当前位置: 仪器信息网 > 行业主题 > >

物高温吸附暨微径分析仪

仪器信息网物高温吸附暨微径分析仪专题为您提供2024年最新物高温吸附暨微径分析仪价格报价、厂家品牌的相关信息, 包括物高温吸附暨微径分析仪参数、型号等,不管是国产,还是进口品牌的物高温吸附暨微径分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合物高温吸附暨微径分析仪相关的耗材配件、试剂标物,还有物高温吸附暨微径分析仪相关的最新资讯、资料,以及物高温吸附暨微径分析仪相关的解决方案。

物高温吸附暨微径分析仪相关的论坛

  • 【分享】北京精微高博公司“高性能氮吸附比表面及孔径分析仪”项目喜获国家创新资金资助

    北京精微高博科学技术有限公司的“高性能氮吸附比表面及孔径分析仪”项目,喜获2011年国家中小企业创新基金的资助,这是精微高博公司产品在2010年4月获国家级技术鉴定之后,又一里程碑式的记录,这标志着精微高博公司自主研发创新能力达到了一个崭新的高度。当前,国际上先进的静态法比表面及孔径分析仪,正朝着高精密及微孔分析的方向发展,仪器的智能化,自动化程度也有了很大的提高,北京精微高博公司研制的高性能氮吸附比表面及孔径分析仪,已经在控制精度和测试精度上进入了世界先进行列,微孔测试下线可达到0.35nm,相对压力由10-7到10-1的等温吸附曲线测试压力点可>100点,0.35-2nm微孔孔径分布曲线得到的最可几孔径, 重复偏差<0.02nm,完全达到了国际先进水平,北京精微高博公司在国产比表面及孔径分析仪的研究与制造上取得了可喜的进步。

  • AOX TE可吸附有机卤素分析仪

    现在国家对AOX 也就是可吸附有机卤素的检测又将提上日程,前一段时间的全国造纸业年会,陕西科技大学的张安龙教授对AOX检测非常重视,在大会上特意就AOX检测做了报告。AOX, 就是可吸附有机卤素,环境中的有机卤化物,不包括氟化物,只包含氯化物、溴化物和碘化物。大多数的有机和无机卤化物对生物生存起到了十分重要的作用。但是目前广泛使用的有机卤化物是人工合唱的产物,这些有机卤化物除了具有优异的使用性能以外,同事也是对环境危害较大的物质。为什么要使用AOX 分析仪?有机卤化物经常被使用于工业产品的生产过程中 (例如制药、精细化工、纸浆及造纸行业和纺织品)有机卤化物作为生产过程中人工合成的产物, 存在于环境中的水、污泥及固体废物中自然降解过程非常漫长且困难。AOX的分析原理使用柱吸附法或震荡吸附法使用活性炭对水中的有机卤素进行吸附。然后经高温燃烧,再进入滴定池,微库仑法滴定。 TE Instruments分析器可用于各种类型的液体和固体样品的快速精确地分析,是实验室有机卤素分析的理想仪器,完全符合国标 GBT 15959-1995 水质可吸附有机卤素(AOX)的测定的检测标准 尤其适合需要连续一整天分析检测的实验室。 AOX,EOX和POX模块之间的转换操作非常简单。在AOX手动模式下,只需要一个样品杯或石英载体即可得到实验的结果。TE(Trace Elemental)公司在痕量检测方面的发展和专研已经有70余年的历史。于2009年从Thermo Fisher中独立后,我们将一如既往的将专业的经验提供给全球客户。我们提供可靠,高效,革新的环境监测仪器。使用户不仅仅使用TE的仪器,更使我们成为合作发展的伙伴。中国标准:GBT 15959-1995 水质可吸附有机卤素(AOX)的测定 微库仑法 GB 8978 1996 中华人民共和国国家标准污水综合排放标准一级1mg/L,二级 5mg/L,三级 8mg/LGB3544-2008 制浆造纸工业水污染物排放标准 - 重点地区8mg/L,新建12mg/L,现有15mg/L

