位派员参加。附一:电磁兼容 测量不确定度 技术研讨会会议议程附二:上海科学会堂 交通示 意图上海市计量协会电磁兼容专业委员会2010 年 5 月 24 日附一:电磁兼容测量不确定度技术研讨会议议程会议时间:2010年6月23日(星期三)下午1:00&mdash 5:00会议地点:上海科学会堂(上海市南昌路47号)一号楼二楼1205室议程 内容 报告人 会议主持一 领导讲话 待定 龚增二 CISPR标准介绍 EMC试验不确定度介绍 Mario Monti (意大利EMC专家)三 茶歇 /四 数字化原理在降低测试不确定度中应用介绍 Mario Monti (意大利EMC专家)五 光纤替代同轴线缆,在EMI测试中应用介绍 Mario Monti (意大利EMC专家)六 会议总结
  • 2011第十六届国际电磁兼容技术交流展览会
    诚邀您光临 &ldquo 北京信测科技有限公司 (XUTEC)EMC测试设备展览&rdquo &ldquo 2011第十六届国际电磁兼容技术交流展览会 &rdquo 展览会日期: 2011 年 6 月 28-30 日展出地点:北京国际会议中心 ( 北京市朝阳区北四环中路 8 号; http://www.bicc.com.cn)展位号:200、201、202展示设备: 1、传导发射设备展示及实测:PMM 90102、新产品:多标准人工电源网络 L1-150M (同时满足CISPR 16、CISPR 25、ISO 11452-4、ISO 7637-2)3、辐射发射设备展示及实测:PMM 9030 + LP034、预兼容传导及辐射发射测试设备展示及实测: PMM 70005、新产品:Narda意大利最新产品展示:PMM 9180 (18GHz全兼容测量接收机)6、新产品:传导抗扰度测试系统布置及实测:PMM Cond-IS (钳注入、及校准装置)7、新产品:便携式屏蔽效能测试系统展示及实测: SEMS
  • 524项国标计划下达 涉及分析仪器与物性测试仪器、汽车与半导体等行业
    近日,国家标准化管理委员会下达2020年第四批推荐性国家标准计划。本批计划共计524项,其中制定340项、修订184项,推荐性标准517项,指导性技术文件7项。本批524项国家标准计划中,涉及颗粒测试与无损检测仪器,以及试验机等物性测试仪器;色谱、质谱、光谱等多种分析仪器;汽车、半导体与集成电路、增材制造等行业。小编按分类整理如下:颗粒测试序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位3220204663-T-491微细气泡技术 微细气泡使用和测量通则 第1 部分:术语推荐制定ISO 20480-1:201718全国微细气泡技术标准化技术委员会中国科学院过程工程研究所等25220204883-T-469颗粒 激光衍射粒度分析仪 通用技术要求推荐制定24全国颗粒表征与分检及筛网标准化技术委员会中国计量科学研究院等37120205002-Z-469Zeta 电位测量操作指导原则指导制定ISO/TR 19997:201812全国颗粒表征与分检及筛网标准化技术委员会上海第二工业大学、山东理工大学等41520205046-T-606离子交换树脂粒度、有效粒径和均一系数的测定推荐修订GB/T 5758-200118全国塑料标准化技术委员会江苏苏青水处理工程集团有限公司、西安热工研究院有限公司无损检测仪器序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位5220204683-T-604无损检测仪器 相控阵超声设备的性能与检测 第3 部分:组合系统推荐制定ISO 18563-3:201518全国试验机标准化技术委员会汕头市超声仪器研究所有限公司、广东汕头超声电子股份有限公司超声仪器分公司5320204684-T-604无损检测仪器 相控阵超声设备的性能与检验 第2 部分:探头推荐制定ISO 18563-2:201718全国试验机标准化技术委员会广东汕头超声电子股份有限公司超声仪器分公司、汕头市超声仪器研究所有限公司5420204685-T-604无损检测仪器 相控阵超声设备的性能与检验 第1 部分:仪器推荐制定ISO 18563-1:201518全国试验机标准化技术委员会广东汕头超声电子股份有限公司超声仪器分公司、汕头市超声仪器研究所有限公司24820204879-T-469铸钢件 超声检测 第2部分:高承压铸钢件推荐修订GB/T7233.2-2010ISO 4992-2:202018全国铸造标准化技术委员会沈阳铸造研究所有限公司24920204880-T-469铸钢件 超声检测 第1部分:一般用途铸钢件推荐修订GB/T7233.1-2009ISO 4992-1:202018全国铸造标准化技术委员会沈阳铸造研究所有限公司30020204931-Z-469无损检测 自动超声检测总则指导制定ISO/TS 16829:201718全国无损检测标准化技术委员会武汉中科创新技术股份有限公司、上海材料研究所等30220204933-T-469筒形锻件内表面超声波检测方法推荐修订GB/T 22131-200818全国锻压标准化技术委员会北京机电研究所有限公司、二重(德阳)重型装备公司等试验机测试方法序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位13720204768-T-605金属材料 蠕变及蠕变-疲劳裂纹扩展速率测定方法推荐制定24全国钢标准化技术委员会华东理工大学、钢研纳克检测技术股份有限公司等13820204769-T-605金属材料 疲劳试验 应变控制拉-扭热机械疲劳试验方法推荐制定24全国钢标准化技术委员会北京工业大学等20220204833-T-610铝合金断裂韧度试验方法推荐制定24全国有色金属标准化技术委员会西南铝业(集团)有限责任公司、国标(北京)检验认证有限公司等分析仪器检测方法序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位3420204665-T-491纳米技术 表面增强拉曼固相基片均匀性测定 拉曼成像法推荐制定24全国纳米技术标准化技术委员会苏州天际创新纳米技术有限公司、中国科学院苏州纳米技术与纳米仿生研究所、苏州大学等14820204779-T-605石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法推荐制定24全国钢标准化技术委员会中钢集团新型材料(浙江)有限公司、冶金工业信息标准研究院等14920204780-T-605石灰石及白云石化学分析方法 第12部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法推荐制定24全国钢标准化技术委员会鞍钢股份有限公司15020204781-T-605钨铁钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法推荐制定24全国生铁及铁合金标准化技术委员会江西省钨与稀土产品质量监督检验中心、赣州江钨钨合金有限责任公司等15120204782-T-605锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X 射线荧光光谱法(熔铸玻璃片法)推荐制定24全国生铁及铁合金标准化技术委员会广东韶钢松山股份有限公司、武汉科技大学、冶金工业信息标准研究院15420204785-Z-605铁矿石 波长色散X 射线荧光光谱仪 精度的测定指导制定ISO/TR 18231:201618全国铁矿石与直接还原铁标准化技术委员会广州海关技术中心18720204818-T-609玻璃纤维及原料化学元素分析方法 电感耦合等离子体发射光谱(ICP-OES)法推荐制定24全国玻璃纤维标准化技术委员会南京玻璃纤维研究设计院有限公司18820204819-T-609玻璃纤维及原料化学元素的测定 X 射线荧光光谱法推荐制定24全国玻璃纤维标准化技术委员会南京玻璃纤维研究设计院有限公司35620204987-T-469金矿石化学分析方法 第15 部分:铜、铅、锌、银、铁、锰、镍、钴、铝、铬、镉、锑、铋、砷、汞、硒、钡和铍含量的测定 电感耦合等离子体质谱法推荐制定24全国黄金标准化技术委员会紫金矿业集团股份有限公司、长春黄金研究院有限公司等37920205010-T-607化妆品中功效组分虾青素的测定 高效液相色谱法推荐制定24全国香料香精化妆品标准化技术委员会北京市产品质量监督检验院39320205024-T-607皮革 化学试验 热老化条件下六价铬含量的测定推荐制定ISO 10195:201818全国皮革工业标准化技术委员会嘉兴市皮毛和制鞋工业研究所、中轻检验认证有限公司41420205045-T-606水处理剂分析方法 第1部分:磷含量的测定推荐制定24全国化学标准化技术委员会中国石油天然气股份有限公司乌鲁木齐石化分公司等47720205108-T-326土壤质量 土壤中22 种元素的测定 酸溶-电感耦合等离子体质谱法推荐制定18全国土壤质量标准化技术委员会中国科学院南京土壤研究所、中国环境科学研究院等48020205111-T-334珠宝玉石鉴定 红外光谱法推荐制定24全国珠宝玉石标准化技术委员会国家黄金钻石制品质量监督检验中心、国家珠宝玉石质量监督检验中心等48120205112-T-334珠宝玉石鉴定 紫外可见吸收光谱法推荐制定全国珠宝玉石标准化技术委员会自然资源部珠宝玉石首饰管理中心(国家珠宝玉石质量监督检验中心)汽车试验方法序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位48920205120-T-339道路车辆 安全玻璃材料电加热玻璃试验方法推荐制定ISO 17449:201518全国汽车标准化技术委员会中国建材检验认证集团股份有限公司、福耀玻璃工业集团股份有限公司等49120205122-T-339汽车通过性试验方法推荐修订GB/T 12541-199018全国汽车标准化技术委员会中国人民解放军63969 部队、中国汽车研究中心有限公司等49320205124-T-339汽车列车性能要求及试验方法推荐修订GB/T 26778-201118全国汽车标准化技术委员会中国汽车技术研究中心有限公司、交通运输部公路科学研究院等49420205125-T-339乘用车后部交通穿行提示系统性能要求及试验方法推荐制定24全国汽车标准化技术委员会中国第一汽车股份有限公司、中国汽车技术研究中心有限公司等49520205126-T-339乘用车车门开启预警系统性能要求及试验方法推荐制定24全国汽车标准化技术委员会吉利汽车研究院有限公司、中国汽车技术研究中心有限公司半导体与集成电路序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位20620204837-T-610半导体封装用键合金及金合金丝推荐修订GB/T 8750-201418全国有色金属标准化技术委员会北京达博有色金属焊料有限责任公司20820204839-T-339集成电路 电磁抗扰度测量 第4部分:射频功率直接注入法推荐制定IEC 62132-4:200618全国半导体器件标准化技术委员会中国电子技术标准化研究院、北京智芯微电子科技有限公司等20920204840-T-339静电放电敏感度试验 传输线脉冲 器件级推荐制定IEC 62615:201018全国半导体器件标准化技术委员会苏州泰思特电子科技有限公司、中国电子技术标准化研究院等21020204841-T-339集成电路 电磁发射测量第4部分:传导发射测量1Ω/150Ω直接耦合法推荐制定IEC 61967-4:200618全国半导体器件标准化技术委员会中国电子技术标准化研究院、北京智芯微电子科技有限公司等21520204846-T-339半导体器件 机械和气候试验方法 第37部分:使用加速度计进行板级跌落试验方法推荐制定IEC 60749-37:200818全国半导体器件标准化技术委员会中国电子科技集团公司第十三研究所等21620204847-T-339半导体器件 机械和气候试验方法 第40部分:采用应变仪的板级跌落试验方法推荐制定IEC 60749-40:201118全国半导体器件标准化技术委员会中国电子科技集团公司第十三研究所等26020204891-T-469硅片表面光泽度的测试方法推荐制定24全国半导体设备和材料标准化技术委员会浙江金瑞泓科技股份有限公司、天津中环领先材料技术有限公司等26120204892-T-469半导体单晶晶体质量的测试 X射线衍射法推荐制定24全国半导体设备和材料标准化技术委员会中国电子科技集团公司第四十六研究所、中国科学院苏州纳米技术与纳米仿生研究所等34020204971-T-469半导体器件 微机电器件第20部分:陀螺仪推荐制定IEC 62047-20:201418全国微机电技术标准化技术委员会苏州市质量和标准化院等34120204972-T-469硅基MEMS制造技术 微结构弯曲强度检测方法推荐制定24全国微机电技术标准化技术委员会北京大学等34220204973-T-469硅基MEMS制造技术 纳米厚度膜抗拉强度检测方法推荐制定24全国微机电技术标准化技术委员会北京大学等34320204974-T-469硅基MEMS制造技术 纳尺度结构冲击实验方法推荐制定24全国微机电技术标准化技术委员会北京大学等34420204975-T-469半导体器件 微机电器件第26部分:微沟槽和针结构的描述和测量方法推荐制定IEC 62047-26:201618全国微机电技术标准化技术委员会苏州市质量和标准化院等增材制造序号计划号项目名称标准性质制修订代替标准号采用国际标准项目周期(月)归口单位起草单位7520204706-T-604增材制造 工艺参数库构建规范推荐制定24全国增材制造标准化技术委员会南京理工大学、中机生产力促进中心等7620204707-T-604增材制造 定向能量沉积-铣削复合增材制造工艺规范推荐制定24全国增材制造标准化技术委员会华南理工大学、中机生产力促进中心等7720204708-T-604增材制造 材料挤出成形用丙烯腈-丁二烯-苯乙烯(ABS)丝材推荐制定24全国增材制造标准化技术委员会华中科技大学、中机生产力促进中心等7820204709-T-604增材制造 激光定向能量沉积用钛及钛合金粉末推荐制定24全国增材制造标准化技术委员会上海材料研究所、国合通用测试评价认证股份有限公司等20420204835-T-610增材制造用高熵合金粉推荐制定24全国有色金属标准化技术委员会江苏威拉里新材料科技有限公司、中国科学院兰州化学物理研究所
