当前位置: 仪器信息网 > 行业主题 > >

流动法毛细流孔径分析仪

仪器信息网流动法毛细流孔径分析仪专题为您提供2024年最新流动法毛细流孔径分析仪价格报价、厂家品牌的相关信息, 包括流动法毛细流孔径分析仪参数、型号等,不管是国产,还是进口品牌的流动法毛细流孔径分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流动法毛细流孔径分析仪相关的耗材配件、试剂标物,还有流动法毛细流孔径分析仪相关的最新资讯、资料,以及流动法毛细流孔径分析仪相关的解决方案。

流动法毛细流孔径分析仪相关的论坛

  • 【原创大赛】毛细管孔径仪数据处理实用小技巧

    [b]毛细管流动孔径分析仪[/b] Capillary Flow Porometer用于测定材料孔径大小测定,原理为有小孔的材料被润湿液体完全润湿后,液体受到表面张力的作用而保留于材料内部,如果要想将液体挤出材料就需要外加一个气体压力。能够克服表面张力将材料孔内的液体完全挤出时所需要的最小压力,就是该材料的泡点值压力,也就是我们常说的起泡点,基于这种原理的测试方法,就是起泡点测试法。这也是应用最为广泛的一种非破坏性完整性测试方法。以下为泡点值计算公式:d=K*C*t/PP = 泡点压力d = 最大孔径k = 形状矫正因子C = 液固接触角t =表面张力泡点值直接与过滤器孔径相关联。不同孔径大小的泡点不同,开孔压力也不同,随着压力的增加,大孔,小孔都打开,直到足够压力,所有孔都打开后,气体从孔洞出来, 气体流量随气体压力增加而增加,最后成线形关系。这样的一条气体流量和压力的一条线,我们称为湿线,刚出来流量时的压力为泡点压力,根据上述公式计算出最大孔径。如果材料没浸润液体,一直处于开孔状态,气体流量会随着压力的增加而增加,是个线形关系。我们再根据一个干线和湿线拟合一条半干线,模拟计算出孔径的分布图。但是有些材料在随着压力增大时,有可能被压扁,变形,特别是一些高分子材料,柔性材料,这时候在压力变大到一定时,气流量和气压力就不是一条很好的线形曲线了,在拟合曲线时就不是很好看,但是我们可以找个气通量曲线和目标材料差不多的样品,做一条干线,然后保存,再数据处理下(data editor),就会做得很漂亮。具体看视频。

  • 【原创】硅胶管采样、大孔径毛细管柱气相色谱法测定丙烯酰胺

    [目的] 简便现场采样设备、提高分析速度、延长色谱柱使用寿命,为硅胶管采集样品、大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定车间空气中丙烯酰胺含量的可行性提供依据。[方法]2005年3月至2005年8月,在某丙烯酰胺生产场所布设4个采样点,采用硅胶管采集样品20份,用大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定车间空气中丙烯酰胺含量,同时用GBZ/T160.62法采样检测多组平行样作对比。[结果] 测定结果经过检验,表明两种方法无明显差异(配对t检验。t=0.61,p0.05)。[结论] 硅胶管采样、大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测丙烯酰胺,不仅可达到国标法的同样效果,而且具有采样简便,分析速度快,简化操作的优点。

  • “比表面与孔径分析原理及应用”免费讲座福利包拿走不谢!

    [align=center][b][color=#ff0000]《比表面与孔径分析原理及应用》系列讲座之第一讲 [b]氮吸附法比表面及孔径分析原理[/b][/color][/b][/align][b][color=#ff0000]主讲人:[/color][/b]钟家湘,北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”。[b][color=#ff0000]开讲时间:[/color][/b]2018年7月5日 10:00[b][color=#ff0000]免费报名链接:[/color][/b][url]http://www.woyaoce.cn/webinar/meeting_3335.html[/url][b][color=#ff0000]课程简介:[/color][/b]本讲主要介绍超细粉体材料比表面及孔径分布的基本概念;吸附科学在比表面及孔径分析中的应用要点;氮吸附比表面测定原理;氮吸附孔径分布测定原理。比表面与孔径分析原理及应用专家系列讲座之课程目录第一讲 氮吸附法比表面及孔径分析原理第二讲 连续流动色谱法比表面仪原理及应用第三讲 超细粉体表面孔径分布的表征与测试原理第四讲 静态容量法比表面及孔径分析仪原理及应用第五讲 超微孔孔径分布的分析原理及方法第六讲 密度函数理论在孔径分析中的应用 这样的学习充电机会你舍得错过吗?[b][color=#ff0000]系列课程链接:[url]https://www.instrument.com.cn/ykt/video/106_0.html[/url][/color][/b][img]http://5b0988e595225.cdn.sohucs.com/images/20170916/a327e21777b4435893b261c0d2dea633.gif[/img]

  • 【分享】北京精微高博公司“高性能氮吸附比表面及孔径分析仪”项目喜获国家创新资金资助

    北京精微高博科学技术有限公司的“高性能氮吸附比表面及孔径分析仪”项目,喜获2011年国家中小企业创新基金的资助,这是精微高博公司产品在2010年4月获国家级技术鉴定之后,又一里程碑式的记录,这标志着精微高博公司自主研发创新能力达到了一个崭新的高度。当前,国际上先进的静态法比表面及孔径分析仪,正朝着高精密及微孔分析的方向发展,仪器的智能化,自动化程度也有了很大的提高,北京精微高博公司研制的高性能氮吸附比表面及孔径分析仪,已经在控制精度和测试精度上进入了世界先进行列,微孔测试下线可达到0.35nm,相对压力由10-7到10-1的等温吸附曲线测试压力点可>100点,0.35-2nm微孔孔径分布曲线得到的最可几孔径, 重复偏差<0.02nm,完全达到了国际先进水平,北京精微高博公司在国产比表面及孔径分析仪的研究与制造上取得了可喜的进步。

