主动式红外对射探测器

仪器信息网主动式红外对射探测器专题为您提供2024年最新主动式红外对射探测器价格报价、厂家品牌的相关信息, 包括主动式红外对射探测器参数、型号等,不管是国产,还是进口品牌的主动式红外对射探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合主动式红外对射探测器相关的耗材配件、试剂标物,还有主动式红外对射探测器相关的最新资讯、资料,以及主动式红外对射探测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

主动式红外对射探测器相关的厂商

  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询
  • 深圳市汇成探测科技有限公司始建于2007年是一家专业从事金属探测器研发、生产、销售为一体的企业。公司严格依照ISO9001国际质量标准体系的要求,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和保证体系。目前公司主营品种齐全有地下可视成像仪、可视地下金属探测器、远程地下金属探测器、探盘式地下金属探测器、手持金属探测器。品质彰显价值,服务缔造信誉。为广大客户提供更优质的服务,公司以“专业、信誉、质量第一、用户至上”为经营宗旨,以高品质的产品与服务满足客户的梦想。追求卓越是我公司致力追求的目标。我们更坚信:有了您的支持和我们不断的努力,我们与社会各界同仁携手并进,开拓创新,共创美好未来。
    留言咨询
  • 深圳市檀臻科技有限公司 Tangent Optics Co.,Ltd檀臻科技专注于光电探测领域,与全球顶级光电仪器及器件厂商合作,致力于为物理光学、生物光子学、化学材料分析、纳米光子学等领域提供优质产品和服务,并不断积累经验为科学研究者和高科技企业提供成像及光谱相关解决方案。目前我们代理的国外仪器、设备及系统生产商产品均为各自领域内的技术领先产品:Cobolt:单纵模、窄线宽、高功率DPSS激光器,多波长激光器HüBNER:OPO激光器,激光合束器,太赫兹成像产品Becker & Hickl: TCSPC单光子计数器,荧光寿命成像-FLIM系统id Quantique:TCSPC单光子计数器,SPAD, 近红外InGaAs SPAD,超导纳米线探测器,量子传感Semrock:高性能荧光滤光片, 拉曼滤光片,激光反射镜,窄带滤光片Princeton Instruments:科学级制冷型CCD,X-ray CCD , EMCCD, ICCD 各种研究级光谱探测与影像探测系统Energetiq:超高亮度,宽光谱LDLS光源SuperLum:超辐射发光二极管,OCT领域首选低相干光源SmartAct:尖端的微米、纳米移动控制系统,机械手,真空、低温系统用移动台
    留言咨询