  • 服务GC 安捷伦全新电磁兼容实验室在上海工厂揭幕
    p  2018年3月30日,中国,北京——安捷伦科技公司(纽约证交所:A)日前宣布,全新电磁兼容实验室在安捷伦科技(上海)有限公司揭幕。该实验室的落成标志着最新国际标准下的电磁兼容测试可以在安捷伦气相色谱产品研发和生产重要基地--安捷伦科技上海工厂独立完成,这将大大缩短测试时间,助力产品高质高效的研发。/pp  该高规格实验室有助于进行国际标准下的严苛质量测试,尤其在电磁辐射干扰和抗扰度方面的测试。一直以来安捷伦致力于更快响应市场需求,该实验室的落成将大大促进产品设计开发周期中电磁兼容性能的快速提升。安捷伦上海工厂的质量系统也将随着新质量标准的引入而不断升级。/pp  安捷伦全球副总裁兼生命科学与应用市场集团质量部总经理Jay Bass在开幕致辞中提到,电磁兼容实验室的揭幕是我们秉承长期投资中国战略,不断提升上海基地实力的又一个成果。该实验室的高效测试能力不仅能帮助我们更快更好地推出新产品,更能帮助我们更迅速的响应客户需求,提升产品质量。/pp  安捷伦全球副总裁兼实验室解决方案大中华区总经理陈亮表示,该实验室的揭幕标志着安捷伦上海产品测试不再依赖第三方实验室,这将显著缩短新品开发进程。这是安捷伦的骄傲,更是安捷伦中国的骄傲。/pp  安捷伦科技在上海建厂迄今已逾22周年,22年来,安捷伦科技上海已成为帮助中国客户成长不可或缺的合作伙伴。此次电磁兼容实验室揭幕,是继2015年6月通过CSA CPC(加拿大标准委员会分类认证程序) 认证之后,安捷伦科技上海质量实验室产品综合测试能力又一重大突破。安捷伦严谨的新产品开发流程,孜孜以求提升质量的企业文化以及现代、先进高效的实验室是确保安捷伦走在研发前列的关键所在。/pp  strong关于安捷伦科技公司/strong/pp  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50 多年的敏锐洞察和创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017 财年,安捷伦的营业收入为 44.7 亿美元,全球员工数约为 14,200 人。/p
  • 创远信科与长检中心合作成立智能网联汽车测试联合实验室
    9月13日,由创远信科(上海)技术股份有限公司与长春汽车检测中心有限责任公司合作成立的智能网联汽车测试联合实验室(以下简称“联合实验室”)揭牌仪式在上海隆重举行。双方将围绕汽车通信网络、应用仿真、电磁环境等方向提供合规检测、咨询服务、设备开发等相关业务,为客户提供一站式服务。长春汽车检测中心智能网联与电磁兼容部部长吕刚与创远信科总经理陈向民签署联合实验室共建协议,长春汽车检测中心总经理郑虹与创远信科董事长冯跃军共同为联合实验室揭牌。   郑虹表示,联合实验室的成立,将极大促进双方在智能网联汽车网络通信性能、汽车终端网络性能、汽车应用场景仿真、以及复杂电磁环境对道路车辆的影响等领域方面的合作,为智能网联汽车行业的发展和大规模应用提供坚实的支撑。   冯跃军表示,双方将携手共赢、优势互补,资源共享,将国产化自研的测试系统和方案应用到实际行业中,共建汽车网联相应测试体系,将联合实验室建设成集科技创新、测试技术服务、测试成果转化为一体,通信网络和复杂电磁环境相关的智能网联汽车测试基地,为中国汽车产业的发展做出贡献。   未来,长春汽车检测中心将凭借其覆盖北方、华北(华东)、华南的“一中心三基地”全国布局和丰富经验,持续聚焦新能源汽车、智能网联汽车相关测试领域,与创远信科携手打造智能网联汽车通信网络及电磁环境相关测试平台,推动技术发展和创新。
  • 工信部发布2022年汽车标准化工作要点(附汽车测试技术网络大会)
    3月18日,工业和信息化部装备工业一司发布2022年汽车标准化工作要点,含五大方面,15项内容。全文如下:2022年汽车标准化工作要点2022年汽车标准化工作坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,按照《国家标准化发展纲要》《新能源汽车产业发展规划(2021—2035年)》等文件要求,紧贴汽车技术发展趋势和行业实际需求,践行使命担当,奋力开创汽车标准化工作新局面,为汽车产业高质量发展提供坚实支撑。一、持续完善标准顶层设计,加强各方统筹协调1.健全完善汽车技术标准体系。进一步优化汽车行业“十四五”技术标准体系,持续完善新能源汽车、智能网联汽车等重点领域标准体系建设指南,研究制定智能网联汽车测试装备标准体系,加快构建汽车芯片标准体系。2.统筹推进汽车标准化工作。高度重视汽车标准的交叉融合问题,推动建立跨行业跨领域工作协同机制,进一步强化行业协同、上下联动,大力推动电动汽车充电、汽车芯片、智能网联汽车等重点领域标准的统筹协调,不断提升标准工作开放性和透明度。3.强化标准全生命周期管理。加强标准技术来源和行业需求研究,鼓励行业机构、业界企业、社会公众等提出标准需要和意见建议;持续加大标准宣贯的广度和深度,通过深度解读标准内容和要求支撑做好贯彻实施工作;开展重点标准实施效果阶段性评估,立足我国政府管理及产业发展趋势持续提升标准质量水平。二、加快新兴领域标准研制,助力产业转型升级4.新能源汽车领域。启动电动汽车动力蓄电池安全相关标准修订工作,进一步提升动力蓄电池热失控报警和安全防护水平;加快推进电动汽车远程服务与管理系列标准研究,修订燃料电池电动汽车碰撞后安全要求标准,进一步强化电动汽车安全保障。开展混合动力电动汽车最大功率测试方法标准预研,推进纯电动汽车和混合动力电动汽车动力性能试验方法、驱动电机系统技术要求及试验方法等标准制修订,持续完善电动汽车整车及关键部件标准体系。开展动力蓄电池耐久性标准预研,推进动力蓄电池电性能、热管理系统、排气试验方法及动力蓄电池回收利用通用要求、管理规范等标准研究,促进动力蓄电池性能提升和绿色发展。全面推进燃料电池电动汽车能耗及续驶里程、低温起动性能、动力性能试验方法等整车标准以及燃料电池发动机性能试验方法、车载氢系统技术条件等关键系统部件标准研究,支撑燃料电池电动汽车关键技术研发应用及示范运行。加快构建完善电动汽车充换电标准体系,推进纯电动汽车车载换电系统、换电通用平台、换电电池包等标准制定;开展电动汽车大功率充电技术升级方案研究和验证,加快推进电动汽车传导充电连接装置等系列标准修订发布。5.智能网联汽车领域。开展汽车软件在线升级管理试点,组织信息安全管理系统等标准试行验证,完成软件升级、整车信息安全和自动驾驶数据记录系统等强制性国家标准的审查与报批。推动智能网联汽车自动驾驶功能要求、设计运行条件及车载定位系统等L3及以上通用要求类标准草案编制,完成封闭场地、实际道路及模拟仿真等试验方法类标准的制定发布,面向L2级组合驾驶辅助系统开展标准验证试验,有力支撑智能网联汽车企业及产品准入管理工作。加快推进信息安全工程、应急响应、数据通用要求、车载诊断接口、数字证书及密码应用等安全保障类重点标准制定,进一步强化智能网联汽车信息安全、网络安全保障体系建设。优化完善车辆网联功能技术标准子体系,推进基于LTE-V2X的车载信息交互系统、基于网联功能的汽车安全预警场景应用以及相应交互接口规范等标准的研究和立项,协同推动智慧城市网联基础设施相关标准制定,支撑智能网联汽车与智慧城市基础设施、智能交通系统、大数据平台等的互通互联。分阶段完成智能网联汽车操作系统系列标准制定,开展符合我国交通特征的测试设备等标准研制工作。6.汽车电子领域。完成无线通信终端、毫米波雷达、主/被动红外等关键系统部件标准审查和报批,加快推进免提通话和语音交互标准制定,启动车载事故紧急呼叫系统、车载卫星定位系统、抬头显示系统、激光雷达等标准研制立项,满足不断增长的车载电子系统标准需求。推进整车及零部件电磁兼容基础通用标准修订立项,启动整车天线系统射频性能评价、整车辐射发射限值、人体电磁曝露、车辆雷电效应和整车天线系统通信性能等标准预研。完成车辆预期功能安全、车辆功能安全审核及评估方法、电动汽车用驱动电机系统功能安全等标准制定,进一步完善功能安全与预期功能安全标准体系。7.汽车芯片领域。开展汽车企业芯片需求及汽车芯片产业技术能力调研,联合集成电路、半导体器件等关联行业研究发布汽车芯片标准体系。推进MCU控制芯片、感知芯片、通信芯片、存储芯片、安全芯片、计算芯片和新能源汽车专用芯片等标准研究和立项。启动汽车芯片功能安全、信息安全、环境可靠性、电磁兼容性等通用规范标准预研。三、强化绿色技术标准引领,支撑双碳目标实现8.能源消耗量领域。完成轻型、重型商用车第四阶段燃料消耗量限值标准征求意见,加快推进乘用车第六阶段燃料消耗量、电动汽车能量消耗量限值标准制定。开展高效电机等乘用车循环外技术装置评价方法标准研究,启动乘用车道路行驶能源消耗量监测规范标准预研。完成轻型汽柴油车、可外接充电式混合动力电动汽车和纯电动汽车能源消耗量标识标准审查和报批。9.碳排放领域。开展道路车辆温室气体管理通用要求、术语定义、碳中和实施指南等基础通用标准研究和立项。推进车辆生产企业及产品碳排放及核算办法相关标准研究和立项。启动汽车产品碳足迹标识、电动汽车行驶条件温室气体碳减排评估方法标准预研。四、完善整车基础相关标准,夯实质量提升基础10.汽车安全领域。推动燃气汽车燃气系统安装规范、间接视野装置性能和安装等标准发布,加快灯光系列标准整合以及机动车乘员用安全带及固定点、机动车儿童乘员用约束系统等标准修订。推进乘用车制动系统、前后端防护装置、顶部抗压强度、行人碰撞保护、侧面碰撞乘员保护、后碰撞燃油系统安全要求、防盗装置等标准制修订,进一步强化乘用车安全要求。做好商用车驾驶室乘员保护标准宣贯实施,推动客车座椅及其车辆固定件强度标准发布,加快商用车驾驶室外部凸出物标准、专用校车安全、专用校车学生座椅及其车辆固定件强度等标准制修订,持续推进危险物品运输车辆、爆炸品和剧毒化学品车辆等危化品运输车辆标准整合,开展轻型汽车/商用车辆电子稳定性控制系统(ESC)标准实施评估及强制性实施的可行性分析,不断提高商用车安全水平。进一步完善车辆事故与质量评价标准体系,启动汽车故障模式和事故分类等标准预研。11.传统整车领域。围绕自卸半挂车栏板高度、45英尺集装箱列车长度等内容进行调研,适时启动GB 1589《汽车、挂车及汽车列车外廓尺寸、 轴荷及质量限值》标准修订工作。配合GB7258《机动车运行安全技术条件》标准修订,启动空气悬架车辆评价、提升桥车辆技术要求等支撑性标准的研制。加快推进汽车列车性能要求和试验方法标准修订,开展主挂自动连接、连接装置强度、货物隔离装置及系固点等标准预研。开展3.5t以下轻型挂车标准体系研究,根据行业需求开展相关标准制修订。推进车辆操控、主动降噪、结构耐久、车内外提示音等方面标准预研。12.零部件领域。推进空气悬架、推力杆、高度控制阀、自动变速器、电子辅助转向系统(EPS)、多种类型传感器、执行器和控制器等关键零部件标准研究与制修订。开展新型塑料及复合材料的车辆零部件质量标准研究制定。加快压缩天然气(CNG)汽车35MPa压力关键部件等标准升级。五、全面深化国际交流合作,提高对外开放水平13.加强全球技术法规制定协调。全面跟踪联合国世界车辆协调论坛(WP.29)动态及趋势,切实履行《1998年协定书》缔约国义务及自动驾驶与网联车辆工作组、电动汽车安全工作小组副主席等职责,牵头先进驾驶辅助系统部件、自动驾驶功能要求、自动驾驶测评方法、数据记录系统、电动汽车安全、氢燃料电池车辆安全、车载电池耐久性等重点法规项目规划与研制工作,适时提出中国提案。推动1-2项中国标准进入全球技术法规候选纲要,持续提升国际法规协调工作的参与度与贡献度。14.深度参与国际技术标准制定。切实履行国际标准化组织道路车辆委员会(ISO/TC22)自动驾驶测试场景、车载雷达特别工作组召集人以及国际电工委员会电动车辆电能传输系统委员会(IEC/TC69)等相关国际标准项目负责人职责,加快推进自动驾驶测试场景、车载毫米波雷达探测性能评价、动力蓄电池系统功能安全、汽车电子/电气部件传导骚扰试验方法等国际标准研究,重点推动乘用车外部保护、负压救护车、安全玻璃、燃料电池汽车低温冷启动及最高速度等国际标准立项并新建1-2个国际标准工作组,持续提升中国标准国际化影响力。15.