  • 实验室分析仪器--气相色谱固体固定相-无机吸附剂

    在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中对分离起主要作用的是固定相,可分为固体固定相和液体固定相,分别对应气固色谱法和气液色谱法,前者主要用于气体和低沸点化合物的分离。固体固定相有两类,分别由无机材料(包括以其为基质用化学键合方法制备的键合固定相)和有机化合物聚合制成。固体固定相的保留和选择性取决于两个因素:①材料的化学结构(极性),即表面官能团的类型和数目,与分子间相瓦作用有关。②几何结构(孔结构和分布),也即比表面积。在使用固体固定相时,应注意三个方面:①使用前要进行活化,使用时要避免一些有反应性或腐蚀性的气体使之失活。②对组分吸附性太强时,会发生不可逆吸附。在某些情况下,在固体固定相表面上涂渍少量固定液,不仅可减少吸附,而且可改变选择性,改进特定组分的分离。③不同批次的产品色谱性能有差异(特别是无机材料制成的产品)。[b]无机吸附剂[/b]由无机材料制成的吸附剂,用于色谱法的有分子筛、硅胶、氧化铝和碳素。[b]1、分子筛[/b]分子筛是天然或人工合成的硅铝酸盐,化学组成是[M[sub]2[/sub]M']OAl[sub]2[/sub]O[sub]3[/sub]xSiO[sub]2[/sub]yH[sub]2[/sub]O,其中M为Na[sup]+[/sup]、K[sup]+[/sup]、Li[sup]+[/sup]等一价阳离子,M'是Ca[sup]2+[/sup]、Ba[sup]2+[/sup]、Sr[sup]2+[/sup]等二价阳离子,分子筛Na型与Ca型之分在于前者1/4~3/4的Na[sup]+[/sup]被Ca[sup]2+[/sup]置换:X、Y型之分是Al[sub]2[/sub]O[sub]3[/sub]与SiO[sub]2[/sub]的比例有不同,其中数字表明平均孔径的大小(单位为?,1?=0.1nm,下同)。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中最常用的分子筛为5A与13X型分子筛,前者由Ca-Al-Si的氧化物组成,有效孔径为5?:后者则由NA-AL-Si氧化物组成,有效孔径为10?。分子筛可能是吸附剂中极性最强的,因此CO[sub]2[/sub]、H[sub]2[/sub]O应从载气中除去。同时使用前要活化好,否则分离性能不好,柱中的水量将影响CO和CH[sub]4[/sub]的分离状况及流出次序。活化方法是在550℃活化2h(或在减压下于350℃活化2h;300℃活化4h;250℃活化12h)。分子筛因吸水而失活,在250℃通载气一夜可除去吸附水。分子筛受欢迎是由于它们分离O[sub]2[/sub]/N[sub]2[/sub]的独特能力,在通常的长度(1~2m)和正常的操作温度(室温~100℃)即可。它们也能用于分离H[sub]2[/sub]、CH[sub]4[/sub]、CO、NO和惰性气体He、Ne、Ar、Kr、Xe等。5A分子筛适于分离Ar与O[sub]2[/sub],13X分子筛则特别适于C[sub]6[/sub]~C[sub]11[/sub]烃的族分析。[b](二)硅胶[/b]硅胶由硅酸凝胶制成,化学成分是SiO[sub]2[/sub]nH[sub]2[/sub]O,分析C1~C4烷烃和SO[sub]2[/sub]、H[sub]2[/sub]S、COS、SF[sub]6[/sub]等气体硫化物。新购入的硅胶要用盐酸(1:1)浸泡2h,然后用水洗涤至无Clˉ。使用前于160℃左右活化2h。硅胶的缺点是分离性能不稳定,不同批次生产的性能不一样。硅胶曾用于分离CO[sub]2[/sub]和其他永久性气体,CO[sub]2[/sub]在C[sub]2[/sub]H[sub]6[/sub]后流出,因而在多柱系统中很有用。但是,现在这方面的应用大多数已由多孔聚合物代替。新一代硅胶基质的固定相如Spherosil和Porasil有较好的标准化的色谱性能,这些材料是多孔小球,无论是否涂固定液均可使用。Chromosil特别适于痕量硫化物的分析。[b](三)氧化铝[/b]氧化铝的化学组成是Al[sub]2[/sub]O[sub]3[/sub],其晶型有五种,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法常用的为y型,其次为a型使用前要使用水、液体固定相或无机盐(如KCl或Na[sub]2[/sub]SO[sub]4[/sub])失活。氧化铝是轻烃分析的理想色谱柱,缺点是对极性化合物如醇、醛、酮等有很强的保留,即使在200℃,它们仍流不出来。因此,要防止高沸点化合物或极性不纯物进入柱子。即使用了KCl失活,H[sub]2[/sub]O和CO仍被Al[sub]2[/sub]O[sub]3[/sub]吸附导致保留时间减小。如果样品中水含量大于1μL/L,保留时间将减少,选择性发生变化。此时,柱子可在200℃以上活化15~30min再生柱子。第一次使用时需在450~1350℃活化2h。氧化铝具有中等吸附性,主要用于分离烃,它对不饱和烃异构体如C[sub]4[/sub]不饱和烃有独特的分离能力。经KCl改性的Al[sub]2[/sub]O[sub]3[/sub]PLOT柱稳定性大大提高,可进行C[sub]1[/sub]~C[sub]9[/sub]烃的分离分析。此外,Al[sub]2[/sub]O[sub]3[/sub]还能用于分离氢的自旋异构体。[b](四)碳素[/b]碳素的化学组成是碳,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法使用的有活性炭、碳分子筛及石墨化炭黑。活性炭由果壳或木材烧制而成,结构为无定形碳(微晶碳),具高比表面积(800~1500m[sup]2[/sup]/g),用于分析永久性气体及C[sub]1[/sub]~C[sub]2[/sub]烃类。新购的活性炭要用等体积的苯冲洗3次,通空气吹干后,改用水蒸气于450℃活化2h,降温至150℃用空气再吹干。再生时可不用苯处理。活性炭由于宽的孔分布和组成差异,制备重复性差使得色谱性能难重复,其吸附性能强使分离的组分拖尾严重,不太适合做[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]固定相。活性炭由于其批与批之间再现性差,在色谱上使用有限。Kaiser利用聚偏二氯乙烯高温热解灼烧后得到的残留物,发展了一个类似于分子筛孔结构的碳材料,称为碳分子筛,比表面积一般在400~1200m/g。与活性炭相反,孔径分布较窄。活化方法为在180℃通氮气4h。它对分离气体和很短链化合物有用。一根单柱就能分离永久性气体和C[sub]1[/sub]~C[sub]3[/sub]烃。分离O[sub]2[/sub]、N[sub]2[/sub]、CO[sub]2[/sub]具独特能力,也能用于H[sub]2[/sub]O、SO[sub]2[/sub]、H[sub]2[/sub]S等气体的分析,特别适于分析在有机物之前流出的微量水。烃根据其不饱和程度分离,饱和烃后出峰。石墨化炭黑是炭黑在惰性气体中于2500~3000℃煅烧而成的结晶形碳,比表面积为5~260m[sup]2[/sup]/g活化方法与活性炭相同。表面几乎完全除去了不饱和键、弧电子对、自由基和离子。吸附主要由色散力引起,其大小很大程度上取决于吸附剂表面和被吸附分子间的距离。因此,石墨化炭黑尤其适合于分离几何结构和极化率上有差异的分子。如用Carbopack或F-SL可将8个C[sub]5[/sub]醇异构体分离开;用Carbograph ISC可把SF[sub]6[/sub]、SO[sub]2[/sub]、H[sub]2[/sub]S、COS、硫醇、二硫化合物很好地分离开。能使难分离化合物如间/对二甲酚、戊醇的所有八个异构体得以分离,同时对C[sub]1[/sub]~C[sub]10[/sub]范围的有机物如游离脂肪酸、醇、胺、烃等有杰出的分离能力,也能分离含硫小分子,许多在普通条件下易被吸附的痕量化合物可流出,出峰次序取决于几何结构和极化率。石墨化炭黑的缺点是机械强度较低。石墨化炭黑的吸附性能比活性炭小,最好在分析酸性物质时,用磷酸作削尾处理;分析碱性物质时,用碳酸钠处理。还可以用苦味酸、Carbowax1500、Carbowax 20ML改性。

  • 免费直播讲座——氮吸附法介孔与大孔的测试与分析

    [b][color=#ff0000][b][color=#ff0000]直播时间:[/color][/b]2018/11/15 10:00[/color][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要内容:1. 测试方法、过程,从吸附量到孔体积的详细推算;2. BJH法孔径分布的表征方法,各个表征参数的物理含义、推导过程、应用价值;3. 孔径分析的重点、难点,吸脱附如何选择,滞后曲线与孔型的关系;4. 影响测试精度因素的分析比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[color=#ff0000][b]免费报名链接:[/b][/color][url]https://www.instrument.com.cn/ykt/Course/Live/Index?sId=127[/url][b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],免费名额有限哦,先到先得!

  • 什么是 热重分析仪 TG或TGA热重分析仪,热重分析原理的应用

    什么是 热重分析仪 TG或TGA热重分析仪热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。TGA在研发和质量控制方面都是比较常用的检测手段。热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)的定义,热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。这里值得一提的是,定义为质量的变化而不是重量变化是基于在磁场作用下,强磁性材料当达到居里点时,虽然无质量变化,却有表观失重。而热重分析则指观测试样在受热过程中实质上的质量变化。热重分析仪热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。TGA 可以得到样品的热变化所产生的热物性方面的信息。热重分析通常可分为两类:动态法和静态法。⒈静态法:包括等压质量变化测定和等温质量变化测定。等压质量变化测定是指在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。等温质量变化测定是指在恒温条件下测量物质质量与温度关系的一种方法。这种方法准确度高,费时。热重分析仪结构2、动态法:就是我们常说的热重分析和微商热重分析。微商热重分析又称导数热重分析(Derivative Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。以物质的质量变化速率(dm/dt) 对温度T(或时间t)作图,即得DTG曲线。热重分析法可以研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;研究物质的热稳定性、分解过程、脱水、解离、氧化、还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学等化学现象。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。热重法已在下述诸方面得到应用:⑴无机物、有机物及聚合物的热分解: ⑵金属在高温下受各种气体的腐蚀过程;⑶固态反应;⑷矿物的煅烧和冶炼;⑸液体的蒸馏和汽化;⑹煤、石油和木材的热解过程;⑺含湿量、挥发物及灰分含量的测定;⑻升华过程;⑼脱水和吸湿; ⑽爆炸材料的研究;⑾反应动力学的研究;⑿发现新化合物;⒀吸附和解吸;⒁催化活度的测定;⒂表面积的测定;⒃氧化稳定性和还原稳定性的研究;⒄反应机制的研究。18. 还可以作为测量固体表面酸碱度的表征手段。http://www.faruiyiqi.com/upfile/article/20141018156682889985.jpg热重分析仪FR-TGA-101热重分析仪热重分析法(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。测量与研究材料的如下特性:热稳定性、分解过程、吸附与解吸、氧化与还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学。

