当前位置: 仪器信息网 > 行业主题 > >

测量内石英晶体振荡器

仪器信息网测量内石英晶体振荡器专题为您提供2024年最新测量内石英晶体振荡器价格报价、厂家品牌的相关信息, 包括测量内石英晶体振荡器参数、型号等,不管是国产,还是进口品牌的测量内石英晶体振荡器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测量内石英晶体振荡器相关的耗材配件、试剂标物,还有测量内石英晶体振荡器相关的最新资讯、资料,以及测量内石英晶体振荡器相关的解决方案。

测量内石英晶体振荡器相关的资讯

  • 国内首台产品级掺镱高功率飞秒振荡器研制成功
    近日,北京量子信息科学研究院(简称“量子院”)全光量子源团队开发完成了国内首台产品级高功率飞秒振荡器——Fermion-007。该产品弥补了国内瓦量级飞秒振荡器的产品空白,在国际上仅有立陶宛Light Conversion等少数几家公司具有相当技术指标的产品。Fermion-007采用了多项创新技术,仅一级振荡器即可输出大于7W、重频80MHz的飞秒脉冲激光,其指标、可靠性均达到国际先进水平。目前,研发团队已接到超快电镜应用领域的商业合作订单。作为产生飞秒脉冲激光的“种子”,超快飞秒振荡器(Ultrafast femtosecond oscillator)具有高重频、高光束质量等优势,但输出功率普遍较低,往往需要对其进行功率放大以满足应用需求。然而,这种“振荡器+放大器”的技术路线会大大增加系统复杂度,导致成本变高、可靠性变差,从而限制了飞秒激光的受众范围。此外,超快电镜、飞秒双光子显微成像等应用对激光重复频率也有较高要求,因此,高功率飞秒振荡器成为相关领域的急需产品。飞秒振荡器主要分为光纤和固体两大类。固体振荡器虽然技术难度较高,但最高输出功率比光纤高3个量级,且具有更高重频和更长的锁模器件寿命,是满足应用需求的最佳技术方案。二者的具体对比见表1。表1 光纤、固体飞秒振荡器参数对比光纤飞秒振荡器固体飞秒振荡器直接输出功率百pW至mW量级几十mW至W量级最高重复频率百MHz几GHz飞秒锁模方式/器件寿命SESAM/3个月1. SESAM/3个月2. 克尔透镜锁模/无寿命问题技术难度技术门槛较低。基于标准化光纤器件、光纤熔接机设计、生产。技术门槛较高。对于腔型设计、调试经验、工程化等均有要求较高。对于产品商业化而言,工程水平的高低起决定作用。定制化程度激光器结构、指标类似,激光表现主要依赖于光纤、熔接仪器等的上游器件的性能。结构灵活性好,适合针对应用定制功率、重频、脉宽、中心波长等指标国内商业化现状5-10家商业化公司目前尚无商业化公司基于上述应用需求和技术路线分析,北京量子院开发了Fermion系列高功率全固态(DPSS)飞秒振荡器。在不需要额外放大的情况下,Fermion-007可直接输出大于7W、80MHz的飞秒脉冲激光,脉冲宽度~120fs,中心波长1035nm。此外,输出激光还具有优异的光束质量和长期稳定性,两维M2小于1.2,12小时连续运转功率均方根值小于0.3%。图1 Fermion-007 光谱及脉冲宽度测量图2 Fermion-007 光束质量及长期稳定性工程化是激光器从实验样机蜕变成可用产品的核心环节。Fermion-007采用了低热阻晶体封装、一体化密封、温湿度负反馈控制等多项工程技术,并对腔体、冷却模组的设计进行了模拟优化,以降低高泵浦热量对激光器运行环境的不利影响。激光器采用克尔透镜锁模(Kerr-lens mode locking)作为飞秒脉冲产生、维持的机制,相比可饱和吸收体(SESAM)具有更长的寿命和更高的器件可靠性。此外,研发团队首次将新型“射频同步技术”应用到Fermion-007中,用以自启动及维持飞秒锁模状态,从根本上克服了克尔透镜锁模飞秒振荡器长期存在的“失锁”问题。图3 Fermion-007 机械热分布及水路的模拟高功率飞秒振荡器在双光子显微成像、光参量泵浦等领域应用广泛。近年来,随着相关技术的发展,超快电镜、超快电子衍射等标准化仪器对此类激光器的市场需求也在迅速提升。超快电子显微镜(Ultrafast electron microscopy(UEM))是由传统电镜升级改造而成的高端分析仪器,“飞秒激光驱动光阴极”系统是其新增的核心模块。升级后的超快电镜除了拥有原子尺度的空间分辨率外,还具有飞秒-皮秒尺度的超高时间分辨率,由此成为研究材料动力学过程的有力工具。图4 Fermion系列产品在超快电镜中的应用研发团队与相关系统商开展了新型超快电镜开发的前沿合作,首次提出利用飞秒振荡器产生高重频的超快电子,以降低激光脉冲对光阴极造成的损伤风险。该方案有望从根本上解决此类仪器长期存在的光阴极可靠性问题,提高超快电镜产品的使用寿命和市场竞争力。据合作系统商的预估,超快电镜未来3年总市场需求量可达到50台/年。研发团队简介高功率飞秒振荡器是量子院全光量子源团队于子蛟助理研究员主导完成的研究项目。全光量子源团队于2020年由鲁巍教授组建,隶属于北京量子院技术产业开发中心。团队致力于打造支撑量子产业相关的关键激光设备,包括超快超强激光装置(TW-PW系统)、激光加速桌面光源及应用、新型高端科研飞秒激光器的前沿技术研究、产品研发及产业化落地。
  • 智城发布精密细胞培养振荡器新品
    产品介绍 细胞生长对培养环境有着极高的要求, 如温度、CO2浓度、剪切、培养基浓度等。尤其是动物细胞,生长周期较长, 对培养条件运行的连续性、 稳定性和可靠性提出了非常高的要求。 ZWYC-290系列精密细胞培养振荡器是ZHICHENG公司推出的具有我国自主知识产权的细胞振荡器新品。 该产品凝聚了ZHICHENG公司中国研发团队二十年恒温振荡器的专业设计经验和现代生物技术的应用经验,携手海外专家攻关,在引进、消化、吸收国外一线同类旗舰产品的基础上,再创新提高而形成的技术成果。 应用范围ZWYC-290系列精密细胞培养振荡器是生物培养在进入发酵培养前最完善的培养装置,可广泛应用于微生物细胞发酵、动物细胞和植物细胞培养, 在生物医药、食品开发、生物农业环境治理等领域进行微生物培育、菌种或细胞系筛选等有着很好的应用前景, 也可应用于对温度、供氧、剪切等具有较高要求的细菌培养、动植物细胞培养、杂交和生物化学反应以及酶反应研究。 产品特点三大系统:指纹(密码)识别电子门系统、手机天网系统、数据无线传输采集系统五大功能:恒温、振荡、恒湿,光照、CO2六大亮点:自保温聚氨酯壳体、杀菌加湿器、紫外高效灭菌、导流冲洗通道、便捷可卸托盘,绿色粘板功能介绍:? 基本功能(恒温振荡)1、ZHICHENG公司精密细胞培养振荡器,单层振荡培养箱体,振幅12.5mm、25mm、50mm三档可调。全温型;转速为30-300r/min,可调并显示。2、专利技术的单轴悬挂滑杆五驱自平衡驱动单元,连续工作时间长,耗能少,能承受不平衡负载。3、稳定性能高,设备可在最大负荷状态下不间断运行,在启动、运转和停止过程中能保持平稳,设备在重启(包括断电来电)后,维持原有设置自动开启。4、独特的空气循环系统,内外空气持续环流,保证培养过程中有充足的空气补入确保温场均匀性,使腔体内无温度死角。5、超温报警保护功能:l 当实测温度超过报警设定值时培养振荡器报警;l 当实测温度超过断电设定值时加热器停止工作。6、 超速报警保护功能:l 当实测转速超过报警设定值时培养振荡器报警;l 当实测转速超过最高转速时,振荡平台停止振荡。 ? 可选功能(恒湿培养)l 控制范围:40-90%RH,精度:± 5%RH(可修正)l 最新发明专利技术:1)采用金属模块腔体蒸发技术,体积小,效率高,反应快。2)腔体内多通道的独特设计,形成了一次加热蒸发、二次高温消毒、三次压缩增压的制湿技术, 最终形 成高达140℃的雾状蒸汽迅速喷射,均匀扩散,不易形成水滴,而且湿度分布非常均匀。 ? 可选功能(光照培养)l 两种光照单元供选择:(1)日光光照系统:模拟日夜光照环境(2)LED不同光波组合系统:波长主要集中在红橙光和蓝紫光波段区域,主要应用于光合生物的培养 ? 可选功能(CO2培养)l 浓度范围:0-20%l 控制精度:±0.2%(浓度5%时),显示精度:±0.1%(可修正)l 国际顶级品牌的红外传感器,确保控制的高精度和高稳定性l 控制方式:P.I.D(微电脑环境扫描微处理芯片)l CO2供气瓶可自动切换 ? 可选功能(OD在线检测)l 完全替代繁琐的手工定时采样测量方法,是一种自动化教学、科研设备l 采用非接触式检测技术,在动态环境中获得真实的微生物细胞生长曲线l 可在线实时测量微生物细胞浓度的光密度(optical density,OD)值l 可选4、8、12和16通道, 适合正交试验、均匀实验和DOE设计实验l 可高效实现菌种筛选、培养基优化、发酵工艺优化研究和动力学分析l 根据研究需要,可更换激光波长,应用于酶、蛋白质等活性物质的检测 ? 可选功能(可选模块)l 具有短信报警等手机互联功能。