务实推进中外标准交流合作。充分利用多双边合作机制与平台,巩固并扩大在新能源汽车、智能网联汽车等领域的国际标准和法规协调工作成果,共同提出国际标准法规提案,联合开展相关标准法规制定活动,推动形成国际标准化共识。贯彻落实“一带一路”倡议,与重点沿线国家开展汽车标准化交流、培训等活动,促进国内外标准化机构间的对话合作,推动中国标准“走出去”。汇集行业多方资源力量,不断扩充国际协调专家队伍,实现国际协调资源共享和专家有序管理。第四届“汽车检测技术”网络大会我国是世界汽车产销第一大国,据中汽协预测,2021年中国汽车总销量为2610万辆,同比增长3.1%;与之相对应的汽车召回量也有所增长,据国家市场监督管理总局统计,2021年国内乘用车企召回缺陷汽车851.91万辆。面对严峻的市场环境,主机厂和零部件厂高度重视整车品质的提升。针对整车和组件的测试及质量监控,已经贯穿汽车产品开发的各个环节。基于此,仪器信息网联合中国汽车工程学会汽车材料分会,将于4月13-14日组织举办第四届“汽车检测技术”网络大会,为汽车产业链用户搭建一个即时、高效的交流和学习的平台,推动我国汽车测试行业健康发展,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造。免费报名:https://www.instrument.com.cn/webinar/meetings/automobile2022/扫码免费报名参会会议赞助:15718850776(微信同号)刘老师会议日程报告时间报告题目报告人4月13日上午 零部件失效分析09:00-09:30机械传动零部件失效诊断技术研究及其制造设计的改进应用潘安霞中车戚墅堰机车车辆工艺研究所有限公司09:30-10:00更新中欧波同10:00-10:30高强度零部件延迟开裂问题探讨唐刚比亚迪汽车工业有限公司10:30-11:00电子探针在汽车材料分析中的应用岛津11:00-11:30检验分析报告中的图片表达问题探讨刘柯军汽车工程学会材料分会理化及失效专业委员会4月13日下午 零部件测试技术14:00-14:30汽车橡胶材料测试(拟)苍飞飞国家橡胶轮胎质量监督检验中心14:30-15:00汽车零部件清洁度测试技术谢宇中汽研汽车检验中心(天津)有限公司15:00-15:30赞助席位15:30-16:00汽车几何尺寸测量(拟)邵双运北京交通大学理学院16:00-16:30赞助席位16:30-17:00更新中冯继军东风商用车技术中心工艺研究所17:00-17:30车内空气污染检测技术胡玢北京市劳动保护科学研究所 4月14日上午 新能源汽车测试技术(上)09:00-9:30动力电池全生命周期测评技术研究谢先宇上海机动车检测认证技术研究中心有限公司9:30-10:00动力电池安全性测试技术马天翼中国汽车技术研究中心有限公司10:00-10:30更新中基恩士10:30-11:00驱动电机测试技术与研究(拟)吴诗宇重庆车辆检测研究院有限公司11:00-11:30赞助席位11:30-12:00电动汽车车载充电机(OBC)与充电桩电源新技术王正仕浙江大学4月14日下午 新能源汽车测试技术(下)14:00-14:30数字射线成像(DR)及工业CT检测技术在新能源汽车关键零部件上的应用郑小康中车戚墅堰机车车辆工艺研究所有限公司14:00-16:30更新中
  • 2014中国(成都)电子展仪器仪表展区聚焦航空航天测试技术
    2014年中国(成都)电子展(www.icef.com.cn/summer )将于7月10-12日在成都世纪城新国际会展中心召开。本届展会由中国电子器材总公司、成都市经济和信息化委员会、成都市博览局共同承办。展会展示电子元器件、电源/电池、集成电路、嵌入式系统、电子材料、电子制造设备、电子工具、电子测量仪器及工控自动化系统、安全与电磁兼容测试仪器及系统、防静电产品、物联网、消费电子等产品。展览面积达25000平方米,可谓西部电子第一大展。  其中,中国(成都)电子展--仪器仪表展区,今年依然秉承了优势展区的传统,定位在高端电子及通信测量仪器、电工仪器、光学仪器这三类,EMC、防静电检测和环境实验仪器也随着西部市场的强大需求而涌现。本届仪器仪表展区仪器仪表展商近100家。电子仪器界的领军企业纷至沓来,如德国罗德与施瓦茨公司、日本横河、台湾固纬、泛华测控、北京信测、普源精电、艾德克斯电子、成都天大仪器设备有限公司、成都前锋电子仪器、常州市同惠、苏州泰思特、优利德科技等,他们都带着各自的最新产品,准备抢占新一轮西部市场大开发的制高点。  &ldquo 第二十届国际电子测试与测量专业研讨会&mdash &mdash 聚焦航空航天测控技术新发展&rdquo 是今年成都电子展的一大亮点。从航空电子设备到通用航空飞行器,从神舟系列载人航天工程到嫦娥系列探月工程,中国的航空航天事业在不断的探索中前进,取得了许多令人瞩目的成就。&ldquo 十二五&rdquo 规划中,列出了需要着力推动实施的一批关键领域重点项目,包括航空发动机、航空电子系统、卫星通信应用、卫星导航等领域,对航空航天测试技术的发展带来了挑战。本次研讨会由中国电子学会电子测量与仪器分会和中国电子展组委会联合主办,在航空航天测控领域拥有独一无二的影响力,届时将邀请来自国内外企业、研究院所的工程技术人员、航空航天类院校的专家、学者进行技术交流,分享航空航天测试经典案例,共同探讨航空航天最新测试技术、测试方法,以及边界扫描在航空航天测试中的最新应用等等。  (更多咨询:010-51662329-56/73 13811460483 官方微博:中国电子展仪器展区 )  名企赏鉴:  罗德与施瓦茨公司作为一家独立的国际性电子公司,是测试与测量,广播电视,安全通信,以及无线电监测与定位领域的领先解决方案提供商。  日本横河主要产品涵盖YOKOGAWA示波器、示波记录仪、数字功率计、光通讯类、记录类及现场在线类测试仪表,是多方位综合通用仪器销售公司和全方位科技公司。  泛华致力于发展专业测控技术,为各行业用户提供高品质的测试测量解决方案和成套的检测设备。2011年公司再次通过了ISO9001:2008质量体系认证,并且具有国家级高新技术企业、航空航天产业联盟单位、保密资格认证委员会三级保密资格认证。  固纬电子产品包括数字及模拟示波器、频谱分析仪、信号源、电源系列及电子负载、基本量测仪器、环境试验设备、电池测试系统、自动测试系统(ATE)等300多种 经过近40年不断创新,固纬电子已成为全球专业仪器生产商之一。  北京信测是专业电磁兼容测试测量设备供应商,提供完善的电磁兼容测试测量解决方案,测试满足民用及军用标准,应用涵盖信息通信、工业、科学、医疗设备、家用电器电动工具、电气照明、电力、电能表、汽车电子、车辆、船舶、航空航天等。  艾德克斯电子( ITECH ) 为美国第四大仪器公司B K-Precision 集团成员, 拥有独立研发机构和巨大的技术优势,一流的制造工厂以及与国际知名公司的紧密的技术交流合作,公司致力于电源及电源测试领域的研究, 研究出一系列高性能自动测试系统,电源和电子负载等大功率电子测试仪器,广泛应用于各个领域。  普源精电是从事测试测量仪器研发、生产和服务的国家级高新技术企业。目前已有专利400余件,其中70%以上是发明专利。RIGOL坚持自主创新,现已研发并生产了8大系列、数十种产品。包括数字示波器、频谱分析仪、射频信号源、函数/任意波形发生器、数字万用表、可编程线性直流电源、高效液相分析仪系统和紫外-可见分光光度计。公司拥有所有产品的全部核心知识产权,以自主品牌行销全球超过60多个国家和地区。  常州同惠集研发、制造、市场营销于一体的民营高科技企业,&ldquo 同惠&rdquo 已成为国内电子仪器行业的知名品牌。主要产品有:数字存储示波器、台式数字万用表、电子元件参数测试仪器 变压器、电机测试仪器 线材测试仪 直流电阻类测试仪器 高、低频毫伏表 电声响器件测试仪器等。  附:关于2014中国(成都)电子展(CEF)  时间:2014年7月10-12日  地点:成都世纪城新国际会展中心  主题:展示面向工业和军工应用的电子技术解决方案  了解更多:立即登陆www.iCEF.com.cn  展区设置:  电子元器件:元器件、测试测量、工具、电子制造设备、印刷线路板、元器件分销、半导体集成电路  电子信息技术应用:物联网、车联网、云计算、汽车电子、智能家居、智慧城市、北斗系统及应用  信息消费:智能终端产品、通讯产品、IT类产品、电子游戏、网络游戏、动漫  同期活动:  第二十届国际电子测试与测量专业研讨会  第十八届电路保护与电磁兼容技术研讨会  印制电路技术交流会  雷达与火控、电子线路学术报告会  雷电防护与电磁脉冲技术交流会  SMT工艺技术巡回研讨会  2014中国(成都)国际物联网峰会  中国手机游戏高峰年会  第八届军工行业工艺技术研讨会  &ldquo 汽车电路测试趋势和未来发展方向&rdquo 专题研讨会
  • SDL Atlas公司将参展北京2010汽车测试及质量监控博览会
    2010汽车测试及质量监控博览会(Automotive Testing Expo China)将于2010年9月14-16日在北京全国农业展览馆举行。展出为中国制造的轿车和卡车确保质量、可靠性、耐久性和安全性的各种技术与服务。逾175家世界领先的汽车测试设备制造商和测试服务提供商将向中国汽车制造业展示自己的最新科技,具体领域包括: 测试模拟 发动机及排放分析 振动测试 声学测试 环境测试 机械测试 数据采集 材料测试 非破坏性测试(NDT) 车道模拟及实验室测试 电磁兼容(EMC)分析 结构及疲劳测试 悬挂系统运动学和顺应性 模拟测试软件 传感器与转换器 车载诊断系统 风洞技术 空气动力学测试 噪声、振动与舒适性(NVH) 质量检测/检验 SDL Atlas公司将参加此次展会,届时我们将会展出老化测试行业领导者美国著名仪器制造商Atlas生产的氙灯老化试验箱Ci4000 Weather-Ometer,和摄影和录像的高速照明光源产品, 包括:High-S-Light 250G、High-S-Light 400G、High-S-Light 1200 Shutter Lamp, 以及美国TiniusOlsen公司生产的H10KS万能材料试验机等。欢迎届时莅临我们的展台1040了解详细的产品信息!日期:2010年9月14-16日 地点:北京全国农业展览馆 (北京朝阳区东三环北路16号) 展台:1040
  • 首次公开!理想汽车的89个专项试验室
    今年,理想汽车检验检测中心正式通过中国合格评定国家认可委员会(CNAS)的审核,获得国家实验室认可证书。通过CNAS的审核,不仅标志着理想汽车检验检测中心,已正式迈入国家认可的实验室序列,更意味着其所出具的各类检测数据结果,将被全球100多个国家和地区的国际互认机构予以承认,具有国际权威性和公信力。而其涵盖的89个专项试验室,也首次浮出水面。今天, 将掀开部分试验室的神秘面纱,帮你从中窥一斑而知全豹,落一叶而知深秋,感受理想汽车检验检测中心的强大实力与理想汽车的技术底蕴。受访人:理想汽车检验检测中心工程师01 智能空间试验室——让脑海中的构想转瞬成为现实每一款理想汽车在打造之初,都是如何构思的?如何让车内的空间被最大程度合理利用?如何让每一处细节,兼顾质感的同时又符合家庭用户所需?当其他品牌还在脑海里凭空构想时,我们已通过自研的智能空间试验室,让一切成为现实。借助智能空间舱模拟器,产品和研发工程师们只需通过PAD上的简单操作,就可借助数字孪生的用户界面,轻松控制超过168个电机,实现座舱的柔性空间切换。就像拼乐高一样,工程师们可任意对座舱的350个模块单元,以智能电动的调节方式进行灵活的集成布置,快速完成对感知、交互与系统集成的开发与验证,将原本数周的工作周期缩短为寥寥几小时。“我们自研的空间舱,其尺寸可以覆盖主流的绝大多数车型,车身的各个部件都可基于需要,自由进行伸长、缩减、旋转,精度可达0.1毫米,进而实现柔性、安全的空间变换,为产品、研发工程师提供可验证、测试、展示、体验的智能座舱空间。门槛高度应该是多少才更方便一家老小上下车?B柱、C柱多宽才能在保证安全的同时更美观?后备箱离地多高才能拿取行李更加方便?这些原本需要依靠经验、想象的设计,现在都可以在现实里加以判断。小到空调出风口的摆动方式、车内氛围灯的氛围营造,大到不同尺寸车身所对应的空间布局、后备箱的布局等,也都可以借助空间舱,以更直观的方式呈现在所有产品与研发工程师面前,方便大家对其打磨、调整,让大家可以共创、共识出超越用户需求的设计方案。针对如今越来越多的智能交互,我们也在柔性座舱和柔性台架的基础上,增加了对于智能空间的验证。就比如我们二排的屏幕,通过磁吸的方式,不仅可任意更换不同尺寸的屏幕,去验证用户的使用感受,还可与二三排的座椅调节进行联动,让屏幕下翻后,二排座椅自动后移并调节仰角,帮助研发伙伴找出适合绝大多数用户的最佳观影角度。同时,由于我们的座舱顶棚与车身是分体结构,我们也实现了同一时间内,不同业务伙伴的同时开工。负责车内视觉摄像头的伙伴,可以在顶棚这边去测试摄像头是否能精准捕捉车内乘员的动作,而负责座椅的伙伴则可在柔性台架上调整座椅布局,而负责氛围灯的伙伴则可在车门、中控台上验证不同的氛围灯设计方案。过去,这一切都要等到车身基本成型后,才可进入试验阶段,而随着我们空间舱的落成,现在都可与车身的开发同期进行。”负责智能空间试验室的工程师玉亭介绍。02 电磁兼容试验室——构建强大的电磁“免疫系统”你在行车过程中,是否也曾出现过突然闪屏、音响发出杂音?