  • 【原创大赛】氧氮氢分析仪,碳硫分析仪简介

    [font=宋体] [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计,原子荧光分光光度计,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]已经可检测自然界中绝大部分的金属元素,应用十分广泛。非金属元素的检测设备也不能被忽视,下面简单介绍氧氮氢分析仪,碳硫分析仪的原理、应用及核查规程,表一表其在相关行业的检测的重要性。[/font][b][font=宋体] 氧氮氢分析仪[/font][/b][font=宋体]的原理,简单讲可概括为“惰性气体的熔融作用”,具体地说,将称量后的试样放在石墨坩埚中,在氦气(单测氧可用氩气)气流中通过高温加热熔融,试样中的[b]氧与石墨坩埚中的碳反应生成一氧化碳[/b],试样中的氮以氮气的形式逸出,这些混合气由氦气送到[b]转化炉[/b]中,[b]一氧化碳转化为二氧化碳[/b],氮气不反应,然后混合气体被送到[b]红外检测池[/b](IR)中,其中二氧化碳在这里被检测。之后混合气体中的二氧化碳和水被吸附,[b]剩余的氮气,氢气和氦气[/b]混合气体通过[b]热导检测池[/b](TCD)被检测。氧氮氢分析仪用于测定各种钢铁、有色金属、稀土和各种新型无机材料中氧、氮、氢的元素含量。期间核查规程推荐:选用氮分析专用标准物质,按仪器操作规程进行测定,重复2次,平均值应在标准物质允许范围内。[/font][b][font=宋体] 碳硫分析仪[/font][/b][font=宋体]配备管式红外及高温管式炉,载气(氧气)经过净化后,导入燃烧炉(电阻炉或高频炉),样品在燃烧炉高温下通过氧气氧化,使得样品中的[b]碳和硫氧化为CO[sub]2[/sub],CO和SO[sub]2[/sub],[/b]所生成的氧化物通过除尘和除水净化装置后[b]被氧气载入到硫检测池测定硫[/b]。此后,含有CO[sub]2[/sub]、CO、SO[sub]2[/sub]和O[sub]2[/sub]的混合气体一并进入到加热的催化剂炉中,在催化剂炉中经过[b]催化转换CO→CO[sub]2[/sub],SO[sub]2[/sub]→SO[sub]3[/sub][/b]。这种混合气体进入到除硫试剂管后,导入[b]碳检测池测定碳[/b]。残余气体由分析器排放到室外。碳硫分析仪能快速、准确地测定各种合金、合金钢、有色金属、稀土金属、水泥、矿石、炉渣、陶瓷、无机物及有机物材料中碳、硫两元素的质量分数。期间核查规程推荐:选用碳硫分析专用标准物质,按仪器操作规程进行测定,重复3次,平均值应在标准物质允许范围内。[/font]

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

  • 模芯干燥机吸附再生原理

    模芯干燥机是一种新型吸附式干燥机,模芯干燥机采用最新模芯吸附技术,将原有大型吸附罐体设计成新型积木式集成化结构,极大增加了吸附剂的吸附效率,干燥效果大大提升。吸附阶段 湿压缩空气自入口进入进气缓冲腔,自下而上均匀通过各模芯吸附腔体;腔内分子筛利用自身毛细作用吸取压缩空气中的水分,达到干燥效果。再生阶段无热再生 再生干空气经再生气流调节阀进入再生组出气缓冲腔,干气体在再生组模芯吸附腔内膨胀减至大气压后,自上而下对再生组分子筛进行吹扫,吸附剂体内水分与吸附剂分离,解析于干空气中,同再生气体一起自消音器排出。微热再生 再生干空气在出气缓冲腔内加热后,进入再生模芯吸附腔内,吸附剂内水分在高温环境在加速解析速度,大大降低了再生吹扫气量。

  • 【原创大赛】如何测量比表面及孔径?一文带你了解气体吸附仪

    测量比表面和孔径分析的方法包括:气体吸附法、压汞法、电子显微镜法(SEM 或 TEM)、小角 X 光散射(SAXS)和小角中子散射(SANS)、电声电振法、核磁共振法、图像法大孔分析技术等。其中气体吸附法是常见的分析方法。气体吸附法孔径测量范围从 0.35nm~ 100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。另外,气体吸附技术相对于其它方法,容易操作,成本较低。如果气体吸附法结合压汞法,则孔径分析范围就可以覆盖从大约 0.35nm到1mm 的范围。气体吸附法也是测量所有表面的最佳方法(不规则的表面和开孔内部的面积)。使用气体吸附法进行分析的仪器常用来测定物质的比表面及孔径特征,也可以直接测量物质的吸附特性,因此也常统称为吸附仪。从实际用途来看,主要包含:比表面及孔径分析仪、多组分气体吸附仪、高压吸附仪、蒸汽吸附仪、真密度仪、化学吸附仪等。气体吸附法原理:当固体表面的原子所处的环境与体相原子不同,它受到一个不平衡的力的作用;因此,当气体与清洁固体表面接触时,将与固体表面发生相互作用;气体在固体表面上出现累积,其浓度高于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],这种现象称为吸附现象。吸附气体的固体物质成为吸附剂,被吸附的气体成为吸附质。依据吸附剂和吸附质之间的不同作用力,气体吸附分为物理吸附仪和化学吸附仪。物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力(范德华力)所引起,吸附于固体表面的气体分子,不与固体产生化学反应,这种吸附称为物理吸附;利用物理吸附原理测量的仪器被称为物理吸附仪。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。物理吸附的特点是:吸附热小,吸附速度快,无选择性,可逆,通常是发生在接近气体液化点的温度,一般是多层吸附。物理吸附仪可以测定物质的比表面积、平均孔径和孔径分布等,此外也可以直接测试物质吸附性能。化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附,利用化学吸附原理进行测量的仪器被称为化学吸附仪。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。与物理吸附相比化学吸附具有吸附力强、对吸附气体有选择性、单层吸附、通常不可逆,样品不可回收再利用等特点,常用于测定催化剂酸碱活性位、活性金属表面积、金属分散度等。

  • 您家做水中动植物油类分析萃取用的是什么牌子的硅酸镁吸附剂?

    您家做水中动植物油类分析萃取用的是什么牌子的硅酸镁吸附剂?

    各位老师: 您好! 我们是一家第三方环境监测实验室,在做水中动植物油类分析时遇到如下问题: 测定完总油加入硅酸镁吸附剂(60~100目)吸附后,有的时候会出现石油类测定浓度高于总油的情况。为此我们对空白的四氯化碳加入硅酸镁吸附剂(60~100目)吸附后测定石油类(事先调零),发现吸附后四氯化碳中的石油类浓度变为1mg/L左右,得出结论为吸附剂的问题,但是没找到合适的厂家。 不知道您家用的是哪家的硅酸镁吸附剂?求推荐http://simg.instrument.com.cn/bbs/images/default/em09509.gif 另附我们用的硅酸镁吸附剂照片http://ng1.17img.cn/bbsfiles/images/2015/01/201501161152_532503_2429565_3.jpg

  • 活性炭吸附有机卤素的原理--TE Xplorer可吸附有机卤素分析仪前处理设备

    活性炭吸附有机卤素的原理--TE Xplorer可吸附有机卤素分析仪前处理设备

    活性炭由木炭、沥青炭和果壳、果核、动物骨头等经高温焙烧和活化制成。活性炭中有很多毛细孔相互连通,因此,比表面积极大。据测试,1克活性炭有500-1000m2的表面积,过滤用活性炭是颗粒状的,粒径一般为1-4mm。这些微孔可以起吸附作用。性炭脱氯不完全是由于物理吸附作用,它还有催化作用,使余氯进一步转化成碳的化合物,其反应机理为C12+H2O====HC1+HOClHOCl====HCl+(活性炭)C+====COC+2====CO2因此,活性炭在整个吸附脱氯过程中不存在吸附饱和问题,只是损失少量的炭。所以活性炭脱氯可以运行相当长的时间。例如用19.6m3的活性炭粒料作滤料,处理余氯量为4mg/L的自来水时,可连续处理265万m3,使其余氯量小于0.01mg/L。在相同条件下,处理余氯量为2mg/L的自来水时,可使用6年之久。活性炭脱氯的设备常使用压力过滤器。即在过滤器中以粒状活性炭作滤料,其他功能与前述压力过滤器相似。工艺过程运行---反冲洗---正洗---运行反冲洗:15-20分钟;反冲洗强度:14-18升/平米每秒正冲洗---5-10分钟;正冲洗滤速:同运行滤注:活性炭脱氯是吸附和化学反应的过程,运行相当长的时间,因此,最好的再生方法是换新的活性炭。http://ng1.17img.cn/bbsfiles/images/2012/11/201211211744_406072_892_3.jpg