  • 【分享】比表面及孔径测定仪的分析方法

    [center]比表面及孔径测定仪的分析方法[/center] 表面积:颗粒的表面积包括内表面积和外表面积两部分。外表面积是指颗粒轮廓所包络的表面积,它由颗粒的尺寸、外部形貌等因素所决定。内表面积是指颗粒内部孔隙、裂纹等的表面积。 比表面积:单位体积(或单位质量)物体的表面积,称为该物体的比表面积或比表面。 常用的比表面分析方法: (1) BET吸附法 吸附法是在试样颗粒的表面上吸附截面积已知的吸附剂分子,根据吸附剂的单分子层吸附量计算出试样的比表面积,然后换算成颗粒的平均粒径。(2) 气体透过法 气体透过法的理论根据是kozeny Carman关于层流状态下气体通过固定颗粒层时透过流动速度与颗粒层阻力的关系气体透过法测定粉体比表面积应用最广泛的是Bline法(又称勃氏法)。(3) Bline法是测定水泥比表面积的常用方法,也可用于测定其他干燥细粉。 在同内的几家生产商中,北京彼奥德公司是唯一采用真空静态法进行比表面积及孔分析的厂家,并且测量过程为全部电脑控制,达到了真正的全自动化操作。 SSA-4200仪器的工作原理为国际通用的等温物理吸附的静态容量法。全程计算机自动控制无需人工监测。使用本方法的比表面积及孔隙度分析仪在国内只有我公司生产和销售,此项仪器技术我公司已经申请相关国家专利。SSA-4200全自动快速比表面积及孔隙度分析仪(氮单元系统),可同时进行两个样品的分析和两个样品的制备,仪器的操作软件为先进的“Windows”软件,仪器可进行单点、多点 BET比表面积、BJH中孔、孔分布、孔大小及总孔体积和面积、及平均孔大小等的多种数据分析,其比表面分析范围为0.1m2/g 至无上限,孔径的分析范围为0.35-200nm。[center][IMG]http://bbs.jixie.com/space/upload/2008/06/12/19573649372571.gif[/IMG][/center]

  • 孔径(孔隙度)分布测定

    孔径(孔隙度)分布测定气体吸附法孔径(孔隙度)分布测定利用的是毛细凝聚现象和体积等效代换的原理,即以被测孔中充满的液氮量等效为孔的体积。吸附理论假设孔的形状为圆柱形管状,从而建立毛细凝聚模型。由毛细凝聚理论可知,在不同的P/P0下,能够发生毛细凝聚的孔径范围是不一样的,随着P/P0值增大,能够发生凝聚的孔半径也随之增大。对应于一定的P/P0值,存在一临界孔半径Rk,半径小于Rk的所有孔皆发生毛细凝聚,液氮在其中填充,大于Rk的孔皆不会发生毛细凝聚,液氮不会在其中填充。临界半径可由凯尔文方程给出了:http://www.app-one.com.cn/images/ps/11.jpgRk称为凯尔文半径,它完全取决于相对压力P/P0。凯尔文公式也可以理解为对于已发生凝聚的孔,当压力低于一定的P/P0时,半径大于Rk的孔中凝聚液将气化并脱附出来。理论和实践表明,当P/P0大于0.4时,毛细凝聚现象才会发生,通过测定出样品在不同P/P0下凝聚氮气量,可绘制出其等温吸脱附曲线,通过不同的理论方法可得出其孔容积和孔径分布曲线。最常用的计算方法是利用BJH理论,通常称之为BJH孔容积和孔径分布。

  • 10月18日直播|《比表面与孔径分析原理及应用》系列讲座之第三讲开播啦!

    [b][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要详细介绍:超细粉体中孔径分布的氮吸附法的分析原理;孔径分布的表征方法,各种表征参数的正确含义;BJH法进行孔径分布的分析中,值得注意的若干问题。比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[b][color=#ff0000]免费报名链接:[/color][/b][url]https://www.instrument.com.cn/ykt/course/live/index?sid=115[/url][b][color=#ff0000]直播时间:[/color][/b]2018/10/18 10:00[b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],还有8个免费名额哦,先到先得![color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color][color=#ffffff]1.氮吸附法比表面及孔[/color][color=#ffffff]径分析原理[/color][color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color]

