当前位置: 仪器信息网 > 行业主题 > >

太赫兹时域光谱分析仪

仪器信息网太赫兹时域光谱分析仪专题为您提供2024年最新太赫兹时域光谱分析仪价格报价、厂家品牌的相关信息, 包括太赫兹时域光谱分析仪参数、型号等,不管是国产,还是进口品牌的太赫兹时域光谱分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹时域光谱分析仪相关的耗材配件、试剂标物,还有太赫兹时域光谱分析仪相关的最新资讯、资料,以及太赫兹时域光谱分析仪相关的解决方案。

太赫兹时域光谱分析仪相关的资讯

  • 大恒科技牵头的国家重大仪器专项之太赫兹时域光谱仪开发通过验收
    3月13日,大恒新纪元科技股份有限公司(简称“大恒科技”)宣布,由公司牵头承担的国家重大科学仪器开发专项“基于飞秒激光的太赫兹时域光谱仪开发”项目进展顺利,进度和成果产出达到任务书要求的考核指标,顺利通过综合验收。“基于飞秒激光的太赫兹时域光谱仪开发”项目概述项目编号:2012YQ140005;项目组织单位:北京市科学技术委员会;项目牵头单位:大恒新纪元科技股份有限公司;项目第一技术支撑单位:首都师范大学;项目协作单位:北京大学、南京大学、中国科学院电子学研究所、上海理工大学、北京理工大学、清华大学、中国农业大学、北京农产品质量检测与农田环境检测技术研究中心、中央民族大学、北京中医药大学东直门医院、中国石油大学(北京)、东莞理工学院、中国科学院半导体研究所;项目起止年限:2012年10月至2017年9月;项目总体目标: 攻克太赫兹源、探测器等模块联用和集成关键技术,研发纳米金属薄膜宽频谱太赫兹源、Nb5N6超薄膜的室温太赫兹探测等关键部件,开发仪器操作平台软件与谱解析系统软件,通过系统集成和工程化开发,研发出性能稳定、质量可靠的基于飞秒激光的太赫兹时域光谱仪;通过在食品安全检测、药品分析、临床检测、油气分析等领域中的应用开发,丰富太赫兹时域光谱仪的测试应用功能,并在材料无损检测、环境监测等领域推广。该项目国家给予重大科学仪器设备开发专项资金人民币6,780万元,分阶段拨付,由牵头单位、第一技术支撑单位和协作单位共同使用。“基于飞秒激光的太赫兹时域光谱仪开发”项目验收情况该项目主要针对太赫兹时域光谱仪及各个关键模块进行了研究和开发,先后开发出具有自主知识产权的超快激光器、太赫兹源、太赫兹探测器等一系列核心产品,形成了四款各具特色的太赫兹时域光谱仪,打破了国外太赫兹技术在国内的价格垄断地位,具有较强的市场竞争力。目前太赫兹光谱仪已经在无损检测形成销售,该项目还在食品安全、民族医药、肾病检测、石油勘探、半导体材料等五个领域进行太赫兹的示范应用研究,进一步拓展了太赫兹时域光谱仪的应用,为太赫兹技术的产业化奠定了基础。关于大恒新纪元科技股份有限公司大恒科技于1998年12月14日注册成立,原名新纪元物产股份有限公司,1999年9月9 日更名为大恒新纪元科技股份有限公司;于2000 年11月29日在上海证券交易所上市(600288)。公司主营业务为光机电一体化产品、信息技术及办公自动化产品、数字电视网络编辑及播放系统、半导体元器件。据大恒科技业绩报告,2019年度实现营业收入33.06亿元,归属于上市公司股东的净利润7,308.76万元;2020上半年公司实现营业收入8.74亿元,实现归属于上市公司股东的净利润-2,201.73万元。
  • 刘盛纲院士:我国太赫兹光谱分析仪实现量产
    p  日前,由中科院、国家自然科学基金委员会主办,华讯方舟科技有限公司、深圳中国科学院院士活动基地等承办的第二届太赫兹国际会议在深圳举行。/pp  据悉,太赫兹国际会议是目前国际太赫兹领域水平最高、最具前瞻性的国际会议之一。本届会议旨在汇聚多方力量,聚焦太赫兹科学和应用最新技术成果,探讨交流太赫兹科学与技术未来的发展方向以及太赫兹相关技术应用前景,与社会各界一道推动太赫兹技术、产业的蓬勃发展。/pp  太赫兹技术被美国评为“改变未来世界的10大技术”之四,被日本列为“国家支柱10大重点战略目标”之首,是一种处于特殊频率范围的波段,可以应用在移动宽带通讯、反隐身雷达、反恐、无损工业检测、食品安全检测、医疗和生物成像等众多领域。/pp  中国科学院院士、广东省院士专家企业(华讯方舟)工作站首席院士刘盛纲表示,作为新兴的前沿领域,太赫兹科学技术已经受到了各国广泛重视。华讯方舟集团是全球率先实现用3种方式获得太赫兹源并制造出对应产品的企业,其自主研发的中国首台主动式圆柱形毫米波人体安检仪填补了我国在太赫兹人体成像安检市场的空白,自主研发的太赫兹时域光谱分析仪也已全面实现量产。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/03f72e46-ddd9-4e65-b2eb-a6e63368ea41.jpg" title="4vR--fypsqiz9298571.jpg"//pp style="text-align: center "主动式圆柱形毫米波人体安检仪图示/p
  • 大恒科技:太赫兹时域光谱仪开发尚处实验室阶段
    据参与《基于飞秒激光的太赫兹时域光谱仪开发》项目的专家介绍,目前该项目还处在实验室阶段。今年年初项目组已向相关主管部门申请立项和申报补贴资金,但目前还没有收到正式批文,至于相关的补贴资金量更无从得知。  “大恒科技股价异动属于游资炒作。”有券商研究员指出,短期来看,上述项目对大恒科技的业绩并不能产生直接影响,长期影响也要看,项目是否能够成功获得政府主管部门的支持,2014年能否实现部分产品商用,以及相关产品能够取得的市场的认可。
  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 重大科学仪器专项:太赫兹光谱仪最新进展
    p  strong仪器信息网讯 /strong 2016年12月6日,中央民族大学,2016年太赫兹波谱技术及产业化研讨会暨国家重大科学仪器设备开发专项-基于飞秒激光的太赫兹时域光谱仪开发项目(以下简称:太赫兹专项)2016年年度总结汇报会顺利召开。中科院物理所院士杨国桢、北京理工大学院士周立伟、清华大学院士周炳琨、北京大学院士龚旗煌、中科院半导体所院士李树深、深圳大学院士范滇元、南京大学院士吴培亨、清华大学院士金国藩、天津大学院士姚建铨、科技部资源配置与管理司处长刘春晓、北京市科委李建玲处长等70多人到会。大恒新纪元科技股份有限公司总经理杨晓红、中央民族大学校长宋敏致欢迎辞。宋敏在致辞中说到,本次会议是中央民族大学今年规格最高的一次会议,光电领域顶级专家齐聚,可谓太赫兹领域的年度盛会,并预祝太赫兹专项取得丰硕成果。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/dba4bdfb-5646-46d7-93c4-bde95acb31c8.jpg" title="songmin.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  中央民族大学校长宋敏致欢迎辞/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/7edebd8d-e799-403b-aed2-3243948c71e1.jpg" title="yangxiaoh.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  大恒新纪元科技股份有限公司总经理杨晓红致欢迎辞/pp  大恒新纪元科技股份有限公司研发部副经理张翼、首都师范大学教授张存林、中国石油大学(北京)教授赵昆等各项目承担单位代表介绍了项目有关仪器研制、应用研究、产业化进程等各方面的详细情况 与会院士、部委领导及专家学者代表就项目及产业化方面发表了各自的意见和建议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/87906388-b8bc-44e6-8af7-5a6521acca02.jpg" title="zhangcunlin.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  首都师范大学教授张存林致辞/pp  太赫兹专项已经历时4年,2017年结项,2016年是承上启下的关键一年。太赫兹项目总体进展顺利,2016年已经开始欧、美、印度、国内等方面的市场推广工作,杨晓红介绍到。大恒新纪元科技股份有限公司研发部副经理张翼详细汇报太赫兹专项进展。太赫兹专项项目经费为1亿3780万(国拨+企业自筹),目前已经完成76.99%经费投入(国拨76.3%+企业自筹68.8%) 计划开发仪器10项,已完成18项 计划应用开发5个,已完成7个 计划申请专利43个,已经完成101个 计划制定标准8个,已经完成3个 计划取得软件著作权8项,已完成11项。太赫兹专项已经完成产品转化15项,2016年密集开展各项市场推广工作,参加慕尼黑激光上海展、第十一届国际激光加工技术研讨会、慕尼黑分析仪器展(德国)、西部光电子展(美国)等20多个国际国内学术会议和展会,实现产品销售41例,CIP-TDS光谱仪、太赫兹时域光谱仪等产品实现销售额3506万元。与传统的中国科学仪器企业有所不同,大恒科技在坚持自研的技术路线之外,也借助了资本的力量,把国际技术领先的美国Zomega公司(该公司由于所有人个人原因关闭)所有技术和专利收入囊中,并为Zomega公司在中国已经销售的所有产品提供后续服务。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/78aa27e0-eb51-4b8a-8b55-d4d8b60e30fb.jpg" title="zhangyi.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  大恒新纪元科技股份有限公司研发部副经理张翼汇报项目进展/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/87f82528-0737-46a7-bd03-72cfdd6de945.jpg" title="飞秒激光器.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"/img src="http://img1.17img.cn/17img/images/201612/insimg/9f6747e3-1e39-4472-972c-6a75ffca5ced.jpg" title="时域光谱仪.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/4c26d459-5966-4a8e-9630-71a7aa6e8d86.jpg" title="太赫兹光谱仪.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"/img src="http://img1.17img.cn/17img/images/201612/insimg/2695b8c2-eae5-4a86-b6f7-f596a374b234.jpg" title="飞秒激光器1.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"//pp style="text-align: center "现场产品展示br//pp  中国石油大学(北京)教授赵昆作《油气资源太赫兹光谱表征与评价》报告。报告中说到,借助太赫兹专项,开拓了石油气光学学科研究领域 依托太赫兹专项,后续获得973课题1项、国家自然科学基金2项、石油化工联合会科技计划3项、中石化课题1项、中石油课题1项。2015年11月14日“井下油气探测关键技术创新及应用”科技成果鉴定会上,太赫兹光谱油气探测技术获得“达到国际领先水平”的评价。目前,油气资源太赫兹光谱表征与评价技术已经应用油气产业的“上游”、“中游”、“下游” 油品太赫兹光谱数据库已经初步建立。赵昆说到,太赫兹技术在石油气方面的应用,并不是替代原有技术和设备,而是有益的补充 未来,太赫兹在非常规油气勘探与开发等方面将大有作为。据了解,太赫兹专项目前已经在食品安全、石油气、民族医药等7个方面完成应用开发的相关工作。