  • 非极性吸附剂的几种基体:硅胶、高通量硅胶和聚合物

    硅胶键合硅胶是一种刚性原料,在不同溶剂中收缩和膨胀系数都很小,这点与聚苯乙烯基质的树脂吸附剂有所不同。基于此性能,键合硅胶吸附剂在新的溶剂条件下,会在很短的时间内达到平衡,因此可适用于复杂萃取过程,例如在萃取过程中需要变换使用多种不同溶剂的情况。用来制造键合硅胶吸附剂的硅胶颗粒粒径分布基本在15~100μm之间。另外硅胶颗粒形状通常为不规则形的,并不是球形颗粒。这些物理特性都保证了在最小真空和压力下(10~15个psi),溶剂可以很迅速地流过吸附剂柱床。本手册描述的大多数吸附剂的标称孔径为60Å,可满足分子质量达15000Da的化合物的萃取,超过此分子量的物质会被排除在60Å的孔径之外,并且由于与吸附剂官能团的扩展相互作用,这些大分子物质与吸附剂的表面接触很小,因此,这些大分子在萃取时会穿过吸附剂,而不被保留。利用这种特性,可以采用硅胶吸附剂去除样品中的大分子干扰物而保留低分子的目标分析物,达到净化目的。如果需要萃取更高分子量的目标分析物,则需要选择4000 Å以上的大孔径吸附剂。键合硅胶吸附剂从很多方面来讲,都是色谱分离的理想材料。首先是由于硅胶表面可以键合多种不同的官能团,另外硅胶吸附剂还具有以下优势:● 键合硅胶是一种刚性材料,不会收缩或溶胀● 对于生产更高选择性的吸附剂有更大的选择空间● 在宽范围的有机相和水相中稳定● 可以形成干净基体,有利于键合官能团的附着。聚合物吸附剂聚合物基体的吸附剂,象Varian的Bond Elut LMS、PPL、ENV和NEXUS与其它萃取介质相比,有很多优势:● 无需酸性或碱性洗脱改性剂,因为聚合物吸附剂不会表现出硅醇基的次级相互作用● 具有超强的非极性特性,是从水样中萃取强极性分析物的最佳选择● 无pH限制,可以在pH 1~14范围内使用● 高容量,意味着可以使用更小的柱床体积以及更小的样品体积● 最佳的粒径尺寸和形状,有利于样品以及溶剂的快速流动高通量硅胶基体的吸附剂除了标准的40μm粒径产品外,Varian还提供120μm粒径的吸附剂,可以保证更快的样品和溶剂流速。这些产品是采用重力自流操作处理血清和尿液中样品用户的首选。

  • 请教使用使用热分析仪的最高温度

    我用的是德国NETZSCH公司的STA409PC同步热分析仪,温度范围是RT-1500摄氏度,铂铑热电偶,听说在高温下热电偶会蒸发,我想请教各位行家是否真的是这样,如果是的话,最高温度加热到多少度合适呢?敬请赐教。

  • 空气净化器滤网吸附性能更换时间分析

    [color=black]空气净化器滤网吸附性能更换时间分析[/color][color=black]一.前言[/color][color=black]随着人们的生活水平不断提高,对家居生活环境要求也在不断刷新,空气净化器逐渐进入大众家庭,家用净化器每年都在增加。大家在使用空气净化器时,滤网是不可长期使用的,需及时更换,由于各地,各区域环境不同,虽然空气净化器在使用说明上有提示滤网更换周期,但是这个仅是推荐性,不能作为更换滤网的依据。那下面跟大家讲讲滤网在什么情况下需要及时跟换,避免滤网上附着的有害微生物再次污染家居环境。[/color][color=black]二.首先要聊聊为什么要更换滤网[/color][color=black]通常大家使用空气净化器都会直接插电使用,而不会注重滤网的清洗和更换。通常空气净化器的滤网组成由粗滤网、活性炭滤网以及最关键的hepa滤网,其中粗滤网主要用于过滤空气中较大的灰尘颗粒,毛发(也就是我们常说的防尘网)。粗滤网可以选择水洗或吸尘器清洁。活性炭滤网主要用于吸附空气中的甲醛和有害气态污染物以及异味。当吸附达到饱和时即寿命终止,否则会造成二次污染。而hepa滤网的材质一般是聚丙烯或其它复合材料,是不可水洗的,水洗会破坏滤网结构。hepa滤网的净化原理并不简单的像筛子一样过滤掉比网眼大的颗粒来净化空气尘埃。而是依靠细颗粒物与滤网间的范德华力形成吸附效果。因此,当hepa滤网脏了以后,必须要及时更换,否则吸附的尘埃在环境湿度大是容易滋生细菌造成二次污染。[/color][size=18px][color=black]三[/color][color=black].如何判断滤网是否需要更换[/color][/size][color=black]其实,除了参考说明书上3-6个月的滤网更换周期以外,在使用净化器的过程中也是有迹可循的。[/color][color=black]3.1.净化效果衰减[/color][color=black]滤网吸附空气污染物饱和后,就无法继续吸附,如果在使用一段很长时间后,突然感觉净化器出风口有异味,那就别再犹豫,赶紧换滤网吧。[/color][color=black]3.2.风量变小[/color][color=black]随着长时间使用净化器,滤网吸附颗粒物数量的增多,大量的颗粒物也会堵住滤网进风的通道,通过滤网的风量会变得越来越小,那么空气净化器出风口的风量自然会减小,当我们感受到出风口风量明显变小的时候,可能滤网已经在提醒你更换。[/color][color=black]3.3.噪音变大[/color][color=black]空气净化器的噪音是一个不可避免的话题,但如果你发现家里的空气净化器有噪音变大的异常现象,有可能是滤网太脏所致。当滤网凝聚大量颗粒物,阻力会变大,风机在运行时,风通过滤网会产生更高分贝的噪音。[/color][color=black]四.滤网维护[/color][color=black]当滤网长时间不用,可以将初中高效滤网上浮灰用吸尘器吸吸,然后晾晒之后,放入塑料袋中,保持干燥。下次使用放入净化器内。如有异味,只能更换新的。[/color]

  • 油色谱分析仪的工作原理及作用

    油色谱分析仪的主控电路采用了功能进步的微处理器,大规模的集成电路,进步的贴片封装,使电路布局细致而不变;采用了蓝色背光大屏幕液晶展示,中文菜单操作,展示直观易学,操作便利。油色谱分析仪的载气气路采用先稳压后稳流的双重不变的气路体系,流量调节阀采用数据式旋钮调节,直观、靠得住性好。油色谱分析仪具有自我诊断、故障报案,可以在液晶屏幕上直接展示故障部位,具有断电保护功能,所设定的参数在断电后能长期保存。 油色谱分析仪的工作道理是经过气体产生器将气体经过减压器流出,经过气体净化处理后,从仪器背后的载气进口接头进入仪器,然后流速进入汽化室,汽化成气体样品,随载气进入色谱柱。油色谱分析仪将被分析的混合物各组份就在两相中进行反复多次的分配或按照填充吸附剂对各组份的吸附能力的不同进行分离。其浓度被转换为相应的电消息直接或经电子学处理后,经过二次讯号记载仪表或色谱数据处理机记载下来,从而可以对混合物中各组份进行定性定量分析。 油色谱分析仪用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业果断运行中的充油电力设备是否存在暗藏性的过热、放电等故障,以保障电网安全有效运行的有效手段。油色谱分析仪可对气体、液体、固体样品不无异的要求,配备不无异的进样装配。

  • 【分享】重量分析技术在吸附研究中的应用

    英国Hiden公司设计的智能重量法吸附分析仪IGA是目前重量分析仪中功能最全的商业化仪器。在全世界的吸附研究领域有着广泛的用户。他们利用IGA对自己的研究实验进行分析表征,取得了辉煌成绩。在Nature和Science上均有多偏文章发表.ps :重量分析技术是新东西吗?什么时候出来的,期待回答!!