  • 压汞法测试孔径参数分析报告

    本材料检测中心主要从事石墨及碳素材料等分析,孔径分析测试主要是使用麦克莫瑞提克的压汞仪,型号为9500.今天主要谈谈孔径测试及压汞仪的了解。[font=宋体]一、[/font][font=宋体]对孔径测试及压汞仪的了解[/font][font=宋体]孔径测试[/font][font=宋体] [/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]二、[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体]三、[/font][font=宋体][font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体]四、[/font][font=宋体][font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体]五、[/font][font=宋体][font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]孔径测试[/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体] [font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体] [font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体] [font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]压汞仪了解[/font][font=宋体][font=宋体]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/font][font=Calibri]Washburn[/font][font=宋体]方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。[/font][/font][font=宋体][font=Calibri]Washburn[/font][font=宋体]方程了解: [/font][/font][font=宋体] [/font][font=宋体] [font=宋体]方程的作用:将压力与孔径间建立了关系;[/font][/font][font=宋体] [font=宋体]方程的基础:将所有孔都假设成理想的圆柱形孔模型;[/font][/font][font=宋体] [font=宋体]方程的不足:实际上孔的结构多种多样,存在以偏概全的问题;[/font][/font][font=宋体]压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息;[/font][font=宋体]压汞仪测试原理[/font][font=宋体][font=Calibri]Autopore IV9500[/font][font=宋体]压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试[/font][font=Calibri]0[/font][font=宋体]至[/font][font=Calibri]30psi[/font][font=宋体]的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试[/font][font=Calibri]30[/font][font=宋体]至[/font][font=Calibri]33000psi[/font][font=宋体]的压汞量,根据[/font][font=Calibri]Washburn[/font][font=宋体]方程得到对应于不同压力的孔径大小,并作出相应数据分析。[/font][/font][font=宋体][font=宋体]膨胀计的选择:[/font] [/font][font=宋体] [font=宋体]要求:样品孔体积应在[/font][font=Calibri]25%[/font][font=宋体]至[/font][font=Calibri]90%[/font][font=宋体]范围的毛细管体积;[/font][/font][font=宋体] [font=宋体]对不同孔隙率的样品在加工上及膨胀计选择上需合理。[/font][/font][font=宋体] [font=宋体]压汞仪低压测试原理[/font][/font][font=宋体] [/font][font=宋体]低压测试原理[/font][font=宋体] [font=宋体]一、使用真空泵将膨胀计抽真空至[/font][font=Calibri]20mg[/font][font=宋体]汞柱;[/font][/font][font=宋体] [font=宋体]二、通过真空效果,将汞压入膨胀计;[/font][/font][font=宋体] [font=宋体]三、通过外接的氮气压力进行压汞至[/font][font=Calibri]30psi[/font][font=宋体],过程中根据设定点位收集 压汞体积;[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]压汞仪高压测试原理[/font][font=宋体]高压测试原理[/font][font=宋体] [font=宋体]一、将做完低压已灌满汞的膨胀计装入高压装置;[/font][/font][font=宋体] [font=宋体]二、通过液压泵和倍增器进行加压至[/font][font=Calibri]33000psi[/font][font=宋体];[/font][/font][font=宋体] [font=宋体]三、过程中根据设定点位收集[/font] [font=宋体]压汞体积;[/font][/font][font=宋体] [/font][font=宋体]三、数据分析处理[/font][font=宋体] [/font][font=宋体] [font=宋体]常规参数分析[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]已知条件:样品质量[/font][font=Calibri]Ws[/font][font=宋体]:直接称量;[/font][/font][font=宋体] [font=宋体]空管体积[/font][font=Calibri]Vp[/font][font=宋体]:通过空管校准,系统内部计算得出;[/font][/font][font=宋体] [font=宋体]空管质量[/font][font=Calibri]Wp[/font][font=宋体]:直接称得;[/font][/font][font=宋体] [font=宋体]汞的密度[/font][font=宋体]ρ:根据控制室温直接给出;[/font][/font][font=宋体] [font=宋体]样品[/font][font=Calibri]+[/font][font=宋体]空管[/font][font=Calibri]+[/font][font=宋体]汞质量[/font][font=Calibri]Wpsm[/font][font=宋体]:直接称得;[/font][/font][font=宋体][font=宋体]累计压入体积:[/font][font=Calibri]Ii=Vi/Ws[/font][font=宋体],为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的;[/font][/font][font=宋体][font=宋体]总压入体积:[/font][font=Calibri]Itot=Vtot/Ws[/font][font=宋体],通过不同物质对比,可以很直观的看出不同物质的孔体积差异;[/font][/font][font=宋体][font=宋体]样品体积:[/font][font=Calibri]Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ [/font][font=宋体]ρ[/font][font=Calibri],[/font][font=宋体]样品体积是根据空管体积减去压入的汞体积计算得出。[/font][/font][font=宋体][font=宋体]孔隙率[/font][font=Calibri]%[/font][font=宋体]:[/font][font=Calibri]Ppc=100*Vtot/Vb[/font][font=宋体],孔隙率能总体看出样品的孔量。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]体密[/font][font=Calibri](0.51psi[/font][font=宋体]下[/font][font=Calibri])[/font][font=宋体]:[/font][font=Calibri]Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ [/font][font=宋体]ρ[/font][font=Calibri])[/font][font=宋体],该数据属于表观数据,将物质内的孔体积都算在密度内;[/font][/font][font=宋体][font=宋体]骨架密度([/font][font=Calibri]32983.86 psi[/font][font=宋体]):[/font][font=Calibri]Ys=Ws/Vs=Ws/(Vb-Vtot)[/font][font=宋体],该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在[/font][font=Calibri]32983.86 psi[/font][font=宋体]下所能测得的孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]V[/font][font=宋体]):先通过[/font][font=Calibri]Ik=Itot/2[/font][font=宋体],计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]A[/font][font=宋体]):先通过[/font][font=Calibri]Ak=Atot/2[/font][font=宋体],计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]平均孔径([/font][font=Calibri]4V/A[/font][font=宋体])[/font][font=Calibri]:[/font][font=宋体]以理想型圆柱体模型为基础,[/font][font=Calibri]Dav=4*Itot/Atot,[/font][font=宋体]从而算出其平均直径。[/font][/font][font=宋体][font=宋体]累计孔面积:[/font][font=Calibri]Ai=Aij+Aij-1+[/font][font=宋体]…[/font][font=Calibri].+Ai1[/font][font=宋体];而单孔面积计算是[/font][font=Calibri]Aij=4*Iij/Dmi[/font][font=宋体],从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/font][/font]END[font=宋体] [/font]

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 【原创】动态色谱法比表面仪不适合做孔径测试原因分析

    [align=center][b][size=3][font=宋体]动态色谱法比表面仪不适合做孔径测试原因分析[/font][/size][/b][/align][size=3][font=宋体] 国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。[/font][/size][size=3][font=宋体]相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:[/font][/size][size=3][/size][b][size=3][font=宋体]一、[/font][/size][size=3][font=宋体]动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;[/font][/size][/b][size=3][font=楷体_GB2312]孔径分析时,通常要分析40个以上的分压点。[/font][/size][size=3][font=楷体_GB2312]动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; [/font][/size][size=3][font=楷体_GB2312]静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; [/font][/size][size=3][font=楷体_GB2312]1.[/font][/size][size=3][font=楷体_GB2312]没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;[/font][/size][size=3][font=楷体_GB2312]2.[/font][/size][size=3][font=楷体_GB2312]动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;[/font][/size][size=3][font=楷体_GB2312]所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;[/font][/size][size=3][font=楷体_GB2312]二、[/font][/size][b][size=3][font=宋体]由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。[/font][/size][/b][size=3][font=楷体_GB2312][/font][/size][size=3][font=楷体_GB2312]测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,[/font][/size][size=3][font=楷体_GB2312]而对于500mg比表面积为1m[sup]2[/sup]/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),[/font][/size][size=3][font=楷体_GB2312]所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;[/font][/size][size=3][font=楷体_GB2312]静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; [/font][/size][size=3][font=楷体_GB2312]而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;[/font][/size][size=3][font=楷体_GB2312]所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;[/font][/size][b][size=3][font=宋体]三、[/font][/size][size=3][font=宋体]动态色谱法仪器不能测试真正意义的脱附等温线;[/font][/size][/b][size=3][font=楷体_GB2312]动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;[/font][/size][b][size=3][font=宋体]四、[/font][/size][size=3][font=宋体]动态色谱法仪器测试范围窄;[/font][/size][/b][size=3][font=楷体_GB2312]若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm;[/font][/size][color=blue][size=3][font=宋体] [/font][/size][/color][size=3][font=宋体] [/font][/size][size=3][font=宋体]由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。[/font][/size]