l 数据无线传输采集系统。能更方便地记录设备的运行数据,实时监控摇床的运行状态。 ? 六大亮点l 一次成型的自保温高强度聚氨酯壳体,保温性能良好,强化了箱体的密封效果,提高了操作的稳定性和安全性。l 拥有最新发明专利技术的温度达140℃的灭菌加湿器,腔体灭菌彻底,加湿效果良好。l 紫外灭菌与循环风扇配合在风道内实现对循环空气的紫外高效灭菌功能。l 导流冲洗通道,便于及时冲洗,避免细菌污染。l 托盘与箱门连动,装卸便捷。l 独特的绿色粘板,粘性和稳定性好,节省空间,易于清洗维护。 技术参数产品名称ZWYC-290系列精密细胞培养振荡器控制方式P.I.D(微电脑环境扫描微处理芯片)显示方式5.6吋640×480点阵65K色真彩触摸式显示屏对流方式强制对流式振荡方式回旋振荡式驱动方式单轴驱动环境温度要求(℃)5~35工作室(个)1~3空气循环360m3/h曲线编程设定(段/步)反复、步调、温度阶梯、曲线编程设定:9/18(段/步),每段时间:999.9(min)定时时间(min)0~9999温度传感器Pt100温度控制范围(℃)4~60温度分辨精度(℃)≤0.1温度波动度(℃)≤±0.1温度均匀度(℃)≤ 0.2(37℃时)可选功能湿度控制范围(%RH)40~90湿度控制精度(%RH)2~3湿度波动度(%RH)≤2振荡幅度(mm)∮12.5、25、50三档可调转速范围(r/min)30~300转速精度(r/min)≤±1平均照度(Lux)≥300紫外强度(mW/m2)≥400可选功能CO2传感器进口品牌的NDIR单束双波红外传感器CO2控制范围(%)0~20CO2控制精度(%)0.2(浓度5%时)CO2显示精度(%)0.1CO2恢复速度(开门1分钟后)10min(浓度5%时)可选功能光密度OD6000.03~2.5 OD±0.03光密度稳定性OD600=1.0±0.03 相同实验条件下的稳定性≥95%(7天)测量通道选4、8、12和16通道可选噪音水平dB(A)≤70 dB(距离设备表面1m处)安全功能上、下限超温报警,上、下限超速报警,上、下限湿度报警,传感器故障报警,独立式过升防止器,独立式超温保护器(可调),独立式漏电、过电流跳闸保护,制冷机超荷保护,门与摇板连锁保护附属功能光照培养系统、自动停机、自动开机、温度/湿度表示校正、监视计时器、时钟显示、来电恢复、参数记忆、参数加密、可扩展RS-485接口制冷功能空冷式、R134.a 功率可控式制冷、无霜运行加速度柔性慢启动摇板数量1~3托盘类型粘性托盘(八块/单元)摇板尺寸(mm)850*450容积/单元(L)225最大装瓶量(支*容量)60*250ml 32*500ml 18*1000ml 10*2000ml  8*3000ml 内胆尺寸/单元(长*宽*高)(mm)937*572*420外型尺寸/单元(长*宽*高)(mm)1080*960*590重量/单元(kg)98电源AC 220V 50/60Hz,1200W 创新点:一次成型的自保温高强度聚氨酯壳体,保温性能良好,强化了箱体的密封效果,提高了操作的稳定性和安全性。拥有最新发明专利技术的温度达140℃的灭菌加湿器,腔体灭菌彻底,加湿效果良好。紫外灭菌与循环风扇配合在风道内实现对循环空气的紫外高效灭菌功能。采用非接触式检测技术,在动态环境中获得真实的微生物细胞生长曲线精密细胞培养振荡器
  • 全温度恒温培养振荡器在监测的科研方面有哪些帮助
    全温度恒温培养振荡器是微生物培养的主要设备之一,选用特种电机,温度控制,速度测量主要元器件均采用进口,广泛应用于生物、医学、制药、食品、环保及农业科学研究,尤其是在一些比较重要的场合里面,在我们的各大的中院校他都是能有比较广泛的应用的,并且不仅仅是在这些方面,在我们的医疗的方面上也是有着很好地帮助的。   具有不锈钢夹具、数显控温、无级调速和良好的热循环功能,是一种多用途的生化仪器,是植物、生物、微生物、遗传、病毒、环保、医学等科研,教育和生产部门作精密培养制备不可缺少的实验室设备。   在很多监测的科研方面都是能起到很好的帮助的,这个机器对很多方面都是有着很多的帮助的,对于生物生化的研究更是有着非常的贡献。采用空气加热,数显测温,数显测速,主要适合用于各大中专院校、医疗、石油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。本机具有结构合理、操作简便、显示直观、稳定性能高等特点,是实验室工作人员得心应手的理想设备。   全温度恒温培养振荡器使用说明:   1、装入试验瓶,并保持平衡,如是双功能机型,设定振荡方式。   2、接通电源,根据机器表面刻度设定定时时间,如需长时间工作,将定时器调至“常开”位置。   3、打开电源开关,设定恒温温度:   (1)将控制小开关置于“设定”段,此时显示屏显示的温度为设定的温度,调节旋钮,设置到您工作所需温度即可。(您设定的工作温度应高于环境温度,此时机器开始加热,黄色指示灯亮,否则机器不工作)   (2)将控制部分小开关置于“测量”端,此时显示屏显示的温度为试验箱内空气的实际温度,随着箱内气温的变化,显示的数字也会相应变化。   (3)当加热到您所需的温度时,加热会自动停止,绿色指示灯亮;当试验箱内的热量散发,低于您所设定的温度时,新的一轮加热又会开始。   4、开启振荡装置:   (1)打开控制面板上的振荡开关,指示灯亮。   (2)调节振荡速度旋钮至所需的振荡频率。   5、工作完毕切断电源,置调速旋钮与控温旋钮至低点。   6、清洁机器,保持干净。
  • 极致混匀,浑然一体——奥豪斯涡旋振荡器全新上市及促销
    今年对于奥豪斯是具有历史意义的一年,不仅是公司成立110周年,更重要的是重磅推出了全新生命科学实验室设备产品!在该系列的前几期中,小编已经对种类最全面的摇床产品和功能独特的恒温混匀器产品进行了详细的功能介绍,收获了众多用户的高度关注。而作为实验室设备中最受欢迎也是使用范围最广泛的产品,涡旋振荡器一直是整个实验室设备产品系列线中不可或缺的一环。今天就跟随小编一起来走近它们的世界一探究竟吧!涡旋振荡器广泛应用于生命科学、医学科研、制药研发、化学、农业等研究实验室领域,是生物、化学实验室中对各种试剂、溶液、化学物质进行固定、振荡、混匀处理的一种必备常规仪器。接下来小编要为您详细揭秘的就是奥豪斯全新涡旋振荡器系列,伴您一起领略的高科技所带来的独一无二的振荡体验。 美国进口,卓越质量 奥豪斯全套涡旋振荡器产品均为美国原装进口,都通过了严苛的CE、UL测试并获得德国TUV认证。配备源自德国、美国等地的高效无刷直流电机,寿命长,无电磁干扰,可提供高转速动力驱动,同时具有安全转速保护功能。 极致混匀,浑然一体 大部分机型配备变速微处理控制器,可确保强烈、均匀、一致的振荡混合动作,使样品实现完美混匀,缔造浑然一体的实验效果。 功能出众,种类全面 全套产品系列针对不同的实验需求和样品规格设计了各种型号的机型,从轻负载到大负载,从模拟控制到数显控制,从低速到高速,充分满足您能想到的各种实验情况。 听了以上的介绍,您是不是有点心动了呢?别走开,精彩继续,小编马上来带大家看看每个种类的机型还有哪些值得称赞的特色: 迷你涡旋振荡器全面满足从低速到高速振荡需求的迷你机型 A. 定速、模拟、数显、数显脉冲四种型号可供选择,覆盖最全面的振荡模式;B. 连续或触控式操作,有效把控振荡时间;C. 脉冲型号可减少热量生成,提供更高效的混合和细胞破碎;D. 超过20个的丰富选件可供选用。 大负载涡旋振荡器专为持续、重型振荡的应用而设计的小机型 A. 振荡头高紧固安装设计,在整个速度范围内确保使用安全;B. 配置高效电机,可运转超大负载;C. 可带选件进行高速振荡,且速度不受限制;D. 选件覆盖从微型管、微孔板、0.5~50mL各种规格的试管等20多种选件。 微孔板涡旋振荡器专为剧烈、均匀混合的振荡应用而设计的中等机型 A. 机身轻巧,节省空间;B. 运转更高速,圆周直径更小,混合样品更加完美;C. 为需要可复现结果的应用提供了精确的速度控制。 多管涡旋振荡器适用于大样品处理通量应用的大机型 A. 坚固的一体化不锈钢座可保持振荡器的稳定与洁净度;B. 最多可以同时振荡50支15 mL的试管;C. 数显型号的脉冲功能可产生更加强劲的混合,增强涡旋振荡效果;D. 适用于直径10~29mm试管的多种泡沫架选件可供选择。 看了这么多新系列产品,您过瘾吗?目前更有大力促销等您来购!快跟随小编继续看下去哦! 大力促销,势不可挡 活动内容凡在活动期间购买实验室设备(列表单价人民币6,000元及以上)的终端用户,即可获赠STARBUCKS随行杯一个。 活动时间即日起至2017年12月31日 奥豪斯所提供的性能出众的涡旋振荡器系列产品,能够让您在实验室的应用环节达到持续有效的工作状态,提高您的工作效率,并确保人员安全,同时产品拥有高质量、高性价比。更多产品相关和促销活动的信息可拨打我们的客服热线,并留下相关信息,我们专业的工程师将会在第一时间联系您!