出现这类情况,虽然有一定可能是由于线路接触不良、电压不稳等原因造成,但多数情况则是由于电磁干扰导致。“过去,传统的燃油车都是机械结构,对电磁兼容几乎没有要求。但随着科技进步,如今即便是燃油车,其刹车、换挡、转向助力等,也都已变成了电子的。而对于智能电动车,电磁干扰带来的影响则会愈发明显。像我们理想的车辆,不论是电池、电机、电控的‘老三电’,还是冰箱、彩电、大沙发的‘新三电’,以及我们的智能驾驶、智能空间,其背后都是大量精密、复杂的电子设备。它们都会持续释放微弱的电磁波,彼此产生干扰的同时也会对车外产生干扰。另一方面,城市里的电磁环境也相较以往更加复杂,无线电台、电视台、基站等,都会对车内的电子设备产生一定干扰。极端情况下,过大的电磁辐射,甚至会直接引起周边的电子设备功能失效或误动作,甚至击穿电子器件,对用车安全造成严重影响。就比如市郊的一些广播电台,很多年前当各个品牌都还不重视电磁干扰时,电动车一开到那附近就会出现问题,轻则黑屏、花屏、杂音,重则直接电压下降,车辆直接‘趴窝’。”工程师陈大可介绍。为了保证我们每一台理想汽车上,各个电子设备的稳定运行,特别是在强电磁环境中依然能够正常使用,我们重金打造了电磁兼容试验室,具备整车以及高低压电子电器零部件的电磁兼容及射频测试能力,以应对新能源汽车电子电气系统集成化,智能化和网联化带来的电磁兼容挑战,让每一台理想汽车都通过了堪比航空级别的EMC电磁兼容性测试。我们EMC测试能力同时满足国家法规与欧盟出口法规,测试项目覆盖度达到行业内的领先水平,测试频率范围可达DC~18GHz,测试场强30V/m~300V/m,充分模拟车辆在社会道路上行驶所能接收到的各种电磁干扰,进而为每一台理想汽车构建起强大的电磁“免疫系统”。03整车半消声室——在这里体验“落针可闻”乍一眼看到整车半消声室,你很可能会发出这样的疑问,“就这?很厉害么?”但当你真的步入这一试验室,你可能会第一次理解,到底什么才叫万籁俱寂、落针可闻。极度的静谧,甚至会让你的耳朵一时间都产生不适。工程师老郑介绍,“只有在极度安静的环境内,我们才能准确识别出车上的各类声音,而在自然界中这种环境并不存在。一般来说街面上的音量约为60、70分贝,办公室约为40、50分贝。但在我们的试验室里,本底噪音仅10分贝。为此,我们不止墙面上全部被复合型吸音材料覆盖,整个试验室我们甚至都采用了‘房中房’的结构,在内房与外房的底部结构之间填充了大量的隔振块进行隔振降噪处理,这才实现了这份极致的安静。另一方面,为了评价行驶过程中整车、零部件的声音表现,我们还在试验室地下打造了一个高达9米的巨型空间,在那里布置了一整套的四驱四电机静音转毂,不仅可模拟道路正常行驶模式,还可模拟反拖车辆运行,同时兼容两驱、四驱。即便试验过程中转毂速度提升至270km/h时,其所产生的噪音依然可控制较低的噪音工况。”随着整车半消声室的落成,其能力已全面覆盖动力系统、热管理系统、声学包、电器品质、开关门品质的开发需求,仅此每年便可为我们节省数百万的外委试验费用。以动力系统为例,我们自研的理想2.0增程系统采用全套机械静音设计,增程器开启对比纯电模式,噪音相差仅不到1分贝。很大程度上,就得益于整车半消声室提供的助力。针对动力系统的NVH性能,如增程器振动噪声、电驱系统振动噪声、进排气系统噪声、供油系统噪声等,我们都可借助大量的试验不断加以优化,进而不断打破行业固有认知,为用户打造更为安静的“家”。04 整车环模排放试验室——自由操控天气的奇异空间每一次用户舒适度上的提高和行车能耗的降低,其背后往往都是车辆在整车环模试验室里无数次试验后的成果。在我们自建的整车环模排放试验室,可最大程度模拟不同温度、湿度、日照、气流等环境,进行油耗、冷启动、续航里程等测试,更可根据企业标准进行热平衡热害试验、空调降温试验、除霜除雾试验等各类可靠性试验。理想汽车的每一款车,无论是一开始的原型试制阶段,还是SOP阶段,都需要在整车环模排放试验室里持续进行大量测试。我们的高低温环境仓可提供-40℃~60℃的高低温环境,以及最大1200W/㎡的红外阳光模拟环境,湿度最高可达95%;底盘测功机支持前后两驱及四驱模式;排放设备为目前最新一代产品,具备国V、国VI排放试验能力。与一些环境模拟实验室仅能实现单一的环境测试不同,我们可联动温度、光照、湿度等,打造更为贴近真实用车场景的复杂环境。在过去,环境模拟几乎要看天吃饭,高温、高寒的试验,很难具备前期的准备和后期改进的条件。天气再恶劣也是一时的,很难无时无刻都保持相同的状态。而借助整车环模排放试验室,则可凭借其稳定的环境模拟条件,为各种开发及验证提供可重复的、稳定的、不受外部影响的测试边界条件。同时,在相同环境条件下的多次重复测试,也更有利于评估和详细分析试验数据显著的试验特性和产品分析特性,具备安全、节能、试验精度高、一致性高等优点。“大量的模拟环境测试,并不会减少我们在真实场景下的验证。我们相当于在大量的方案里,通过模拟的环境,在较短的时间内快速筛选出其中表现最好的部分方案,再结合大量的真实路测,全面覆盖极热、极寒、高湿地域,挑选出表现最佳的那一个,呈交给用户。不夸张地说,我们自建的整车环模排放试验室,仅一年多的时间,为公司节省下的各类费用就已经能覆盖我们所有的前期投入成本,剩下的时间里,我们无时无刻都在‘纯赚’。”工程师强哥说。05 以最高标准打造,是我们技术自研的底气像这样的试验室,在理想汽车的研发中心足足还有80余个。在碳化硅功率模块试制车间与试验室,我们实现了微米级的印刷、打线、测量与检测,并可进行完整的性能与可靠性验证;在结构强度试验室,我们复现了不同的路面情况,不断考察车身及底盘结构可靠耐久性;在电池试验室,我们全面探索更安全、更高效的新一代电芯解决方案,麒麟5C电池也是在这里经过了我们的反复检验;在获得杜比官方认证的空间声学试验室里,我们打造出了理想汽车首创的7.3.4全景声音响系统......截止目前,理想汽车检验检测中心已分别在北京研发中心、上海研发中心、常州生产基地分设三个检测分中心,89间专项试验室,试验能力涵盖整车、系统、零部件、芯片、材料等车辆研发所必备的全部测试能力,试验范围可覆盖实物验证、仿真验证、软件测试、硬件在环测试、路试等,从产品研发到供应链全领域、全生命周期的验证。据负责试验室规划与建设的工程师张文希介绍,“为了确保我们每一次研发的新技术、打造的新产品都能拥有稳定的质量和性能,我们必须对其进行严格的研发测试。为此,早在公司成立之初,我们就已启动了对各类实验室的建设,并严格参照实验室认可服务的全球最高标准——ISO/IEC 17025加以打造。多年来的持续投入,让我们的各项研发验证都更加充分,不断提升产品的升级迭代效率。尽管一些第三方实验室也可以承接部分试验的工作,但无论从测试效率、测试成本,以及知识产权保护等方面,都相较我们自建实验室存在一定差距。以时效性为例,有些第三方试验室由于同时承接不同品牌的大量项目,往往光是排队就要1-2个月的时间,等做完试验,结果也要按照试验的先后顺序排队产出。一些处于研发期的项目,无论智能空间、智能驾驶、增程电动,还是电芯试制、车身底盘、结构强度耐久,我们都需频繁通过试验来辅助研发对方案进行验证,我们根本等不起。但在我们自建的试验室里,一方面我们会基于项目的优先级灵活协调安排,让价值高、时间紧的项目先做,并且第一时间就可产出结果,确保整体效率保持在较高水平。另一方面,凭借自建优势,我们也可将一些试验整合到一起,打造独属于我们理想汽车的试验室,帮伙伴们更便捷、更省心地进行各类项目的研发与验证。”由小到大,从零部件到整车,从功能到系统,我们始终用最为严苛的研发测试验证,去为每一个家庭用户,带来更为极致的驾乘体验。为更多用户创造移动的家,创造幸福的家。
  • 新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点
    2021年可谓标准“元年”,中共中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线试验车道 第1部分:双移线2021/8/192022/3/127GB/T 40521.2-2021乘用车紧急变线试验车道 第2部分:避障2021/8/192022/3/128GB/T 38146.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线充电系统 第5部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1121T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1122T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1123T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1124T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1125T/CSAE 194-2021汽车外饰件用PVD涂层技术条件2021/6/1126T/CSAE 195-2021铝合金底盘件加速腐蚀试验及评价方法2021/6/1127T/CSAE 196-2021整车海运外观腐蚀模拟试验及评价方法2021/6/1128T/CSAE 197-2021乘用车镁合金车轮耐蚀性能试验方法2021/6/3029T/CSAE 198-2021汽车用高强韧类高真空压铸铝合金材料技术条件2021/6/3030T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法2021/6/3033T/CSAE 202-2021汽车用铝及铝合金搅拌摩擦焊技术条件2021/6/3034T/CSAE 203-2021汽车用铝与铝合金流钻铆接技术条件2021/6/3035T/CSAE 204-2021汽车用中低强度钢与铝自冲铆接一般技术要求2021/6/3036T/CSAE 205-2021乘用车镁合金前端框架技术条件2021/6/3037T/CSAE 206-2021汽车用纤维增强复合材料层合板高应变速率层间剪切强度试验方法2021/6/3038T/CSAE 207-2021汽车用纤维增强复合材料层合板高应变速率拉伸试验方法2021/6/3039T/CSAE 208-2021碳纤维复合材料汽车地板用环氧树脂技术条件2021/6/3040T/CSAE 209-2021热固性碳纤维复合材料汽车前机舱盖板技术条件2021/6/3041T/CSAE 210-2021连续碳纤维增强热固性复合材料汽车前防撞梁铺层设计方法2021/6/3042T/CSAE 211-2021智能网联汽车数据共享安全要求2021/7/1543T/CSAE 212-2021智能网联汽车场景数据图像标注要求及方法2021/7/1544T/CSAE 213-2021智能网联汽车激光雷达点云数据标注要求及方法2021/7/1545T/CSAE 187-2021氢燃料电池发动机用离心式空气压缩机性能试验方法2021/7/2346T/CSAE 188-2021 轻型汽油车用耐压力燃油系统排放性能要求和试验方法2021/7/2347 T/CSAE 190.1-2021汽车用轮毂电动轮总成 术语2021/7/2348T/CSAE 190.2-2021汽车用轮毂电动轮总成 技术条件2021/7/2349T/CSAE 190.3-2021汽车用轮毂电动轮总成 试验方法2021/7/2350T/CSAE 190.4-2021汽车用轮毂电动轮总成 可靠性试验方法2021/7/2351T/CSAE 214-2021动力锂离子电池梯次利用储能电站火灾风险评估指南2021/8/2652T/CSAE 215-2021动力锂离子电池梯次利用储能电站火灾应急预案编制指南2021/8/2653T/CSAE 216-2021动力锂离子电池梯次利用储能系统火灾防控装置性能要求与试验方法2021/8/2654T/CSAE 217-2021动力锂离子电池梯次利用储能系统消防安全技术条件2021/8/2655T/CSAE 218-2021轻型汽油车用耐压力燃油箱特殊安全性能要求和试验方法2021/8/2656T/CSAE 221-2021SP、GF-6汽油机油2021/8/2657T/CSAE 11.1-2021商用车润滑导则 第1部分:发动机润滑油的选用(修订)2021/8/2658T/CSAE 11.2-2021商用车润滑导则 第2部分:变速器和驱动桥润滑油的选用(修订)2021/8/2659T/CSAE 11.3-2021商用车润滑导则 第3部分:润滑脂的选用(修订)2021/8/2660T/CSAE 11.4-2021商用车润滑导则 第4部分:特种液的的选用(修订)2021/8/2661T/CSAE 25.1-2021乘用车润滑导则 第1部分:发动机润滑油的选用(修订)2021/8/2662T/CSAE 25.2-2021乘用车润滑导则 第2部分:传动系统润滑油的选用(修订)2021/8/2663T/CSAE 25.3-2021乘用车润滑导则 第3部分:特种液的的选用(修订)2021/8/2664T/CSAE 219-2021电动汽车锂离子动力蓄电池外部短路试验方法2021/9/2465T/CSAE 220-2021电动汽车锂离子动力蓄电池荷电状态和健康状态估计误差联合测试方法2021/9/2466T/CSAE 