主动式红外对射探测器相关的仪器

  • 仪器简介:热释电探测器&mdash 常温型红外探测器,波长范围:0.5-22um技术参数:技术指标型号/参数 DPe22光敏面尺寸(mm) 0.5× 2窗口材料 ZnSe(标配)波长范围(nm) 0.5-22响应率R(500,12.5)(V/W) 2× 105D*(500,12.5,1(cm Hz1/2 W-1) 1× 109NEP(500,12.5,1))W/Hz 9× 1011允许最大入射功率(&mu W) 1最大输出电压(V) 4信号输出模式 电压输出信号极性 正(P)主要特点:&mdash &mdash &mdash 常温型红外探测器,波长范围:0.5-22um◆ DPe22为常温型热释电探测器,适合经济型的测量,集成前置放大器,由LATGS晶体制成,仿热电偶结构,专门用于红外波段的光谱测量热释电探测器使用建议:● DPe22热释电探测器为全波段响应的探测器,实际工作波长范围受到窗口材料限制,可根据实际需要来选择合适的窗口● DPe22热释电探测器使用时必须配合锁相放大器,推荐使用SR830或Model 420(Page97-98)● 热释电探测器的响应率与调制频率成反比,所以需工作在低频(70Hz左右)条件下
    留言咨询
  • DPe系列为常温型热释电探测器,适合经济型的测量,专门用于红外波段的光谱测量。热电元件由独特的薄膜热释电PZT材料组成,允许红外辐射被有源区域高效吸收。具有更高的灵敏度、更低的噪声、更好的频率响应以及更好的温度稳定性。热释电探测器使用建议:DPe系列热释电探测器必须配合锁相放大器,推荐使用DCS500PA。DPe系列热释电探测器的响应率与调制频率成反比,最优工作频率在低频(10HZ左右)区域。DPe系列热释电探测器为全波段响应的探测器,实际工作波长受窗口材料限制,可根据实际需要来选择合适的窗口。 频率响应曲线: 窗口透过率曲线: 光谱响应曲线: 常温型热释电探测器型号列表及主要技术指标:型号/参数DPe16DPe22工作区域面积(㎜2)1.65×1.651.65×1.65光敏面直径尺寸(㎜2)3.73.7窗口材料类型A4A3波长范围(μm)2-162-22信号输出模式电压电压响应率(V/W)12.75×1052.75×105典型值D* [cmHz1/2W-1] 14.32×1084.32×108NEP(W/Hz1/2)13.82×10-103.82×10-10反馈电阻(GOhm)1010反馈电容(fF)200±50 200±50 工作电压(V)±2.2~±8±2.2~±8环境温度(℃)-10~+50-10~+50输出信号极性正(P)正(P)备注125℃,10Hz,带宽1Hz黑体T = 500K;E = 38 W / m2不含窗口材料
    留言咨询
  • 仪器简介:DSR100系列探测器光谱响应度测量系统,是适应不断增长的材料科学对检测设备的需求而诞生的。它结合了北京卓立汉光仪器有限公司给多家科研单位定制的探测器光谱响应测量系统的特点和经验,采用国家标准计量方法进行测试,是光电探测器、器件、光电转换材料科研和检验的必备工具。技术参数:型号 DSR100UV-A DSR100UV-B DSR100IR-A DSR100IR-B波长范围 200~2500nm 1~14&mu m测试光斑\光斑模式 均匀平行光斑 汇聚光斑 均匀平行光斑 汇聚光斑尺寸 Ф2~20mm Ф0.3~3mm Ф2~20mm Ф0.3~3mm 光源 光源 氘灯/溴钨灯复合光源 溴钨灯/碳化硅复合光源光强稳定性 &le 0.8% &le 2%光源切换方式 软件自动切换 软件自动切换三光栅单色仪 光 谱分辨率 <0.1nm(435.8nm@1200g/mm光栅) <2.5nm (2615nm@75g/mm光栅)扫描间隔 最小可至0.005nm输出波长带宽 <5nm <10nm多级光谱滤除装置 根据波长自动选择滤光片,消除多级光谱杂散光  光调制频率 4~400Hz数据采集装置灵敏度 锁相放大器 2nV;直流数据采集可选标准探测器 标准硅探测器 (标定200~1100nm) 标准热释电探测器(标定1~14mm)光谱响应度测量重复性* &le ± 1.5% &le ± 5%光路中心高 305mm仪器尺寸 1500mm× 1200mm× 560mm控制机柜 标准4U控制柜,含计算机主要特点:◆ 宽光谱范围(200~2500nm或1~14&mu m可选),适用面广宽光谱范围意味着适用于各种不同样品,如响应在日盲区的深紫外探测器、响应在可见光的太阳能电池、响应在近红外的光纤传感器、响应在中远红外的红外光电传感器,都可以在DSR100上测量光谱响应度。◆ 开机即用的Turnkey系统设计,维护简单系统采用替代法的测量原理,设计成开机即用的turnkey模式,用户不需要在实验前对系统进行复杂的调试,日常维护也十分简单。◆ 调制法测量技术,提升测量结果信噪比DSR100系统采用调制法测量技术。调制法是目前国家计量单位采用的标准方法,通过选频放大的技术,可以大幅度抑制杂散光或环境噪声对测量精度带来的负面影响。DSR100系统针对弱信号采集专门设计了独特的前置放大电路,同时采用高性能的锁相放大器进行调制法测量。锁相放大器测量灵敏度达到2nV,动态范围达到100dB。通过提高测量灵敏度并且抑制噪声,DSR100系统可以从背景噪声中提取非常微弱的光电探测器响应信号。◆ 全反射光路设计,优化光斑质量由于各种光电探测器的光谱响应范围不同,因此好的探测器光谱响应度测量系统应该是宽光谱范围的,这样才能具备较强的通用性。在宽光谱范围的光学设计中,采用反射式的光路设计要比透射式得到更高品质的光束质量和均匀光斑。在透射式的光学系统中,影响光束质量和光斑品质的重要因素是色差,色差源自于不同波长的单色光在光学材料中的折射率不同,波长范围越宽,色差越明显。而在反射式的光学系统中,由于根本不涉及折射,所以不存在色差的问题。因此采用反射式光路,成像质量大大优于透射式光路,从而可以得到更高均匀度的平行光斑,或者更小尺寸的汇聚光斑。◆ 高稳定性光源,降低背景噪声影响尽管采用调制法可以降低系统杂散光和背景噪声对测量的影响,但光源本身的波动依然无法消除。因此,在采用调制法的系统中,光源稳定性反而成为系统噪声的主要来源。DSR100采用高稳定性的光源来保证系统的高重复性。右图是典型的光源相对强度的稳定度测量数据。◆ 全自动测量流程1)自动化测量流程得到高重复性样品的重复定位精度很大程度上决定了测量重复性,电动平移台重复定位精度10um,远远高于手动样品定位2)自动化测量流程降低了操作人员的要求按软件文字提示即可正确操作系统进行测量,不需要对操作人员进行复杂的培训,特别适合工业客户做检测用3)自动化测量流程提高时间利用率系统在预设方案后即自动运行测量流程,可提高操作人员时间利用率◆ 大空间样品仓,四壁可拆卸,方便系统调试特别设计的四壁方便拆卸的样品仓,给实验人员足够大的空间进行样品安装和调试。同时,也能容纳一些特殊体积的探测器,比如液氮制冷的探测器、条纹变相管等。实验人员的可操作性大大增强。◆ 激光监视光路选项,CCD图像监控,可对极小面积的光电探测器进行精确定位◆ 标准测量软件,数据导出格式支持第三方软件DSR100系统的软件保存所有测试第一手原始数据,可供实验人员导出成txt、xls等常见格式的文档,以便后期分析处理。
    留言咨询