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/50098563-4809-47e0-9434-ee550a0d67f7.jpg" title="zhaokun.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  中国石油大学(北京)教授赵昆代表项目应用组报告/pp  为太赫兹专项所取得的成绩及更好地完成2017年专项结题工作,与会的院士、专家学者和相关部门领导纷纷发表自己的意见和建议。譬如:如何进一步提高仪器的稳定性、可靠性?如何加快产业化进程等.....有院士说到,以前我们知道太赫兹应该很有用,太赫兹专项解决了“太赫兹技术如何应用”的问题!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/e72b8dfd-b69c-46b9-8ed2-baacc7d9d709.jpg" title="yuanshiping.jpg" style="width: 620px height: 348px " hspace="0" height="348" width="620" vspace="0" border="0"//pp style="text-align: center "与会代表发言/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/c0cec519-fd6e-4eb5-9035-f2eaa05e8871.jpg" title="参观.jpg" style="width: 620px height: 413px " hspace="0" height="413" width="620" vspace="0" border="0"//pp style="text-align: center "与会代表现场听取产品介绍/pp  张翼在汇报中说到,2016年,太赫兹专项进入项目第四年,不论是仪器研发还是应用研发均进入收尾阶段,项目正式进入结题准备阶段。2016年,仪器的优化改进及应用探索工作还在进行当中,钛宝石飞秒激光群II型、光纤耦合太赫兹时域光谱仪等设备还在陆续的研发和改进中,大恒科技将以更好的产品、更好的用户体验来迎接未来市场的挑战。2017年,不是终点,是起点!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/55cfb73b-e1e1-4e8e-b73e-300a2528556c.jpg" style="width: 620px height: 301px " title="合影.jpg" hspace="0" height="301" width="620" vspace="0" border="0"//pp style="text-align: center "  与会代表合影留念/p
  • 太赫兹光谱或成为评价地质演化过程的新方法
    流体包裹体是研究矿物演化的重要手段之一。最近,中国石油大学(北京)油气光学探测技术北京市重点实验室的宝日玛副教授利用太赫兹时域光谱技术对石盐体系进行了检测,根据石盐矿物的太赫兹波吸收系数随温度的变化关系,总结出石盐矿物的早成岩期、晚成岩期和近似变质阶段的成岩演化过程,实现了地质成岩成矿的太赫兹光谱表征与评价(如图1所示)。相关成果以“地质成岩成矿演化过程的太赫兹光谱研究”为题发表在近期出版的2015年第8期《中国科学: 物理学 力学 天文学》。  研究表明,盐?水体系中的流体包裹体包含了在自然界中保留的主要流体包裹体类型,能够提供古流体组成的物理化学信息。温度是成岩环境的重要因素之一,通过测试包裹体在成岩过程中的温度影响,能够为矿物演化评价提供详细的信息。  该项研究基于太赫兹光谱能够灵敏反映化合物结构与环境的指纹特性以及快速无损检测的特征,首次应用太赫兹时域光谱技术研究了不同温度生长的石盐晶体的光学性质,得到了石盐晶体的太赫兹吸收谱,建立了石盐矿物在温度环境下的演化模型,总结出石盐矿物的成岩过程,并通过理论模拟进一步验证了演化模型的正确性。  这一研究结果表明太赫兹技术可以成为地质成岩成矿演化过程评价的新方法,有望为环境演化、岩盐矿产成矿规律研究和含盐盆地地质成岩成矿演化过程的评价提供新的参考信息。
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。  太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。  仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。  太赫兹光电子学省部共建教育部重点实验室  首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。  目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。  本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。  山东科技大学太赫兹技术研究中心  山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。  目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。  主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。  超快光电子与太赫兹技术实验室  超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。  实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。  实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。  中国计量学院太赫兹技术与应用研究所  中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。  现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。  主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。  中科院太赫兹固态技术重点实验室  2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。  实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。  中物院太赫兹科学技术研究中心  2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。  中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。  此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。  研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立
    p style="text-indent: 2em text-align: justify "strong仪器信息网讯 /strongspan style="text-indent: 2em "太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会于2020年1月12日在天津举行。本次大会由毫米波太赫兹产业发展联盟主办,莱仪特太赫兹(天津)科技有限公司承办,爱德万测试(中国)管理有限公司、中国科学院上海微系统与信息技术研究所与天津大学精密仪器与光电子工程学院联合协办。近百位太赫兹领域的专家学者、各领域的企业用户齐聚天津,分享科研成果、企业需求,共话太赫兹技术与产业发展道路。/span/pp style="text-align: justify text-indent: 2em "太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景。/pp style="text-align: justify text-indent: 2em "国内太赫兹科技研究发展迅速,对太赫兹技术的应用需求与日俱增,将带动国内太赫兹光谱检测与成像技术相关的芯片、模块、系统以及太赫兹数据的爆发式增长。据统计数据显示,2017年中国太赫兹光谱检测与成像技术的市场规模约为2亿元,预计2020年将达5亿元,到2023年中国太赫兹光谱检测与成像技术的市场规模将超10亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/6e629ed1-2554-421c-bd65-6f74be431475.jpg" title="会议照片.jpg" alt="会议照片.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "会议现场/strong/pp style="text-align: justify text-indent: 2em "在此次会议上,毫米波太赫兹产业发展联盟特别成立了“太赫兹光谱与测试工作组”,旨在通过工作组的努力,推动太赫兹光谱技术的应用及其标准化工作,并促进太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。/pp style="text-align: justify text-indent: 2em "会议由毫米波太赫兹产业发展联盟秘书长刘海瑞主持,他首先对联盟的组织架构、联盟单位、工作进展以及“太赫兹光谱与测试工作组”的主要成员进行了介绍,并宣布“毫米波太赫兹产业发展联盟· 太赫兹光谱与测试工作组”正式成立。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/8627ed3b-02fd-479f-9ffe-8033d602f756.jpg" title="刘海瑞.jpg" alt="刘海瑞.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "毫米波太赫兹产业发展联盟秘书长 刘海瑞/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-indent: 2em text-align: justify "随后,揭牌仪式正式开始,由天津市科学技术委员会生物医药处处长王锐与太赫兹光谱与测试工作组组长、天津大学何明霞教授共同揭牌,并为工作组理事单位颁发牌匾。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2ade9f08-8358-4590-9183-96bd5c54051a.jpg" title="揭牌.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌.jpg"//pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/5e497f39-5a58-4659-b731-631b58547eeb.jpg" title="揭牌2.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌2.jpg"//pp style="text-indent: 0em text-align: center "strong揭牌仪式/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/fd76136e-a905-43b6-8c70-20314ad4b7da.jpg" title="lingjiang .jpg" width="600" height="400" border="0" vspace="0" alt="lingjiang .jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong颁发理事单位牌匾/strong/pp style="text-indent: 2em text-align: justify "天津大学精密仪器与光电子工程学院院长曾周末教授、太赫兹光谱与测试工作组组长、天津大学精仪学院何明霞教授和首都师范大学张存林教授分别致辞,表达他们对工作组成立的祝贺与期望。