  • 【分享】精微高博高性能比表面及孔径分析仪荣获“2010科学仪器优秀新产品”奖

    精微高博高性能比表面及孔径分析仪荣获“2010科学仪器优秀新产品”奖2011年4月26日,由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网(www.instrument.com.cn)联合主办,中国分析测试协会协办的中国科学仪器行业目前最高级别峰会——“2011中国科学仪器发展年会(ACCSI 2011)” 在北京京仪大酒店隆重召开。年会主办方在大会现场对“2010中国科学仪器优秀新产品”举行了隆重的颁奖仪式。 “2010年科学仪器优秀新产品”评选活动于2010年3月份开始筹备,截止到2011年2月28日,共有234家国内外仪器厂申报了497台2010年度上市的仪器新品。经仪器信息网编辑初审、2011中国科学仪器发展年会新品组委会初评,在所有申报的仪器中仅有四分之一进入了入围名单。共有60位业内资深专家、20位资深用户参与了此次科学优秀新产品的评选,最终仅有28台仪器获得了“2010科学仪器优秀新产品”奖。其中,2010年度申报的33台物性测试仪器及设备中,仅有12台入围。北京粉体协会理事长胡荣泽研究员会上揭晓了物性测试和光学仪器类“2010科学仪器优秀新产品”获奖名单。入围的12台仪器中,仅有三家仪器新品榜上有名,与精微高博新品一道获此项殊荣的另外两台仪器都出自国际知名的跨国公司(如下)。精微高博自主创新的高性能比表面及孔径分析仪的脱颖而出,充分显示出JW系列分析仪器制造水平达到了国内领先水平,JW系列高性能比表面及孔径分析仪得到国内外客户的普遍认可。物性测试和光学仪器类“2010科学仪器优秀新产品”获奖名单 file:///C:/Program%20Files/Tencent/QQ/Users/498819089/Image/K83)}F12$W

  • 【原创】为什么动态色谱法不适合做孔径测试分析?

    国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:一、动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;孔径分析时,通常要分析40个以上的分压点。动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; 静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; 1. 没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;2. 动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;二、由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; 而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;三、动态色谱法仪器不能测试真正意义的脱附等温线;动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;四、动态色谱法仪器测试范围窄;若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm; 由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。

  • 四站比表面及孔径分析?你要小心了

    最近从客户那里了解到,国内某家比表面孔径分析仪的厂家对外宣传的所谓四站式比表面及孔径分析仪居然是伪四站,虽然有四个测试位,但是每次只能进行两个样品的比表面及孔径分析,另外两个测试位只能进行比表面测试。这种极度不负责任,虚假的,欺瞒客户的行为大大伤害了广大客户对国产仪器的信任,沦为国产仪器的还群之马。技术上不行,可以通过研究,学习改进,但是弄虚作假就是品行问题,作为一个企业,更是不能让人接受,真是给我们国产仪器抹黑啊。

  • 【国产好仪器讨论】之北京精微高博科学技术有限公司的全自动比表面及孔径分析仪(JW-BK132F)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C73677%2Ejpg&iwidth=200&iHeight=200 北京精微高博科学技术有限公司 的 全自动比表面及孔径分析仪(JW-BK132F)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 产品简介: 由我公司自主研发的国内首台研究型、高性能静态容量法微孔分析仪JW-BK132F诞生于2010年,该款仪器完全继承了BK系列孔径分析仪的所有技术特点,核心硬件全部采用国际先进品牌,并引入“涡轮分子泵高端技术,配合微孔分析模型的准确应用,使得该产品综合性能更加完善,测试结果准确性、精确性、稳定性更加完美,是现今国际市场上性价比最高的一款分子泵微孔分析仪,其质量与性能完全能够与国外同类产品相媲美,非常适合活性炭、分子筛等超微孔纳米粉体材料的研究。 仪器型号: JW-BK132F 原理方法: 气体吸附法,静态容量法; 测试功能: 等温吸脱附曲线;单点、多点BET比表面积;Langmuir比表面积;外表面积(STSA);单点吸附总孔体积、平均孔径;BJH介孔大孔孔容积及孔径分布分析;t-plot法、as- plot法、DR法、MP法微孔常规分析;HK法、SF法微孔精确分析;平均粒径估算; 特殊功能:NLDFT法孔径分布分析;真密度精确测试;气体吸附量、吸附热测试;质量输入法测试; 测试气体: 氮、氧、氢、氩、氪、二氧化碳、甲烷等; 测试范围: 比表面积0.005(m2/g)--至无上限;介孔、大孔分析2nm-500nm; 微孔分析0.35nm-2nm;总孔体积0.0001cc/g至无上限; 重复精度: 比表面积≤± 1.0%;外表面积≤± 1.5%;微孔最可几孔径≤0.01nm;真密度≤±0.04% 测试效率: 比表面积平均每样30min;介孔、大孔分析平均每样4-6小时;微孔分析平均每样10-15小时; 分析站: 2个样品测试位,可同时进行真空脱气预处理,原位交替测试;每个测试位原配单独的3L或1L真空玻璃内胆杜瓦瓶,共2个; P0位: 每个样品测试位设有独立的P0管,共2支,由单独的进口压力传感器控制,完全同分析位分开,可实时、准确测量氮气的饱和蒸汽压,并实时参与理论计算; 升降系统: 2个样品测试位原位设有2套独立的升降系统,电动控制、自动控制,且互不干扰; 真空系统: 全不锈钢多通路并联抽真空管路系统,真空抽速微调阀系统专利技术,可在2-200ml/s范围内自动调节; 真空泵: 外置式进口双级旋片式机械真空泵(自动防返油)+ 内置式进口涡轮分子泵,极....【了解更多此仪器设备的信息】

  • 【讨论】购买比表面及孔径分析仪器需谨慎!!!切勿听信谗言!