  • 市场监管总局发布24项国家计量技术规范
    近日,市场监管总局发布2022年第32号公告,批准《液体活塞式压力计检定规程》等24项国家计量技术规范发布实施。   在无线电计量领域,修订发布JJF 1286—2022《无线信道模拟器校准规范》,重点修订路径时延和路径损耗的校准方法,增加最大多普勒频移的校准,为航天、航空行业应用无线信道模拟器的校准工作提供技术依据。修订发布JJF 1982—2022《电平振荡器校准规范》,将测试信号频率上限扩展为150MHz,同时扩展输出阻抗,在校准方法上兼顾新型数字指示式电平振荡器和传统指针式电平振荡器。修订发布JJF 1238—2022《集成电路静电放电敏感度测试设备校准规范》,为适应相关国际测试标准的变化,增加了机器模型、闩锁模型放电波形的校准,完善了集成电路静电放电测试设备校准方法。制定发布JJF 1983—2022《高清视频信号分析仪校准规范》,高清视频信号分析仪是对高清视频设备、视频终端设备等进行标准符合性测试和合格检验的专用测试仪器,被高清视频设备生产厂家和质量检测机构广泛使用,该规范的制定发布为高清视频产业发展提供计量技术支撑。   在压力计量领域,修订发布JJG 59—2022《液体活塞式压力计检定规程》,重新规定测量范围和准确度等级,提出压力形变系数检定要求并明确重力加速度实测等内容,完善了检定方法和技术指标。修订发布JJG 241—2022《精密杯形和U形液体压力计检定规程》,该仪器在精密加工、航空航天行业的压力(漏率)测量、泄露课题研究等领域被大量使用,本次修订提高了部分准确度等级检定时所用标准器的技术指标要求。制定发布JJF 1986—2022《差压式气密检漏仪校准规范》,对该类仪器的校准项目、校准方法和标准器的选择作出明确规定,校准项目覆盖主要计量性能,校准方法贴近仪器实际工作状态。制定发布JJF 1987—2022《大气数据测试仪校准规范》,改变国内该类型仪器无校准规范可依据的现状,提高航空飞行器飞行参数的计量能力,降低航空事故症候发生概率,提高航空公司签派率和出勤率,服务保障民航运输业。   在温度计量领域,制定发布JJF 1991—2022《短型廉金属热电偶校准规范》,短型廉金属热电偶广泛用于航空航天、石油化工等领域,是常用的温度传感器。该规范主要包括计量特性、校准条件、校准项目、校准方法及测量不确定度评定实例等内容,为短型廉金属热电偶校准工作提供技术依据。   在光学计量领域,制定发布JJF 1988—2022《通信信号分析仪校准规范》,通信信号分析仪用于光通信系统中光发射机、可插拔光收发模块性能指标的测试,该规范的制定发布为有效开展量值溯源创造有利条件。制定发布JJF 1989—2022《光谱照度计校准规范》,明确光谱照度计的计量特性、校准条件和校准方法,支撑电光源产品质量的检验检测工作,助推电光源、显示等产业高质量发展。制定发布JJF 1990—2022《积分球式标准光源校准规范》,积分球式标准光源是校准光谱辐射计、亮度计和面阵探测器的常用仪器,该规范的制定发布有效保障相关领域光谱辐射、光度和色度的量值准确可靠。   在电磁计量领域,修订发布JJG 126—2022《工频交流电量测量变送器检定规程》,本次修订提高了规程的适用性,解决新型数字输出量变送器的量值传递问题,有助于保障智慧城市、智能制造、自动控制等领域安全运行。修订发布JJG 982—2022《直流电阻箱检定规程》,本次修订拓宽适用范围、调整年稳定性考核范围、简化开关变差检定方法,突出检定项目及方法的科学性、合理性和适用性,在保障检定结论准确可靠的同时,提升检定工作效率。制定发布JJG 1186—2022《直流电能表检定装置检定规程》,直流电能表检定装置作为直流电能表的重要检测设备,直接关系直流电能计量的准确可靠,该规范的制定发布为直流电能表检定装置的检定提供依据,为电动汽车、太阳能发电等领域的直流电能计量提供技术保障。制定发布JJF 1985—2022《直流电焊机焊接电源校准规范》,直流电焊机焊接电源作为提供输出特性的设备,其计量特性的准确度直接影响焊接产品质量,该规范的制定发布对提高焊接产品质量、保障相关人员和财产安全起到积极作用。   在高电压计量领域,制定发布JJF 1995—2022《电子式互感器校验仪校准规范》,电子式互感器校验仪是对电子式互感器进行校准的专用仪器,被互感器生产企业和电网建设单位广泛使用,该规范的制定发布解决了长期以来电子式互感器数字量值缺乏统一溯源方法的难题,进一步支撑电子式互感器产品质量的检验检测工作,为新型电力系统建设提供计量保障。   在时间频率计量领域,修订发布JJG 601—2022《时间检定仪检定规程》,时间检定仪是多功能、综合性的时间检定设备,本次修订提供更为科学合理的技术依据,从而确保时间频率工作计量器具的量值准确可靠。修订发布JJF 1984—2022《电子测量仪器内石英晶体振荡器校准规范》,电子测量仪器一般采用石英晶体振荡器作为产生信号的频率源,本次修订提出相对频率偏差、频率稳定度等计量特性的校准方法,为电子测量仪器内石英晶体振荡器提供科学规范的测试依据,保障频率量值传递的准确可靠。   在气象计量领域,制定发布JJF 1992—2022《长波辐射表校准规范》,通过对模拟输出型长波辐射表灵敏度和数字输出型长波辐射表修正系数等计量特性进行校准,从而有效保证长波辐射和净全辐射的准确测量。该规范的制定发布,为长波辐射表的量值溯源和性能评价提供科学统一的依据。 在能源计量领域,制定发布JJF 1993—2022《天然气能量计量技术规范》,能量计量是国际上天然气贸易交接的主要方式,该规范与国家标准充分融合,根据发热量测定的3种不同方式(在线测定、离线测定及赋值)给出天然气能量的不确定度计算方法。该规范可作为计量技术机构对天然气能量计量系统的评估验收及政府部门开展监督检查的依据,也可作为石油天然气公司等用户能量计量管理的参考。   在能源效率计量领域,制定发布JJF 1994—2022《电冰箱能效(性能)测量装置校准规范》、JJF 1261.27—2022《投影机能源效率计量检测规则》,修订发布 JJF 1261.6—2022《计算机显示器能源效率计量检测规则》。电冰箱能效(性能)测量装置,是电冰箱性能参数的主要测量设备,该规范的制定发布,加快推进各检测机构与生产企业实现测量数据准确一致,对规范电冰箱产品能效标识的标注乃至电冰箱产业的发展都发挥积极作用。投影机和计算机显示器作为办公、学习设备被广泛使用,其节能意义重大,本次制修订内容包括相关产品能源效率的计量要求、检测条件、检测项目和方法、检测结果评定准则、检测报告等内容,在引导消费者购买高效节能产品同时,激励生产企业加大研发力度,提升消费者使用体验。   以上24项国家计量技术规范于2023年3月26日正式实施。
  • 年底大促销第二波:水浴恒温振荡器
    年底促销第二波来啦:水浴恒温振荡器,往复,回旋,双功能,任你选!!!!水浴振荡器系列,全场8折起售!!!!快来瞧瞧水浴恒温振荡器说明概述:水浴恒温振荡器是一种温度可控的恒温水浴槽和振荡器相结合的生化仪器,主要适用于各大中院校、医疗、石油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。其主要特点:A:温控精确数字显示。B:振荡时又小浪花,但无浪花飞溅。C:设有机械定时。D:万能弹簧试瓶架特别适合作多种对比试验的生物样品的培养制备。E:无级调速,运转平稳,操作简便安全。F:内腔采用不锈钢制作,抗腐蚀性能良好。主要技术性能:一、 使用电源: 220V 50Hz二、 加热功率: 1800w三、 定时范围: 0~120分(或常开)四、 振荡频率: 起动&mdash 300转/分,可调五、 振荡幅度: 20mm六、 恒温范围: 室温&mdash 100℃七、 振荡方法: 往复、回旋和双功能(采购时选择)八: 温控精度: +0.5℃九: 水箱尺寸: 490× 390× 170、十: 外形尺寸: 700× 550× 490 产品型号:SHA-C型、水浴恒温振荡器:属于-往复式。THZ-82型、水浴恒温振荡器:属于-回旋式。SHA-B型、水浴恒温振荡器:属于-往复和回旋,双功能式。SHA-2型、冷冻水浴恒温振荡器:属于制冷式,控温范围:5-100℃ 联系方式 邮编:213200江苏金坛市亿通电子有限公司 电话:0519-882616576 82616366 传真:0519-82613699     Http://www.eltong.com
  • 水浴恒温振荡器年底大优惠
    SHA-B型水浴恒温振荡器SHA-B型水浴恒温振荡器是一种温度可控的恒温水浴槽和振荡器相结合的生化仪器,主要适用于各大中院校、医疗、石油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。SHA-B型水浴恒温振荡器其主要特点:A:温控精确数字显示。B:振荡时又小浪花,但无浪花飞溅。C:设有机械定时。D:万能弹簧试瓶架特别适合作多种对比试验的生物样品的培养制备。E:无级调速,运转平稳,操作简便安全。F:内腔采用不锈钢制作,抗腐蚀性能良好。SHA-B型水浴恒温振荡器主要技术性能:一、 使用电源: 220V 50Hz 二、 加热功率: 1800w三、 定时范围: 0~120分(或常开)四、 振荡频率: 起动&mdash 300转/分,可调五、 振荡幅度: 20mm六、 恒温范围: 室温&mdash 100℃七、 振荡方法: 往复、回旋双功能八: 温控精度: +0.5℃九: 水箱尺寸: 490× 390× 170、十: 外形尺寸: 700× 550× 490
  • 晶玻优惠——用户买振荡器送耗材!
    为感谢诸位新老用户近年来对金坛市晶玻实验仪器厂的支持,晶玻仪器现推出优惠活动:所有用户在金坛市晶玻实验仪器厂购买任何一款振荡器时,均可获赠与所购振荡器相匹配的三角瓶,望各位用户不要错过,欢迎各位朋友来电来人详谈。 往后,晶玻仪器将会推出更多的优惠活动以答谢各界朋友的支持,详细事宜,敬请关注www.jbyq.com
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) John Wiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备在QCM-D表征高分子的研究过程中,需要在石英振子表面制备高分子膜,所制备高分子膜的质量对相关实验测量有重要影响. 下面以在石英振子表面制备化学接枝高分子刷和物理涂覆高分子膜为例,介绍相关高分子膜的制备:3.1 在振子表面制备化学接枝高分子刷高分子刷可以通过“grafting to”或“grafting from”方法接枝于石英振子表面. 一般情况下,前者的接枝密度较低,而后者的接枝密度相对较高. 对于金涂层的石英振子而言,巯基和金表面可以生成硫金键,在基于“grafting to”技术制备高分子刷时,可以将含有巯基末端的高分子溶液添加至自制的QCM反应器中. 在该自制的反应器中,石英振子正面接触溶液,利用橡胶圈对石英振子的背面加以密封. 在接枝反应充分完成后,取出振子,利用大量溶剂冲洗振子表面,随后使用氮气吹干振子,即可完成相关高分子刷的制备. 此外,也可以在QCM检测模块中完成利用“grafting to”策略制备高分子刷,此时可实时监测高分子接枝过程中的频率以及耗散因子变化[22 ,23 ].在利用“grafting from”策略在振子表面制备高分子刷时,可采用活性自由基聚合等方法加以实现. 以表面引发原子转移自由基聚合(SI-ATRP)制备高分子刷为例,首先利用自制的反应器将引发剂接枝于振子表面,然后将振子放置于相应的包括单体的溶液中,并通过SI-ATRP方法在振子表面引发单体聚合,制备高分子刷. 在采用SI-ATRP方法在振子表面制备高分子刷的过程中,除去溶液中溶解的氧气这一步骤非常关键,需要加以特别注意,否则可能会导致制备高分子刷失败. 在反应结束后,需要采取相应的程序进一步纯化振子表面制备的高分子刷. 类似于“grafting to”策略,利用“grafting from”策略在振子表面制备高分子刷也可以在QCM检测模块中完成[24 ~26 ].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28 ]. 在利用旋涂法制备高分子膜时,溶剂的选择、高分子溶液的浓度以及环境的湿度等都会对振子表面的成膜情况产生影响,需要加以注意.4. 石英晶体微天平在高分子研究中的应用QCM在高分子薄膜研究中得到了广泛应用,已有一些国内外学者对相关方面的研究进展进行了总结. 例如,Du等总结了QCM在聚合物水凝胶薄膜等研究中的应用[29 ];He等总结了QCM在表面引发聚合反应动力学等研究方面的进展[30 ];Sun等总结了QCM在生物医用高分子材料中的应用[31 ];Marx总结了QCM在生物高分子薄膜等研究方面的进展[32 ]. 另一方面,在高分子研究中,QCM-D的测量结果不但与其振子表面的高分子薄膜密切相关,也与QCM-D检测模块中高分子溶液的非牛顿流体行为有关,例如,Munro和Frank研究了聚丙烯酰胺分子量及溶液浓度对其在QCM-D振子表面吸附的影响[33 ];为了阐明大分子溶液非牛顿流体行为对QCM-D振子表面与大分子间相互作用的影响,Choi等研究了QCM-D特征参数S2对聚乙二醇溶液浓度的依赖性[34 ];更多相关方面的研究可参阅有关文献,在此不作详细讨论. 