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/972b8f45-0e07-4ef3-8c0c-fe7b135d16a5.jpg" title="院长.jpg" alt="院长.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "天津大学精密仪器与光电子工程学院 院长 曾周末/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3dd1525-346b-4d55-8f44-68c3d1116704.jpg" title="hemingxia.jpg" width="600" height="400" border="0" vspace="0" alt="hemingxia.jpg"//ppbr//pp style="text-align: center text-indent: 0em "strong赫兹光谱与测试工作组组长、天津大学 教授 何明霞/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/b3ce6e8f-0196-47d8-9023-b491d0cad414.jpg" title="张存林.jpg" width="600" height="400" border="0" vspace="0" alt="张存林.jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong首都师范大学 教授 张存林/strong/pp style="text-indent: 2em text-align: justify "大会报告环节中,8位太赫兹领域的专家及工作者进行了精彩的分享。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/90b59608-61c7-45d5-9ecd-0659b8c93984.jpg" title="年夫顺.jpg" alt="年夫顺.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国电子科技集团有限公司 首席科学家 年夫顺/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:基于电子学的太赫兹材料电磁特性测试与结构成像技术研究进展/strong/pp style="text-align: justify text-indent: 2em "在材料测量中,太赫兹材料测量可以深入材料内部,具有电磁特性且对人体无害,有其不可替代性。年夫顺从太赫兹工程相关问题思考、关键技术仪器设备、材料电磁特性测量、材料三维结构成像仪及团队建设未来展望几个部分进行了分享。他还指出,太赫兹目前还没有相应的标准,需要联盟和工作组的共同努力,将太赫兹技术“发扬光大”。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/facef07b-04f9-4eec-9199-37709da8242f.jpg" title="朱亦鸣.jpg" alt="朱亦鸣.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong上海理工大学 教授 朱亦鸣 /strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹波谱技术进展及其应用/strong/pp style="text-indent: 2em text-align: justify "太赫兹因其独特的性质已成为各国争相抢占的科学制高点,它既是科学前沿,又是国家的重大需求。朱亦鸣从目前国内太赫兹技术的发展状况,以及它在食用油油品检测、危险品检测、公共安全检测、中药有效成分检测和癌细胞检测等相关领域的应用对国内太赫兹发展的整体状况进行了介绍。随后,他还分享了太赫兹成像新技术——太赫兹近场超分辨显微镜。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/3d3627d6-6994-4227-aaf4-1f650554325c.jpg" title="黎华.jpg" alt="黎华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海微系统与信息技术研究所 研究员 黎华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:新型太赫兹激光光频梳及光谱应用/strong/pp style="text-indent: 2em text-align: justify "科学与应用的发展对表征技术提出了新的需求,包括超高空间分辨、超快时间分辨及精细光谱分辨等,且表征方法也在向低能量尺度表征发展。黎华基于高性能半导体太赫兹量子级联激光器与光频梳,结合近场显微技术,实现了太赫兹波段时间、空间、光谱的高分辨,解决了色散,主/被动稳频三大挑战,并在国际上首次实现了紧凑型实时太赫兹光谱仪。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/60ae14fe-ace0-4b87-bd15-cd818d3985ae.jpg" title="曲秋红.jpg" alt="曲秋红.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱检测应用研究及莱仪特检测平台/strong/pp style="text-indent: 2em text-align: justify "太赫兹技术应用前景十分广泛,但太赫兹光谱技术发展还存在很多在技术、成熟度及应用场景中的问题。曲秋红在报告中对莱仪特太赫兹(天津)科技有限公司的检测平台进行了简要的介绍,并分享了平台为食品、中药、太赫兹研究等领域用户提供检测服务的典型案例。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/4a9f2910-9926-455d-91df-8c28c4ba6261.jpg" title="赵红卫.jpg" alt="赵红卫.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海高等研究院研究员 赵红卫/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱技术在生物化学中的应用研究/strong/pp style="text-indent: 2em text-align: justify "太赫兹在生物化学和生物医学等领域具有广阔的前景。报告中,赵红卫从太赫兹在生物化学检测和手性生物分子的应用入手,介绍了太赫兹在生物化学及生物医学领域的应用,并分享了太赫兹光谱解析的一些心得。最后,她对太赫兹未来的发展提出了一些展望。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3f6f0ad-9320-48bc-a52f-e47acdb6e7bb.jpg" title="张彦华.jpg" alt="张彦华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong爱德万测试(中国)管理公司 新业务高级拓展经理 张彦华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:“蒲公英花开”——太赫兹谱数据共享平台/strong/pp style="text-indent: 2em text-align: justify "目前,国内外多家单位拥有一定量的太赫兹光谱数据,但都规模较小、检测平台仪器型号多样,导致各单位交流难度大,且无统一的测样标准。张彦华介绍了爱德万测试(中国)管理公司的蒲公英太赫兹谱数据共享平台,是如何通过用户单位共享的方式让用户获得更加完整的数据库。他还展示了数据平台的相关功能。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2f1a6ace-c861-4a8a-92d4-d7cdf410fcfd.jpg" title="叶伟斌.jpg" alt="叶伟斌.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong清华大学天津电子信息研究院 电子综合检测中心总监 叶伟斌/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:测试太赫兹材料与器件电磁参数的技术与方法/strong/pp style="text-indent: 2em text-align: justify "毫米波太赫兹通信具有设备小、定向性强、频谱资源丰富、具有穿透等离子体能力等特点,可以应用于雷达探测、材料成像、生物探测和通讯技术中。报告中,叶伟斌首先简要介绍了清华大学天津电子信息研究院电子综合检测中心的电子综合检测平台,随后,他分享了平台检测雷达芯片的实际案例,最后他还列出了平台提供的毫米波太赫兹的检测服务项目。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/ef2c7fd7-a93c-462d-a8cb-39e20d1f081d.jpg" title="邓玉强.jpg" alt="邓玉强.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院计量院 研究员 邓玉强/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹计量研究/strong/pp style="text-indent: 2em "太赫兹是宏观电子学和微观光子学的桥梁,近年来,各类太赫兹测量仪器不断涌现,但却没有统一的标准。邓玉强研究员介绍了他在太赫兹计量领域的一些研究成果。如太赫兹时域光谱计量、太赫兹辐射功率计量、太赫兹波长频率计量、太赫兹空域参数计量,以及太赫兹计量应用几个部分。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/e2619468-d700-4ff9-b1f3-6f98caa85110.jpg" title="heying.jpg" alt="heying.jpg"//pp style="text-align: center text-indent: 0em "strong全体与会代表合影/strongbr//p
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。  激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。  在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。  飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。  谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。  太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。  邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • 2012年全球实验室太赫兹光谱市场约2000万美元