    最近公司来一客户,在我们这里谈好合同后,随便去看另外一家比表面仪器厂家,结果那家的技术员告诉他,静态的仪器测试孔隙度不如动态的。还好这个客户提前在我们公司了解了这方面的知识,知道了测试孔隙度这方面静态是主流,不管从测试精度上、测试范围方面、还是等温吸脱附曲线好坏,静态的都有它的优势。打个比方吧:静态的可以测试吸-脱附曲线,动态一般只能测试脱附曲线(不过我们公司的动态仪器可以做吸脱附曲线),吸脱附曲线的回滞环可以帮助我们分析样品的孔形状。吸脱附曲线可以分析样品孔径分步情况。以及最可几孔径。测试范围上:静态一般可以测试0.35nm微孔到500nm的大孔,而动态只能测试2nm到100nm之间的孔。我觉得作为一个好的采购员,为了避免不被一些骗子公司所忽悠。了解相关仪器的知识是很必要的,要不然,很容易被别人忽悠,到时候把自己公司给坑了都不知道。

  • 测定固体材料孔径分布和孔隙度 压汞法

    测定固体材料孔径分布和孔隙度 压汞法

    一般测试样品的孔径分布,所使用的方法就是静态容量法和压汞法。其原理是通过测试的分压和对应的各级孔的吸附量,来表征材料孔径的分布。表征的方法是,通过各级孔径的体积与对应的分压下的一个曲线图,来表征材料的孔径分布。今天我们主要讲讲测定固体材料孔径分布和孔隙度 -压汞法它的原理如下: [font=宋体]由于非浸润[/font][font=宋体]液体[/font][font=宋体]汞仅在施加外压力[/font][font=宋体]时方可[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔体(不包含[/font][font=宋体]闭孔[/font][font=宋体]),在[/font][font=宋体]不断增压的情况下,[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔[/font][font=宋体]体的汞体积[/font][font=宋体](或孔径)[/font][font=宋体]与外压力具有一定函数关系[/font][font=宋体],[/font][font=宋体]从而测得样品的孔径分布。[/font][font=宋体]在假设孔为圆柱形的前提下,[/font][font=宋体][color=#222222]Washburn方程[/color][/font][font=宋体][color=#222222]给出了压力与孔径[/color][/font][font=宋体][color=#222222]间[/color][/font][font=宋体][color=#222222][font=宋体]的关系[/font],[/color][/font][font=宋体][color=#222222]见下[/color][/font][font=宋体][color=#222222]式[/color][/font][font=宋体][color=#222222]。[/color][/font][img=,156,66]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301515009551_4103_2140715_3.png!w156x66.jpg[/img][font=宋体]其中,[/font]γ为汞的表面张力、θ为汞在样品上的接触角。我们实验室所购压汞仪为美国麦克仪器的9500系列的全自动压汞仪。最高压力可加至33000psia(≈230MPa),可分析孔径范围为0.0055um-400um。压汞检测适用范围: 适用于大多数非浸润多孔材料,不适用于汞齐化的材料,如:金、铝、还原铜、还原镍和银等一些金属;样品预处理: 最好在>110℃温度下,真空状态下干燥处理1h以上;样品尺寸的选择 因为检测中心使用的是5cc的膨胀计,样品尺寸为φ14×20mm的样品较为适宜。 但样品最佳的尺寸要根据所分析材料的总孔体积选择。一般,当Stem Volume Used 小于25%或大于90%时,需要改变分析变量。第一:可以选择稍大或稍小的样品量以提供更好的分辨率,第二改变毛细管体积。具体操作如[b][font=黑体] 1.[/font][font=黑体][color=#222222]样品烘干[/color][/font][/b][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222]10[/color][/font][font=宋体][color=#222222]℃±[/color][/font][font=宋体][color=#222222]5[/color][/font][font=宋体][color=#222222]℃,2h,贮存在干燥器中冷却至室温备用。[/color][/font][font=宋体][color=#222222] [/color][/font][font=宋体][color=#ff0000][font=宋体]最好在>[/font][font=宋体]110℃温度下,真空状态下干燥处理1h以上[/font][/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体][color=#222222]2 [/color][/font][b][font=黑体][color=#222222]膨胀计[/color][/font][font=黑体][color=#222222]装样[/color][/font][/b][font=宋体][color=#222222]将干燥[/color][/font][font=宋体][color=#222222]冷却后的样品[/color][/font][font=宋体][color=#222222]称重[/color][/font][font=宋体][color=#222222]后[/color][/font][font=宋体][color=#222222]放入[/color][/font][font=宋体][color=#222222]一干净的膨胀计中,[/color][/font][font=宋体][color=#222222]用成套[/color][/font][font=宋体][color=#222222]的密封件[/color][/font][font=宋体][color=#222222]密封[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]密封时[/color][/font][font=宋体][color=#222222]必须使用密封脂[/color][/font][font=宋体][color=#222222],确保[/color][/font][font=宋体][color=#222222]密封性[/color][/font][font=宋体][color=#222222],密封不严可能造成真空度无法达到要求[/color][/font][font=宋体][color=#222222]。[/color][/font][font=楷体][color=#222222]注意:在样品装样等过程中必须戴好乳胶手套,皮肤不得直接接触样品和膨胀剂等,全程佩戴好口罩等防护用品。[/color][/font][font=黑体][color=#222222]3 [/color][/font][b][font=黑体][color=#222222]抽真空[/color][/font][/b][font=宋体][color=#222222]抽真空的目的是去除样品中的大多数水分及气体。[/color][/font][font=宋体][color=#222222]首先[/color][/font][font=宋体][color=#222222]将[/color][/font][font=宋体][color=#222222]装有样品的[/color][/font][font=宋体][color=#222222]膨胀计[/color][/font][font=宋体][color=#222222]安装在压汞[/color][/font][font=宋体][color=#222222]仪低压[/color][/font][font=宋体][color=#222222]站,建立低压测试文件开始分析,[/color][/font][font=宋体][color=#222222]真空度[/color][/font][font=宋体][color=#222222]达到小于[/color][/font][font=宋体][color=#222222]50μmHg[/color][/font][font=宋体][color=#ff0000][font=宋体](使用真空泵将膨胀计抽真空至[/font][font=宋体]20mg汞柱[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][color=#222222]要求后开始下一步低压测试[/color][/font][font=宋体][color=#222222]。