本文将以作者的相关高分子研究工作为例,介绍QCM-D在界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料研究中的应用,进一步展示QCM-D在高分子研究中的广阔应用前景.4.1 界面接枝高分子构象行为众所周知,界面接枝高分子的构象行为对界面性质至关重要[35 ]. 然而,对界面接枝高分子的构象行为进行实时原位表征一直面临许多挑战. 研究界面接枝高分子的构象行为,首先需要理解高分子在界面接枝过程中的构象变化. 在低接枝密度下,由于链间距离大于链本身的尺寸,链间不发生交叠,此时,根据高分子链节与界面间相互作用的强弱,高分子会形成“煎饼”状构象(pancake)或“蘑菇”状构象(mushroom)[36 ]. 具体而言,如果高分子链节与固体表面间相互作用强时,接枝高分子会形成“煎饼”状构象;若高分子链节与固体表面间无明显相互作用时,接枝高分子则形成“蘑菇”状构象[36 ]. 随着接枝密度增加,当接枝高分子链间距离小于其本身尺寸时,由于链间排斥作用,接枝高分子链会形成“刷”(brush)状构象[36 ]. 因此,随着接枝密度增加,接枝高分子将展现出pancake-to-brush或mushroom-to-brush转变. 利用QCM-D研究相关高分子接枝过程中的构象变化,对于理解高分子刷的形成机理十分重要.图2(a) 为巯基末端聚(N-异丙基丙烯酰胺) (HS-PNIPAM)在金涂层石英振子表面接枝所引起的频率变化情况[23 ]. 很明显,接枝过程经历了3个不同的动力学阶段. 在区域Ι阶段,Δf 快速下降,表明HS-PNIPAM链快速接枝到振子表面. 在区域ΙΙ阶段,Δf 缓慢下降,说明已接枝高分子链阻碍HS-PNIPAM链的进一步接枝,因而接枝速率变慢. 在区域ΙΙΙ阶段,Δf 再次出现相对快速的下降,表明已接枝的HS-PNIPAM链进行构象调整,从而使得后续的HS-PNIPAM链能够继续进行接枝反应. 对于HS-PNIPAM接枝过程中的耗散因子变化情况而言(图2(b) )[23 ],在区域Ι阶段,ΔD快速上升;在区域ΙΙ阶段,ΔD缓慢增加;在区域ΙΙΙ阶段,ΔD相对快速增加. 显然,ΔD与Δf 变化的快慢趋势相一致,反映类似的HS-PNIPAM链在振子表面的接枝过程.图 2Figure 2. (a) Frequency shift (Δf) and (b) dissipation shift (ΔD) of the gold-coated quartz resonator immersed in a HS-PNIPAM solution as a function of time (c) ΔD versus −Δf relation for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[23 ] Copyright (2005) American Chemical Society) (d) Schematic illustration of the pancake-to-brush transition for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[37 ] Copyright (2015) Science Press).然而,HS-PNIPAM链在振子表面接枝过程中Δf 与ΔD间的关系只包含2个不同的过程(图2(c) )[23 ]. 在区域Ι和ΙΙ阶段,随着−Δf 的增加,ΔD缓慢增加,−Δf与ΔD间关系相似,表明在这两个阶段中接枝HS-PNIPAM链的构象接近,即,由于HS-PNIPAM链节与金表面间有较强的吸引作用,HS-PNIPAM链在区域I阶段形成“煎饼”状构象;随着接枝密度增加,其在区域II阶段转变成“蘑菇”状构象. 在区域ΙΙΙ阶段,ΔD随着−Δf 的增加快速增加,说明接枝HS-PNIPAM链变得越来越伸展,即形成了高分子刷构象. 图2(d) 展示了从区域I到区域III阶段,接枝HS-PNIPAM链的构象转变过程[37 ]. 同样,如果高分子链节与固体表面间无明显吸引作用时,随着接枝密度的增加,接枝高分子链将展现从无规“蘑菇”状构象到有序“蘑菇”状构象,再到“刷”状构象的转变[22 ].另一方面,PNIPAM为典型的热敏型高分子,其在水中具有最低临界溶解温度(LCST,约为32 °C). 在温度低于LCST时,溶液中自由的PNIPAM链呈无规线团状(coil),但当温度高于LCST时,PNIPAM链塌缩成小球状(globule),且coil到globule转变是不连续的. 与溶液中自由的PNIPAM链相比,由于空间受限效应,界面接枝PNIPAM链将展现出不同的热敏性构象行为. Zhang和Liu利用QCM-D研究了界面接枝PNIPAM随温度的变化情况[38 ,39 ]. 如上所述,PNIPAM链可以通过“grafting to”或“grafting from”策略接枝到振子表面,前者可以形成接枝密度较低的“蘑菇”状构象,而后者则可以形成接枝密度较高的“刷”状构象.图3(a) 为利用“grafting to”策略将PNIPAM链接枝到振子表面形成“蘑菇”状构象后,频率随温度的变化情况[38 ]. 在加热过程中,−Δf 随着温度增加逐渐降低,表明接枝PNIPAM链发生了去水化. 在降温过程中,−Δf 随着温度降低逐渐增加,表明接枝PNIPAM链的水化程度再次增加. 最终,−Δf 能够回到原点,说明降低温度可以使得接枝PNIPAM链从高温时的弱水化状态回到低温时的强水化状态. 图3(b) 为振子表面接枝PNIPAM链形成“蘑菇”状构象后,耗散因子随温度的变化情况[38 ]. 在升温过程中,ΔD随着温度增加而减小,表明升温导致接枝PNIPAM塌缩成更加致密刚性的薄膜. 在降温过程中,ΔD随着温度降低而增大,表明降温使得塌缩的PNIPAM逐渐溶胀成更加蓬松柔性的薄膜. 另一方面,在图3(c) 中,Δf与ΔD成线性关系,表明随着温度变化,接枝PNIPAM链的伸展/塌缩与其水化/去水化间的协同性强[40 ].图 3Figure 3. Temperature dependence of the shifts in frequency (Δf) (a) and dissipation (ΔD) (b) of the PNIPAM mushroom. (Reprinted with permission from Ref.[38 ] Copyright (2004) American Chemical Society) (c) ΔD versus −Δf relation of the PNIPAM mushroom (Reprinted with permission from Ref.[40 ] Copyright (2009) John Wiley & Sons, Inc.) Temperature dependence of the shifts in frequency (Δf) (d) and dissipation (ΔD) (e) of the PNIPAM brush (f) ΔD versus −Δf relation of the PNIPAM brush (Reprinted with permission from Ref.[39 ] Copyright (2005) American Chemical Society).利用“grafting from”策略将PNIPAM链接枝到振子表面形成“刷”状构象后,其频率和耗散因子随温度的变化情况示于图3(d) ~ 3(f) 中[39 ]. 在图3(d) 中,−Δf 随着温度增加而降低,表明PNIPAM刷在升温过程中发生了去水化;−Δf 随着温度降低而增加,表明PNIPAM刷的水化程度在降温过程中再次增加. 在图3(e) 中,ΔD随着升温而减小,表明加热使得PNIPAM刷塌缩成更加致密刚性的结构;在降温过程中,ΔD逐渐增加,表明降温使得塌缩的PNIPAM刷溶胀为更加蓬松柔性的结构. 与图3(b) 不同的是,在图3(e) 中,降温过程中的ΔD比升温过程中同一温度下的值要大,这是降温过程中在PNIPAM刷外围形成“尾”(tail)状结构造成的[39 ]. 另外,在图3(f) 中,Δf与ΔD的关系也与图3(c) 中的不同,PNIPAM刷在升温过程中展现出3个过程,从A到B,ΔD随着−Δf 的减小而降低,表明在此过程中PNIPAM刷的塌缩和去水化协同性较强;从B到C,ΔD随着−Δf 的减小而轻微地降低,表明在此过程中立体位阻效应使得PNIPAM刷在去水化的同时只有轻微塌缩发生,即PNIPAM刷的塌缩和去水化协同性较差;从C到D,ΔD随着−Δf 的减小而再次降低,表明在此过程中PNIPAM刷克服立体位阻,在去水化的同时伴随进一步塌缩. 在降温过程中,可以观察到2个过程,从D到E,ΔD随着−Δf的增加而显著增大,表明PNIPAM刷开始溶胀时在其外围形成了蓬松的“尾”状构象;从E到F,ΔD随着−Δf的增加而逐渐增大,表明降温导致PNIPAM刷的进一步水化和溶胀. 此外,QCM-D还可应用于表征界面接枝带电高分子的响应性构象行为,如pH响应性[41 ]、盐浓度响应性[42 ]等.4.2 高分子的离子效应高分子的离子效应是理解高分子物理化学基本原理的重要基础,并在生物、环境以及能源等领域中扮演着重要角色. 然而,经典德拜-休克尔理论中所运用的一些假设,例如,仅考虑离子的静电相互作用,忽略离子-溶剂间相互作用,以及认为正负离子间的静电吸引能小于其热运动能量等,使得该理论难以全面正确理解高分子体系中除离子强度效应以外的其他离子效应. 相比于一些传统的研究高分子溶液的表征技术(如激光光散射等),利用QCM-D研究界面高分子体系中的离子效应,可以有效避免如带电高分子相分离等不利因素,从而可以更加全面清晰地解析高分子的离子效应. 此外,将QCM-D与其他界面表征技术联用,可以从不同角度表征高分子的离子效应,加深对相关离子效应作用机理的理解. 在本节中,我们将以离子特异性效应、离子氢键效应以及离子亲/疏水效应为例,介绍如何基于QCM-D/SE联用技术研究高分子的离子效应.4.2.1 高分子的离子特异性效应由于离子普遍存在于不同体系之中,自1888年捷克科学家Hofmeister首次发现离子特异性效应以来[43 ],其已引起了包括高分子在内的不同领域科学家的广泛兴趣[44 ~50 ]. 为了阐明离子特异性效应的相关机理,Collins基于离子水化程度不同,提出了经验性的离子水化匹配模型,即阴阳离子水化程度相近时可以形成紧密离子对,反之,则难以形成紧密离子对[51 ]. 相对于离子水化匹配模型主要用于理解水溶液中带电体系的离子特异性效应,Ninham等提出的离子色散力理论则可以用于理解几乎所有体系的离子特异性效应,即离子尺寸不同,极化能力各异,导致特异性的离子色散相互作用[52 ].对于高分子体系而言,阐明离子特异性作用机理,是理解高分子体系离子特异性效应的关键所在. Kou等以阳离子型聚(甲基丙烯酰氧乙基三甲基氯化铵)(PMETAC)刷为模型体系,利用QCM-D/SE联用技术研究了强聚电解质刷的离子特异性效应(图4 )[53 ]. 在图4(a) 中,对于同一盐浓度而言,Δf 的变化呈现“V”型的阴离子序列SO42−HPO42−CH3COO−Cl−Br−NO3−I−SCN−,这与经典的Hofmeister离子序列不一致. 在“V”型序列的右边主要为“结构破坏型”阴离子,从CH3COO−变化至SCN−,Δf 依次增加,说明PMETAC刷的水化程度依次降低. 一方面,阳离子型季铵基团为弱水化基团[54 ~56 ];另一方面,从CH3COO−变化至SCN−,阴离子的水化程度依次降低[54 ~56 ]. 依据水化匹配模型[51 ],季铵基团与阴离子间的“离子对”相互作用强度从CH3COO−到SCN−依次增强,导致PMETAC刷的水化程度依次降低. 同样,基于离子色散力理论[52 ],也可以得到类似的结论. 因此,上述研究结果表明,对于“结构破坏型”阴离子而言,PMETAC刷的离子特异性效应由直接的“离子对”相互作用主导. 在“V”型序列的左边为“结构构造型”阴离子,从CH3COO−变化至SO42−,Δf 依次增加,同样说明PMETAC刷的水化程度依次降低. 然而,阴离子的水化程度从CH3COO−到SO42−依次增强. 显然,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应无法基于水化匹配模型加以理解. 实际上,Δf 随离子种类的变化情况表明,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应由阴离子对强聚电解质刷水化层中水分子的争夺作用主导. 类似地,ΔD (图4(b) )和湿态厚度(图4(c) )随离子种类的变化情况再次从不同角度说明了“结构破坏型”和“结构构造型”阴离子分别以不同方式与PMETAC刷进行特异性相互作用. PMETAC刷的离子特异性效应作用机理展示在图4(d) 中. 基于同样原理,QCM-D/SE联用技术还可应用于研究弱聚电解质刷[57 ]以及聚两性离子刷体系的离子特异性效应[58 ].