    太赫兹光谱的特性使其可以应用在各种行业,并且目前许多大公司已经在应用该技术。新竞争者的加入和技术本身的快速发展预示着其已经成长为分子光谱市场的一个主要部分。  太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。  在实验室应用方面,太赫兹光谱技术快速地被大公司采用进行质量分析和产品开发。英特尔公司采用该技术验证它在半导体和电子工业的实用性。许多大型制药公司正在使用该技术用于固体制剂的开发和QA&ndash QC。在临床和医学应用方面,太赫兹光谱也有显著的尝试,尽管其中许多工作目前还处于实验室研究阶段。  2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。2012年实验室太赫兹光谱需求的行业分布  半导体、电子产品、纳米技术行业所占份额最大,达25%;其次是制药行业,为23%;位于第三位的是学术研究领域,为21%;其他应用太赫兹光谱较多的领域还有临床和医学领域14%,政府机构为11%,还有6%的份额为其他行业分享。编译:刘丰秋
  • 太赫兹光谱仪等7项分析检测仪器设备入选“中国黑科技百强名单”
    p  11月11日下午,“T100新技术· 新产品 创新力行动”发布会在北京国家会议中心举办,会议现场颁布了“中国黑科技百强名单”,为历时近一年的“寻找中国最酷的黑科技”行动划上了圆满的句号。其中7项分析检测仪器设备入选“中国黑科技百强名单”。/pp /ppstrong激光原位分析新方法及装置开发/strong(国家钢铁材料测试中心)/ppstrong一种微纳升体系流体芯片的检测系统及检测方法/strong(清华大学博奥生物集团有限公司)/ppstrong太赫兹光谱仪/strong(首都师范大学太赫兹光电子学教育部重点实验室)/ppstrongSUN-1型动车组空心车轴超声波探伤机/strong(北京新联铁集团股份有限公司)/ppstrong果蔬品质快速无损检测和分级技术与装备/strong(北京市农林科学院国家农业智能装备工程技术研究中心)/ppstrong高浓度有机废水高级氧化一体化处理装置项目/strong(煤炭科学技术研究院有限公司)/ppstrong口腔X射线数字化体层摄影设备/strong(北京朗视仪器有限公司)/ppbr//pp  img src="http://img1.17img.cn/17img/images/201611/insimg/3bef8343-2176-4330-b54a-87241c327240.jpg" title="MAIN201611111437000315323085261.jpg"//pp style="text-align: center "  活动现场(张希 摄)/pp  “T100新技术· 新产品 创新力行动”由北京科技协作中心、科技部主管的中国民营科技促进会联合主办,旨在坚持和强化首都全国科技创新中心的核心功能,展示首都科技创新成果,扩大科技改变生活、惠及民生的社会影响力,对新技术、新产品进行宣传推广,营造大众创业、万众创新的新局面。“T100新技术· 新产品 创新力”活动从2016年5月开始,面向全国征集10大类具有代表性的新技术新产品,包括智慧生活、医疗健康、信息网络、能源环保、智能出行、高端制造、现代农业、公共安全、新型材料和绿色建筑。/pp  活动启动仅一个月,就有近千家厂商、科研机构提交报名资料。最终共835家企业参与,征集到1073项新技术和新产品,涉及64个创业先锋团队。通过前期征集、专家初评、网络投票、终期评选、后期发布的形式,最终推出了“2016中国黑科技百强”——新技术· 新产品TOP100,以及创新创业先锋团队TOP10。/pp  strong基于“互联网+”的产品占比45%,信息化让创新“脑洞大开”/strong/pp  “2016中国黑科技百强”中的新技术新产品,近半数依托互联网,其功能颠覆了人们固有的“大小”“远近”“虚实”等观念。/pp  “智慧”改变生活。有光的地方就有网络的Li-Fi技术 具有自我学习能力的计算机视觉技术 仅1.7毫米厚的AR镜片 用互联网思维将垃圾变废为宝的生活污水处理及垃圾分类技术 通过移动通信大数据解决“城市痛点”的技术 以及给每一块肉每一棵菜都配备“身份证”的技术。/pp  “智慧”也为工业制造和商业创新插上了翅膀。能“思考”并“理性”自适应运行的“智能供热系统” 能对高速托运行李进行安检的多视角X射线爆炸物自动探测设备 将AR和VR技术完美融合的“精装修”一体化解决方案 能将10米高的个性化别墅“打”出来的建筑工程3D打印机 能将污水变成高品质水的新型滤膜!/pp  在信息网络类别,有可以将网络安全风险可视化的匡恩工控安全威胁评估平台 由多传感芯片融合带来的低功耗蓝牙智能传感器 达到毫米级精度的StarAtlas运动追踪系统 以及让个人信息更自然地与人连接的慧影个人智能信息系统。/pp  strong高大上的“硬科技”彰显创新能力/strong/pp  “T100新技术· 新产品 创新力行动”的参评项目中,95%都拥有自有专利,在高端装备制造和新材料等领域这一特点更为突出。/pp  在公共安全类别,有配合我国“北斗”卫星导航系统的通信悍将北斗指挥型用户机 用军工技术和加密算法来取代钥匙的特斯联蓝牙智能门锁 通过手指静脉认证识别的非接触式身份验证系统 能够同时对40个人进行实时监控的皓目行为分析仪。/pp  在新型材料类别,一种通过超疏水纳米技术研制的自洁材料能让太阳能电池板“一尘不染” 有一种技术能够利用液态金属墨水打印出个性化柔性电路 废弃塑料垃圾环保资源化处理技术能让塑料垃圾变身优质建材 高耐磨耐蚀新材料与熔覆层的制备关键技术能将火电设备部件寿命提高10倍。/pp  strong解决生活“痛点”,科技惠及民生/strong/pp  本次获奖的“黑”科技为解决首都交通问题提供了多种途径。智能公交电子站牌为乘车者提供公交实时到站、广告等便民服务 “丁丁停车”通过手机遥控来管理车位和充电桩,让“抢车位”不再上演 一种专为地下停车场研发的车位检测及室内导航系统,其定位精度更是达到1米 汽车在行驶过程中出现火情也能靠智能车载灭火系统化险为夷。/pp  医疗健康类别的创新更是“体贴用心”。眼控沟通辅具借助头控和眼控技术,能让人用眼睛“说话”,帮助高位截瘫、中风失语、脑瘫等具有肢体或语言障碍的患者解决沟通障碍 Himama智能备孕仪则让备孕的女性在更加舒适的心态下了解自己的身体状态。/pp  strong帮助科技成果跨越迈向市场的“最后一公里”/strong/pp  本次评选充分体现了政府引导和市场机制相结合的特点,为科技成果迈向市场打通了“最后一公里”。/pp  活动评选出的T100获奖项目将被推荐参与美国《Popular Science(大众科学)》杂志全球T100科技创新奖榜单的评选,还将优先推荐至京东新产品众筹等平台,在中国科技馆及地方科技馆面向公众进行展示,并参与主办方举办的投融资、项目对接、技术转化、媒体宣传等活动。北京地区的T100获奖项目还将被推荐申报北京市新技术新产品认定、北京市新技术新产品(服务)证书认定等,合适的产品还将有可能被纳入政府“首购”范围。/pp  在发布会现场,北京市科委党组成员、北京市科技协作中心主任季小兵,中科院外籍院士王中林,中关村创业大街联合创始人之一的秦君女士进行了即席演讲,对新技术新产品未来发展做出了预测。最后,与会嘉宾为获选的创新创业团队颁发了奖杯及证书。/pp附录:“中国黑科技百强名单”/ppimg src="http://img1.17img.cn/17img/images/201611/insimg/e9721c68-bb64-4f18-8a58-56c3c8c22332.jpg" title="a111.jpg"//p
  • 天津大学何明霞教授:主攻太赫兹工业无损检测 多领域推进产业化
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。天津大学何明霞教授本次会议中,天津大学何明霞教授分享了《太赫兹科学技术应用近年新进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请何明霞教授分享其团队在太赫兹技术及应用拓展方面的系列研究成果。1、成果简介基于太赫兹时域光谱技术的多层非极性复合材料检测系统太赫兹电磁波介于微波与红外之间(0.1THz -10 THz ),处于电子学与光子学的交叉领域,被誉为人类认识世界的“第三只眼睛”、“改变世界的十大科技”。太赫兹具有光子能量低、穿透性强、指纹谱特征、高信噪比、高分辨率、宽频带、瞬态性等独特优势,近年来在工业无损检测领域发展迅速。太赫兹时域光谱技术(THz-TDS)是一种新型的脉冲全息光谱技术,可获取物质的折射率、吸收系数、介电系数等多个物理参数信息。相比于红外光谱、拉曼光谱,太赫兹光谱覆盖了生物大分子、有机分子等物质独特的特征谱信息;相比于X射线,太赫兹辐射能量低,对人体安全;相比于超声检测、涡流检测,太赫兹检测为非接触式、穿透性更强,可表征多涂层的信息。利用新型的太赫兹技术进行物质光谱检测分析、无损扫描成像及超薄样品测厚应用,弥补传统检测手段不足之处,完成更高精度、更快速安全的检测。本团队基于高信噪比、高灵敏度、安全、快速的太赫兹时域光谱技术,开展在非极性电介质材料缺陷探测成像及微米级多涂层测厚领域相关研究。迭代开发智能化工业机器人手臂及协作控制系统,实现对非极性材料内部缺陷三维层析无损扫描成像,对多层的微米级别超薄涂层厚度可进行每单层的精准测量表征。系统覆盖太赫兹波谱宽度为0.1THz -3THz,太赫兹光纤长度10m,工作重复频率10Hz;无损扫描成像层数可达3层,平面扫描范围180×180mm,空间机械臂延伸测量半径为1.3m,最快扫描速度500mm/s;涂层测厚层数可达3层,最小测厚值可达10μm,绝对精度2μm;且满足空间、异形曲面移动多点位精准快速无损检测需求,具有全自动处理、高精度测量、多层厚度实时计算等优势,为超薄涂层类复合材料提供更加精准、高效和可靠的测量方式,适用于汽车工业、航空航天、锂电池电极、非金属管道、泡沫塑料等多领域无损检测场景。2、产业化探索智能化机器人手臂空间异形曲面无损检测系统在未来是考虑多个领域产业化的,拥有在材料检测、无损探伤、医疗检查,以及文物资料研究等多个领域发展的潜质。太赫兹时域光谱技术本身是一个多领域快速发展的检测技术,其测量方式依赖于平面扫描或者曲面扫描载荷技术,配合样本的空间建模,以完成自动化样本数据有序测量。具体到应用领域,需要根据样品的尺寸、规格以及空间特征,设计低成本、易便携、方便取样的测量装置。比如可以对皮肤表面进行快速扫描成像、对曲面的陶瓷文物信息鉴定等,这些有待合作单位的具体要求。3、课题组未来研究计划太赫兹波在电磁波谱中处于电子学向光子学的过渡区,也是宏观经典理论向微观量子理论的过渡区,其具有光子能量低、穿透性强、指纹谱特征等独特优势。太赫兹时域光谱技术利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,检测过程快速、安全、精度高,且光谱具有物质特征峰,在物质鉴别分析、工业无损检测、产线在线质量监测、安检扫描成像等领域应用潜力巨大,弥补传统检测手段的缺陷不足。本研究团队重点主攻方向为太赫兹工业无损检测方向,分析、利用太赫兹时域光谱,建设标准太赫兹光谱数据库,实现物质太赫兹光谱检测分析、微米级多涂层太赫兹精准测厚及材料内部无损探测成像等多方面太赫兹无损检测研究。4、合作需求关于非极性材料无损扫描探测成像、物质太赫兹光谱检测分析及超薄涂层测厚方面,涉及生物医药、锂电池电极、半导体、复合材料、文物艺术品等领域检测需求可探索合作研究。联系方式:曲秋红 15122743715(手机、微信)附专家及课题组简介何明霞,博士,天津大学精密仪器与光电子工程学院电子物理学与仪器科学与技术专业教授、博导,首届“中国生物物理学会太赫兹生物物理分会”副会长兼秘书长、“毫米波太赫兹产业联盟”太赫兹光谱与检测工作组组长、中国仪器仪表学会图像科学与工程分会秘书长、中国光学学会光电技术专业委员会委员,是“天津大学太赫兹光子学”组建者之一和核心骨干。主要研究方向∶太赫兹光谱技术与成像应用和太赫兹生物效应研究。致力于太赫兹时域光谱技术实用化、多种非极性材料的太赫兹光谱成像无损检测及太赫兹生物医学基础研究,是国内最早将太赫兹光谱技术用于癌症组织、生物组织的研究者。太赫兹光谱技术与成像应用团队以高信噪比、高灵敏度、宽带、安全、快速的太赫兹时域光谱技术为核心,结合汽车工业、航空航天、管道塑材、生物医药、食品安全等领域实际应用需求,开展物质太赫兹光谱检测分析、太赫兹标准光谱数据库建设、非极性材料无损扫描成像、微米级多涂层系统精准测厚、太赫兹辐射成分鉴定以及实用化技术应用产品开发等研发工作。搭建太赫兹光谱与成像系统应用平台,完成三维层析太赫兹光谱快速扫描成像测厚设备及智能化工业机器人手臂空间异形曲面无损检测系统的开发,适用于各类涂层的微米级厚度测量和材料内部缺陷的无损检测,如汽车车身涂层、锂电池隔膜、锂电池电极、泡沫塑材、非金属管道、生物组织样品等,相关研究成果及产品拥有自主知识产权20余项。团队研发并已投入市场应用的全国产化高灵敏度太赫兹相机,适用于现有多种主流太赫兹源辐射探测,对非极性物质材料成像清晰,可在安检成像领域推广使用。针对太赫兹光谱检测市场需求,正进行应用标准化和实用数据库的工作,建立多类物质的开源太赫兹标准数据库,实现物质太赫兹光谱的定性与定量分析检测。