  • 常用吸附剂的种类与性质

    吸附剂的种类与性质常用的吸附剂有硅胶、氧化铝、活性炭、聚酰胺、硅藻土等。 (1) 硅胶:是一种酸性吸附剂,适用于中性或酸性成分的柱色谱。同时硅胶又是一种弱酸性阳离子交换剂,其表面上的硅醇基能释放弱酸性的氢离子,当遇到较强的碱性化合物,则可因离子交换反应而吸附碱性化合物。 硅胶作为吸附剂有较大的吸附容量,分离范围广,能用于极性和非极性化合物的分离,如有机酸、挥发油、蒽醌、黄酮、氨基酸、皂苷等,但不宜分离碱性物质。天然物中存在的各类成分大都用硅胶进行分离。(2) 氧化铝:氧化铝是一种强极性吸附剂,与硅胶类似,在高pH值条件下,氧化铝比未键合官能团的硅胶更稳定。更细的颗粒能确保好的萃取效率。 有碱性氧化铝、中性氧化铝和酸性氧化铝。①碱性氧化铝,因其中混有碳酸钠等成分而带有碱性,对于分离一些碱性成分,如生物碱类的分离颇为理想,但是碱性氧化铝不宜用于醛、酮、酯、内酯等类型的化合物分离,因为有时碱性氧化铝可与上述成分发生次级反应,如异构化、氧化、消除反应等。②中性氧化铝是由碱性氧化铝除去氧化铝中碱性杂质再用水冲洗至中性得到的产物。中性氧化铝仍属于碱性吸附剂的范畴,不适用于酸性成分的分离。③酸性氧化铝是氧化铝用稀硝酸或稀盐酸处理得到的产物,不仅中和了氧化铝中含有的碱性杂质,并使氧化铝颗粒表面带有 NO3- 或 Cl- 的阴离子,从而具有离子交换剂的性质,酸性氧化铝适合于酸性成分的柱色谱。 氧化铝是一种典型的路易斯酸。 酸性氧化铝的路易斯酸特性被增强,对富电子化合物具有更好的保留性,更易保留中性或带负电荷物质(如电中性酸或酸性阴离子),不能很好保留带正电荷的物质。 中性氧化铝具有电中性表面,偏向于保留芳香族和脂肪胺类等富电子化合物,对电负性基团(如含氧、磷、硫等原子的官能团)的化合物有一定保留能力。 碱性氧化铝的表面偏向于保留带正电荷或含氢键类物质。具有阴离子特性,并有阳离子交换功能。能保留给电子体样品(如中性胺类化合物),碱性氧化铝有强氢键作用,对极性阳离子样品作用十分明显。 保留机理:路易斯酸/碱、极性作用、离子交换(3) 活性炭:是使用较多的一种非极性吸附剂。一般需要先用稀盐酸洗涤,其次用乙醇洗,再用水洗净,于 80℃ 干燥后即可供柱色谱用。柱色谱用的活性炭,最好选用颗粒活性炭,若为活性炭细粉,则需加入适量硅藻土作为助滤剂一并装柱,以免流速太慢。 活性炭是非极性吸附剂,其吸附作用与硅胶和氧化铝相反,对非极性物质具有较强的亲和能力,在水溶液中吸附力最强,在有机溶剂中较弱,因此水的洗脱能力最弱而有机溶剂较强。从活性炭上洗脱被吸附物质时,溶剂的极性减小,活性炭对溶质的吸附能力也随之减小,洗脱剂的洗脱能力增强。主要分离水溶性成分,如氨基酸、糖、苷等。(4) 聚酰胺: 商品聚酰胺 (polyamice) 均为高分子聚合物质,不溶于水、甲醇、乙醇、乙醚、氯仿及丙酮等常用有机溶剂,对碱较稳定,对酸尤其是无机酸稳定性较差,可溶于浓盐酸、冰醋酸及甲酸。 聚酰胺对有机物质的吸附属于氢键吸附,一般认为,通过分子中的酰胺羰基与酚类、黄酮类化合物的酚羟基,或酰胺键上的游离氨基与醌类、脂肪羧酸上的羰基形成氢键缔合而产生吸附。吸附的强弱则取决与各种化合物与之形成氢键缔合的能力。主要用于分离黄酮类、蒽醌类、酚类、有机酸类、鞣质类等成分。(5)硅藻土:化学名:硅酸镁 物化特性:表面积300m2/g;pH=8.5;粒状。 硅藻土(Florisil)是一种高选择性的吸附剂。这种吸附剂主要有三种成分组成,二氧化硅(84%),氧化镁(15.5)和硫酸钠(0.5%)。是一种效果良好,成本经济的常用固相萃取填料。 氟罗里硅土柱是硅胶键合氧化镁的吸附剂,与硅胶相似,是强极性吸附剂,可以从非极性溶液中萃取极性化合物。当样品粘度较大时,可以代替硅胶柱。 Florisil吸附剂常用于前期色谱分析、薄层色谱分析、残余农药分析(PR)、标准样品定级等。 应用范围: 极性化合物的吸附萃取,如乙醇、醛、胺、药物、染料、除草剂、农药、PCBs、含氮化合物、有机酸、苯酚、类固醇

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 【求助】硅酸镁吸附柱的使用

    本人刚进入水质分析领域,在此请教以下问题:在做水质石油类、动植物油的测定时,硅酸镁经高温处理后,按照6%(m/m)的比例加入适量的蒸馏水,密塞并充分振荡数分钟,放置月12h后使用。6%是水/硅酸镁,还是硅酸镁/水?还有就是硅酸镁吸附柱的使用次数,是每次实验前重新填装还是可以使用多次?如果能够使用多次,哪一般的更换周期是多少?

  • 晒晒多功能吸附仪

    晒晒多功能吸附仪

    大家有什么意见或者建议,随时提出来。http://ng1.17img.cn/bbsfiles/images/2013/03/201303071043_428965_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071043_428966_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428967_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428968_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428969_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071045_428970_788_3.jpg产品简介MFA-140多功能吸附仪是一款可应用于微孔领域的高性能、多功能物理吸附分析仪;拥有先进的技术、卓越的品质、更全面的理论模型及优良的测试精度,满足科研、学术探讨等多方面应用需求;从功能方面MFA-140可进行比表面积\孔径\孔容\孔分布\气体吸附量等性能测试,具备独立并行的4个分析站,拥有液氮液位高度显示及液氮添加功能,意外断电分析点储存和测试恢复功能,采用10寸触摸控制和内置工控机;从技术方面该产品引入死体积高度校准技术,以替代“等温夹”技术;独有集成气路,减少仪器内部90%的气路管使用,大大提高了仪器整体的真空度、抽速,并有效解决了传统仪器漏气率高,污染难维护的问题;应用I-PID动态可调技术,实现真空抽速恒定,防止样品倒吸污染气路,提高真空系统效率;高品质集成电路,采用纯铜镀金制板工艺,配以高品质进口元器件,处理速度快,耐腐蚀使用寿命长;引入死体积双向定位技术,解决液氮添加死体积校准问题