主动式红外对射探测器相关的资讯

  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 国际组织研发出石墨烯红外探测器 可测极微小的热辐射
    由23个国家150多个研究团队组成的国际联盟 Graphene Flagship 运用纳米材料石墨烯研发出一款高精度的新型红外探测器。据团队介绍,这种新型探测仪可检测出纳瓦级的热辐射变化——相当于手轻轻摆动时释放出的能量的千分之一。  石墨烯的优点是在高性能红外成像和光谱学中的开放性可能性。来自剑桥大学(英国),恩伯顿有限公司(英国),光子科学学院(ICFO 西班牙),诺基亚和约阿尼纳大学(希腊)工作的Graphene Flagship的研究人员开发了一种基于石墨烯的,通过红外辐射检测,对于温度的微小变化的测量,具有极高精确性的热释电热辐射测量仪。  在《自然通讯》上发表的工作证明了基于石墨烯的非冷却热检测器的最高报告的温度敏感性,能够将温度变化分解为几十μ K。仅需要几纳米的IR辐射功率来在隔离器件中产生这样小的温度变化,比通过紧密靠近的人手递送到检测器的IR功率小大约1000倍。石墨烯红外探测器,可检测出极微小的热辐射变化  检测器的高灵敏度对于超过热成像的光谱应用是非常有用的。使用高性能的基于石墨烯的IR检测器,可以提供较少的入射辐射的强信号,可以隔离IR光谱的不同部分。这在安全应用中是至关重要的,其中不同的材料(例如爆炸物)可以通过它们的特征IR吸收或透射光谱来区分。  恩伯顿首席工程师和研究的联合负责人Alan Colli博士说:“使用更高灵敏度的检测器,可以限制大的热带,并且仍然使用在非常窄的光谱范围内的光子形成图像,并且做多光谱红外成像对于安全检查,有特定的签名,材料在窄带中发射或吸收,因此,需要一个在窄带中训练的检测器,这在寻找爆炸物,有害物质或任何分类。”  典型的IR光电探测器通过热电效应或作为测量由于加热引起的电阻变化的测辐射热计进行操作。基于石墨烯的热释电测辐射热计将这两种方法与石墨烯的优异电性能相结合,以获得最佳性能。石墨烯作为信号的内置放大器,消除了对外部晶体管的需要,意味着没有寄生电容的损失和显着低的噪声。  石墨烯的高电导率还提供与用于与检测器像素和记录装置接口的外部读出集成电路(ROIC)的方便的阻抗匹配。随着石墨烯质量的持续改进(例如,更高的迁移率),可以制造具有扩展的动态范围(器件将可靠地工作的温度范围)的稳健器件,同时保持相同的优异的温度响应性。  剑桥石墨烯中心主任Andrea Ferrari教授说,“这项工作是石墨烯在应用路线图上稳步前进的另一个例子,恩伯顿是一家新公司,专门生产石墨烯光子学和电子学红外光电探测器和热传感器,这项工作例证了基础科学技术如何可以导致迅速的商业化。”Andrea Ferrari是Graphene Flagship的科学技术官员,也是Graphene Flagship管理小组的主席。  该项目的合作者FrankKoppens教授是 ICFO的量子纳米光电子技术的领导者,并领导Graphene Flagship的光子和光电子工作包。“石墨烯最有前途的应用之一是宽带光电探测和成像,在任何其他现有技术的基础上,在一个材料系统中结合可见光和红外探测是不可能的,Graphene Flagship计划将进一步发展高光谱成像系统,开发石墨烯独特的方向,”他说。  DanielNeumaier博士(德国AMO)是Graphene Flagship电子和光子学集成部门的领导者,并没有直接参与这项工作。他说:“在过去几年里,红外探测器的市场规模急剧增加,这些设备正在越来越多的应用领域,特别是光谱安全检查变得越来越重要,这需要在室温下的高灵敏度。目前的工作是在满足石墨烯红外探测器的这些要求方面迈出的巨大一步。”相关工作全文发表在Nat. Commun.2017.(DOI: 10.1038/ncomms14311 )上。