222-2021纯电动乘用车车规级芯片一般要求2021/9/2467T/CSAE 223-2021纯电动乘用车控制芯片功能安全要求及测试方法2021/9/2468T/CSAE 224-2021纯电动乘用车通讯芯片功能安全要求及测试方法2021/9/2469T/CSAE 225-2021纯电动乘用车控制芯片功能环境试验方法2021/9/2470T/CSAE 226-2021纯电动乘用车通讯芯片功能环境试验方法2021/9/2471T/CSAE 227-2021纯电动乘用车控制芯片整车环境舱试验方法2021/9/2472T/CSAE 228-2021纯电动乘用车通讯芯片整车环境舱试验方法2021/9/2473T/CSAE 229-2021纯电动乘用车控制芯片整车道路试验方法2021/9/2474T/CSAE 230-2021纯电动乘用车通讯芯片整车道路试验方法2021/9/2475T/CSAE 189-2021电动汽车高压屏蔽线缆及连接器表面转移阻抗测试方法2021/10/2676T/CSAE 231-2021智能网联汽车电磁抗扰性能技术要求与测试评价方法2021/10/2677T/CSAE 232-2021电动汽车碳化硅电机控制器效率测试方法2021/10/2678T/CSAE 233-2021汽车用金属材料圆棒室温高应变速率拉伸试验方法2021/10/2679T/CSAE 234-2021智能网联汽车 线控转向及制动系统数据接口要求2021/10/2680 T/CSAE 235-2021 电动汽车出行碳减排核算方法2021/11/1181 T/CSAE 236-2021 质子交换膜燃料电池发动机 台架可靠性试验方法2021/11/3082 T/CSAE 237-2021 重型汽车实际行驶污染物排放测试技术规范2021/11/3083T/CSAE 243.1-2021道路运输车辆主动安全智能防控系统 第1部分 平台技术要求2021/12/2284T/CSAE 243.2-2021道路运输车辆主动安全智能防控系统 第2部分 通讯协议要求2021/12/2285T/CSAE 243.3-2021道路运输车辆主动安全智能防控系统 第3部分 终端技术要求2021/12/2286 T/CSAE 238-2021汽车正投影面积测量方法2021/12/3087T/CSAE 239-2021汽车整车道路行驶风噪试验方法2021/12/3088T/CSAE 240-2021电动汽车动力蓄电池退役技术条件2021/12/3089 T/CSAE 241-2021电动汽车动力蓄电池剩余寿命评估导则2021/12/3090T/CSAE 242-2021绿色设计产品评价技术规范 车用动力蓄电池2021/12/3091T/CSAE 244-2021纯电动乘用车底部抗碰撞能力要求及试验方法2021/12/3092 T/CSAE 245-2021退役动力电池回收服务网点通用规范2021/12/30
  • 苏试试验拟投2.75亿元抢抓新能源汽车及第五代移动通信行业检测市场机遇
    近日,苏州苏试试验集团股份有限公司(简称:苏试试验)发布关于变更部分募集资金用途的公告,拟将“面向集成电路全产业链的全方位可靠度验证与失效分析工程技术服务平台建设项目”中尚未使用募集资金25,258.37万元及其利息收入(102.47万元)全部用于“新能源汽车产品检测中心扩建项目”和“第五代移动通信性能检测技术服务平台项目”。苏试试验表示,基于募投项目建设进度情况,并结合公司发展战略和经营发展需要,为抢抓新能源汽车行业、第五代移动通信行业市场机遇,进一步提高募集资金使用效率,经谨慎论证,公司拟将“面向集成电路全产业链的全方位可靠度验证与失效分析工程技术服务平台建设项目”尚未使用募集资金及利息收入全部用于“新能源汽车产品检测中心扩建项目”和“第五代移动通信性能检测技术服务平台项目”;受益于集成电路产业的蓬勃发展,公司继续看好“面向集成电路全产业链的全方位可靠度验证与失效分析工程技术服务平台建设项目”的发展前景,该项目将由公司以自有资金继续投入实施。关于“新能源汽车产品检测中心扩建项目”该项目是苏试试验在现有新能源产品检测中心的基础上,顺应我国新能源汽车检测需求高速增长的市场背景,致力于满足所有类型的新能源汽车的零部件的环境可靠性试验、电磁兼容试验、安全类测试、性能测试和所有类型的新能源整车的环境可靠性试验(除高原试验)需求。该项目包括形成新能源汽车产品部件及整车级的环境可靠性测试能力、新能源汽车零部件的电磁兼容测试能力、新能源汽车零部件的电性能测试能力、新能源汽车零部件的安全测试能力等测试能力。该项目实施主体为苏州苏试广博环境可靠性实验室有限公司,总投资15,500.00万元,其中拟以募集资金投入15,360.84万元,建设期为1.5年。关于“第五代移动通信性能检测技术服务平台项目”该项目是苏试试验在现有环境可靠性试验服务业务的基础上,顺应我国环境与可靠性试验服务需求高速增长的市场背景,全面满足通信、电子及其他制造工业等下游客户各类环境可靠性试验需求。第五代移动通信性能检测技术服务平台包括电磁辐射测试(SAR)系统、空中性能测试(OTA)系统、射频性能兼容性测试(Conformance)系统及电磁兼容测试(EMC)系统四大子系统。该项目实施主体为苏试拓为无线测试(深圳)有限公司,总投资12,000.00万元,其中拟以募集资金投入10,000.00万元,建设期为1.5年。
  • 日本汽车零部件巨头曝大规模造假,盘点汽车零部件质检项目
    近日,央视财经频道报道,2020年2月16日,日本汽车零部件供应商曙光制动器工业株式会社日前表示,其在日本工厂制造的刹车极其零部件中,该公司发现存在篡改检查数据等不正当行为!调查发现,该公司至少从2001年开始就有此类不当行为。这一消息引发网络热议,网友戏称”躬匠精神”.据了解,曙光制动器工业株式会社是丰田、本田、马自达、三菱等厂车企的供应商,约有11.4万件产品存在伪造刹车装置及其零部件的检查数据,这些零部件中有5000件零部件未能通过曙光制动器与汽车制造商户制定的质量标准。此外,曙光制动器在日本本土的四家工厂确认了造假行为。无独有偶,近几年,日本企业频繁曝出造假行为。由于近年来日本企业造假事件频发,“日本制造”已经引发了强烈的信任危机。众所周知,汽车零部件在生产过程中涉及多种项目的检测。仪器信息网跟随时事热点,简要整理了汽车质检常见检测项目,供广大感兴趣的用户参考。产品类别测试项目外饰件测试盐雾腐蚀/气体腐蚀/臭氧腐蚀氙弧灯老化/金属卤素灯阳光模拟老化/碳弧灯老化/荧光紫外灯老化高低温/高低温湿热循环/温度冲击/快速温变防尘/防水/淋雨测试振动/三综合振动/机械冲击机械耐久/疲劳/寿命涂层/镀层特性测试禁限用物质测试内饰件测试化学环保分析耐化学试剂燃烧特性金属卤素灯阳光模拟老化/碳弧灯老化高温红外光照测试高低温/高低温湿热循环/温度冲击/快速温变/低温落球振动/三综合振动操作性能测试机械耐久/疲劳/寿命耐摩擦/耐刮擦/硬币刮擦指甲硬度固化光泽度表皮黏附力/漆膜附着力/胶带附着力剥离强度汽车电子电器产品测试ELV及禁用物质测试耐化学试剂/耐电池液盐雾腐蚀/气体腐蚀/臭氧腐蚀防尘/防水/淋雨测试振动/三综合振动/机械冲击特定环境性能测试高低温/高低温湿热循环/温度冲击/快速温变功能性耐久/疲劳/寿命电学测试电磁兼容测试(CE /RE/ RI/BCI/ESD/ME/瞬态传导抗干扰/耦合传导抗扰度/电源间断跌落实验)产品认证座椅测试机械性能测试:H点/座椅总成纵向调节功能/滑道行程/静态刚度试验/颠簸和蠕动试验/模拟人体进出座椅试验/前坐垫向下强度试验/纵向调节疲劳试验/靠背骨架总成强度试验/靠背调节疲劳/头枕功能试验/座椅扶手强度和刚度试验气候老化测试:温度循环/耐低温耐潮湿、热老化、盐雾试验安规测试:阻燃测试化学环保测试线束测试机械性能试验:振动试验、机械冲击试验、跌落试验、插入/拔出力测试电性能试验:接触电阻、电压降测试、温升试验、耐电压测试、绝缘电阻测试环境试验:高低温、湿热试验、盐雾试验、防尘防水、耐试剂、气体腐蚀试验、耐臭氧试验化学环保测试:ELV、VOC、气味其它试验:尺寸测量、气密性试验、燃烧测试
  • 共进微电子和西电共建“传感器与汽车电子封测关键技术联合实验室”
    2024年1月19日,共进微电子和西安电子科技大学共建的"传感器与汽车电子封测关键技术联合实验室"正式揭牌,该实验室旨在促进封测领域的科研合作,推动封测技术的创新和产业的发展。同时,西安电子科技大学博士生导师、封装系首任主任田文超教授也将担任共进微电子首席科学家。封装测试在传感器和汽车电子芯片性能和可靠性方面扮演着至关重要的角色。联合实验室将在传感器与汽车电子芯片的相关结构设计、材料研究、应力、热、电磁仿真和可靠性验证等方面展开合作。此外,联合实验室还将成为为学生提供实习和培训机会的平台,促进人才培养和技术交流。共进微电子总经理张文燕表示:“共进微电子一直致力于封测技术的研发与创新,而西安电子科技大学在封装领域具有丰富的研究经验和优秀的学术背景。通过合作,我们期待能够取得更多突破性的研究成果,并将其应用于实际生产中。”西安电子科技大学田文超教授也表示:“西安电子科技大学的封装专业是2009年国家首批电子封装技术本科专业,同时也是全国唯一的电子封装类国家级特色专业。通过与共进微电子建立联合实验室,我们将充分发挥双方的优势,推动封装技术的创新,促进企业技术进步和生产力提升。”未来,共进微电子将充分利用联合实验室的优势,夯实并增强共进微电子在传感器与汽车电子芯片的封装能力,为客户提供高质量的封测一体化服务!| 关于共进微电子上海共进微电子技术有限公司,简称“共进微电子”,成立于2021年12月。共进微电子由上交所主板上市公司共进股份(603118)、探针智能感知基金(国家新兴产业创业投资引导基金参股)以及一流的技术和管理团队创立,专注于智能传感器领域的先进封装测试业务。专注于智能传感器及汽车电子芯片领域的先进封装测试业务。共进微电子拥有上海研发销售中心和苏州太仓生产基地。已建设1.8万平米先进的研发中心和生产基地,生产基地包含百级、千级和万级无尘室,建设传感器及汽车电子芯片的封装测试量产生产线。共进微电子拥有完整的封装产线,涵盖从晶圆研磨、切割到前段工艺的固晶、引线键合、点胶、贴盖、回流焊,以及后段工艺的注塑成型、打标、切单。提供多种产品封装类型,包括LGA、QFN、Fan-out、SIP和2.5D/3D等。测试能力包括晶圆测试、CSP测试和成品级测试能力。共进微电子封装测试产品包括惯性、压力、电磁、环境、声学、光学、射频和微流控等传感器和汽车电子芯片。公司以满足客户需求为宗旨,制定完整的封装测试方案、流程及品质管控,为客户提供一站式解决方案,打造集研发、工程、批量生产于一体的专业综合封装测试服务平台。共进微电子致力于建设全球知名的规模大、种类齐全、技术先进的传感器及汽车电子芯片封装测试产业基地和领军企业,填补国内相关领域在批量封装、校准和测试领域的空白,突破产业链瓶颈。
  • 新能源汽车相关检测仪器将出现新的需求
    p  近日,工信部装备工业司发布《2019年新能源汽车标准化工作要点》(以下简称:要点)。要点突出抓好重点急需标准的研究与制修订工作,主要内容涉及3个部分:优化标准体系,推动标准创新发展 研究重点领域,满足产业发展需求 强化国际参与,提升国际影响力。要点在5个重点领域的标准化工作做出详细描述,涉及安全、能耗、电磁兼容、充电、电池回收等几十项标准的制定和实施。要点中特别强调,将采取多项工作和措施,提升这些标准的国际影响力,支撑国内标准和国际标准法规的协调推进。/pp  同时,仪器信息网编辑也注意到,5月20日,中国石油消费总量控制和政策研究项目在京发布《中国传统燃油车退出时间表研究》报告 综合中国汽车业发展及排放目标,对燃油车的退出时间进行了分析,提出中国有望在2050年以前实现传统燃油车的全面退出。其中,一级城市私家车将在2030年实现全面新能源化,而全国范围内的全面退出将在2040年。/pp  综合可见,中国新能源汽车市场的发展速度有望进一步加快;随着这些标准的制定和颁布实施,相关的检测市场和检测仪器市场有望呈爆发性增长。/ppbr//pp strong 附录:/strong《2019年新能源汽车标准化工作要点》/pp  为深入贯彻落实党中央、国务院关于建设制造强国的战略部署,切实把握产业融合发展趋势,持续优化新能源汽车标准体系,突出抓好重点急需标准的研究与制修订工作,工业和信息化部装备工业司组织全国汽标委编制了2019年新能源汽车标准化工作要点。主要内容如下:/pp  一、优化标准体系,推动标准创新发展/pp  1.持续优化新能源汽车标准体系。建立新能源汽车强制性和推荐性国家标准相协调的体系框架,加快燃料电池电动汽车、动力电池回收利用等标准子体系建设,以《新能源汽车产业发展规划(2021-2035年)》的编制为契机,深入研究新能源汽车与能源、交通、通信等融合发展趋势,不断优化完善新能源汽车标准体系。/pp  2.及时更新电动汽车标准化路线图。根据产业发展现状和实际需求,结合在研标准项目进展情况,适时修订《中国电动汽车标准化工作路线图》,保持时效性、科学性和准确性,持续发挥路线图对标准体系的基础支撑作用。/pp  二、研究重点领域,满足产业发展需求/pp  1.电动汽车安全领域:完成电动汽车碰撞后安全、充电连接安全和动力电池管理系统功能安全等标准的征求意见 完成燃料电池电动汽车安全标准的技术审查。