  • 太赫兹光谱有望首次应用到临床医学
    6月23日,记者从三军医大西南医院获悉,该院综合实验研究中心主任罗阳教授与检验科主任府伟灵教授及其团队在历时4年研究后,成功利用太赫兹光谱首次实现了多种临床致病菌的快速检测,其检测时间只需要10秒左右,这意味着太赫兹光谱将有望首次在临床医学上运用,具有划时代意义。  该研究成果日前发表在国际著名光学期刊《生物光子学》上,题目为《太赫兹时域光谱用于快速无标记检测和评估病原菌》。  “太赫兹波,也就是频率在0.1到10太赫兹之间的电磁波。”府伟灵介绍,和X射线相比,它波长更多,穿透力却远不如X射线。  从2012年起,这个研究团队开展了大量研究,他们发现太赫兹波对水吸收特别敏感,其生成的光谱能检测出不同细胞的含水量,甚至连细胞内部水分子的振动或旋转,光谱都会呈现出不同的形状。  为进一步开发太赫兹光谱的检测潜能,他们开始研发太赫兹生物检测技术。怎么检测?罗阳举例说,以肿瘤为例,肿瘤内部的新生血管远多于正常组织,血管里含有大量水份,太赫兹波一照就出现明显的吸收,从而能准确判断病情。  目前,西南医院检验科已经收集了金葡萄菌、大肠杆菌、绿脓杆菌等细菌的太赫兹特征性光谱。同时,他们已向国内超过100家医院检验科发出邀请,欲建立不同细胞和细菌的光谱数据库。届时,只需要极少量血或唾液,就能快速检测出感染上了什么细菌,结果更准确,实现科学用药。
  • 太赫兹技术大火 6支仪器概念股受追捧
    据了解,太赫兹生物探测技术已经成为当下一个非常重要的交叉前沿领域,我国目前已经研发出一种太赫兹发射器,该发射器的数据传输速度要比5G至少快10倍,该技术有望在2020年实现应用。太赫兹技术的火热,也引发了公众对于以下几支仪器概念股的关注。  同方股份:控股子公司同方威视技术股份有限公司曾与清华大学共同申请了“一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备”专利权。  大恒科技:太赫兹光谱仪已小批量销售,“基于飞秒激光的太赫兹光谱仪”项目去年已通过专家组2015年年度验收。  华讯方舟:16年4月26日,华讯方舟创始人吴光胜接受媒体采访时称,已成功做出世界第一块石墨烯太赫兹芯片,并在太赫兹研究领域上处于世界领先水平。  天瑞仪器:公司主要从事化学分析仪器及其应用软件的研发、生产销售,同时能提供应用解决方案和相关技术服务。主要产品包括能量色散X射线荧光光谱仪、波长色散X射线荧光光谱仪、镀层测厚X射线荧光光谱仪等36个型号的产品。  四创电子:公司是国家级高新技术企业,国家技术创新示范企业,国家火炬计划重点高新技术企业,全国电子信息行业标杆企业。主营雷达电子、安全电子两大业务。  聚光科技:公司主要从事环境监测、工业过程分析和安全监测领域的仪器仪表的研发、生产和销售,公司产品在线监测气体、液体和固体成分和含量,产品广泛应用于环境保护、冶金、石油化工、电力能源、水泥建材,公共安全等多个领域。
  • 首届全国太赫兹技术与应用交流会召开
    首届全国太赫兹科学技术与应用学术交流会日前在京召开。6位两院院士、23名特邀报告专家,及近300名全国专业学者和科研人员,共同探讨这项“改变未来世界”的新兴科技领域。  太赫兹波是频率范围在0.1T至10THz(波长在3mm至30um)的电磁频谱,它介于毫米波与远红外光之间,是至今人类尚未充分认知和利用的频谱资源,有望对通信(宽带通信)、雷达、电子对抗、电磁武器、安全检查等领域带来深刻变革。作为我国太赫兹领域的首次学术“峰会”,大会交流领域涵盖太赫兹物理与基础理论、太赫兹产生与放大技术、太赫兹传输与检测技术,以及太赫兹在光谱学、通信、雷达、成像中的应用技术等多个学科领域。据悉,我国近年来在太赫兹源、检测器件等领域进展显著,已有数十个高校和科研院所启动太赫兹相关研究。本届大会由中国兵工学会太赫兹应用技术专业委员会主办,太赫兹科学技术研究中心承办。  相关概念股包括大恒科技、天瑞仪器、四创电子等。昨天,受太赫兹概念利好影响,大恒科技开盘即一字封停,天瑞仪器盘中涨停,四创电子涨4.20%。  太赫兹技术可检测潜在的地沟油  据京华时报报道,23日,在上海市教委举办的首场专题新闻发布会上,上海理工大学首度展出“基于太赫兹技术的地沟油快速检测仪”。该仪器基于太赫兹电磁波可以与油脂中的有机物产生共振的原理,能找出潜在的地沟油。  合生财富首席分析师梁万章认为,昨天二级市场对太赫兹概念的追捧力度较大,大恒科技大单封死涨停,但此类涨停有非常明显的游资炒作痕迹。  目前来看,市场对太赫兹概念相对陌生,且此技术从实验室走向民用还需一段时间,而传闻涉及该概念的大恒科技、四创电子等上市企业在未来能否拿到订单实现业绩也是未知数,因此,该类个股“一日游”行情的可能性非常大。  对于市场传闻,记者采访了大恒科技董秘严宏深,他表示公司的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。  大恒科技:太赫兹时域光谱仪开发尚处实验室阶段  据仪器信息网报道,2012年8月8-10日期间,由中国仪器仪表学会、“ 太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办,中国分析测试协会、中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会多家单位支持的“太赫兹科学仪器及前沿技术专题研讨会”在北京紫玉饭店成功召开。  教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒新纪元科技股份有限公司作为牵头单位,首都师范大学作为第一技术支撑单位。太赫兹光谱作为太赫兹应用技术之一,对经济社会发展及民生改善有支撑作用,而且产业化前景非常可观,据Thintri, Inc. 2010年度太赫兹市场报告预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万至数亿美元,市场份额可达到数十亿美元,而张存林教授太赫兹时域光谱仪项目预期为中国带来经济效益数亿美元(以中国市场占10%的全球市场份额估算),产品将拉动中关村高科技示范区高端仪器制造业及相关产业年约10亿元人民币的产值。项目融合宽普、高能量、小型化的趋势特点,以光谱范围0.1-10THz、光谱分辨率7.5GHz、太赫兹脉冲能量10μJ为技术指标,在现有原理样机的基础上进行完善来实现工程化,使整机性能指标达到国际先进水平,并预期实现在2014年小批量试产25台、2016年批量投产100台的目标。  据中国证券报最新报道,参与《基于飞秒激光的太赫兹时域光谱仪开发》项目的专家介绍,目前该项目还处在实验室阶段。今年年初项目组已向相关主管部门申请立项和申报补贴资金,但目前还没有收到正式批文,至于相关的补贴资金量更无从得知。  “大恒科技股价异动属于游资炒作。”有券商研究员指出,短期来看,上述项目对大恒科技的业绩并不能产生直接影响,长期影响也要看,项目是否能够成功获得政府主管部门的支持,2014年能否实现部分产品商用,以及相关产品能够取得的市场的认可。  太赫兹安检技术具有巨大的市场前景  据仪器信息网报道,中国电子科技38所研发的太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。  太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  目前在公共场所的安检是以X射线成像为主,辅助以金属探测器及人工检查,但无法有效检测出人体隐藏的非金属危险物品,进而可能导致恶性暴力及恐怖袭击事件。太赫兹安检技术不仅对人体更加安全,且增加了物联网技术,实现了对被检测对象的智能化识别、定位跟踪、自动报警、管理监控以及信息存储分析和区域网络覆盖,其应用将显著增强城市中公共场所的安全防御能力,有效减少公共安全事件的发生率。  太赫兹安检技术具有巨大的市场前景,预计国内市场潜力在100亿元左右,在世界范围内,太赫兹成像产品潜在的市场销售额可达1000亿元以上。  附:太赫兹(地沟油检测)概念股一览  天瑞仪器、大恒科、四创电子、百利电气、同方股份都进入太赫兹领域,四创电子控股股东38所曾研制出样机。TCL则是介入下一代手机太赫兹研究。  大恒科技:公司表示的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。市场传言,教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒科技作为牵头单位,首都师范大学作为第一技术支撑单位。  天瑞仪器:目前公司出产的LC310高效液相色谱仪可以应对地沟油黄曲霉毒素b1的限量检测。  同方股份:控股子公司同方威视技术股份有限公司曾与清华大学共同申请了“一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备”专利权。  四创电子:此前有报道称,四创电子大股东华东电子工程研究所(中国电子科技集团公司第三十八研究所)太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  TCL:2011年深圳先进科学与技术国际会议第三届会议上,公司称目前工业界已全面进入太赫兹开发及应用领域,太赫兹已在通讯领域崭露头角,TCL通讯期待与各位专家学者一起开发与研究太赫兹科学技术,带动通讯产业的技术发展。  百利电气:传百利旗下公司投资上游实验室研发的集成THz医学成像设备比东芝最高端成像效果清晰100倍。  凤凰光学、聚光科技:上述“基于太赫兹技术的地沟油快速检测仪”由上海现代光学系统重点实验室与上海市分析检测协会合作研发,拥有自主知识产权。其中,上海现代光学系统重点实验室的合作单位包括凤凰光学(上海)有限公司、聚光科技(杭州)有限公司。  概念解析:太赫兹  太赫兹(Terahertz,1THz=1012Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。  太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高 又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。
  • 预算931.5万!长春理工大学太赫兹波谱与无损检测实验室采购一批仪器