主动式红外对射探测器相关的方案

主动式红外对射探测器相关的资料

主动式红外对射探测器相关的试剂

主动式红外对射探测器相关的论坛

  • 主动红外探测器的应用特点

    主动红外探测器由红外发射机、红外接收机和报警控制器组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。主动式红外探测器遇到小动物、树叶、沙尘、雨、雪、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。由于光束较窄,收发端安装要牢固可靠,不应受地面震动影响,而发生位移引起误报,光学系统要保持清洁,注意维护保养。因此主动式探测器所探测的是点到点,而不是一个面的范围。其特点是探测可靠性非常高。但若对一个空间进行布防,则需有多个主动式探测器,价格昂贵。主动式探测器常用于博物馆中单体贵重文物展品的布防以及工厂仓库的门窗封锁、购物中心的通道封锁、停车场的出口封锁、家居的阳台封锁等等。

  • 安防新设备被动红外探测器

    被动红外探测器:采用被动红外方式,已达到安保报警功能的探测器。被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。 被动红外探测器越来越多的被应用于安防领域,能够探测到当前区域内有没有移动的人等目标。 与其他红外探测器不同的时,被动红外探测器采取被动的方式,即自身不附加红外辐射光源,本身也不发射任何能量。目标在探测渔区内移动,会引起某一个立体防范空间内的热辐射的变化,而红外热辐射能量的变化能够灵敏的被被动红外探测器感应到,从而发出报警。 被动红外探测器一般由光学系统、红外传感器、报警控制器等构成。被动红外探测器安装好后,某一区域内的热辐射量量对于探测器来说基本上是不变的。尽管背景物体(如墙、家具等)也会散发出红外辐射能量,但由于能量很小不会触发报警。可当有人等移动目标进入该区域后,红外热辐射值会产生显著的变化。红外传感器的探测波长范围是8~14m,包括人体的红外辐射波长。探测器接收到这些信号后,将信号处理并送往报警控制器,最终触发报警,达到安防的目的。

  • 【求助】求红外探测器

    小弟想要一个能检测波长为3.3um的热释电红外探测器,但在网上查了很久,发现都是些检测波长在5-14um的探测器。哪位大侠知道哪种型号的探测器能满足我的需求啊?劳烦告诉我型号啊,感激不尽哦!