[/color][/font][font=黑体][color=#222222]4 [/color][/font][b][font=黑体][color=#222222]低压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]抽真空结束后压汞仪[/color][/font][font=宋体][color=#222222]以分级连续升压或在[/color][/font][font=宋体][color=#222222]可[/color][/font][font=宋体][color=#222222]控[/color][/font][font=宋体][color=#222222]的[/color][/font][font=宋体][color=#222222]方式下以步进式[/color][/font][font=宋体][color=#222222]升压[/color][/font][font=宋体][color=#222222]的方式增压[/color][/font][font=宋体][color=#222222]。系统[/color][/font][font=宋体][color=#222222]记录压力和对应的进[/color][/font][font=宋体][color=#222222]汞[/color][/font][font=宋体][color=#222222]体积。当[/color][/font][font=宋体][color=#222222]达到设定[/color][/font][font=宋体][color=#222222]的压力[/color][/font][font=宋体][color=#222222][back=#ffff00](一般为[/back][/color][/font][font=宋体][color=#222222][back=#ffff00]30psia[/back][/color][/font][font=宋体][color=#222222][back=#ffff00])[/back][/color][/font][font=宋体][color=#222222]后,减压[/color][/font][font=宋体][color=#222222]力[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=宋体][color=#222222]当泄压结束后将膨胀计组件松开取下,毛细管向上称重并记录。[/color][/font][font=黑体][color=#222222]5 [/color][/font][b][font=黑体][color=#222222]高压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]安装膨胀计于[/color][/font][font=宋体][color=#222222]高压[/color][/font][font=宋体][color=#222222]站[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]确保密封性。建立高压测试文件开始孔径分布的高压分析。通过[/color][/font][font=宋体][color=#222222]计算机图表[/color][/font][font=宋体][color=#222222]记录[/color][/font][font=宋体][color=#222222]压力和相应的注汞体积。当[/color][/font][font=宋体][color=#222222]达到[/color][/font][font=宋体][color=#222222]所需的最大压力,[/color][/font][font=宋体][color=#222222]逐步减压[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=黑体][color=#222222]6 [/color][/font][b][font=黑体][color=#222222]测试[/color][/font][font=黑体][color=#222222]完毕[/color][/font][/b][font=宋体][color=#222222]从测[/color][/font][font=宋体][color=#222222]孔仪中取出膨胀计前,必须确保[/color][/font][font=宋体][color=#222222]仪器[/color][/font][font=宋体][color=#222222]内的压力已降至大气压。[/color][/font][font=黑体][color=#222222]7 [/color][/font][b][font=黑体][color=#222222]空管校准[/color][/font][/b][font=宋体][color=#222222]为消除由于汞压缩而产生的相对注汞体积、样品管和其他仪器元件等产生的误差[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222][font=宋体]在使用新的膨胀计时需按住[/font][font=宋体]8[/font][/color][/font][font=宋体][color=#222222].2-8.6[/color][/font][font=宋体][color=#222222]进行空管校准测试,建立专用的膨胀计数据,以便后续测试时减去空白,得到样品的真实孔径分布数据。[/color][/font][b][font=黑体]8.结果计算[/font][font=黑体] [/font][/b][font=宋体][font=宋体]通过以上测试获取样品的中位孔径、最可几孔径以及孔径分布曲线等数据,典型孔径分布曲线如下图[/font][font=宋体]1[/font][/font][font=宋体]-3[/font][font=宋体]所示。[/font]8.1压汞图谱介绍[font=宋体] [/font][img=,690,584]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301522043958_4855_2140715_3.png!w690x584.jpg[/img]8.2压汞过程中汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301523249691_5499_2140715_3.png!w690x575.jpg[/img]8.3压力转化为孔径后的汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301524109350_4028_2140715_3.png!w690x575.jpg[/img]8.4压汞测试报告结果[img=,690,274]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301526057747_9550_2140715_3.png!w690x274.jpg[/img]Total intrusion Volume【总侵入体积】,mL/g,是指在分析过程中获得的最大压力下,汞侵入样品孔隙的最大体积。 Total Pore Area【总孔面积】,m2/g,是基于圆柱几何假设的孔壁面积。Median Pore Diameter(Volume)【中值孔径(体积)】,nm,是指在较大和较小的直径上出现等量孔隙体积时的孔径。Median Pore Diameter(Area)【中值孔径(面积)】 ,nm,是在较大和较小的直径上出现相等数量的孔壁面积时的孔径。 注:中值孔径(体积)和中值孔径(面积)经常不同,因为分布中较大的孔对总体积贡献很大,而较小的孔对总孔面积贡献更大。随着孔隙分布变得更宽或呈双峰,这两个数字之间的差异将变得更大。END

  • 你所不注意的细节——色谱柱填料孔径对分析的影响~

    一般情况下,我们在购买色谱柱时,很少考虑色谱柱孔径方面的信息,其实,色谱柱填料孔径对分析也有些影响,具体如下:*HPLC吸附介质是多孔的颗粒,绝大多数的反应表面于孔内。因此,分析物必须进入孔内才能被吸附和分离*孔径小,含孔率高,则比表面积大,碳载量高,色谱柱分离性能也随之提高*另外,孔径大小必须和分子大小相匹配。一般情况下,分子量小于2000的分析物使用100 Å 或更小;分子量在2000-10000之间的分析物使用100-200 Å的填料;大于10000的包括多肽,蛋白质等需要选用300 Å或更大的孔径。为了达到最佳分离,一般要求孔径直径是分子直径的3倍以上

  • 【有奖点评】一句话说说贝士德比表面及孔径分析仪怎么样?