图 4Figure 4. (a) Salt concentration dependence of (a) the frequency shift (Δf), (b) the dissipation shift (ΔD), (c) the wet thickness of the PMETAC brush in the presence of different types of anions with Na+ as the common cation. In parts (a), (b), and (c), salt concentration: 0.001 mol/L (open symbol), 0.01 mol/L (half up-filled symbol), 0.1 mol/L (half right-filled symbol), and 0.5 mol/L (filled symbol) (d) Schematic illustration of the specific interactions between the PMETAC brush and the different types of anions (Reprinted with permission from Ref.[53 ] Copyright (2015) American Chemical Society).4.2.2 高分子的离子氢键效应在带电高分子体系,当抗衡离子具有氢键供体或受体时,其既可以与高分子链上的电荷基团产生静电吸引作用,也可以与高分子链上的氢键受体或供体发生氢键相互作用,从而对带电高分子的性质产生重要影响,此种由带电高分子体系抗衡离子产生的氢键效应被定义为高分子的离子氢键效应[59 ]. 以强聚电解质刷为例,由于强聚电解质的电离度与pH无关,因此,传统观念上认为强聚电解刷无pH响应性. 但如果从离子氢键效应的角度出发,氢氧根离子(OH−)和水合氢离子(H3O+)不但可以通过“抗衡离子凝聚”吸附到接枝强聚电解质链上[60 ],同时也可以和接枝强聚电解质链发生氢键作用. 当溶液pH发生改变时,在保持溶液离子总浓度不变的情况下,OH−和H3O+的浓度会发生变化,导致抗衡离子与强聚电解质刷的氢键相互作用发生改变,从而使得强聚电解质刷产生pH响应性[61 ,62 ].如图5(a) 所示,PMETAC刷的Δf 随着pH的增大而增加,反之亦然. 同时,PMETAC刷的ΔD随着pH的增大而减小,反之亦然. 因此,PMETAC刷的水化程度和刚性对pH有明显的依赖性. 但是,图5(b) 表明PMETAC刷的表面电荷密度(σ)以及湿态厚度(dwet)与pH无关,因此,pH引起的PMETAC刷的水化程度和刚性变化并非由强聚电解质刷的电离度变化或塌缩/溶胀引起的. 事实上,PMETAC刷的pH响应性是由OH−产生的抗衡离子氢键效应导致的(图5(c) ). 具体而言,随着pH增大,更多的OH−离子通过“抗衡离子凝聚”方式吸附在接枝PMETAC链上,并与接枝链上的羰基产生氢键作用,从而削弱了PMETAC刷与其周围水分子间的作用,降低其水化程度,导致Δf 增加. 同时,随着pH增大,接枝链间的氢键作用使得PMETAC刷产生物理交联,即其结构变得更加刚性,导致ΔD减小. 与阳离子型PMETAC刷类似,H3O+产生的抗衡离子氢键效应使得阴离子型聚(3-(甲基丙烯酰氧基)丙磺酸钾)刷具有pH响应性[61 ].图 5Figure 5. (a) Shifts in frequency (Δf) and dissipation (ΔD) of the PMETAC brush as a function of pH (b) Changes in surface charge density (σ) and wet thickness (dwet) of the PMETAC brush as a function of pH (c) Schematic illustration of the pH response of the PMETAC brush induced by the hydrogen bond effect generated by the hydroxide counterions (Reprinted with permission from Ref.[61 ] Copyright (2016) American Association for the Advancement of Science).为了验证带电高分子体系中抗衡离子氢键效应具有普适性,Zhang等将研究体系拓展至弱聚电解质刷以及OH−和H3O+以外的其他种类离子[63 ]. 从图6(a) 可知,CH3SO3−无法和PMETAC发生氢键作用,但是HOCH2SO3−上的羟基却可以和PMETAC链上的羰基形成氢键. 类似地,在图6(b) 中,Na+无法与聚甲基丙烯酸钠(PMANa)发生氢键作用,但是胍离子(Gdm+)上的胺基却可以和PMANa链上的羰基形成氢键. 在图6(c) 中,随着CH3SO3−-HOCH2SO3−混合抗衡离子中HOCH2SO3−摩尔分数(x)的增加,Δf 逐渐增大而ΔD逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷发生去水化,且PMETAC刷的结构变得更加刚性. 在图6(d) 中,随着x的增加,PMETAC刷的dwet逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷逐渐塌缩.图 6Figure 6. (a) The HOCH2SO3− counter anions with the hydroxide group can form hydrogen bonds with PMETAC, whereas no hydrogen bonds can be formed between the CH3SO3− counter anions and PMETAC (b) The guanidinium+ counter cations with the amino groups can form hydrogen bonds with PMANa, whereas no hydrogen bonds can be formed between the Na+ counter cations and PMANa (c) Shifts in Δf (filled symbol) and ΔD (open symbol), and (d) shift in dwet of the PMETAC brush as a function of x of the counterion mixtures of CH3SO3− and HOCH2SO3− at a concentration of 0.05 mol/L with Na+ as the common cation (e) Shifts in Δf (filled symbol) and ΔD (open symbol), and (f) shift in dwet of the PMANa brush as a function of pH in the presence of 0.05 mol/L Na+ or guanidinium+ with Cl− as the common anion (Adapted with permission from Ref.[63 ] Copyright (2020) The Royal Society of Chemistry).与强聚电解质刷类似,抗衡离子氢键效应同样存在于弱聚电解质刷体系中. 图6(e) 和6(f) 中,在0.05 mol/L NaCl存在下,PMANa刷的Δf、ΔD以及dwet随pH的变化情况与传统弱聚电解质刷的pH响应性完全一致,即此时PMANa刷的pH响应性由接枝链的电离度随pH变化决定的. 然而,在0.05 mol/L GdmCl存在下,PMANa刷所表现出的pH响应性与0.05 mol/L NaCl存在下的情况截然不同. 当pH从2.0增加到4.5,PMANa刷的Δf 和ΔD分别增加和减小,同时,PMANa刷的dwet逐渐减小,表明PMANa刷的水化程度逐渐降低,其结构变得更加刚性,并伴随着塌缩发生. 显然,这与0.05 mol/L NaCl存在下在该pH区间中PMANa刷的变化情况完全相反. 然而,这可以基于离子氢键效应加以理解. 当pH从2.0增加至4.5时,接枝PMANa链的电离度增加,导致更多的Gdm+离子通过“抗衡离子凝聚”吸附于带负电荷的羧酸根基团上,从而在PMANa刷中形成更多的抗衡离子氢键,削弱了PMANa刷与周围水分子间的相互作用,使PMANa刷变得更加刚性,并导致其塌缩. 在pH 4.5至10.0区间中,0.05 mol/L GdmCl存在下PMANa刷的pH响应性与0.05 mol/L NaCl存在下的情况类似.4.2.3 高分子的离子亲/疏水效应当电荷基团与具有不同亲/疏水性质的有机基团相连接时,形成的有机离子具有不同的亲/疏水性质. 将这些离子引入聚电解质体系作为抗衡离子,可实现利用抗衡离子控制聚电解质的亲/疏水性质,从而调控其温敏性[64 ]. 然而,与聚电解质稀溶液相比,聚电解质刷内部环境较为拥挤. 因此,聚电解质刷的温敏性不但依赖于其抗衡离子的亲/疏水性,而且与抗衡离子的尺寸大小有关. 为了澄清抗衡离子的亲/疏水性质和尺寸大小与聚电解质刷温敏性间的关系,Cai等以聚苯乙烯磺酸钠(PSSNa)为基础,基于离子交换策略制备了具有不同抗衡离子的聚电解质刷(图7(a) ),并利用QCM-D/SE联用技术研究了不同聚电解质刷的温度响应性(图7(b) ~7(g) )[65 ].图 7Figure 7. (a) Schematic illustration of the preparation of PSSP444m brushes from the PSSNa brush through a counterion exchange strategy, where P444m+ represents the hydrophobic tetraalkylphosphonium counterion (b) Shift in frequency (Δf ), (c) shift in dissipation (ΔD) and (d) change in wet thickness (Δdwet) for both the PSSNa and the PSSP444m brushes as a function of temperature (e) Temperature dependence of ∆f of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (f) Temperature dependence of ∆D of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (g) Change in wet thickness (∆dwet) of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (Adapted with permission from Ref.[65 ] Copyright (2019) American Chemical Society).在图7(b) 和7(c) 中,随着温度增加,PSSNa刷的Δf和ΔD基本保持不变,表明PSSNa刷无明显温度响应性,这是PSSNa的强亲水性导致的. 当Na+被P4442+取代后,P4442+的疏水性仍不足以使PSSP4442刷表现出明显的温敏性. 当使用更加疏水的P4444+取代Na+时,PSSP4444刷仅表现出较弱的温敏性. 进一步增加抗衡离子的疏水性制备得到的PSSP4446刷表现出明显的温敏性,即随着温度增加,Δf 和ΔD分别明显地增加和减小,说明升温可以导致PSSP4446刷去水化以及变得更加刚性. 此外,PSSP4446刷的温敏性具有较好的可逆性. 然而,继续增加抗衡离子的疏水性,制备得到的PSSP4448刷再次失去温敏性,这是P4448+过度疏水造成的. 另一方面,在图7(d) 中,包括PSSP4446刷在内的所有聚电解质刷的Δdwet都没有明显的温度依赖性. 对于PSSP4446刷而言,其水化和刚性表现出明显的温度依赖性,但由于其抗衡离子尺寸较大,在聚电解质刷内部产生的位阻效应较大,阻碍了PSSP4446刷随温度升高而塌缩. 这不利于温敏型聚电解质刷的应用,如“纳米阀门”[66 ]. 考虑到大尺寸的P4448+抗衡离子可以将强疏水性引入强聚电解质刷,而小尺寸的Na+抗衡离子可以使强聚电解质刷内部产生一定的自由空间,Cai等利用Na+和P4448+混合抗衡离子制备PSSNa/P4448刷,并在P4448+摩尔分数(x)为 ~72%时,实现了强聚电解质刷水化、刚性以及湿态厚度明显的温度响应性(图7(e) ~7(g) )[65 ].4.3 高分子海洋防污材料海洋微生物、动植物在海洋设施表面的黏附、生长形成海洋生物污损,给海洋工业和海洋开发带来严重影响. 