主动式红外对射探测器相关的耗材

  • 热释电红外探测器
    热释电红外探测器Micro-Hybrid热释电探测器是功能强大的热红外探测器,具有出色的长期稳定性。这些传感器检测燃烧材料(如木材,油或塑料)的典型光谱辐射。 NDIR气体分析代表了热释电传感器的另一个应用领域。 红外辐射会影响传感器的活动区域。 由于热释电效应,温度的有效变化在电极上产生电荷载流子。 与大多数竞争者的LiTaO3芯片不同,Micro-Hybrid的热释电探测器使用基于MEMS技术的敏感元件。 热释电元件由安装在通过DRIE背蚀工艺制造的改良Si基膜上的〜1μm厚的PZT薄膜组成。 前电极是光学透明的,允许红外辐射被有源区域吸收。 该区域具有从1 - 25μm的宽广吸收范围。优点:Ø基于MEMS的PZT膜Ø宽广的光谱灵敏度1 - 25μmØ高调制频率200HzØ低颤噪效应指的是膜质量轻Ø非常低的温度依赖性Ø低热漂移Ø不需要冷却应用:Ø红外火焰检测实时火灾和火焰检测 - 生命和健康安全应用针对健康和生命安全以及所有工业过程应用层面上的首要需求。 红外火焰探测器在所有工业建筑物,仓库等的火灾探测是不可或缺的安全要求。 对于安全的建筑防火,红外火焰探测器保证在危险情况下立即作出及时响应,防止火灾造成损害。优点:Ø室内火灾探测Ø即使在烟雾缭绕的房间和远距离也能快速而可靠的测量Ø检测不同的火焰特征,如热量,气体(CO2,CO)或闪烁频率红外火焰检测的应用领域红外火焰探测器的功能火焰引起烟雾,烟雾,蒸汽,热量和光辐射。 可检测产生的气体一氧化碳和二氧化碳以及火焰闪烁频率。Micro-Hybrid 热释电传感器具有长时间稳定性,可提供四种芯片尺寸和两种功能模式型号特征PS1x3C2高敏感度PS1x1C2广角大视野PS1x1C8广角大视野PS1x4V1电压模式ØNDIR气体测量Micro-Hybrid提供NDIR气体分析的完整产品系列。 即使是恶劣的环境也不会阻碍我们的客户升级自己的应用。优点:快速,可重复,长期稳定地测定各种红外活性气体的浓度高精度和高分辨率的限制在低漂移下的使用寿命长,无化学反应高温能力(190°C)测量稳定性高,即使在恶劣的环境下NDIR气体分析方案确保和监测过程稳定性的气体浓度的测量,在涉及气体的所有工业过程中是至关重要的。 气体浓度的准确和可再现的检测是应用的重要组成部分,特别是在医疗和环境技术中。 此外,NDIR(非分散红外)气体分析可以在私人或工业领域进行宽带或高度选择性的有害物质检测,例如监测和检测爆炸性气体和污染物。它是测量这种气体浓度的光学分析工具。 关于与红外活性气体的光学相互作用,NDIR分析是一个快速而有效的过程。NDIR气体测量的应用领域:根据不同的功能原理和我们的元件组合,我们会结合适合您的测量任务对应气体传感器解决方案。 您可以从我们的产品查找器中订购单个产品样品或直接联系我们的NDIR气体分析专家。气体传感器CO2 气体传感器甲烷气体传感器耐190°C高温耐190°C高温红外光源JSIR 350-4JSIR 350-5JSIR 450高频率高辐射强度超高频率的手持设备"超高的辐射强度热电堆探测器TS 80TS 200高温应用高灵敏度手持设备热释电探测器电流模式电压模式极高的灵敏度极高的频率电压模式低频率我们的热释电探测器有电流和电压模式(Pyropile® )。 电流模式探测器仅提供双极性电源(±2.2 ...±8 VDC)。控制模式电压模式电流模式电流模式感应面积1.15 x 1.150.8 x 0.80.7 x 0.325灵敏度 (V/W)950175,000125,000探测率2.09 x 10^82.2 x 10^81.7 x 10^8佳频率0.2 ... 32 … 55 取决于配置3 … 25通道数1 - 41 - 24通过不同的传感器帽来修改视野帽光圈FOV滤波片位置H2863,7mm104,6°外置H2171,5mm34,7°外置M0013,7mm76,2°内置M0011,5mm21,5°内置Pyropile - 电压模式下的热释电传感器这种高性能热释电探测器可提供多达4个通道。活性材料被分成九个较小的像素,串联连接。 因此,Pyropile® 检测器在低噪音水平下可以产生接近10倍的信号输出。 参考芯片薄膜的质量小,该探测器的特点是极低的颤噪效应,低热漂移和热噪声。 如果测量速度相当的测量任务需要更高的灵敏度,则Pyropile® 代替热电堆探测器。特征高信噪比检测灵敏度高达2.1 x 10 8 cm x Hz 1/2 / W灵敏度高达950 V / W输出:电压信号