    [align=center][font=Calibri][font=Calibri]使用过[/font][font=Calibri]“[/font][/font][font=微软雅黑][color=#333333][font=微软雅黑][/font]贝士德比表面及孔径分析仪[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][/color][/font][font=Calibri]”的小伙伴,[/font][font=微软雅黑][/font][/align][align=center][font=微软雅黑]一句话说说[/font][font=微软雅黑][color=#333333][font=微软雅黑][/font]贝士德比表面及孔径分析仪[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff][/color][/url][/color][/font][font=微软雅黑]怎么样?[/font][font=微软雅黑][/font][/align][align=center][font=Calibri][color=#ff0000]欢迎回帖讨论[/color][/font][font=Calibri],凡有效参与的用户,[/font][font=Calibri][color=#ff0000][font=Calibri]奖励[/font]200积分/人[/color][/font][font=Calibri]。[/font][/align]

  • 【有奖点评】一句话说说精微高博TB系列比表面积及孔径同步分析仪怎么样?

    【有奖点评】一句话说说精微高博TB系列比表面积及孔径同步分析仪怎么样?

    [align=center][font='微软雅黑',sans-serif][color=black]使用过“[/color][/font][font='Arial',sans-serif][color=#333333]精微高博TB系列比表面积及孔径同步分析仪[/color][/font][font='微软雅黑',sans-serif][color=black]”的小伙伴,[/color][/font][/align][align=center][font='微软雅黑',sans-serif][color=black]一句话说说[/color][/font][font='Arial',sans-serif][color=#333333]精微高博TB系列比表面积及孔径同步分析仪[/color][/font][font='微软雅黑',sans-serif][color=black]怎么样?[/color][/font][/align][align=center][font='微软雅黑',sans-serif][color=red]欢迎回帖讨论[/color][/font][font='微软雅黑',sans-serif][color=black],凡有效参与的用户,[/color][/font][font='微软雅黑',sans-serif][color=red]奖励[/color][/font][font='Arial',sans-serif][color=red]200[/color][/font][font='微软雅黑',sans-serif][color=red]积分[/color][/font][font='Arial',sans-serif][color=red]/[/color][/font][font='微软雅黑',sans-serif][color=red]人[/color][/font][font='微软雅黑',sans-serif][color=black]。[img=,300,300]https://ng1.17img.cn/bbsfiles/images/2023/04/202304271038569285_4452_3237657_3.jpg!w300x300.jpg[/img][/color][/font][/align]

  • 【分享】选择比表面积孔径测定仪注意的问题!

    如何选择比表面积孔径测定仪注意的问题?——李鹏 北京彼奥德电子有限公司在工业上,固体高度分散后的固体比表面积的测定和分析(微观结构性能),对于吸附,催化,色谱,冶金,陶瓷,建筑材料的生产和研究工作都有重要意义。在定温下,测定不同相对压力时的气体在固体表面的吸附量后,基于布朗诺尔-埃米特-泰勒(BET)的多层吸附理论及其公式可计算出固体的比表面积,基于凯尔文的毛细管凝理论及其公式,惠勒关于综合考虑毛细管凝聚和多层吸附的理论,原则上便可以计算出固体精细比表面积。一款比表面积孔径测定仪的性能主要体现在1.气体流量怎样自动设定?孔径分布测定,需要测定几十甚至上千个吸附、脱附点。如果是手动设定气体流量,每设定一个点,需5至20分钟(精确度低于1毫升的流量,无法手动精确设定),假如某个样品需要测定100种孔径,若用手动设定流量,仅仅是在流量设定上就要耗废8至33小时。2.吸附及脱附自动化控制?每吸附及脱附一次需要大约10分钟时间(时间长短与样品和装样量有关),完整测定一个样品就需要10至30个小时,如果是手动吸附及脱附,操作员的测定工作将十分的繁重3.液氮饱和蒸气压怎样测定? 液氮饱和蒸气压是计算孔半径的重要数据之一,它对液氮温度很敏感,若液氮温度从-190摄氏度变化到-200摄氏度,液氮饱和蒸气压将会从1428降至459毫米汞柱。可想而之,液氮饱和蒸气压不能精确测量,会对孔隙的测定有多大的影响。4.进行吸附测定?吸附分支的测定与脱附分支的测定,在孔径分布报告中,有着同等重要的意义5.具有内置高精度定量管?定量管是转化氮气量的维一途径,如果保证不了其精度,测定结果将有很大偏差。如有需要可联系我们进行进一步讨论。彼奥德电子联系电话:010-62443971 82899987手机:13671343017联系人:李鹏