    近日,长春理工大学中山研究院太赫兹波谱与无损检测实验室发布3项招标公告,采购傅里叶红外光谱仪、傅里叶太赫兹光谱仪、高功率飞秒激光器、量子级联激光器、太赫兹时域光谱系统、高精度工业CT扫描系统等仪器设备,总预算达931.5万元。详情如下:长春理工大学中山研究院太赫兹波谱与无损检测实验室高精度工业CT扫描系统等采购项目1、预算金额:316.5万元2、采购需求:品目号品目名称采购标的数量(单位)品目预算(元)1-1工业机器人六轴机器人1(台)160,0002-1光学测试仪器太赫兹时域光谱系统1(台)950,0003-1射线式分析仪器高精度工业CT扫描系统1(台)1,975,0003-2工业机器人片剂药物检测机器人1(台)80,000合计3,165,0003、获取招标文件时间:2022年3月25日至2022年4月1日,每天上午00:00:00至12:00:00 ,下午12:00:00至23:59:59 地点:广东省政府采购网长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目1、预算金额:285万元2、采购需求:品目号品目名称采购标的数量(单位)品目预算(元)1-1光学式分析仪器傅里叶红外光谱仪1(台)1,800,0001-2红外仪器傅里叶太赫兹光谱仪1(台)1,050,000合计2,850,0003、获取招标文件时间:2022年3月18日至2022年3月25日 ,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59 地点:广东省政府采购网 长春理工大学中山研究院太赫兹波谱与无损检测实验室高功率飞秒激光器和量子级联激光器采购项目1、预算金额:330万元2、采购需求:品目号品目名称采购标的数量(单位)品目预算(元)1-1激光仪器高功率飞秒激光器1(台)1,900,0002-1激光仪器量子级联激光器1(台)1,400,000合计3,300,0003、获取招标文件时间:2022年3月18日至2022年3月25日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59 地点:广东省政府采购网联系方式1.采购人信息名称:长春理工大学中山研究院地址:中山市火炬开发区会展东路16号数码大厦15-17层联系方式:0760-869811272.采购代理机构信息名称:广东人信工程咨询有限公司中山分公司地址:中山火炬开发区孙文东路濠头段12号光裕大厦第五层A区联系方式:0760-888387183.项目联系方式项目联系人:黄小姐电话:0760-88838718
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, Mengyun Wang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • 上海光机所在单层WSe2-Si超快太赫兹发射光谱研究方面取得进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与国科大杭州高等研究院和中国科学院空天信息研究院合作,在二维WSe2-Si的混合维度异质结中瞬态电流太赫兹发射动力学以及谷自由度探测方面取得研究进展。相关研究成果以 “Ultrafast Drift Current Terahertz Emission Amplification in the Monolayer WSe2/Si Heterostructure”为题发表于The Journal of Physical Chemistry Letters上。基于单层过渡金属硫族化合物(TMDs)的范德瓦尔斯异质结作为同时具有强的自旋动量锁定效应与能带可调等丰富的光电性质的二维半导体,在片上集成光源、新型光电探测和谷电子学技术中具有重要的应用潜力。图1 (a)太赫兹发射光谱系统示意图;(b) 太赫兹脉冲时域波形;(c) 异质结中耗尽电流辐射太赫兹示意图。本工作首次利用非接触的超快太赫兹发射光谱技术探测了TMDs-Si异质结中耗尽场放大的瞬态光电流,并利用其探测了其中单层二维材料放大的谷自由度并实现了全光操控。本工作为基于二维-三维混合维度异质结的谷电子学探索提供了新思路。在这项工作中,研究人员使用时间分辨太赫兹发射光谱系统,研究了单层WSe2-Si异质结经飞秒激光泵浦后的超快太赫兹发射动力学过程。通过对太赫兹发射机理的分析,发现并验证了WSe2-Si异质结中增强的耗尽电场加速载流子迁移,从而导致更大的瞬态电流与对应10倍增强的太赫兹辐射的作用过程。图2 (a) 光学选择定则示意图;(b) 单层WSe2与异质结中的泵浦光手性依赖现象。同时,利用时间分辨太赫兹发射光谱系统可在无需特殊环境(低温、磁场、应力)的室温条件下探测到单层WSe2与WSe2-Si异质结中泵浦光手性依赖的谷光电流,证实了二维-三维异质结中自旋动量锁定效应的存在,同时也发现单层WSe2材料的谷-动量锁定的光电流手性在异质结中得到了保留。由此利用谷光电流偏振依赖特性,也可以实现对半导体材料发射太赫兹的有效调控。硅基二维-三维材料异质结中实现太赫兹辐射放大的方法拓展了基于超快光学方法的太赫兹辐射源提升效率方式,对于新型片上可集成的太赫兹芯片研究具有重要的意义。此外,超快太赫兹发射光谱在室温条件下对于TMDs材料中谷光电流的无接触探测拓宽了探测自旋动量锁定效应的方法路径,为基于此类异质结的谷电子学的研究提供了新的思路。
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 大恒科技太赫兹项目明年小批量投产
    国家&ldquo 加码&rdquo 投资食品安全产业链,除了主营食品追溯系统的公司如远望谷等受益外,拥有食品安全检测产品的上市公司如大恒科技也有望迎来新的发展良机。  大恒科技去年牵头的&ldquo 太赫兹光谱仪项目&rdquo 已获批科技部国家重大开发专项立项,公司方面预计明年将实现20多台量产,每台售价逾100万元。  据公告披露,由北京市科学技术委员会组织、大恒科技牵头的&ldquo 基于飞秒激光的太赫兹时域光谱仪开发项目&rdquo 申报国家重大科学仪器设备开发专项项目立项获科技部审批通过。该项目协作单位包括北京大学、南京大学、中国科学院电子学研究所等13家院校及科研单位。项目自2012年10月起至2017年9月止,目标是研发出性能稳定、质量可靠的基于飞秒激光的太赫兹时域光谱仪 通过在食品安全检测、药品分析、临床检测、油气分析等领域中的应用开发,丰富太赫兹时域光谱仪的测试应用功能,并在材料无损检测、环境监测等领域推广。  据公司人士介绍,目前市场尚无成品 尽管太赫兹时域光谱仪应用领域广泛,但未来市场规模有多大也难以预测。该人士以地沟油监测为例说明,光谱仪在食品安全监测领域的应用原理是,通过太赫兹的光源发生变化形成地沟油的光谱方式,然后将检测物的光谱二者做对比即可鉴别。  &ldquo 由于用以前的传统方式监测需要将地沟油化解方可监测出 若光谱仪产品普及,则可随时持续监测,保证食品安全。&rdquo 公司人士表示。
  • 通知|太赫兹光谱与测试应用研讨会 暨“太赫兹光谱与测试工作组”成立大会 邀请函
    p style="text-align: justify text-indent: 2em "strong太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。/strong随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,strong正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景/strong。/pp style="text-align: justify text-indent: 2em "在多家科研机构与相关企业的努力下,strong毫米波太赫兹产业发展联盟拟成立“太赫兹光谱与测试工作组”/strong,将会对太赫兹光谱技术的应用及其标准化工作产生非常积极的影响,并促进加快太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。为了进一步推进太赫兹光谱与测试应用的相关工作,加快服务平台建设,strong联盟将于2020年1月12日举办“太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会,旨在分享科研成果,加强企业交流,探讨产业发展道路。/strong欢迎各位联盟成员积极参与,献言献策,共同推进太赫兹产业发展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/55c27dd3-a921-420e-9149-f3c3928176fe.jpg" title="捕获1.JPG" alt="捕获1.JPG"//pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong大会组织/strong/span/pp style="text-align: justify text-indent: 2em "strong主办单位/strong:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "strong承办单位:/strong莱仪特太赫兹(天津)科技有限公司/pp style="text-align: justify text-indent: 2em "strong协办单位:/strong爱德万测试(中国)管理有限公司 中国科学院上海微系统与信息技术研究所 天津大学精密仪器与光电子工程学院/pp style="text-align: justify text-indent: 2em "strong支持媒体:/strong仪器信息网/pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong大会信息/strong/span/pp style="text-align: justify text-indent: 2em "strong会议规模:/strong120人/pp style="text-align: justify text-indent: 2em "strong时间:/strong2020年1月12日 13:30-17:40/pp style="text-align: justify text-indent: 2em "strong地点:/strong天津高新区党群活动中心三层会议大厅举行(天津市西青区海泰发展三道8号)/pp style="text-align: justify text-indent: 2em "strong会议签到:/strong13:00-13:30,三层会议大厅走廊/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 633px height: 546px " src="https://img1.17img.cn/17img/images/201912/uepic/93942039-2a47-4988-acab-22f423d5b644.jpg" title="捕获2.JPG" alt="捕获2.JPG" width="633" height="546"//pp style="text-align: center text-indent: 0em "span style="font-size: 24px "strongspan style="font-family: 黑体, SimHei "报名方式/span/strong/span/pp style="text-align: justify text-indent: 2em "如您需要报名,请扫描下方二维码,填写报名信息,期待您的到来!/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 194px height: 197px " src="https://img1.17img.cn/17img/images/201912/uepic/89c5de2e-48e4-4e9e-a3b6-675b1c6e2800.jpg" title="捕获.JPG" alt="捕获.JPG" width="194" height="197"//pp style="text-align: center "span style="text-indent: 0em "扫描二维码,填写报名信息/span/pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong会议赞助/strong/span/pp style="text-align: justify text-indent: 2em "本次研讨会的会场外侧具有上百平米的展示区域,strong赞助单位/strong可展示易拉宝、产品、宣传手册等,感兴趣的单位请与strong联盟/strong(下方主办单位)取得联系。