  • 吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较

    吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较

    转载声明:本论文版权归原作者所有,转载仅作为学术交流使用,如有侵权可删除本转载,但不承担其他责任吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较朱小红,潘 红,马二琴,康怡平(上海市建设工程质量检测中心 浦东分中心,上海201209)摘要 :分别采用吸附剂为Tenax-TA和活性炭的吸附管模拟现场采集室内环境空气,了解Tenax-TA和活性炭对空气中苯的吸附性能。当Tenax-TA吸附剂以0.5L/min的流量采集10L空气时,苯存在漏出现象。说明空气中苯的采集不宜用Tenax-TA吸附剂替代活性炭吸附剂。关键词 :吸附剂 ;Tenax-TA ; 活性碳 ; 漏出中图分类号:O656 文献标识码:B 文章编号:1004-1672(2006)05-0012-02Comparison of Adsorptive Capacity of Benzene in Air between Tenax TA Adsorbent and Activated Carbon / Zhu Xiaohong et al // Shanghai Construction Engineering Quality Testing CenterAbstract: Through simulated sampling of the ambient air indoors with adsorption tube filled with Tenax TA adsorbent andactivated carbon respectively,adsorptive capacity of benzene in air from Tenax TA adsorbent or activated carbon could befound out. If 10 liter of air was sampled with Tenax TA adsorbent at a flow of 0.5L/min, benzene would leak out whichindicated that Tenax TA adsorbent was not suitable for sampling of benzene in the air instead of activated carbon.Key Words: adsorbent; Tenax TA; activated carbon; leakTenax-TA是一种多孔高分子聚合物,化学名为2,6- 二苯基对苯醚,具有良好的耐温性(极低流失性),对碳6以上的烃类具有良好的吸附性和热解吸性,被广泛应用于有机挥发物和半挥发物的吸附,在GB 50325-2001《民用建筑工程室内环境污染控制规范》中TVOC吸附管所采用的吸附剂就是Tenax-TA。活性炭亦是一种非常优良的吸附剂,它具有物理吸附和化学吸附的双重特性,对于非极性有机物有强的保留性,常温下适合采集蒸气态有机物,最常用的是椰子壳活性碳。在GB 11737-1989《居住区大气中苯、甲苯、二甲苯卫生检验标准方法气相色谱法》中苯吸附管所采用的吸附剂就是椰子壳活性炭本文通过试验比较吸附剂Tenax-TA和活性炭对空气中苯的吸附性能。1 试验部分1.1 仪器与试剂空气采样泵:Gilair-3型,流量范围:0.005~0.5 L/min,±5%恒流;空气流量校正器:Cilibrator-2 型,流量范围:0.02~6 L/min,一级皂泡式;气相色谱仪:GC6890型和GC122型 ;热解吸仪装置:ULTRATD+UNITY型和RJ-Ⅲ型 ;Tenax-TA吸附管 :不锈钢管(内填200 mg 的60~80 目Tenax-TA吸附剂) ;活性炭吸附管:玻璃管(内填100 mg椰子壳活性炭) ;温湿度计:TES1360型 ;大气压力表。标气-氮气中苯系物(BTX/N2) ;高纯氮。1.2 吸附管的活化填装好的吸附管在使用前需在高温下(TenaxTA 吸附管320℃,活性炭吸附管350℃)通高纯氮活化至少30 min,活化好的吸附管立即密封,保存在洁净的干燥器中。1.3 Tenax-TA吸附剂对空气中苯的吸附性能的试验(1) 基准管的制备。将Tenax-TA吸附管与恒流采样泵的采气口连接,以100 mL/min的流量抽取BTX/N2标气,每支Tenax-TA 吸附管含苯0.886 g,取下后密封,作为基准管待用。(2) 样品管的制备。在温度为23.6℃,大气压为101.6 kPa,相对湿度为45.0%RH的试验室环境条件下,模拟现场空气采样,将基准管用硅橡胶管与恒流采样泵连接,以0.5 L/min的流量分别抽取3L、4L、5L、6L和10L的高纯氮(3) 热解吸和气相色谱分析条件。采用TenaxTA 吸附/ 二次热解吸/ 毛细管气相色谱法的热解吸和气相色谱分析系统。ULTRA TD+UNITY热解吸仪和自动进样器各参数 解吸温度300℃,解吸时间6 min,冷阱低温-10℃;气相色谱分析条件按GB50325-2001《民用建筑工程室内环境污染控制规范》附录E 中规定的执行,采用程序升温,即初始温度 50℃保持 10 min,升温速率 5℃/min, 终止温度 250℃,恒温5 min。(4) 所有基准管和样品管的试验均做两次平行样试验。1.4 活性炭吸附剂对空气中苯的吸附性能的试验(1) 基准管的制备。 方法同1.3.1, 每支活性炭吸附管的苯含量为2.110 m g。(2) 样品管的制备。 在温度为16.0℃, 大气压为102.6 kPa, 相对湿度为60.0%RH的试验室环境条件下, 模拟现场空气采样, 将基准管用硅橡胶管与恒流采样泵连接, 以0.5 L/min 的流量抽取10 L 高纯氮。(3) 热解吸和气相色谱分析条件。 采用热解吸和填充柱气相色谱分析条件。 解吸温度350℃, 解吸时间 10 min ; 色谱条件进样口温度150℃, 检测器温度 150℃,炉温 90℃恒温。(4) 所有基准管和样品管的试验均做6次平行样试验。2 试验结果2.1 Tenax-TA吸附剂对空气中苯的吸附性能结果试验结果以回收率表示, 即不同采气体积的样品管与不采样的基准管进行峰面积比较, 峰面积的值取两个平行试验的均值。试验结果见表 1http://ng1.17img.cn/bbsfiles/images/2015/04/201504241124_543386_2206495_3.jpg由表 1 可看出:当采样体积大于 4 L 时,苯的回收率出现下降趋势, 尤其是采样体积达到10 L 时,苯的回收率明显下降,仅相当于基准管的 60% 活性炭吸附剂对空气中苯的吸附性能结果试验结果同样以回收率表示, 即采样体积为10L 时的样品管与不采样的基准管进行峰面积比较,峰面积的值取六个平行试验的均值。 试验结果证明,用活性炭管吸附苯,其回收率达到 95% 以上。3 分析与讨论3.1固体吸附剂采样原理本试验中的采样属于固体吸附剂富集采样, 其采样过程类似色谱法中的样品前处理分析, 空气作为一个混合样品穿过吸附柱, 空气中氧、 氮和二氧化碳由于它们的吸附性弱且含量高首先流出, 一些吸附性强些的组分留在吸附剂上。 采样开始时, 空气中多数组分都滞留在吸附剂进气端, 随着抽过空气体积的增加, 被吸附的各组分向前推进, 由于各组分的吸附性能存在差异, 各组分间拉开距离, 一些吸附性小的组分先流出。3.2讨论与建议从试验数据可看出, 当以 0.5 L/min 的采样流量,用不同的采样体积通过内含 200 mg Tenax-TA吸附剂的吸附管, Tenax-TA吸附剂对空气中苯的保留能力显著不同, 采样体积从3 L变化到10 L, 回收率从 101.69% 下降到 60.09%。同样的采样条件,当采样体积为 10L 时,活性炭对苯的回收率大于95%,而 Tenax-TA 对苯的回收率只有 60%。一般来说, 用固体吸附剂采样当流出气中某组分浓度是流入气浓度的 5% 时则认为有漏出。 也就是说, TenaxTA吸附剂应用于苯的采样过程中时, 若以0.5 L/min的采样流量,采样体积为 10 L,苯会有漏出现象;而用同样的采样条件, 活性炭吸附剂应用于苯的采样, 则未发生漏出现象。 尽管吸附管的吸附能力和吸附剂与被吸附组分的性质、采样流量、温度、湿度、浓度和共存物等等有关,但是,其中的主要原因是 Tenax-TA 比活性炭对苯的吸附能力要弱。现行国家标准 GB 50325-2001 《民用建筑工程室内环境污染控制规范》 中规定, 空气中苯的采样采用活性炭吸附剂,TVOC 的采样采用 Tenax-TA 吸附剂。由于在 TVOC 的检测中,其中包含了苯的检测,为了省时省力,有些检测单位就以 TVOC 测定中的苯含量替代苯的检测,即对苯和 TVOC 的检测只做 TVOC 的检测,苯的数据就直接 TVOC 中报出。试验证明, 这种做法是不科学的, 因为在Tenax-TA吸附剂对苯的采样过程中,苯会有漏出现象发生,最终造成得到的 TVOC 测定中的苯含量结果会偏低。据此,笔者认为对于空气中苯的采样,其吸附剂不能用 Tenax-TA 替代活性炭。参考文献: GB50325-2001, 民用建筑工程室内环境污染控制规范

  • 动植物油所用的硅镁吸附剂

    按国标方法,高温处理的硅镁吸附剂还需要按比例添加蒸馏水,请问这个是为什么?还有,添加了蒸馏水的硅镁吸附剂,需要在什么条件下保存,可以用多长时间?