  • 泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    [b][color=#3366ff]摘要:针对现有压力衰减法孔径测量中存在的基本概念不清和实施方法不明确等问题,本文详细介绍了压力衰减法的孔径测量基本原理,并重点介绍压差法测量中的高精度压力控制方法,为各种微小孔径和等效孔径的准确测量提供切实可行的解决方案。[/color][/b][align=center][img=压力衰减法孔径测量,550,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230914562217_9430_3221506_3.jpg!w690x370.jpg[/img][/align][b][size=18px][color=#3366ff]1. 问题的提出[/color][/size][/b] 在工业生产和实验室研究中存在着大量管件内部孔径的测量需求,而且还要求具有较高的测量精度,常见的需要精密测量的几类孔径有: (1)毛细管内径。 (2)鲁尔接头或其他连接器母接头孔径。 (3)各种喷灯气孔孔径。 (4)栓环缝通道等效孔径。 (5)药用玻璃瓶或药品包装系统漏孔孔径。 通道孔径主要分为直接测量方法和间接测量方法。直接测量主要是通过精密的尺规等工具进行测量,如游标卡尺、圆锥尺、针规和塞规等,但直接测量方法并不适应于细长管和针栓环缝通道等的孔径或等效通径的测量。 间接测量法主要有光学法和流体标定法。光学法一般是利用像素为基本单位对各种形状的孔进行测量,适用于元件表面孔和裂纹的测量。但对于细长或者弯曲多变的孔径,光学法不适用。流体标定方法是一种基于压力衰减法的有效的等效通径标定方法,流体介质多以气体和液体为主,通过流量计和压力传感器分别测量流体流量和压力差。但在目前的压力衰减法中普遍存在以下几方面的问题: (1)在低于和高于一个标准大气压的负压和正压条件下,都可以采用压力衰减法进行孔径测量,但绝大多数文献和专利报道对此并没有明确的规定,正负压测试条件的使用显着非常随意和混乱。 (2)压力衰减法的核心是在被测孔径管道的两侧形成恒定压力差,并同时测量由此压差引起的流量变化,其中的恒定压力控制是建立试验条件和影响测量精度的最重要因素。对于精确的压力控制在各种文献和专利报道中很少看到,大多报道只是给出一个不完整的压力衰减法测试框图,对精确的压力控制以生成高精度的恒定压差还未见报道。 针对上述现有压力衰减法孔径测量中存在的问题,本文将详细介绍压力衰减法孔径测量的基本原理,重点介绍压差法测量中的高精度压力控制方法,为微小孔径和等效孔径的准确测量提供切实可行的解决方案。[b][size=18px][color=#3366ff]2. 压力衰减法基本原理——泊肃叶定律[/color][/size][/b] 在恒定压差条件下,在粗细均匀的水平刚性圆管中作层流流动的黏性流体,其体积流量满足如图1所示的泊肃叶(Poiseuille)公式。[align=center][img=泊肃叶定律,600,311]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230917419388_2550_3221506_3.jpg!w690x358.jpg[/img][/align][align=center][color=#3366ff][b]图1 流体介质的泊肃叶定律[/b][/color][/align] 从泊肃叶公式中可以看出,体积流量与管孔半径的四次方成正比,孔径微小的变化都会对流量产生明显的影响。这就是压力衰减法孔径测量的依据,孔径的微小改变都会引起流量的显著变化,因此压力衰减法在孔径测量中具有很高的灵敏度,但前提是一要准确控制管道两端的压力,二是要准确测量体积流量。[b][size=18px][color=#3366ff]3. 孔径测量解决方案[/color][/size][/b] 依据泊肃叶定律,孔径测量的关键是实现准确的压力控制和流量测量。为此,本文针对高精度孔径测量提出的解决方案如图2所示。[align=center][b][color=#3366ff][img=压力衰减法孔径测量装置结构示意图,600,572]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230918265466_3029_3221506_3.jpg!w690x658.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 压力衰减法孔径测量装置结构示意图[/color][/b][/align] 如图2所示,被测孔径管件安装在两个压力腔室之间,整个装置的目的是精确控制这两个腔室的压力以形成稳定的压力差,在压力差稳定的装置下测量流进和留出两个腔室的气体流量,从而可计算得到被测孔径大小。 此孔径测量装置涉及以下几方面的主要内容: (1)此孔径测量装置采用了正压压力控制方案,这主要是因为正压控制同样可以达到很高的精度,而且,相对于负压真空环境下的测量和控制造价较低。正压控制过程中,采用纯净的高压气瓶和减压阀提供稳定的高压气源,高压气源同时供给两个压力控制阀以实现不同的正压压力控制。 (2)由于要测量进出两个腔室的气体流量,需要在两个腔室的进气口和出气口处分别安装气体质量流量计进行流量测量,因此压力控制阀无法直接对两个腔室的压力直接控制。为此,解决方案采用了串级控制方式,即在两个腔室上分别增加压力传感器,通过双通道PID压力控制器采集压力传感器信号,并两个通道分别设定不同的压力值,由此来驱动压力控制阀进行双回路的压力控制,由此实现两个腔室内的压力准确稳定在设定值上。 (3)压力控制阀是一个自带PID控制板和压力传感器的闭环压力控制装置,通过接收双通道PID压力控制器的控制信号,可以使压力控制阀出口处的压力准确恒定。压力控制阀自带泄压放气孔,由此两个压力控制阀组成的压差控制回路可使气体单向流过被测孔径管件。 (4)此解决方案中的孔径测量装置是一个对称装置,这种对称结构设计的目的是可以对被测孔径管件进行双向测试,这也是一种提高孔径测量精度的途径之一。 (5)压力控制器采用的是双通道高精度PID控制器,AD精度为24位,DA精度为16位,两个通道独立运行,可满足各种孔径精度测量中的压力控制需要。 (6)整个孔径测量装置的测量精度,除了受压力控制器精度影响之外,还会受到压力控制阀、压力传感器和气体质量流量计精度的影响,因此要针对不同的孔径测量精度要求选择合适精度的部件。 (7)由于此孔径测量装置是直接控制两个腔室的压力,所以在室温下运行时腔室温度的波动对压力变化没有影响,腔室压力控制自动会消除掉温度影响而保持腔室气压恒定。 (8)为了实现数据的自动采集和计算孔径测量结果,双通道压力控制器和两个气体质量流量计需要与计算机通讯连接(图2中并未绘出)。由此,通过计算机可设定控制压力,采集压力和流量变化曲线以监控压力和流量是否稳定,当达到稳态状态后可通过压力和流量采集数据并依据泊肃叶公式计算得到孔径测量值。[b][size=18px][color=#3366ff]4. 总结[/color][/size][/b] 综上所述,本文所提出的基于压力衰减法的孔径测量解决方案,具有很高的测量精度和广泛的适用性,整个测量过程自动运行,关键是可以满足多种形式的微小孔径测量,在替代传统塞规的前提下,是一种高精度的无损测量解决方案。特别是采用气体作为流体介质,非常适合微小尺寸(如毛细管等)和漏孔的等效口径测量。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制