开展《电动汽车安全要求》《电动汽车用动力蓄电池安全要求》《电动客车安全要求》三项强制性国家标准的宣贯实施。/pp  2.电动汽车能耗领域:结合中国工况及乘用车第五阶段燃料消耗量标准的研究成果,完成电动汽车能量消耗量和续驶里程、混合动力汽车能量消耗量试验方法以及插电式混合动力乘用车技术条件等标准的征求意见,开展增程式电动汽车能量消耗量试验方法标准的预研工作。/pp  3.燃料电池电动汽车领域:完成燃料电池电动汽车定型试验规程标准的技术审查,加强低温起动性能、能量消耗量及续驶里程试验方法等标准的试验验证,加快车载氢系统、加氢口、加氢枪、加氢通信协议等标准的制修订,开展燃料电池电动汽车碰撞后安全标准的预研工作。/pp  4.充电设施及加氢系统领域:完成传导式车载充电机、充电耦合系统电磁兼容等标准的技术审查,启动无线充电系统及互操作性、车辆传导放电要求等标准的制定。基于对大功率传导充电技术的研究,推进充电连接装置通用要求、电动客车接触式充电系统等标准的制修订工作。/pp  5.动力电池回收利用领域:完成动力电池的材料回收要求、包装运输规范、拆卸要求、梯次利用要求等标准的报批工作,完成汽车用废旧动力单体电池拆解技术规范的技术审查,加快推进放电规范和梯次利用产品标识等标准的制定,开展回收拆解指导手册和可梯次利用设计指南等标准的预研和立项工作。/pp  三、强化国际参与,提升国际影响力/pp  1.深入参与全球技术法规制定。履行联合国世界车辆协调论坛(WP29)框架下的电动汽车安全(EVS)、电动汽车与环境(EVE)和燃料电池电动汽车(HFCV)等法规制定工作组副主席职责,继续深入参与电动汽车安全第二阶段、混合动力汽车功率测试方法等全球技术法规的研究与验证工作,组织并承办好第六次燃料电池电动汽车工作组会议。/pp  2.积极参与国际标准化工作。系统参与国际标准化组织(ISO)和国际电工委员会(IEC)框架下电动汽车国际标准的制定和协调工作,积极组织召开国际标准注册专家会议,组织研提国际标准提案,不断加大我国在电动汽车传导充电、无线充电机以及电动摩托车等相关国际标准的参与力度。/pp  3.持续强化国际交流与合作。利用已经建立的中欧、中德、中法、中日等双边合作机制以及APEC、“一带一路”等多边交流平台,继续加强在电动汽车安全、能耗、关键部件及充电基础设施等重点领域的交流与合作,共同开展相关技术研究和测试验证工作,支撑国内标准和国际标准法规的协调推进。/ppbr//p
  • 湖北省规划建设激光雷达计量检测能力,助跑新能源与智能网联汽车新赛道
    在新能源及智能网联汽车产业竞逐的新浪潮中,湖北正抢立潮头——我省新能源汽车产量继续保持高速增长,今年9月全省生产新能源汽车3.2万辆,相当于2020年全年产量,产量占全国的4.2%;今年5月在汉举行的新能源与智能网联汽车产业发展对接会上,总金额661.73亿元的30个重点项目花落湖北……科技赋能,让汽车变得“清洁”又“聪慧”;质量护航,使产业发展高效又安心。近年来,以计量、标准、检验检测与认证认可为代表的国家质量基础设施(NQI)发挥技术优势,积极推动技术成果转化与先行先试,助力湖北抢抓新机遇,打造万亿级汽车产业集群。建成电波暗室服务矩阵湖北省计量测试技术研究院(国家光电子信息产品质量检验检测中心)十米法电磁兼容实验室内。随着大门缓缓打开,一辆新能源汽车驶入实验室内。停入待检区域,车辆正对的是远处两根形状奇异的“天线”……这些试验是用来检验汽车对外界电磁辐射信号强弱以及对外界电磁辐射的抗干扰能力的,通常在电波暗室内进行。新能源汽车大量使用芯片和电子零部件,其电磁辐射信号强度直接关系到驾驶人及乘客的身体健康,以及汽车电子电气系统运行的稳定性,需要按相关标准进行检测,确保质量合格,方可通行市场。据了解,省计量院已构建起“十米法、三米法、一米法”电波暗室服务矩阵,建立覆盖世界主流标准的整车、汽车电子零部件全项电磁兼容测试服务能力。近年来,先后为极目电子、海微科技等汽车电子零部件企业的中控、显示屏等产品提供测试服务。同时,该院还承担着定期为全省充电桩定期“做体检”的任务。新能源汽车技术创新发展,离不开该院可靠的计量检测技术支撑。去年12月,湖北省新能源汽车产业计量测试中心正式在襄阳挂牌落成。该中心已建成覆盖充电桩计量检测、新能源汽车零部件计量检测、铅酸蓄电池检测、金属材料元素分析等全产业链计量测试和科技创新能力;湖北省汽车电子产品安全质量检验中心助力区域汽车电子生产企业在本地实现了研发验证、产品检测、整改咨询;以中汽研汽车检验中心(武汉)有限公司为建设主体的国家新能源汽车质量检验检测中心在数字化转型、驾驶场景试验场、移动污染源防治等领域具备行业领先优势……计量与检验检测,正全方位承托新能源汽车产业跃升之路。据省市场监管局统计,近年来,为服务新能源与智能网联汽车产业,我省共建设国家智能网联汽车质量检验检测中心(湖北)、国家新能源汽车质量监督检验中心等8家国家质检中心;建设湖北省氢燃料电池产品质量检验中心等7家省级质检中心,形成了服务新能源与智能网联汽车产业检验检测需求的全覆盖网络。建立新能源与智能汽车“标准高地”在钢缆牵引下,一辆车疾速撞向障碍物,随着一声巨响,车头瞬间变形……这样的硬核又刺激的碰撞试验,几乎每天都在位于襄阳的国家燃料电池汽车质量检验检测中心的新能源碰撞线频繁上演。新能源汽车已经成为未来汽车工业的发展方向。燃料电池汽车——污染极少、经济性强的新能源车“新宠”,通过催化剂作用,使氢氧在燃料电池中产生电化学反应而获得电能。想要保障燃料电池汽车的安全,就要对其进行完善的测试评价。国家燃料电池汽车质量检验检测中心的建设主体、襄阳达安汽车检测中心有限公司(以下简称“达安中心”),完成了国内首次带氢碰撞试验及车载氢系统检测,开发完成国内首套氢燃料电池汽车碰撞试验后氢泄漏量采集与计算系统。目前,达安中心正在牵头制定《氢燃料汽车碰撞后安全要求》团体标准,将填补国内燃料电池汽车碰撞相关标准的空白。随着一个个填补行业空白的标准出台,湖北正在探索打造新能源汽车领域的“标准高地”。2019年,湖北省新能源汽车标准创新联盟成立,省标准化与质量研究院作为68家相关领域企事业单位参与其中。该联盟明确了今后湖北省新能源汽车技术标准体系构建,以标准之力推动新能源汽车标准化、技术化和产业化。打造北斗应用产业中试公共服务平台北斗导航系统能够“借”给智能汽车一双“慧眼”,用来“看清”路况——智能驾驶需要定位导航、路径规划、环境感知、决策控制,可以说,定位导航技术决定着车辆高精度位置和姿态感知。实现雨雾极端天气驾驶情况监测、利用“高精地图采集+北斗系统”确保无人驾驶的安全性、实现厘米级精度定位、利用激光雷达系统进行无人驾驶的汽车的360度检测……这些都离不开“北斗星”的指引。眼下,省计量院正紧锣密鼓地进行着国家北斗应用产品质检中心的申建工作。该院还将在“十四五”期间申建国家时间频率计量中心湖北应用中心,建立高水平卫星导航北斗/GNSS高精度计量实验室。全力打造北斗应用产业中试公共服务平台,加强相关领域计量检测和认证能力建设,开展北斗应用产品的质量检测、入网认证等工作,推动湖北以北斗芯片、北斗终端、北斗智慧应用等为代表的北斗卫星导航产业集群加速发展,这一举措将为智能网联汽车发展添上强大助翼。加强激光雷达检测技术研究为更好服务新能源车、智能汽车产业发展,未来我省还将建设新能源车电磁兼容检测系统、车规芯片可靠性检测平台等技术基础项目,并加强电动汽车充电设施设备及零部件全寿命周期质量技术研究,吸引新能源车电动系统、电子零部件制造企业向湖北集聚。眼下,省计量院正在加强激光雷达检测技术研究,规划建设激光雷达相关计量检测能力资质。激光雷达被广泛用于无人驾驶和机器人领域,被誉为机器人的“眼睛”,通过发射激光来测量物体与传感器之间的精确距离,L4/L5级新能源车(安装自动辅助驾驶系统或实现全自动驾驶)及智能网联汽车上少不了它的身影。待建成相关计量检测资质后,将进一步推动激光雷达设备产业快速发展,助力“湖北造”新能源和智能汽车越来越“灵敏”。省市场监管局相关负责人透露,目前,我省正在以更集约、更强大的检验检测实力,建成辐射面广、功能齐全、服务优质的认证检验检测聚集区,打造新能源汽车、智能汽车及零部件检验检测、认证认可和标准制修订、人才培养等综合性“一站式”服务平台,让绿色成为湖北高质量发展的鲜明底色。
  • 北京新能源汽车公司ESD测试仪项目更正公告
    p一、项目基本情况/pp原公告的采购项目编号:0722-206FE2354WSS      /pp原公告的采购项目名称:北京新能源汽车技术创新中心有限公司半导体器件ESD测试仪项目招标公告      /pp首次公告日期:2020年08月04日      /pp二、更正信息/pp更正事项:采购公告/pp更正内容:/pp现将该项目的招标文件售卖截止时间:2020年 8月11日下午04:30变更为2020年8月24日下午04:30;/pp原招标公告的其他内容不变。本项目招标文件涉及到的上述内容均做相应变更。/pp更正日期:2020年08月11日 /pp三、其他补充事宜/pp四、凡对本次公告内容提出询问,请按以下方式联系。/pp1.采购人信息/pp名 称:北京新能源汽车技术创新中心有限公司     /pp地址:北京市北京经济技术开发区荣华中路10号亦城国际中心A座12层        /pp联系方式:胡明清 13261662358      /pp2.采购代理机构信息/pp名称:中国远东国际招标有限公司            /pp地址:北京市朝阳区和平街东土城路甲9号            /pp联系方式:耿自强、王珊珊 13031000994            /pp3.项目联系方式/pp项目联系人:耿自强/pp电话:  13031000994/p
  • “新能源汽车”重点专项2021申报指南:拟安排8.6亿元启动18个项目
    5月11日,科学技术部发布国家重点研发计划“新能源汽车”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“新能源汽车”重点专项2021年度项目申报指南本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。专项实施周期为5年。2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台6个技术方向,按照基础前沿技术、共性关键技术、示范应用,拟启动18个项目,拟安排国拨经费8.6亿元。其中,围绕全固态金属锂电池技术方向,拟部署不超过3个青年科学家项目,拟安排国拨经费不超过1500万元,每个项目500万元。原则上共性关键技术类项目,配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。1. 能源动力1.1 全固态金属锂电池技术(基础前沿技术,含青年科学家项目)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、 电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电 化学场以及失效破坏等实验表征技术及固态电池综合评价方法。考核指标:固态复合正极比容量>400mAh/g;复合金属锂负极比容量>1500mAh/g;固体电解质厚度<15μm,室温电导率>1mS/cm,锂离子迁移数>0.8;全固态金属锂电池:容量>10Ah,比能量>600Wh/kg,循环寿命≥500 次。有关说明:支持一般项目的同时,并行支持不超过3个不同技术路线(互相之间、与一般项目之间技术路线均明显不同)的青年科学家项目;实施周期不超过5年。1.2 车用固体氧化物燃料电池关键技术(基础前沿技术)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能、高可靠电池结构设计及可控制备技术;优化连接体材料及结构,开发低成本连接体加工及涂层致密化技术;开发高一致性、长寿命电堆组装技术,形成千瓦级电堆批量制造能力;研发氢气、天然气、醇类等不同燃料处理技术及关键部件;集成不同燃料应用 场景的SOFC系统,研究系统快速启动响应技术,研究系统在模拟行驶工况下的应用安全。考核指标:建立车用SOFC关键部件、电堆与系统技术及理论体系。完成高性能、高可靠电池的结构设计和验证,电流密度 ≥300mA/cm2条件下,电压衰减≤4‰/千小时(运行时间≥1000h);形成低成本金属连接体及涂层材料加工工艺,连接体高温服役5000h,ASR≤30mΩ‧cm2;掌握SOFC电堆组装技术,单电堆功率≥1.0kW,电堆功率密度≥1.0kW/L,电效率≥60%;完 成氢气、天然气以及醇类等为燃料的SOFC系统开发,额定发电功率≥50kW,启动3分钟达50%输出功率,发电效率≥55%(DC,LHV),建立系统安全性能评价体系。有关说明:实施周期不超过 5 年。1.3 高密度大容量气氢车载储供系统设计及关键部件研制 (共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律,获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。考核指标:车载70MPa大容量IV型瓶储氢系统有效储氢质量≥32kg,氢气泄漏率≤10mL/h,供氢能力≥7g/s,系统服役寿命≥10年;形成相应气瓶与瓶阀的自主知识产权及产品标准,制 定系统零部件、总体结构、集成设计等安全设计准则。