  • 碳硫分析仪器的使用与维护

    碳硫分析仪是在新世纪推出的具有世界领先水平的高技术碳硫分析仪,具有高碳、低碳和高硫、低硫自动切换、电阻炉、马弗炉与高频炉相互切换、灵敏度高、性能稳定、分析结果准确可靠、测量范围宽及用途广等优点,定硫仪可以快速地分析钢、铸铁、铜、合金、矿石、水泥、陶瓷、碳化合物、矿物、煤、焦炭、石油、灰分、催化剂、石灰、石膏、土壤、橡胶、树叶、烟灰、垃圾、沙子、玻璃等固体和流体材料中的碳和硫的含量。    定硫仪工作原理:载气(氧气)经过净化后,导入燃烧炉(电阻炉或高频炉),样品在燃烧炉高温下通过氧气氧化,使得样品中的碳和硫氧化为CO2、CO和 SO2,所生成的氧化物通过除尘和除水净化装置后被氧气载入到硫检测池测定硫。此后,含有CO2、CO、SO2和O2的混合气体一并进入到加热的催化剂马弗炉中,在催化剂炉中经过催化转换CO→CO2,SO2→SO3,这种混合气体进入到除硫试剂管后,导入碳检测池测定碳。残余气体由分析器排放到室外。与此同时,碳和硫的分析结果以%C和%S的形式显示在主机的液晶显示屏上和连接的计算机显示器上并储存在计算机里,以便随时调出,也可以通过连接的打印机输出打印。    装有基于Windows软件的计算机可以操作GQ-3F碳硫分析仪。在分析过程中,为保证分析简单可靠地执行,仪器可实时显示工作状态。样品分析的燃烧释放曲线同时显示在计算机屏幕上。软件具有自动校正和自动诊断功能。碳硫分析仪可以连接到实验室信息管理系统(LIMS)。

  • 搅拌棒吸附萃取

    介绍 环境、生物药物、食品和香料中的有机物的分析通常需要将待测物从基质(饮用水、废水、体液、饮料等)中提取和富集。目前大多数样品前处理方法包括液-气萃取或平衡法(冲洗和收集,顶空分析),液-液萃取或固相萃取。 过去几年里,微型化已成为分析化学的一个主要趋势。样品前处理方法微型化的典型事例包括微量液-液萃取(瓶内萃取),室温静态顶空和盘式固相萃取。通过与先进的分析仪器联用,在保证或提高检测灵敏度的前提下,这项技术实现了更快的分析速度,更高的样品通量、较低的溶剂消耗、较低的劳动力花费。几十年前,Arthur和Pawliszyn 提出了一种新的微萃取的方法,即固相微萃取(SPME)。80年代中期,不同研究小组分别报道了采用涂有PDMS薄膜的开管柱收集阱,以聚二甲基硅氧烷作为萃取介质对含水样品或气相中有机物进行萃取的实例。以PDMS作为介质的萃取是基于物理吸着而不是化学吸附作用。如Baltussen等所述,吸着性浓集与吸附过程相比具有多种优点。这些优点包括浓集效果可以预测,不存在转移效应,吸附材料化学性质稳定,可在较温和条件下快速解吸。但是,实际应用中的局限(低载样量,低上样体积……)限制了PDMS涂层开管柱收集阱的应用。另一方面,SPME是一种使用十分简便、快捷的技术。在针的外层涂有一薄层PDMS膜(7-100μm)作为萃取介质。吸附完成后,化合物在GC进样器中热解吸或在LC进样器中进行液体解吸。与PDMS涂层的开管柱收集阱不同的是,SPME本质上是一种相平衡技术,该技术基于溶质在硅氧烷相及水相分配行为的差异进行提取。近来研究发现,这一平衡与溶质在辛醇/水中的分配系数(KO/W)有关。这些研究表明,当溶质的KO/W较低(KO/W10000)时,其回收率也较低,这主要是由于水相和PDMS相两相间的相比较大产生的。SPME中PDMS的用量常常只有0.5μl或更少,因此限制了样品在PDMS纤维上的富集量。基于上述研究,近年来开发出了一种新的使用PDMS涂层搅拌棒进行萃取的方法。在这种方法中,PDMS的用量为50-300μl,因此,检测灵敏度增加了100到1000倍。当溶质的KO/W大于500时,可获得100%的回收率。当溶质的KO/W在10到500之间时,可采用SPME相同的方法对分析结果进行校正。这项技术称为搅拌棒吸附萃取(SBSE)。

  • 【仪器心得】Superlab SC-10型吸附管老化仪使用心得

    [align=center][size=18px]【仪器心得】[/size][size=18px]Superlab[/size][size=18px] SC-10[/size][size=18px]型吸附管老化[/size][size=18px]仪[/size][size=18px]使用[/size][size=18px]心得[/size][/align]吸附管老化仪是气体分析实验室一个常见的辅助型仪器,其常被用于Tenax等吸附管的老化工作,以此来实验气体吸附管的重复利用。该款仪器适用于尺寸长度为3.5英寸,直径为1/4英寸的吸附管的老化操作。1.工作原理吸附管老化仪是专为色谱分析中需要解析样品而配备的一种简易装置,它可用于吸附管在使用前进行老化处理或使用后的再利用的清洗处理。在高温下通过用氮气反吹,将吸附在填料中的污染物质吹出,从而达到清洁吸附管的目的。2.操作步骤2.1开机步骤2.1.1打开气瓶开关,调节气瓶减压阀压力约为0.5MPa,确保气路安全、畅通、无泄漏。2.1.2打开连接老化仪的管路阀门,旋转旋钮调节压力,顺时针减小,逆时针增大,使得压力指针指到25psi(一般出厂时压力已调整为25psi,如不变动无需再次调整)。2.1.3打开电源开关,待仪器通电稳定。2.1.4调节仪器前面的流量计旋钮,使得流量计浮子在0.5~0.7L/min位置。2.2吸附管老化步骤2.2.1点击“温度设置”按钮,进入程序升温设定界面,点击阶数下拉菜单,选择所需要的程序升温阶数,设定其它温度和时间参数,设定完毕后点击“保存”按钮,然后点击“返回”键回到初始界面。如果选择0阶,采用非程序升温,温度以最大升温速率从室温升至设定值。2.2.2打开气体阀门,在管托上安装需要老化的吸附管,将带有吸附管的管托放入老化仪中,根据吸附管数量调节流量。2.2.3点击“开始”按钮,程序开始运行,同时屏幕上显示数值倒计时和倒计时滚动条,温度趋势图开始绘制温度曲线,程序运行结束后,加热停止,蜂鸣器开始工作发出提醒警报。2.2.4使用者听到蜂鸣器报警后,将插有吸附管的的管托从老化仪中取出,放在冷却支架上进行冷却,同时点击“蜂鸣器”按钮关闭蜂鸣器。2.2.5在吸附管冷却后将其两头用堵头密封,然后放置在干燥箱中。2.3关机步骤2.3.1在吸附管老化结束后先让气路保持通气直至系统冷却至室温。2.3.2 冷却后关闭气路上的不锈钢球阀。2.3.3关闭仪器电源,关闭抽风装置。3.仪器使用维护保养3.1老化工作结束后对仪器表面进行清洁工作,保持仪器干净整洁。3.2日常检查气路,查看是否有漏气点。3.3每隔一个月更换一次管托O型圈。4.仪器使用注意事项 4.1进行老化工作时注意先通气再升温,禁止在不通氮气的情况下进行高温老化,以防吸附管填料流失。4.2在老化过程中切勿用手去触摸金属部件,以防烫伤。4.3老化完毕后等吸附管冷却后再将其从管托上取下,然后用堵头将两头封住。4.4设备室及其周围不能有震源、火源、电火花、强大磁场和电场、易燃易爆和腐蚀性物质等存在,以免发生干扰和意外。4.5老化仪上的压力一般出厂时就已经设置好,除非有变动一般不对其进行再次设置。