/pp style="text-align: justify text-indent: 2em "strong联系方式/strong/pp style="text-align: justify text-indent: 2em "主办单位:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "联系人:王贺娟/pp style="text-align: justify text-indent: 2em "联系方式:17810282650/pp style="text-align: justify text-indent: 2em "微信公众号:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "邮箱:service@chinamta.org.cn/ppbr//pp style="text-align: justify text-indent: 2em "strong承办单位:莱仪特太赫兹(天津)科技有限公司/strong/pp style="text-align: justify text-indent: 2em "联系人:崔鹤峰/pp style="text-align: justify text-indent: 2em "联系方式:13672188587/pp style="text-align: justify text-indent: 2em "微信公众号:莱仪特太赫兹 /pp style="text-align: justify text-indent: 2em "邮箱:let@letthz.onaliyun.com/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strong关于毫米波太赫兹产业发展联盟(附入会指南及申请表)/strong/pp style="text-align: justify text-indent: 2em "毫米波太赫兹产业发展联盟(下文简称:联盟)于 2019 年 4 月 26 日上午在京成立,其宗旨是加快我国毫米波太赫兹产业发展,搭建产业协作与孵化平台,充分运用政用产学研,提高产业创新能力,提升我国在通信、自动驾驶、航空航天、安全防护、生物医学、工业互联网等应用领域的技术水平与产业化能力。在政府、产业界、学术界之间发挥桥梁和纽带作用,分享学术界的科研成果,对接企业需求解决实际问题,实现毫米波太赫兹产业创新发展。/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201912/attachment/e81299b1-fd2d-4fc1-b803-5ff83253195d.pdf" title="指南 毫米波太赫兹产业发展联盟入会指南.pdf"指南 毫米波太赫兹产业发展联盟入会指南.pdf/a/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201912/attachment/3ad5e21e-d5a3-4fc7-858e-9a0e1619cf8c.docx" title="申请表 毫米波太赫兹产业发展联盟.docx"申请表 毫米波太赫兹产业发展联盟.docx/a/p
  • 太赫兹光谱有望解释水的异常性质
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/ce83a30b-4cc7-4eaf-8986-3042bceab55b.jpg" title="微信图片_20180709110801.jpg"//ppbr//pp  液态水维持着地球上的生命,但其物理性质对于研究人员来说仍是个谜。最近,一个瑞士研究团队利用已有的太赫兹光谱技术测量了液态水的氢键。利用这种技术开展的工作,未来或许能帮助解释水的特殊性质。该团队在美国物理联合会(AIP)出版集团所属《化学物理学报》上报告了他们的发现。/pp  研究人员利用超短可见激光脉冲激发了溶解在水中的染料分子,从而改变了它们的电荷分布。随后,太赫兹脉冲测量了周围水分子的反应。频率相对较低的太赫兹光谱使研究人员得以分析水分子之间存在的力。观察这些分子间的力或能帮助研究人员理解水的异常现象,因为液态水分子中的氢键构成了水的很多意想不到的性质,比如水在4℃时密度最大。/pp  “我们在太赫兹频率范围内看到的反应极其缓慢。水通常被视为非常快的溶剂,能在亚皮秒量级内作出反应。但我们在太赫兹波段发现了10皮秒左右的时间尺度。”论文作者之一Peter Hamm介绍说。/pp  但Hamm警告不要对此过分乐观。“结果经常有点令人失望,因为像水一样的液体的太赫兹光谱非常宽,并且极其模糊。这导致从里面提取信息很困难。”最新研究采用的时间分辨技术,或能克服这一限制。下一步,研究人员计划利用该方法探寻水仍处于液态但低于冰点时的结构和动力学机制 。/ppbr//p
  • 亚太市场将成为太赫兹/红外光谱仪器商主要收入来源
    p  日前,MarketsandMarkets发布了一份报告,分析研究了太赫兹和红外光谱市场发展的主要驱动力,面临的瓶颈、挑战、机遇等。/pp  strong太赫兹光谱/strong主要应用于半导体、国土安全、研发以及非破坏性测试领域。2015年,半导体领域估计占太赫兹光谱市场的主要份额。预计2020年全球太赫兹市场规模将达到5253万美元;预测期2015年~2020年内,复合年增长率为21.3%。/pp  太赫兹光谱市场按地区可划分为北美、欧洲、亚太以及其他地区。2015年,北美地区预计将占到太赫兹光谱市场的最大份额,其次是亚太地区和欧洲。然而,预计在预测期间亚太市场将以最高的年复合增长率增长,成为太赫兹光谱设备公司的收入口袋。/pp  太赫兹光谱市场的主要参与者包括TeraView, Ltd. (U.S.), Menlo Systems GmbH (Germany), Toptica Photonix AG (Germany), Advanced Photonix, Inc. (U.S.), Advantest Corporation (Japan)./pp  strong红外光谱/strong又可细分为近红外、中红外和远红外光谱。2015年,中红外光谱占整个红外光谱市场的主要份额。预计2020年全球红外光谱市场将达到12.56亿美元;预测期2015年~2020年内,复合年增长率为6.9%。/pp  红外光谱仪市场分为台式、显微成像、便携或手持式以及联用仪器。2015年,台式红外光谱仪占整个红外光谱市场的主要份额。/pp  红外光谱主要应用于制药/生物技术、化学工业、环境、食品饮料等领域。2015年,制药与生物科技领域占整个红外光谱市场的主要份额。/pp  红外光谱市场划分为北美、欧洲、亚太以及其他地区。2015年,北美地区占到整个红外光谱市场的最大份额,其次是欧洲和亚太地区。然而,在预测期间亚太市场将以最高的年复合增长率增长,成为作为红外光谱仪器公司的收入口袋。/pp  全球红外光谱市场的主要参与者包括Agilent Technologies (U.S.), PerkinElmer (U.S.), Thermo Fisher Scientific (U.S.), Bruker Corporation (U.S.),Shimadzu Corporation (Japan)./p
  • 2023年全球太赫兹组件和系统市场将达4.15亿美元
    Transparency Market Research最近的一份市场研究报告显示, 2014年,全球太赫兹组件和系统的市场规模为5600万美元,预计2023年该市场将达4.15亿美元,2015年-2023年之间复合年增长率为25.9%。  太赫兹技术在各种工业过程控制监控和质量控制过程中的应用等将刺激全球市场需求的增长。此外, 太赫兹设备在研究实验室中应用的增加也是推动这一市场增长的主要因素。太赫兹技术的进步和太赫兹组件在非破坏性测试和医学成像方面日益增长的使用等都将有望推动该市场的增长。  从组件方面来说,该市场可以划分为太赫兹源、太赫兹探测器等。截至2014年,太赫兹源占据最大的市场份额。不同应用领域中对高性能太赫兹源不断增长的需求正在推动这部分市场的增长 在系统方面,该市场可以划分为太赫兹光谱、太赫兹雷达和太赫兹遥感。此外,基于光谱学的系统还可以进一步被划分为时域光谱、频域光谱和成像扫描。截至2014年,光谱学系统占据最大的市场份额 在应用方面,该市场可以划分为工业过程控制、研究实验室应用、医学成像、非破坏性测试等。截至2014年,非破坏性测试是最具吸引力的部分,其次是在研究实验室的应用。2014年,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场份额 从地理位置上来说,截至2014年,北美市场占最大的份额。太赫兹技术在生物学和医学科学中应用的增加是推动市场增长的一个因素。此外,过程改进中对材料的检查和测试是太赫兹技术在欧洲和亚太地区的主要应用领域。  这个市场的一些主要厂商有Advantest Corporation (日本),Digital Barriers PLC (英国),Applied Research & Photonics(美国),EMCORE(美国),Teraview(英国),Bruker(美国),M Squared Lasers (英国),NEC(日本),Menlo Systems GmbH (德国),Techcomp Group (香港),Bridge12 Technologies(美国)和Microtech Instruments (美国)等。
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。会议现场  开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。中国仪器仪表学会副理事长兼秘书长吴幼华先生电子科技大学刘盛纲院士  首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。  电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。国家自然科学基金委员会信息科学部张兆田主任  在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。首都师范大学物理系张岩主任  此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。  大会报告 技术发展篇太赫兹光电子学教育部重点实验室主任张存林教授报告题目:基于飞秒激光的太赫兹时域光谱仪开发  张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。上海大学马国宏教授报告题目:太赫兹脉冲的产生及波前控制研究  马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生报告题目:太赫兹高灵敏超导热电子探测器技术  张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。天津大学姚建铨院士报告题目:太赫兹技术及太赫兹仪器的发展趋势  姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。首都师范大学赵国忠教授报告题目:太赫兹波产生探测及太赫兹时域光谱技术  赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。  此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。北京理工大学胡伟东教授报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz)哈尔滨工业大学(威海)田兆硕教授报告题目:THz激光F-P旋转透过率研究中国计量科学研究院孙青博士报告题目:太赫兹光谱与功率计量技术  大会报告 应用篇首都师范大学沈京玲教授报告题目:太赫兹光谱技术在毒品检测中的应用研究  沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。上海理工大学副院长朱亦鸣教授报告题目:基于太赫兹技术的药物分析与检测  朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。中国石油大学(北京)赵卉博士报告题目:太赫兹技术在油气光学中的应用  赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。  此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。中科院上海微系统所谭智勇博士报告题目:太赫兹量子器件及其成像应用中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用  除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。安捷伦科技(中国)有限公司叶伟斌先生报告题目:安捷伦毫米波测试解决方案脉动科技有限公司陆明先生报告题目固体THz源和异步采样THz时域光谱系统先锋科技股份有限公司Albert Redo-Sanchez先生报告题目:Terahertz Instrumentation Status and Market Outlook先锋科技股份有限公司Patrick F. Tekavec先生报告题目:High Power THz sources顶尖科仪(中国)股份有限公司贺雪鹏先生报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用  报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。与会代表参观太赫兹光电子学教育部重点实验室太赫兹光电子学教育部重点实验室部分仪器设备与会代表合影