由于海洋环境的复杂性和污损生物的多样性,海洋防污是一个全球性的难题. 如何快速、高通量筛选防污材料对解决这一问题十分关键. QCM-D技术可被用于快速筛选和评价防污材料的降解、抗蛋白吸附、自更新性能以及服役与失效行为. Ma等制备了具有优异力学性能的含聚乙二醇(PEG)和两性离子聚合物侧链的聚氨酯材料,利用QCM-D检测其抗蛋白吸附能力,从而在较短的时间尺度内(数小时)快速评价污损生物在涂层表面的吸附和相互作用[67 ]. QCM-D检测表明,该材料虽然具有优异的室内抗污性能,但在实海中浸泡12周后失去防污能力. 原因是涂层表面吸附海泥等物质导致其表面性能发生根本性变化,从原来的抗污变为亲污.基于上述认识,Ma等提出了“动态表面防污”的概念,设计了在海洋环境下能够降解的聚甲基丙烯酸甲酯-聚碳酸乙烯酯(PMMA-PEOC)材料(图8(a) )[68 ]. QCM-D测试表明,随着时间增加,Δf 增大而ΔD不断减小,说明涂层的质量或厚度减小,即涂层在海水作用下不断降解(图8(b) ). 对于4种涂层,其降解均为线性,即涂层厚度随时间均匀下降. 另外,随着PEOC含量增加,Δf 和ΔD变化加快,即降解速率变大. 实海挂板实验表明(图8(c) ),该材料(未加任何防污剂)涂覆的挂板3个月内未有任何海洋生物黏附,即材料具有优异的防污性能. 显然,随着降解速率增加,防污性能提高. 这证明了动态表面防污概念的可行性,即涂料通过表面的不断更新,使海洋微生物无法着陆、黏附,从而达到防污的目的. 因此,QCM技术和海洋实验的评估周期虽然不同,但结论基本一致.图 8Figure 8. Structural formula of PMMA-co-PEOCA (a), time dependence of the shifts in frequency (Δf) and dissipation (ΔD) for the hydrolytic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with P(MMA-co-PEOCA63) in marine field test (c) (Reprinted with permission from Ref.[68 ] Copyright (2012) Springer Nature).Ma等制备了软段为乙交酯(GA)和己内酯(CL)共聚物的聚氨酯(图9(a) )[69 ],其力学性能优异. 利用QCM-D对其短时间降解行为的研究表明,随着时间增加,涂层的Δf 变大,说明涂层在酶的作用下发生降解(图9(b) ). 该材料的短期(几个小时内)降解是非线性的,且随着可降解链段的含量增大,降解速率变大,即涂层的表面更新速率变大. 另一方面,质量损失法也表明,该材料的降解在初期呈非线性,在更大时间尺度上(10天以上)降解是线性的. 2种方法都表明,适度引入GA可提高降解速率. 实际上2种评价方法所得的结果是一致的,只是观察其服役与失效的时间尺度不同. 实海挂板实验表明(图9(c) ),随着降解速率的提高,海洋微生物的黏附越来越少. 即随着降解速率的增加,防污性能提高. 当材料中加入适量有机防污剂(PCL-PU/DCOIT)后,效果达到最佳. 总之,实海实验结果与QCM-D的结果吻合.图 9Figure 9. Structural formula of P(CL-GA) polyurethane (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane in marine field test (c) (Reprinted with permission from Ref.[69 ] Copyright (2013) The Royal Society of Chemistry).Xu等研制了主链降解-侧基水解型聚氨酯,即其主链含聚己内酯(PCL)而侧基中含有可水解的丙烯酸三异丙基硅烷酯(TIPSA)(图10(a) )[27 ]. QCM-D的研究结果表明,在短时间内(依照样品不同,从1 h到2天不等),涂层在海水中的降解近似线性,且随TIPSA含量增加降解速率增加(图10(b) ). 实海挂板实验表明(图10(c) ),以该材料涂覆的挂板,随着降解速率增加(由PU-S0至PU-S40),海洋生物黏附越来越少,即防污性能越来越好. 可见,QCM-D结果与实海实验结果一致. 以上几个研究表明,对于多数材料而言,通过QCM-D对防污材料在实验室进行初步筛选的结果,与较长时间(3个月)的质量损失测试和更长时间(1年以上)的海洋挂板实验结果基本一致,这为利用QCM-D快速筛选高分子海洋防污材料提供了依据.图 10Figure 10. Structural formula of polyurethane with degradable main chain and hydrolyzable side chains (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane after 3 months of immersion in seawater (c) (Reprinted with permission from Ref.[27 ] Copyright (2014) American Chemical Society).5. 结语本文介绍了QCM的发展简史、基本原理、实验样品制备以及其在高分子研究中的应用. QCM技术经历了六十余年的发展,从最初仅应用于真空或空气中薄膜微观质量的测量,逐步发展到应用于溶液中的测量. 上世纪末,QCM-D被成功研制,进一步促进了QCM技术在相关领域中的应用. 进入新世纪后,QCM-D技术与其他表征技术的联用得到了较快的发展,这些联用表征技术极大地拓展了QCM-D的研究领域,丰富了表征信息,加深了对相关科学问题的认知. 对于高分子研究而言,毋庸置疑,QCM-D是一个非常有力的表征工具. 当然,QCM-D在高分子研究中的应用不仅仅局限于本文讨论的几个方面,作者希望本文能起到抛砖引玉的作用,使得这一表征技术能够为解决高分子领域中的问题发挥更大作用.参考文献[1]Curie J, Curie P. Bull Soc Min Fr, 1880, 3(4): 90−93[2]Cady W G. Proc IRE, 1922, 10(2): 83−114 doi: 10.1109/JRPROC.1922.219800 [3]Lack F R, Willard G W, Fair I E. Bell Syst Technol J, 1934, 13(3): 453−463 doi: 10.1002/j.1538-7305.1934.tb00674.x [4]Sauerbrey G Z. Z Phys, 1959, 155: 206−222 doi: 10.1007/BF01337937 [5]Lu C, Czanderna A W. Applications of Piezoelectric Quartz Crystal Microbalances. New York: Elsevier. 2012[6]Nomura T, Okuhara M. Anal Chim Acta, 1982, 142: 281−284 doi: 10.1016/S0003-2670(01)95290-0 [7]Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Rev Sci Instrum, 1995, 66(7): 3924−3930 doi: 10.1063/1.1145396 [8]Ramos J J I, Moya S E. Macromol Rapid Commun, 2011, 32(24): 1972−1978 doi: 10.1002/marc.201100455 [9]Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat Mater, 2019, 18(1): 69−75 doi: 10.1038/s41563-018-0215-1 [10]Jiang C, Cao T Y, Wu W J, Song J L, Jin Y C. ACS Sustain Chem Eng, 2017, 5(5): 3837−3844 doi: 10.1021/acssuschemeng.6b02884 [11]Akanbi M O, Hernandez L M, Mobarok M H, Veinot J G C, Tufenkji N. Environ Sci: Nano, 2018, 5(9): 2172−2183 doi: 10.1039/C8EN00508G [12]Tarnapolsky A, Freger V. Anal Chem, 2018, 90(23): 13960−13968 doi: 10.1021/acs.analchem.8b03411 [13]Dai G X, Xie Q Y, Ai X Q, Ma C F, Zhang G Z. ACS Appl Mater Interfaces, 2019, 11(44): 41750−41757 doi: 10.1021/acsami.9b16775 [14]Swiatek S, Komorek P, Jachimska B. Food Hydrocolloids, 2019, 91: 48−56 doi: 10.1016/j.foodhyd.2019.01.007 [15]Bottom V E. Introduction to Quartz Crystal Unit Design. New York: Van Nostrand Reinhold. 1982[16]Janshoff A, Galla H J, Steinem C. Angew Chem Int Ed, 2000, 39(22): 4004−4032 doi: 10.1002/1521-3773(20001117)39:224004::aid-anie40043.0.CO 2-2 [17]Liu G M, Zhang G Z. QCM-D Studies on Polymer Behavior at Interfaces. New York: Springer, 2013. 1−8[18]Kanazawa K K, Gordon J G. Anal Chem, 1985, 57(8): 1770−1771 doi: 10.1021/ac00285a062 [19]Rodahl M, Kasemo B. Sens Actuators A, 1996, 54(1-3): 448−456[20]Voinova M V, Rodahl M, Jonson M, Kasemo B. Phys Scr, 1999, 59(5): 391−396 doi: 10.1238/Physica.Regular.059a00391 [21]Steinem C, Janshoff A. Piezoelectric Sensors. Berlin: Springer, 2007. 425−447[22]Liu G M, Yan L F, Chen X, Zhang G Z. Polymer, 2006, 47(9): 3157−3163 doi: 10.1016/j.polymer.2006.02.091 [23]Liu G M, Cheng H, Yan L F, Zhang G Z. J Phys Chem B, 2005, 109(47): 22603−22607 doi: 10.1021/jp0538417 [24]He J N, Wu Y Z, Wu J, Mao X, Fu L, Qian T C, Fang J, Xiong C Y, Xie J L, Ma H W. Macromolecules, 2007, 40(9): 3090−3096 doi: 10.1021/ma062613n [25]Fu L, Chen X A, He J N, Xiong C Y, Ma H W. Langmuir, 2008, 24(12): 6100−6106 doi: 10.1021/la703661z [26]Mandal J, Simic R, Spencer N D. Polym Chem, 2019, 10(29): 3933−3942 doi: 10.1039/C9PY00587K [27]Xu W T, Ma C F, Ma J L, Gan T S, Zhang G Z. ACS Appl Mater Interfaces, 2014, 6(6): 4017−4024 doi: 10.1021/am4054578 [28]Zhu J, Pan J S, Ma C F, Zhang G Z, Liu G M. Langmuir, 2019, 35(34): 11157−11166 doi: 10.1021/acs.langmuir.9b01740 [29]Du Binyang(杜滨阳), Fan Xiao(范潇), Cao Zheng(曹峥), Guo Xiaolei(郭小磊). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(5): 752−759[30]He J A, Fu L, Huang M, Lu Y D, Lv B E, Zhu Z Q, Fang J J, Ma H W. Sci Sin Chim, 2011, 41(11): 1679−1698 doi: 10.1360/032011-381 [31]Sun Bin(孙彬), Lv Jianhua(吕建华), Jin Jing(金晶), Zhao Guiyan(赵桂艳). Chinese Journal of Applied Chemistry(应用化学), 2020, 37(10): 1127−1136 doi: 10.11944/j.issn.1000-0518.2020.10.200078 [32]Marx K A. Biomacromolecules, 2003, 4(5): 1099−1120 doi: 10.1021/bm020116i [33]Munro J C, Frank C W. Macromolecules, 2004, 37(3): 925−938 doi: 10.1021/ma030297w [34]Choi J H, Kanazawa K K, Cho N J. J Sens, 2014, 2014: 373528[35]Bhat R R, Tomlinson M R, Wu T, Genzer J. Adv Polym Sci, 2006, 198: 51−124[36]Fleer G J, Stuart M A C, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces. London: Chapman & Hall 1993. 372−395[37]Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用). Beijing(北京): Science Press(科学出版社), 2015. 63−77[38]Zhang G Z. Macromolecules, 2004, 37(17): 6553−6557 doi: 10.1021/ma035937+ [39]Liu G M, Zhang G Z. J Phys Chem B, 2005, 109(2): 743−747 doi: 10.1021/jp046903m [40]Zhang G Z, Wu C. Macromol Rapid Commun, 2009, 30(4−5): 328−335[41]Liu G M, Zhang G Z. J Phys Chem B, 2008, 112(33): 10137−10141 doi: 10.1021/jp801533r [42]Hou Y, Liu G M, Wu Y, Zhang G Z. Phys Chem Chem Phys, 2011, 13(7): 2880−2886 doi: 10.1039/C0CP01994A [43]Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24(4): 247−260[44]Tobias D J, Hemminger J C. Science, 2008, 319(5867): 1197−1198 doi: 10.1126/science.1152799 [45]Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J. Science, 2010, 328(5981): 1006−1009 doi: 10.1126/science.1183512 [46]Pegram L M, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky D J, Record M T. Proc Natl Acad Sci, 2010, 107(17): 7716−7721 doi: 10.1073/pnas.0913376107 [47]Paschek D, Ludwig R. Angew Chem Int Ed, 2011, 50(2): 352−353 doi: 10.1002/anie.201004501 [48]Rembert K B, Paterová J, Heyda J, Hilty C, Jungwirth P, Cremer P S. J Am Chem Soc, 2012, 134(24): 10039−10046 doi: 10.1021/ja301297g [49]Dickson V K, Pedi L, Long S B. Nature, 2014, 516(7530): 213−218 doi: 10.1038/nature13913 [50]Nihonyanagi S, Yamaguchi S, Tahara T. J Am Chem Soc, 2014, 136(17): 6155−6158 doi: 10.1021/ja412952y [51]Collins K D. Methods, 2004, 34(3): 300−311 doi: 10.1016/j.ymeth.2004.03.021 [52]Salis A, Ninham B W. Chem Soc Rev, 2014, 43(21): 7358−7377 doi: 10.1039/C4CS00144C [53]Kou R, Zhang J, Wang T, Liu G M. Langmuir, 2015, 31(38): 10461−10468 doi: 10.1021/acs.langmuir.5b02698 [54]Kunz W. Curr Opin Colloid Interface Sci, 2010, 15(1-2): 34−39 doi: 10.1016/j.cocis.2009.11.008 [55]Parsons D F, Boström M, Nostro P L, Ninham B W. Phys Chem Chem Phys, 2011, 13(27): 12352−12367 doi: 10.1039/c1cp20538b [56]Liu L D, Kou R, Liu G M. Soft Matter, 2017, 13(1): 68−80 doi: 10.1039/C6SM01773H [57]Zhang J, Cai H T, Tang L, Liu G M. Langmuir, 2018, 34(41): 12419−12427 doi: 10.1021/acs.langmuir.8b02776 [58]Wang T, Wang X W, Long Y C, Liu G M, Zhang G Z. Langmuir, 2013, 29(22): 6588−6596 doi: 10.1021/la401069y [59]Yuan H Y, Liu G M. Soft Matter, 2020, 16(17): 4087−4104 doi: 10.1039/D0SM00199F [60]Manning G S. Acc Chem Res, 1979, 12(12): 443−449 doi: 10.1021/ar50144a004 [61]Wu B, Wang X W, Yang J, Hua Z, Tian K Z, Kou R, Zhang J, Ye S J, Luo Y, Craig V S J, Liu G M. Sci Adv, 2016, 2(8): e1600579 doi: 10.1126/sciadv.1600579 [62]Zhang J, Kou R, Liu G M. Langmuir, 2017, 33(27): 6838−6845 doi: 10.1021/acs.langmuir.7b01395 [63]Zhang J, Xu S Y, Jin H G, Liu G M. Chem Commun, 2020, 56(74): 10930−10933 doi: 10.1039/D0CC03763J [64]Kohno Y, Saita S, Men Y J, Yuan J Y, Ohno H. Polym Chem, 2015, 6(12): 2163−2178 doi: 10.1039/C4PY01665C [65]Cai H, Kou R, Liu G. Langmuir, 2019, 35(51): 16862−16868 doi: 10.1021/acs.langmuir.9b02982 [66]Adiga S P, Brenner D W. J Funct Biomater, 2012, 3(2): 239−256 doi: 10.3390/jfb3020239 [67]Ma C F, Hou Y, Liu S, Zhang G Z. Langmuir, 2009, 25(16): 9467−9472 doi: 10.1021/la900669p [68]Ma C F, Yang H J, Zhang G Z. Chinese J Polym Sci, 2012, 30(3): 337−342 doi: 10.1007/s10118-012-1158-7 [69]Ma C F, Xu L G, Xu W T, Zhang G Z. J Mater Chem B, 2013, 1(24): 3099−3106 doi: 10.1039/c3tb20454e
  • 数显双功能水浴振荡器促销中......
    数显双功能水浴,原价6200元,先只要6折就可以买到!速速订购!!! 概述:数显水浴恒温振荡器,也叫:恒温水浴箱,或者:水浴摇床,是一种温度可控的恒温水浴槽和振荡器相结合的生化仪器,主要适用于各大中院校、医疗、石油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。其主要特点:A:温控精确数字显示。B:振荡时又小浪花,但无浪花飞溅。C:设有机械定时。D:万能弹簧试瓶架特别适合作多种对比试验的生物样品的培养制备。E:无级调速,运转平稳,操作简便安全。F:内腔采用不锈钢制作,抗腐蚀性能良好。主要技术性能:1. 使用电源: 220V 50Hz 2. 加热功率: 1800w3. 定时范围: 0~120分(或常开)4. 振荡频率: 起动&mdash 300转/分,连续可调5. 振荡幅度: 20mm6. 恒温范围: 室温&mdash 100℃7. 振荡方法: 往复、回旋。双功能8. 温控分辨率: +0.01℃9. 温度均匀度:± 0.5℃;10. 水箱容积: 30L11. 外形尺寸: 700× 550× 490仪器配置: 主机     一台           电源线          一根使用说明书   一份           合格证          一份*万能弹簧夹具内置仪器中
  • 230万!中国科学院精密测量科学与技术创新研究院钛宝石飞秒振荡器等仪器设备采购项目
    项目编号:OITC-G220321054项目名称:中国科学院精密测量科学与技术创新研究院钛宝石飞秒振荡器等仪器设备采购项目预算金额:230.0000000 万元(人民币)最高限价(如有):230.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品分项最高限价1钛宝石飞秒振荡器1是170万元双通道成像光谱仪1是30万元多通道锁相放大器1是30万元2、投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 汗诺分液漏斗振荡器新款上市
    汗诺分液漏斗振荡器新款上市 欢迎致电咨询 薄工:18621653239 产品说明:HN-LZ6型分液漏斗振荡器(垂直振荡器),可适合多种规格的分液漏斗,能大幅度提高工作效率,减轻工作强度。产品使用灵活,操作方便,满足多种场合的应用。用途:1、 环境分析前处理的提取操作2、 食品、油脂天然物的提取3、 农药残留提取4、 土壤中有害物质的提取5、 水质污染检测的提取主要特点:【1】可选择倾斜振荡和垂直振荡两种振荡方式,可以得到更大的混合力。【2】振荡频率数字显示,开机后可显示上次关机前的振荡次数。可以切换定时振荡和连续振荡。【3】振荡频率为无级变速,倾斜时振荡频率可达20~250次/min,垂直时振荡频率可达20~300次/min。【4】启动缓冲和停机缓冲技能,启动及停止缓慢进行,减少对分液漏斗的冲击。【5】振荡时,运行声音在55分贝以下,无噪音,非常安静。【6】使用直流马达,可长时间保持稳定的振荡频率。【7】分液漏斗夹具使用方便,安装或取下分液漏斗十分方便。技术参数:◆振荡方式:垂直或倾斜振荡◆倾斜角度:0~22º 可调◆振荡速度:10~300次/分钟◆振荡幅度:45mm◆最大负荷:约7Kg× 2(含夹具)◆分液漏斗夹具适用范围:(1)标准型夹具:50~1000mL(2)大型夹具:50~3000mL标准配置:振荡器主机:1台,标准夹具:6个价格:29800元
  • 惊爆!全温空气恒温振荡器年低大量促销!