  • 【转贴】有机试剂在络合吸附波中的应用

    张军红,刘道杰(聊城大学化学系,山东聊城 252059)有机试剂在光度分析中得到了广泛的应用,而且在电化学分析中近20年来也有了较快的发展。络合吸附(包括催化)波极谱法在我国发展较快,是具有中国特色的极谱分析方法。它可以通过选择特效有机试剂提高极谱法的灵敏度及选择性,发挥极谱吸附波的特点,大大扩大了极谱分析的应用范围。张正奇、李启隆曾对1991年前的有机试剂在极谱吸附波中的应用进行过评述,本文则对近10年来的有机试剂在络合吸附波中的应用进行简要综述。以络合吸附波测定微量及痕量物质的方法是重要的电化学分析方法之一。络合吸附波不仅可测定无机化合物,也可测定有机化合物,应用非常广泛[6]。近年来,关于有机试剂在极谱催化波测定无机物和有机物中的应用论文有500多篇,国外的文献多侧重于电极反应机理等方面。本文综述了以下几类有机试剂。1 偶氮化合物偶氮染料为水溶性的染料,分子中的偶氮基团-N=N-易吸附在滴汞电极上并发生电化学反应,这类化合物用于光度法测定金属离子灵敏度不高,多用于极谱方法[7]。偶氮试剂在络合吸附波中的应用,见表1。其中7-(1-苯偶氮)-8-羟基喹啉-5-磺酸钠(BQ)多用于光度分析,在络合吸附波中的研究很少。周长利等研究报道了SnE-BQ络合吸附波,该法测定冶金样品中的痕量锡,灵敏度高,不受氧波及多种元素干扰,选择好,RSD3.64%,测定结果满意。DBC2偶氮胂也是一种新型的偶氮类显色剂,何平等[以其为配体用络合吸附波测定了铑离子,在pH3.2的甲酸-甲酸钠介质中,RhD与DBC2偶氮胂生成络合物,于-1104V出现一尖锐、灵敏的络合吸附波,峰电流与RhD浓度在215@10-8~9.2@10-7mol/L范围内呈良好的线性关系,检出限611@10-9mol/L。试验了多种离子对峰电流的影响,采用离子交换法分离干扰离子,用于标样中铑的测定,得到了满意结果。2 卟啉化合物卟啉和金属卟啉化合物在仿生学、医学、催化、太阳能利用和光谱分析等方面有着越来越重要的作用[42],由于卟啉的特殊结构,其金属络合物所发生的特殊生化反应可作为生物体某些反应的模拟模型[43]。此外,利用卟啉的/光化学烧空现象0而制成的高密度分子存贮器对信息工业的发展也起了巨大的推动作用[44]。在医药上,卟啉还可以作为动力学光疗法的光敏剂[45]。在电化学分析方面,罗登柏等[46]报道卟啉在强碱性条件下具有较强的络合能力,可以和金属离子形成络合物吸附波。王小萍等[49]研究了镉-meso(42磺基苯)卟啉络合物的极谱行为,结果表明,镉离子在3@10-7~1@10-5mol/L范围内与络合物峰电流有良好的线性关系,可用于CdC的定量分析。王莉红等[50]利用在碱性介质中铜与(42磺基苯)卟啉形成络合物,研究了其伏安特性,检出限达8@10-10mol/L,比文献[51]值提高了约2个数量级,用于工业硫酸锌盐中微量铜的测定,结果令人满意。卟啉试剂在络合吸附波中的应用,见表2。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221931_18809_1634962_3.gif[/img]3 铜铁试剂铜铁试剂是一种重要的分析试剂,其结构特点是:分子中羟氨上的氧和亚硝基能和金属离子键合 含有苯环,具有共轭双键结构,P电子云易于在汞电极上交叠,有吸附性 含有不饱和基团,可在电极上分三步两电子还原,最后产物为苯肼。李启隆[52]曾对其在络合吸附波中的应用在1994年做过综述,铜铁试剂不仅与金属离子络合,也氧化电极反应产物,再生电极反应物,形成催化循环,产生催化电流。这类络合物吸附波既有吸附富集,又有催化电流,灵敏度很高。Mo-铜铁试剂的灵敏度可达到1@10-9mol/L。由此可见,铜铁试剂具有络合性、吸附性和电活性,能满足络合吸附波对配位体的要求。实验证明,铜铁试剂不但是络合剂,同时又是平行催化过程中的化学氧化剂,因而,它比其他一些非变价金属离子-铜铁试剂的络合吸附波灵敏的多。马翠玲等[56]研究了CuC-铜铁试剂络合吸附波的性质和反应机理,结果表明,在011mol/L的HAc-NaAc(pH510)溶液中,CuC与铜铁试剂形成1B1络合物,后者吸附于电极表面起富集的作用,从而使络合吸附波的灵敏度提高。铜铁试剂在络合吸附波中的应用,见表3。4 三苯甲烷类试剂三苯甲烷类试剂分子的共轭度较大,在汞电极上有较强的吸附性,且试剂分子中含有配位能力很强的氨羧配位基团和多个羟基,因而适于在极谱催化波中作配体。龙晖等[64]提出了SnE-PR-VE-SDS新体系,检出限可达4@10-10mol/L。此方法灵敏度高,选择性好,线性范围宽,已成功应用于罐装食品中微量锡的测定。4,52二溴苯基荧光酮(Br22PF)是一种灵敏的无机金属离子显色剂,温轲等[66]首次采用电化学方法,对AlD与Br22PF的成络行为、络合物性质等进行研究,建立了测定微量铝的灵敏的分析方法,应用于碳酸钠、锌合金和铁矿石样品中铝的测定,结果满意。三苯甲烷类试剂在络合吸附波中的应用,见表4。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221932_18810_1634962_3.gif[/img]

  • 【原创】线束端子压接剖面分析仪-端子分析显微镜

    【原创】线束端子压接剖面分析仪-端子分析显微镜

    线束端子压接剖面分析仪-端子分析显微镜线束端子快速检测分析仪,主要用于线束生产过程中对线束进行抽样检测。在电缆线束生产线上,品质的可靠性及生产速度非常重要,可以说在生产过程中采用连续的质量分析已成为市场竞争的重要因素。http://ng1.17img.cn/bbsfiles/images/2011/03/201103030830_280482_2232901_3.jpg端子压接剖面分析仪,可以对压接工序端子内部质量进行分析,对端子进行剖面,检查端子剖面后压接密度:线芯是否变形、压接毛刺是否合格,导体中所有单线的断面应呈不规则多边形,导体与端子相接部位、单线与单线之间应无明显缝隙,端子压接部位应包住全部导体。端子压接的卷曲部分必须相接,且对称。端子压接卷曲部分端部距底部的距离不小于单线标称直径的1/2横断面底部两侧的毛刺高应不超过端子压接后的厚度g,毛刺宽度应不超过g的1/2。整车线束应符合:QC/T29106-2004 汽车低压电线束技术条件。 (1)规定了检验线束尺寸的标准。 (2)规定了电线束中所用材料和零部件所符合的性能要求。(3)规定了端子与线束的连接方法及连接后应符合的要求。 (4) 规定了端子与线束连接点应符合的要求。 (5)密封塞在压接时不应损伤。电线与密封塞之间、密封塞与护套之间不应有目视可见的间隙。 (6)电线束包扎时,应紧密、均匀,不应松散。采用保护套管时,无位移和影响电线束弯曲现象。 (7)电线束中电线及零部件应正确装配,不应有错位现象,端子在护套中不应脱出。(8)电线束中线路导通率为100%,无短路、错路现象。 (9)电线束需要进行耐高、低温、湿度循环变化性能试验;耐振动性能试验;耐盐雾性能试验;耐工业溶剂性能试验等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制