  • 热电堆红外探测器
    热电堆红外探测器每个热电堆探测器的基座由所谓的热电偶形成。 由于两种不同金属(塞贝克效应)的热扩散电流,它会产生一个电压。应用:远距离温度测试“应用是由客户设备的设计来定义的。我们的产品组合提供准时和整体测量的产品。”(Micro-Hybrid有限公司研发部主管Steffen Biermann先生)工艺和产品温度是制造工艺的重要物理指标。 监测温度确保生产线的高质量水平。 远程温度测量非常适用于大距离,移动部件或适用于各种工业领域的高温应用。优点:响应时间短无反应测量,对测量对象无影响没有破坏连续实时监控温度临界时间我们在-20°C至190°C的外壳温度范围内提供不同测量要求的传感器类型。 我们的探测器适用于高温测量的大多数应用领域。应用产品准时的温度测量TS1 × 80B-A-D0.48-1-Kr-B1积分温度测量TS1 × 200B-A-D3.55-1-Kr-A1高温环境下的温度测量TS1 × 80B-A-D0.48-1-Kr-B1-190NDIR红外气体分析Micro-Hybrid提供NDIR气体分析的完整产品系列。 即使是恶劣的环境也不会阻碍我们的客户升级自己的应用。优点:快速,可重复,长期稳定地测定各种红外活性气体的浓度高精度和高分辨率的限制在低漂移下的使用寿命长,无化学反应高温能力(190°C)测量稳定性高,即使在恶劣的环境下NDIR气体分析方案确保和监测过程稳定性的气体浓度的测量,在涉及气体的所有工业过程中是至关重要的。 气体浓度的准确和可再现的检测是应用的重要组成部分,特别是在医疗和环境技术中。 此外,NDIR(非分散红外)气体分析可以在私人或工业领域进行宽带或高度选择性的有害物质检测,例如监测和检测爆炸性气体和污染物。它是测量这种气体浓度的光学分析工具。 关于与红外活性气体的光学相互作用,NDIR分析是一个快速而有效的过程。NDIR气体测量的应用领域:根据不同的功能原理和我们的元件组合,我们会结合适合您的测量任务对应气体传感器解决方案。 您可以从我们的产品查找器中订购单个产品样品或直接联系我们的NDIR气体分析专家。气体传感器CO2 气体传感器甲烷气体传感器耐190°C高温耐190°C高温红外光源JSIR 350-4JSIR 350-5JSIR 450高频率高辐射强度超高频率的手持设备"超高的辐射强度热电堆探测器TS 80TS 200高温应用高灵敏度手持设备热释电探测器电流模式电压模式极高的灵敏度极高的频率电压模式低频率特征:使用BiSb / Sb等优良材料获得良好的热电堆效应:高探测灵敏度*灵敏度高达295 V / W配合Micro-Hybrid相关产品使用,一致性好*高达7.2 x 108 cm Hz1 / 2 / W结构概况用于高温应用的热电堆探测器在高温环境下对机器和过程进行温度监测是一个挑战。 我们的高温热电堆探测器完全符合各种工业应用中的高温等特殊要求。特征:应用环境温度可高达190°C焊接滤波片(可选)高灵敏度耐高湿适合化学分析过程抵御侵蚀性气体如甲烷,二氧化硫等用于不同的温度范围和测量任务的热释电传感器可以在这里找到:信号作为测量对象温度的函数测量物体温度变化时的信号II通过改变环境温度来修改信号修改我们的热电堆传感器可以在我们广泛的可应用范围内进行调节:传感器芯片,红外滤波片等。 通过这种方式,可以在各种应用条件下始终获得优良的测量结果。产品选择TS1x200B-A-D3.55单通道热电堆探测器基于MEMS技术的用于NDIR气体分析的高敏感热电堆探测器。灵敏度[V / W]100D* [cmHz½/W]3.6x10^8光圈[mm²]:3.55 dia工作温度[°C]-20 … +70封装模式TO39应用NDIR气体分析通道数1TS1x200B-B-D2.4单通道热电堆探测器基于MEMS技术的用于NDIR气体分析的高度敏感的热电堆探测器。