其中,70MPa氢Ⅳ型瓶满足T/CATSI 02007—2020要求、容积≥400L,单瓶质量储氢密度≥6.8wt%,单位储氢能力碳纤维使用量<10.7kg/kg H2;集成瓶阀设计压力≥70MPa,内置电磁阀寿命≥50000次, 瓶阀功耗≤8W,瓶阀质量≤1.2kg,瓶阀集成电磁开关装置、过流量装置、超温超压泄放装置(TPRD)、温度检测装置和手动操作装置;调压阀组循环寿命≥50000次,输出压力波动范围10~15%,波动持续时间≤10s,输出流量≥7g/s,质量≤1.2kg;车载氢系统控制器具备独立加氢模式、红外通讯、6路以上氢安 全检测通道,具备加氢状态控制与停车氢安全巡检策略;加氢口及加氢枪加注速率≥7.2kg/min,加氢口使用寿命≥20000次,加 注过程瓶内气温≤85℃。大流量氢气流量控制阀组最大喷射流量≥7g/s(阀组流量),内外氢气泄露率≤0.3mL/h@30bar,耐久性: 喷射阀开闭次数不小于4亿次(比例电磁阀全开闭次数不小于500万次);大流量氢循环引射器压升≥50kPa,引射比≥2.2,电堆功率覆盖范围60~400kW;大流量氢气循环泵系统压升≥50kPa(采用氢气混合气体,循环流量≥3000slpm,氢气浓度≥90%),功耗≤1.5kW,效率≥46%,噪音≤70dB,寿命≥20000h。建立快速加注机械接口标准、通信协议和加注操作规范,并形成标准送审稿;加注协议标准符合国际通用需求。2. 电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础前沿技术)研究内容:在电驱动系统集成与控制方面,研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系 统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。在新材料与新器件方面,研究高性能超级铜线(包括但不限于基于铜合金和铜/纳米管等复合材料的高性能超级铜线)及电机绕组制备技术,探索大电流SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模 块与组件协同优化技术,实现材料与器件优化。考核指标:超级铜线在20℃的电阻率≤1.90×10-8Ωm,180℃的电阻率≤2.57×10-8Ωm,并应用于高性能电机样机;1200V SiC MOSFET单芯片通流能力≥ 250A@150℃,导通压降≤2.5V@250A/150℃,最高结温250℃ , 阈值电压偏移≤0.1V@150℃;SiC电机控制器峰值功率体积密度≥70kW/L@峰值功率300kW,EMC 达CISPR等级4要求;提交电驱系统产品对标测试与技术分析报告共5份,每年样本量2套,提交电驱系统健康管理标准规范1项。有关说明:实施周期不超过5年。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:在高性能轮毂电机及总成方面,突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑;在高密度轮毂电机方面,研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技 术(包括冷却结构、动密封等)。考核指标:轮毂电机总成30s峰值转矩重量比≥20N∙m/kg;轮毂电机总成系统最高效率≥92%,系统CLTC工况综合使用效率≥80%;轮毂电机在额定转速点(额定转矩转折点),1米噪声总声压级≤72dB(A),防护等级不低于IP68,冲击振动标准不低于传统轮毂指标,电磁兼容性能满足Class4级及以上,轮毂电机总成产品实现装车运行。形成可靠性与耐久性测试规范。2.3 混合动力专用发动机及高效机电耦合技术(共性关键技术)研究内容:研究高效清洁燃烧(包括但不限于新型喷射、高EGR率、新型点火、高压缩比、可变机构技术等)结构优化、高效热管理、高效后处理、先进控制策略、低摩擦和低噪声等混合动力专用发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究先进混动控制系统、高效混动控制策略、混动专用电机及电池、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性,通过整车高效优化控制实现整车级行业领先动力和能耗指标。考核指标:专用发动机最高热效率≥45%,整车排放满足国六b+RDE;机电耦合系统机械传动效率≥95%,机电耦合系统综合效率≥85%(注:WLTC工况电平衡工况下的发电和驱动的加权综合效率);产品可靠性及寿命满足整车要求,实现装车运行。所搭载的整车0~100km/h加速时间≤7s,A级车在电量维持模式下油耗≤0.0018×(CM-1415)+3.8L/100km。混合动力专用高效发动机在额定功率下,1米噪声总声压级≤90dB(A);机电耦合系统在其基速点(转矩转折点),1米噪声总声压级≤78dB(A), 完成产品公告的量产车。3. 智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础前沿技术)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,探索高内聚、低耦合架构新形式,研究混合关键级任务调度与分配机理,建立域内、域间高可靠软件动态资源共享协议,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信机制,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余体系,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。考核指标:架构支持车路云一体化协同的高级别自动驾驶系统,可实现软硬件独立和域间协同计算,架构支持算力集中的弹性中央计算平台和分布区域管理控制器实现整车软件定义功能开发,形成具有自主知识产权的标准化软硬件接口≥400 个,接口包括:智能化传感器接口,原子服务接口,车—云标准接口和车与路侧设备接口等,标准接口支持2种以上的操作系统。电子电气架构一体化技术平台支持C-V2X信息交互,车辆相关软件升级时间≤20分钟,车载网络通讯速率可达10Gbit/s,时间敏感业务流转发时延小于50微秒,时间同步精度小于20纳秒。具有高可靠的冗余防失效机制,形成架构冗余设计准则和预期功能安全的解决方案。满足复杂电磁环境下的电磁安全要求,通过GB/T 18387和GB 34660标准 测试。建立信息安全纵深防御设计准则和防护策略。形成整车电子电气架构仿真、评估、优化和测试验证评价体系。在2家以上整车企业获得应用,完成相关技术标准或草案 3 项。有关说明:实施周期不超过5年。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知—决策—控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、 以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。考核指标:典型交通参与者行为预测时域不少于5s,长时域 轨迹预测误差≤0.6m(横向)和≤2m(纵向);支持L3级及以上自动驾驶功能的自我进化训练,涵盖典型道路场景≥5类和交通参与者≥4类,在线学习系统的更新周期≤30min;车载计算装置运行L3级及以上自动驾驶算法模块时,单位功耗算力≥2Tops/W,主要功能模块平均延迟150ms;边缘场景的自然驾驶 样本片段≥1万个,边缘场景类型≥80类,自动驾驶性能评估模 型的准确性≥90%;训练平台支持≥100个交通节点虚拟交通场景,支持不少于20辆实车的封闭测试场或开放示范道路的验证; 制定国家/行业标准≥3项。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安 全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。考核目标:开发预期功能安全实时防护系统一套,实现预期功能安全的实时保障,并在不少于20个边缘场景下进行技术验证;搭建面向大数据的数字孪生高性能云计算平台1套;开发自动驾驶系统预期功能安全分析、仿真测评和管理工具软件1套;开发有条件自动驾驶及以上级别的智能网联汽车预期功能安全测试案例库1套,测试用例≥300条;搭建预期功能安全实车测试平台1个;完成≥100万公里实车道路数据采集,构建预期功能安全场景≥1000个;完成预期功能安全量化开发及测试评价体系标准或草案1项。4. 车网融合4.1 智能汽车信息物理系统(CPS)技术(基础前沿技术)研究内容:面向智能汽车与信息通信及智能交通一体化,建立智能汽车信息物理系统基础理论,研究智能汽车信息物理系统架构体系构建、分析与构型优化方法;研究智能汽车信息物理融合机理,解构系统要素功能间协同机制与耦合规律,研究智能汽车信息物理系统建模方法;研究智能网联汽车信息物理系统开放性、涌现性和演进性特性,研究智能网联汽车信息物理系统全生命周期数字孪生重构设计与系统工程方法;研究智能汽车信息物 理系统测试验证与量化评估方法,建立智能汽车信息物理系统关键指标体系;研究智能汽车信息物理系统协同实现方法,构建典型参考系统以及系统确认方法。考核指标:建立智能汽车信息物理系统架构、特性分析、建模、设计、评估、验证、协同实现、系统确认与系统工程方法; 架构体系包含设计分析维度≥7个;总系统架构包含系统需求定义≥2000项,系统功能、逻辑和物理架构要素不少于4500个; 系统建模工具原型可支持不少于4个类别的模型融合;系统设计工具原型可支持不少于7个维度的系统全生命周期重构设计考量,且可支持不少于50个用户端的数据库并发访问修改和唯一设计版本溯源;智能汽车信息物理系统关键指标体系包含不少于7个维度的量化关键指标且总数不少于50个;智能汽车信息物理系统典型参考系统原型的可支持不少于16类智能汽车运行场景和不少于3000项测试用例的测试验证;完成相关理论著作不少于3项,技术指南或路线图不少于3项,完成系统工程应用手册1套。有关说明:实施周期不超过5年。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术(共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车—路—云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车 载定位、导航、授时一体化系统,研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。考核指标:地图模型支持动静态多层数据调用,包括自动驾驶感知与决策的应用接口协议,地图覆盖公里数≥1万公里;高精度地图每100米相对误差≤15厘米,基于专业采集车地图更新 准确率≥99%,基于众包数据地图更新准确率≥90%;超视距无盲区感知检测准确率≥90%,动态信息传输延迟≤1秒;基于车载北斗卫星定位终端,多源信息融合实现高精度定位,试验场条件下,静态高精度增强定位误差≤1厘米,动态高精度增强定位误差≤10厘米,有卫星信号覆盖的常规城市综合路况下,动态高精度增强定位误差≤20厘米;支持具备车路协同感知功能的高精 度地图示范区域2个以上,完成相关技术标准或草案≥5项。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人—车—路—环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制,研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术,开发场景批量生成与高并发大规模云计算测试平台;车—云—场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人—车—路—环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。考核指标:高精度自动驾驶仿真软件的极限工况动力学模拟精度≥90%;开放道路自动驾驶事故场景案例≥1000例;云控平台数据规模支持PB级,仿真任务执行成功率≥99.9%,达到10000个/分钟用例生成速率及 10000个/小时用例测试速率;数字孪生测试系统支持车速200km/h,最大制动强度10m/s2,最大转向角 40°;数字孪生支持虚、实传感器信号叠加;工具链支持L3级以上自动驾驶全流程测试,完成相关技术标准或草案不少于2项, 服务自动驾驶车型不少于20个。5. 支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具,实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。