  • 太赫兹器件研究取得系列进展
    p  中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。/pp  太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。/pp  通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。/pp  另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。/pp  此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。/pp  上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title="1.png"//pp style="text-align: center "硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title="2.png"//pp style="text-align: center "金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title="3.png"//pp style="text-align: center "La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系/ppbr//ppbr//p
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125
  • 国内首套真空太赫兹波段近场光学显微系统在电子科技大学太赫兹中心成功安装
    太赫兹有着光明的应用前景,还是一片未开垦的处女地。电子科技大学太赫兹中心自成立以来,为太赫兹科学研究搭建了更高的合作发展平台,也标志着我国以“国际前沿、”为目标的太赫兹科学研究迈入了崭新阶段。2018年6月,应电子科技大学太赫兹中心对真空环境下进行太赫兹近场光学研究的需求,QD中国工程师配合德国neaspec公司立即展开积响应并为客户量身定制了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM),并已成功安装。 图1:电子科技大学太赫兹中心安装调试现场 图2:真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM) 电子科技大学太赫兹中心原有一套大气环境太赫兹波段近场光学显微系统(THz-neaSNOM),空间分辨率~50nm、宽太赫兹时域近场响应波段0.5-2.2THz。由于更进一步的科研需要,客户需在更加严格的真空条件下进行太赫兹实验。为了满足客户的实验需求,德国neaspec公司在原有大气环境THz-neaSNOM的基础上,结合新的低温散射式近场光学显微镜(Cryo-neaSNOM)技术,设计了新的真空腔体系统,改进了原子力显微镜布局,并重新设计了光路,终成功研发出了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)。该套系统成功地继承了德国neaspec公司THz-neaSNOM的设计优势,采用保护的双光路设计,完全可以实现真空环境下太赫兹波段应用的样品测量。HV-THz-neaSNOM在实现30nm高空间分辨率的同时,由于采用0.1-3THz波段的时域太赫兹光源(THZ-TDS),也可以实现近场太赫兹成像和图谱的同时测量。这大地满足真空环境中太赫兹近场光学研究的需求,可以减少大气中水对太赫兹波段的吸收影响,能更好地保持样品的洁净,为用户进一步集成真空设备提供了基础。 图3:系统理论培训 图4:现场实时操作培训 太赫兹波有强的穿透性,对不透明物体能完成透视成像,用来做半导体材料、生物样品等的检测是其应用趋势之一。该套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)的集成,将在生物应用、半导体元器件和相变材料载流子等研究及领域都有着广阔的应用前景,有望为广大太赫兹科研工作者提供更多实际研究工作中的便利和支持。
  • 我国基于太赫兹技术的仪器研制备受关注
    仪器信息网讯 自2011年&ldquo 国家重大科学仪器设备开发专项&rdquo 及&ldquo 国家重大科研仪器设备研制专项&rdquo 设立以来,&ldquo 基于太赫兹技术的新一代危险品分析检测仪器开发&rdquo 、&ldquo 相干强太赫兹源科学仪器设备开发&rdquo 、&ldquo 太赫兹超导阵列成像系统&rdquo 、&ldquo 基于飞秒激光的太赫兹时域光谱仪开发&rdquo 等多项基于太赫兹技术的仪器研制项目获批立项。  同时国内各研究机构对太赫兹安检仪的研发也很关注。据报道,2012年2月,由中国电子科技集团38所研发的太赫兹安检技术取得关键性进展,首台样机可在年内面世。  2012年9月,记者从山东省科学院自动化研究所了解到,该所最近成功研制出一种特殊的仪器设备,能够让我们&ldquo 看&rdquo 到障碍物另一侧的状况。这一最新成果的达成,标志着我国超宽带与太赫兹探测成像领域取得重大突破,对于保障公共安全和国民经济发展具有重大意义。反恐防暴和人员救援的&ldquo 好帮手&rdquo   2012年12月,由首都师范大学、北京理工大学、北京维泰凯信新技术有限公司承担的北京市科技计划&ldquo 太赫兹安检仪产品样机研制&rdquo 课题通过了专家验收。该课题研制出国内首台太赫兹安检仪产品样机,实现了以每秒3-5帧的速度对人体进行1*2米大尺寸被动成像,分辨率达到2cm,能够替代国外同类产品。  2012年12月,中国航天科工二院顺利完成了太赫兹高技术课题的年度研究任务,填补了国内太赫兹波散射研究的空白。作为后续,该院还将搭建首套太赫兹波安全监测测试系统,为太赫兹在安检等领域的产品开发提供基础。  另外,基于太赫兹检测技术的地沟油快速检测仪样机也已问世。2012年10月23日,在上海市教委举办的首场专题新闻发布会上,上海理工大学首度展出&ldquo 基于太赫兹技术的地沟油快速检测仪&rdquo 。该设备检测准确率超过90%,可解决当下地沟油监管难、检测难的问题。据报道,该检测仪样机已成形,并付诸批量生产,年底前或将面世。  关于太赫兹技术  太赫兹波的频率范围在0.1T至10THz(波长在3mm至30um),是一种介于红外光和微波之间、有着独特优点的电磁波段,在通信、雷达、医学成像、安全检查等领域都有广泛的应用前景,因此被国外评为改变未来世界的十大技术之一。但由于技术、材料等限制,国内外涉及太赫兹波段的研究结果和数据并不多。  我国政府在2005年11月专门召开了&ldquo 香山科技会议&rdquo ,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。撰稿:秦丽娟
  • 先睹为快!国产厂商首发新品:太赫兹三维层析成像系统
    p  strong仪器信息网讯/strong 2020年5月29日上午九点,青源峰达将在抖音平台发布新产品QT-TO1000太赫兹三维层析成像系统。/pp  青岛青源峰达太赫兹科技有限公司是中国工程物理研究院及青岛盛瀚色谱技术有限公司合资成立的公司,致力于太赫兹基础技术、系统技术和应用技术的研发设计,重点领域为医学及工业检测领域。公司成立以来,已发布了QT-TS1000高精度太赫兹时域光谱系统和QT-TS2000快速太赫兹时域光谱系统两款新产品。/pp  5月29日,青源峰达将再次网上发布新产品QT-TO1000太赫兹三维层析成像系统。届时,此产品的研发负责人、技术大咖们将从幕后走向台前,通过现场和线上的不同形式与用户实现面对面交流,从不同维度全面阐述产品的核心亮点,与应用客户和技术爱好者进行深入交流和探讨。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 342px " src="https://img1.17img.cn/17img/images/202005/uepic/c20c958e-7f58-4b8e-b469-28334f8c6085.jpg" title="太赫兹.jpg" alt="太赫兹.jpg" width="450" height="342" border="0" vspace="0"//pp style="text-align: center "strong新品外观先睹为快/strong/pp  三维层析成像技术是目前国内外光学领域一个重要的研究方向,以嵌入到了现代工业与文化创意产业的整个流程 它是获取物体表面形态特征的重要手段,也是真实物体三维数字化的基础。太赫兹三维层析成像技术是较为成熟的三维物体表面成像与测量技术,是一种太赫兹波谱方式的宽场成像技术 经过特定算法的解算和重构可以实现三维光切片成像,并且能够精确解析样品表面的复杂结构。/pp  中国工程物理研究院主要从事国家战略高新技术装备和战略科技领域的研究,主要学科方法包括微波毫米波电路及系统研究,span style="color: rgb(255, 0, 0) "太赫兹电路及系统研究/span,电真空电子电路及系统研究,通信与信息系统研究,超高速数字信号处理研究等。/pp  除了新品面世,发布会当天,青源峰达太赫兹科技有限公司与青岛大学将围绕太赫兹技术应用、海洋观测等领域的科学和技术问题,依托物理科学学院学科平台以及山东省海洋观测与宽带通信技术协同创新中心,结合青岛青源峰达太赫兹科技有限公司在太赫兹与水下观测方面的技术基础和生产研发平台,本着优势互补、互利共赢、促进发展的原则,在专业人才培养、科研合作、成果转化等方面达成合作协议,并签署协议,努力实现“校企合作、产学共赢”,推动学科服务社会能力和科研成果转化。届时,中国工程物理研究院流体物理研究所、中国石化青岛安全工程研究院、山东科技大学等院校专家领导将共同见证!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/a164fb1b-6874-4a8a-a102-a9b145b66ccd.jpg" title="微信图片_20200528175821.jpg" alt="微信图片_20200528175821.jpg"//pp style="text-align: center "strong欢迎参会!/strong/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制