灵敏度[V / W]100D* [cmHz½/W]3.6x10^8光圈[mm²]:2.4 dia工作温度[°C]-20 … +70封装模式TO46应用NDIR气体分析通道数1TS1x80B-A-D0.48单通道热电堆探测器基于MEMS技术的拥有较小有效区域的热电堆探测器 推荐用于使用带通滤波器的温度测量。灵敏度[V / W]295D* [cmHz½/W]7.2x10^8光圈[mm²]:0.48 dia工作温度[°C]-20 … +85封装模式TO39应用温度测量通道数1TS1x80B-A-D0.75单通道热电堆探测器基于MEMS技术的具有较小有效区域的热电堆探测器 推荐用于带有带通滤波器(8-14µm)的温度测量。灵敏度[V / W]295D* [cmHz½/W]7.2x10^8光圈[mm²]:0.75 dia工作温度[°C]-20 … +85封装模式TO39应用温度测量通道数1TS1x80B-A-D0.75-… -180单通道热电堆探测器基于MEMS技术的具有较小有效区域的热电堆探测器 推荐用于在高温环境下使用带通滤波器(8-14 Lm)进行温度测量。灵敏度[V / W]295热电堆探测器D* [cmHz½/W]D* [cmHz½/W]7.2x10^8热电堆探测器光圈[mm²]:光圈[mm²]:0.75 dia热电堆探测器工作温度[°C]工作温度[°C]-20 … +180封装模式TO39热电堆探测器应用应用温度测量热电堆探测器通道数通道数1TS2x200B-A-S1.5双通道热电堆探测器用于NDIR气体分析的基于MEMS技术的带有窄带滤光片的高灵敏度热电堆双探测器。灵敏度[V / W]100D* [cmHz½/W]3.6x10^8光圈[mm²]:1.5 x 1.5工作温度[°C]-20 … +70封装模式TO39应用NDIR气体分析通道数2TS4x200B-A-S1.5四通道热电堆探测器用于NDIR气体分析的基于MEMS技术的带有窄带滤波器的四通道热电堆探测器。灵敏度[V / W]100D* [cmHz½/W]3.6x10^8光圈[mm²]:1.5 x 1.5工作温度[°C]-20 … +70封装模式TO39应用NDIR气体分析通道数4TS4xQ200B-A-S1.5四通道热电堆探测器基于薄膜技术的高灵敏度四通道热电堆检测器,带窄带过滤器,用于气体分析。通过“单芯片”解决方案对接电气和物理通道参数。灵敏度[V / W]80D* [cmHz½/W]2.95x10^8光圈[mm²]:1.5 x 1.5工作温度[°C]-20 … +70封装模式TO39应用NDIR气体分析通道数4
  • X射线探测器 X射线探测器
    X射线探测器是一种位置灵敏性的探测器 (Position sensitive detector, PSD), 非常适合各种X射线衍射仪探测器的使用。X射线探测器具有专利技术的X射线衍射仪探测器使用坚固的blade anode技术,而不是基于传统微光子技术,它不需要维护,不受X射线束的影响。X射线探测器特点先前的PSD探测器基于fragile wire anode technology,这种技术的探测器噪音较大,而且很容易被较强的X射线损坏。为了克服这个问题,法国Inel公司投入大量人力研发了这种PSD新型X射线探测器,使用钢合金替代原有材料,使得X射线探测器非常坚固而且不易被损伤。PSDX射线衍射仪探测器可用于粉末,固体和液体的实时X射线实验。X射线探测器,X射线衍射仪探测器弧形设计,具有110度,120度和90度的弧度共用户选择。该X射线探测器,X射线衍射仪探测器全固化设计制造,代替了传统的机械扫描装置。这款PSDX射线衍射仪探测器可用于粉末,固体和液体的实时X射线实验。X射线探测器,X射线衍射仪探测器弧形设计,具有110度,120度和90度的弧度共用户选择。该X射线探测器,X射线衍射仪探测器全固化设计制造,代替了传统的机械扫描装置。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制