考核指标:汽车电控单元软件开发及验证的关键工具链能够满足V型开发流程,研制覆盖软件建模、软硬件测试、通讯总线仿真与测试等环节的关键工具不少于4种;汽车电控单元模块级软件建模工具能够支持系统图形化建模、连续与离散仿真、状态机建模等不少于3项的基本功能;汽车电控单元软件测试验证工具支持图形化测试用例搭建、支持自定义测试用例库、测试用例库及测试计划统一管理等不少于3项基本功能;汽车电控单元软 硬件集成测试与标定工具能够支持不少于2种类型标定协议,支持用户可定制的图形标定界面,支持标定数据的记录以及刷写等 不少于3项基本功能;车辆通讯总线仿真与测试工具支持总线监测分析、总线激励、诊断服务等不少于3项基本功能;自主开发工具的云上服务平台实现云端用户登录不少于1000人次/12个月,工具链包含的云端模型库中有效模型数量不少于50个。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。考核指标:搭建支持多样本(≥20个)同步试验、试验温度范围-40~250℃、湿度相对湿度65%、压力≥15psig(磅/平方英寸)的环境应力试验系统,以及可施加电源(电压范围0~20V且分辨率10mV)偏置的寿命试验系统;搭建EMC测试环境,支持传导干扰(20Hz~108MHz)、辐射干扰(20Hz~40GHz)、HBM_ESD(10kV)、电源间断跌落实验(时间≤1ms);搭建支持1024数字通道资源,5G通讯速率,激励电压范围-0.5~+1.5V且分辨率为10μV的ATE测试系统;开发车规计算芯片测试系统,支持GPU/AI 等多种架构车规计算芯片在不同系统配置下(内核可配置、主频测试精度最小100MHz)的算力测试(范围覆盖 5~20TFlops、5~300Tops)及能耗测试(最高精度0.1W);设计开发支持车规芯片半实物和实物芯片的功能安全测试系统,测试范围覆盖车规计算芯片的总线、存储、DDR、时钟、IO、中断等硬件模块及底层软件,完成1~2款芯片功能安全测试用例开发至少1000条;开 发车规信息安全芯片国密算法(SM1~SM4)检测系统,支持被测芯片≥5000次/秒签名验签测试,开发支持置信度(ɑ值0.02~0.05) 任意定义且不少于4个真随机源任意开关的随机数据采集及随机性水平的测试平台,开发信息安全测试用例(包含安全攻击用例)至少100条;在车规芯片测试方面形成5项以上标准提案。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技 术,研究车端感知、线下检测、云端数据协同的在役动力电池系统 安全性风险评估技术;开发智能无损检测装备及软件。研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立 车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技 术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。考核指标:建立动力电池多维度安全性评价体系和装备;开发在役动力电池系统安全性智能无损检测系统不少于2套,测试准确度不低于90%;搭建车载氢系统安全性定量化评价体系和在线监测系统,在商用车和乘用车上进行应用验证,在线监测系统安全响应时间小于1秒;车载氢系统微量泄漏检测精度高于50ppm;车载氢系统严重泄漏预判准确率>95%;形成5项以上动力电池系统和车载氢系统安全性评价相关标准提案。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车—桩(站)—云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于用户行为识别与充电设施状态感知协同的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车—桩—云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电 池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。考核指标:建成车桩数据交互平台,实现跨平台车桩数据互联互通,跨平台的数据互通与调用平均响应时间≤1s,高并发服务能力≥200万个,接入充电桩≥100万个,车≥100万台,车型≥100个,抗DDoS攻击能力≥200G/s;数据传输可靠性>99.95%, 信息安全通过三级等保评测;构建城市公共充换电场站建设规划模型和技术规范;充电桩利用率提高≥30%,车辆充电等待时间降低≥30%;快换电池系统兼容电池包类型≥3种,可更换车型≥3个,电池更换时间≤90s;无线充放电系统双向功率≥30kW, 工作间隙≥20cm,输出电压范围 DC250-900V,10%到 100%负载 范围内系统效率≥92%,最高效率≥94%,满足多车型互操作性, 实现3个以上车型搭载验证。6. 整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空 调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。考核指标:12米纯电动客车:整车能耗≤52kWh/100km (CHTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥300km(CHTC 工况);-30℃环境下,车辆续驶里程不低于常温续驶里程的 85%,车辆冷启动时间≤8min,空调制热功率≥14kW,COP≥1.3。55℃环境下,空调制冷功率≥22kW,COP≥ 1.7;研制车型≥2个,30分钟最高车速≥100km/h,0~50km/h 加速时间≤15s,最大爬坡度≥25%,实现百辆级验证应用。B级乘用车:整车能耗≤14kWh/100km(CLTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥500km(CLTC工 况);-30℃环境下车辆续驶里程不低于常温续驶里程的85%,车 辆冷启动时间≤5min,空调制热功率≥4kW,COP≥1.3。55℃环境温度下,空调制冷功率≥7.5kW,COP≥1.7;研制车型≥2个,最高车速≥180km/h;0~100km/h加速时间≤4s,满载最大爬坡度≥30%;实现千辆级验证应用。6.2 智能电驱动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构,研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统, 研究颠簸路面大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究大幅变载荷工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的新型驱动系统拓扑结构,研究湿滑坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展典型场景下智能电驱动重载车辆的无人化协同作业示范 应用。考核指标:开发智能电驱动重载车辆的整车平台原理样机1套;小尺寸(0.5m×0.5m×0.5m)障碍物检测距离≥100m,距离检测误差≤0.3m,重载车辆在100吨及以上载重条件下停靠控制误差≤0.5m,可实现16%坡道的坡停坡起;开发自主可控的电驱动系统,与国际同类产品相比,特定场景与工况下综合能效提升20%,在 1km/h车速下仍可有效电制动;开发智能电驱动重载车辆仿真验证平台1套;在典型场景下开展不少于50台100吨及以上载重车辆的无人化协同作业示范运行,并稳定运行1年以上,与国际同类产品相比,平均能耗降低 15%;形成相关技术标准或草案1项。附件:“新能源汽车”重点专项2021年度项目申报指南.pdf揭榜挂帅榜单.pdf形式审查条件.pdf编制专家名单.pdf
  • 车内检测出电磁辐射 远超变电站
    英国辐射保护委员会官网设定0.4μT为危险值广州某变电站3米内电磁辐射强度为0.7μT雪佛兰这款车被车主检出车内辐射高达19μT  近日,一则题为《震惊,科鲁兹车内电磁辐射非常之大》的帖子在多家车汽论坛上引起热议:多位雪佛兰科鲁兹车主检测出车内辐射超标。据检测,科鲁兹行驶中主驾驶位置的电磁辐射强度达到19μT,而专业机构检测的广州某变电站3米范围内的电磁辐射强度仅0.7μT,也就是说,车内的电磁辐射强度是变电站的近30倍。  据了解,我国目前尚无公众环境下工频电磁辐射强度安全范围的国家标准,而英国国家辐射保护委员会官方网站上把危险值设定在0.4μT,瑞典更是率先正式承认强度在0.2μT以上的工频电磁场对人体有害。    在主驾位排挡杆下部左侧面,记者录得辐射高达19μT。    车主:车内电磁辐射超过变电站周边  记者联系上了发帖的车主郭先生。郭先生称,他于2010年12月在广州某4S店购买了一辆雪佛兰科鲁兹汽车(1.6LSLAT天地版标配)。  近日,郭先生从朋友处借得一台家庭电磁辐射测试仪,欲测试家里电脑、电视等电子产品的电磁辐射强度有多大。当他无意中在自己的车上打开测试仪时,结果让他非常震惊:车内辐射远远大于电脑、电视等产生的辐射。发动机怠速运行时主、副驾驶的辐射达到了4μT(微特斯拉),行驶过程中辐射最高更达到15μT,排挡杆下部左侧面(主驾驶位置)更达到19μT以上,越低的位置辐射越强,最下面已超过20μT。随后,郭先生找到多位科鲁兹车主,对其科鲁兹汽车进行检测,发现其车内的电磁辐射强度与自己车内电磁辐射强度大小差不多。根据郭先生的投诉,记者昨日也用电磁辐射测试仪测试了多辆科鲁兹汽车,均得出相同的数据。  4μT、15μT、19μT究竟是多大辐射?据了解,省环境辐射研究检测中心的专家曾对位于广州市海珠区的110千伏小港变电站、天河区的110千伏林和变电站、110千伏盘福变电站分别做现场环境检测,得出结果是磁感应强度0.6μT,3米处则为磁感应强度小于0.7μT。也就是说,车内辐射已达变电站周边辐射的几十倍。  厂家:专业机构出检测报告才能受理  郭先生告诉记者,当发现辐射有可能超标后,他和另外一名车主刘先生便向上海通用公司投诉,该公司第二天回复说,目前为止尚未收到类似投诉,也没有发现类似问题,要求郭先生先将车开到4S店检测。  郭先生于是将车开到买车的4S店检测。但该店称,没有检测工具。于是,郭先生就用自己的检测仪检测了该店的另外几台科鲁兹以及雪佛兰景程和科帕奇。检测结果显示,无论是在发动机怠速运转状态还是在行驶中,科鲁兹车内的电磁辐射都大于景程并远大于科帕奇。发动机怠速运转状态,景程主副驾驶的辐射和在1μT左右,而科帕奇主副驾驶的辐射更低至0.02μT以下。  对于检测结果,4S店并不否认,但该店表示,必须要有专业的检测机构出具检测报告证明辐射确实超标,才会处理此事。到目前为止,通用公司和4S店尚未给郭先生任何其他回复。  记者与郭先生和车友们一起又找来天籁、凯美瑞、君威等多款车与科鲁兹进行检测对比,检测发现,在相同时间、相同地点,除了科鲁兹之外,其它车的电磁辐射强度都小于0.4μT。  专业机构:国家无标准无法检测  记者联系了广州市环境监测中心站及广东省环境辐射监测中心,希望能为科鲁兹作出车内电磁辐射的专业检测。作为环境监测的权威机构,这两个机构均有检测电磁辐射并出具相关报告的业务。  但是,两个机构均表示,目前只能测量国家有标准的无线通讯机站及变电站的辐射值,无法测量汽车内的辐射值,因为国家对于汽车车内的电磁辐射尚无任何相关标准。随后,记者又联系了几家有资质的监测机关,都得到了相同的答案。“我们现在也不知道该怎么办了,生产厂家和4S店都不处理我们的投诉,要我们拿专业机构的检测报告才肯处理,但专业机构又没法为我们出具检测报告,真是投诉无门啊!”车主刘先生无奈地对记者说。  记者致电广州电器科学科究院的一位工程师,据工程师介绍,我国对汽车电磁辐射的检测,也仅仅停留在电池对其他元器件的电磁干扰领域,至于对人体的影响,目前尚没有这方面的研究及计划。  公众环境电磁辐射的标准  我国还在采取上世纪九十年代国际辐射保护协会推荐限值0.1mT,相当于100μT  电磁辐射的安全范围是多少?其强度超过多少了会对人体有害?我国对于公众环境电磁辐射的标准和规范集中在射频电磁辐射,主要的标准有1988年6月1日实施的《电磁辐射防护规定》,1989年1月1日开始实施的《环境电磁波卫生标准》,这两个规范都只规定了100KHz及以上频率电磁波的辐射限值要求。对于工频电磁辐射的安全范围,我国目前尚缺乏相应的国家规范。对公众环境工频电磁辐射限值,自上世纪九十年代,我国一直采取国际辐射保护协会推荐的限值0.1mT(相当于100μT)。  目前,英国国家辐射保护委员会官网把危险值设定在0.4μT(4mG),国际上认同儿童居住环境中的磁场强度也不应超出这个标准。瑞典则首个认为强度在0.2μT(2mG)以上,就会对人体有害。  汽车车内电磁辐射是工频辐射还是射频辐射?  不少网友将其归为工频辐射,市环境监测中心相关专家昨表示目前尚不能定论  电磁辐射分为工频(低频)电磁辐射和射频电磁辐射:工频电磁辐射较为典型的是变电站、高压电线和家用电器、笔记本等产生的电磁辐射,这部分设备因为使用交流电,其电磁场变化频率较低。  射频电磁辐射较为典型的是微波站、电视塔、基站等产生的电磁辐射,这些设施对外发射频率较高的电磁波(一般是MHz及以上单位)。一般对于低频电磁辐射强度,使用电磁感应强度来表示,其单位是特斯拉T,旧单位是高斯G,其换算单位是1T=10000G。一般环境电磁辐射强度数量级在毫高斯级别(mG)或微特斯拉级别(μT)1μT=10mG。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制