    年低为了厂部争创业绩,为了推响精达仪器知名度, HZQ系列全温空气恒温振荡器大量促销,价格低至0.45折,一次性采购三台以上,价格可低至0.4折。销售区域覆盖全国各地,并包含送货上门费,这待遇平时可没有的哟,促销时间限至春节以前,促销的全温空气恒温振荡器种类有 欲了解更多,点击进入
  • 上海光源在X射线自由电子激光振荡器研究方面获重要进展
    上海光源科学中心自由电子激光团队在X射线自由电子激光振荡器研究方面取得重要进展,理论提出了一种产生涡旋X光的方法。研究表明,仅仅通过增益失谐的调节,X射线自由电子激光振荡器的输出就可以从传统的高斯光变为涡旋光。7月17日,相关研究成果以Generating X-rays with orbital angular momentum in a free-electron laser oscillator为题,以研究快报的形式,发表在Optica上。涡旋光是特殊性质的光,其产生、调控和探测是光学领域的研究热点。涡旋光已应用于数据传输、操纵微观粒子运动和精密测量等领域。涡旋光的产生通常需要螺旋相位板或全息光栅等难以加工的光学器件,非常不易,尤其是X射线涡旋光的产生是亟待解决的关键问题。自由电子激光是一种基于粒子加速器的先进光源,可以产生高亮度,短脉冲的X射线,涡旋光与自由电子激光结合有望为光子科学提供新的机遇。当前,自由电子激光产生涡旋X光的方案需要螺旋波荡器,且要工作在调制激光的高次谐波上,也不易实现。为了解决这一问题,研究人员提出了一种在X射线自由电子激光振荡器中产生全相干涡旋光的方法。该方法无须光学转换元件和螺旋波荡器,仅仅利用了增益失谐来控制高阶横向模式的增益,从而在传统X射线自由电子激光振荡器中自然地产生涡旋光。基于上海硬X射线自由电子激光装置的模拟结果显示,该方法能在1兆赫兹重复频率下产生单个脉冲能量为100微焦的涡旋X光束。这是目前全相干涡旋X光的唯一产生方案,对于进一步拓展X射线自由电子激光振荡器研究、开发新的实验方法有重要意义。2008年,X射线自由电子激光振荡器概念提出以来,上海光源中心自由电子激光团队已在X射线自由电子激光振荡器研究方面取得进展:提出了X射线自由电子激光振荡器的谐波运行模式(Physical Review Letters, 108, 034802),在该模式下,中等能量电子束团可以驱动X射线自由电子激光振荡器,降低了对电子束能量的要求(2012年);提出了增益光导型X射线自由电子激光振荡器(Applied Physics Letters, 113, 061106),在没有聚焦元件状态下,增益自聚焦效应可以维持X射线自由电子激光振荡器的横向模式,而输出效率和稳定性不受影响(2018年)。研究工作得到国家自然科学基金重点项目、国家重点研发计划、中科院和上海市的支持。论文链接图1. X射线自由电子激光振荡器产生全相干涡旋X光示意图图2. X射线自由电子激光振荡器中横向模式的演化
  • CHA-S数显气浴恒温振荡器回馈客户低价促销
    CHA-S数显气浴恒温振荡器(又称空气恒温摇床)CHA-S数显气浴恒温振荡器(又称空气恒温摇床)是一种温度可控的恒温培养箱和振荡器相结合的生化仪器,主要适用于各大中院校、医疗、石油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。其主要特点:A:温控精确数字显示。B:开设有补氧孔、恒温工作腔补氧充足。C:设有机械定时。D:万能弹簧试瓶架特别适合作多种对比试验的生物样品的培养制备。E:无级调速,运转平稳,操作简便安全。F:内腔采用不锈钢制作,抗腐蚀性能良好。CHA-S数显气浴恒温振荡器(又称空气恒温摇床)主要技术性能:一、 使用电源: 220V 50Hz二、 加热功率: 400w三、 定时范围: 0~120分(或常开)四、 振荡频率: 起动&mdash 300转/分,可调五、 振荡幅度: 20mm六、 恒温范围: 室温&mdash 50℃七、 振荡方法: 往复八: 温控精度: +1℃九: 装瓶量:试管:ø 16× 300mm100ml× 24只、200ml× 15只十: 外形尺寸: 700× 470× 500mm产品型号:(1) SHA-C型数显水浴恒温振荡器:属于-往复式。(2) THZ-82型数显水浴恒温振荡器:属于-回旋式。(3) SHA-B型数显水浴恒温振荡器:属于-往复和回旋,双功能式。(4) SHA-2型冷冻水浴恒温振荡器:属于制冷式,控温范围:5-100℃
  • 德国Heidolph(海道尔夫)Titramax 1000微孔板振荡器生化产品体验月活动
    好消息,好消息,德国Heidolph(海道尔夫)品牌的生化产品体验月开始啦~我司合臣科技(上海)有限公司作为德国Heidolph(海道尔夫)品牌的授权代理商,为了感谢广大用户对我司的支持与信任,趁此活动之际,我司特此推出如下活动: 在本次生化产品活动月中,任意采购一台Titramax 1000微孔板振荡器,加599RMB即可获得:1. 价值4,367RMB的Reax Top涡旋振荡器1台;2. 两台仪器均可获得3年质保服务;3. 每年2次的预防性维护和检修服务;4. 价值1000RMB的旋转蒸发仪代金券1张,或价值500RMB的磁力搅拌器代金券1张。Titramax 1000微孔板振荡器是德国Heidolph(海道尔夫)生化产品线中的热销型号,广泛用于微孔板的混匀。技术参数:l 负载5kg,可容纳6个微孔板;l 振幅1.5mm,适用于小量样品混匀;l 可选配模块化培养箱系统,推荐用于65℃以内的控温实验;l 模拟控制旋钮可设置并连续调节转速,转速范围150~1350rpm;l 计时器允许无人值守操作,可设置范围1~120分钟,到达设定时间后,仪器声音提示并自动停止。实验应用:ELISA(酶联免疫吸附测定)恒温振荡孵育染色实验生物分析及细胞化学反应生物酶及蛋白质分析DND/RNA检测免疫测定,免疫发酵实验细胞培养分子杂交流式分析抗原抗体反应实验分子化学矩阵分析产品优势:l 通量更大,可容纳6块微孔板;l 振荡时板孔内的磁珠不易被振出;l 隔热驱动装置,防止振荡平台受热,适合处于热敏性样品;l 可升级控温模块,用于控温孵育l 质量可靠,平均使用寿命长达10年l 德国原装进口,现货供应 活动正在火热进行中,欢迎来询~
  • 热烈祝贺我公司最新水平振荡器成功上市
    热烈祝贺我公司最新研发的产品水平振荡器成功上市,并在山西农药检定所得到实际性应用!目前市面上液-液萃取振荡器一般为垂直振荡器,适用于分液漏斗或具塞量筒、离心管、容量瓶等,代替人工手动震荡提高萃取效率。我公司两款垂直振荡器如下图所示。HVS-6适用于不同规格的分液漏斗,可同时处理6位样品,HVS-10M适用于不同规格的离心管、具塞量筒、容量瓶,可同时处理10位样品。 我公司最新研发的水平振荡器,可根据需要选择不同的样品支架,同时适用于不同规格的分液漏斗,容量瓶等,且振荡效果更加剧烈,混合效果更理想。如下图所示为新款水平振荡器,此款支架可同时处理14位50ml或100ml容量瓶。 仪器特点:1 体积小巧,运行平稳可靠,低噪音;2 数显定时,无需操作人员看管,无极调速功能;3 人性化控制,带缓启动功能;4 可根据需要选择不同支架,适用于不同规格的分液漏斗、容量瓶,满足不同的实验需求。
  • 涡旋振荡器,化验分析必需的小仪器、好帮手
    一、定义涡旋振荡器,也叫旋/漩涡混合器、旋涡混匀仪等,是一款精致的通用迷你振荡器,可用来振荡试管或其他小容器。二、适用范围作为化验分析的得力辅助工具,供各类大专院校、科研单位、生产企业的实验室、化验室作混合、萃取之用,常见于环境监测、医疗卫生、石油化工、食品、冶金等领域。三、选购建议转速大小是涡旋振荡器的首选指标,它直接决定混合效果。但价格区别还取决于仪器的扩展功能,比如是否为数显、可同时处理几根试管等。工作台(碗型/平板型)、工作方式(连续/点触/调速/定时)、振动方式(水平/圆周式)、主体材料(重铸铝/镀锌铸铁/亚铸铝合金;加强塑料/阻燃的ABS材料)、振幅(4/4.5/6mm等)、速度显示(刻度/LED线性图)的差异也决定了产品品质及价格。“HENGZWELL”牌涡旋振荡器转速范围0~3300rpm,机械型无级变速控制,圆周式振动(4mm),可选择两种工作台,连续与点触两种工作方式任意切换,适用于(手持式)各种微型试管或锥形试管,(固定式)0.5/1.5/2.0ml微型试管各12根。 四、注意事项①将产品安装在平整、没有阳光直射的地方。②保持设备不受潮湿、水和灰尘的影响。③开始使用时请逐步增加转速,以免引起晃动。④机身晃动严重、运行不平衡时,马上降低转速。⑤停机前必须将调速旋钮置于最小位置,关闭电源开关。
  • 关注!24项国家计量技术规范发布
    市场监管总局关于发布《液体活塞式压力计检定规程》等24项国家计量技术规范的公告根据《中华人民共和国计量法》有关规定,现批准《液体活塞式压力计检定规程》等24项国家计量技术规范发布实施。特此公告。市场监管总局2022年9月27日《液体活塞式压力计检定规程》等24项国家计量技术规范名录 序号编号名称批准日期实施日期备注1JJG 59—2022液体活塞式压力计检定规程2022-09-262023-03-26代替JJG 59—20072JJG 241—2022精密杯形和U形液体压力计检定规程2022-09-262023-03-26代替JJG 241—20023JJG 601—2022时间检定仪检定规程2022-09-262023-03-26代替JJG 601—20034JJG 126—2022工频交流电量测量变送器检定规程2022-09-262023-03-26代替JJG 126—19955JJG 982—2022直流电阻箱检定规程2022-09-262023-03-26代替JJG 982—20036JJG 1186—2022直流电能表检定装置检定规程2022-09-262023-03-267JJF 1286—2022无线信道模拟器校准规范2022-09-262023-03-26代替JJF 1286—20118JJF 1982—2022电平振荡器校准规范2022-09-262023-03-26代替JJG 374—19979JJF 1238—2022集成电路静电放电敏感度测试设备校准规范2022-09-262023-03-26代替JJF 1238—201010JJF 1983—2022高清视频信号分析仪校准规范2022-09-262023-03-2611JJF 1984—2022电子测量仪器内石英晶体振荡器校准规范2022-09-262023-03-26代替JJG 180—200212JJF 1985—2022直流电焊机焊接电源校准规范2022-09-262023-03-2613JJF 1986—2022差压式气密检漏仪校准规范2022-09-262023-03-2614JJF 1987—2022大气数据测试仪校准规范2022-09-262023-03-2615JJF 1988—2022通信信号分析仪校准规范2022-09-262023-03-2616JJF 1989—2022光谱照度计校准规范2022-09-262023-03-2617JJF 1990—2022积分球式标准光源校准规范2022-09-262023-03-2618JJF 1991—2022短型廉金属热电偶校准规范2022-09-262023-03-2619JJF 1992—2022长波辐射表校准规范2022-09-262023-03-2620JJF 1993—2022天然气能量计量技术规范2022-09-262023-03-2621JJF 1994—2022电冰箱能效(性能)测量装置校准规范2022-09-262023-03-2622JJF 1261.6—2022计算机显示器能源效率计量检测规则2022-09-262023-03-26代替JJF 1261.6—201223JJF 1261.27—2022投影机能源效率计量检测规则2022-09-262023-03-2624JJF 1995—2022电子式互感器校验仪校准规范2022-09-262023-03-26
  • 上海瞬渺光电成功举办“光学参量振荡器(OPO)”研讨会
    2014 年 8 月4日至8月8日,美国Qioptiq公司连续OPO产品首席工程师Frank博士顺利完成安徽光机所某实验室的高功率连续型光学参量振荡器OS4500-HP+的安装调试。期间,上海瞬渺光电技术有限公司在安徽光机所举办“光学参量振荡器(OPO)”研讨会。研讨会上,美国Qioptiq的连续OPO产品首席工程师Frank博士就产品原理、结构(固体激光器和光纤激光器泵浦)和应用领域(计量学、气体探测、高分辨分子光谱、材料检测等方面的应用)做了重点介绍。共有约 10多名来自508所,中国科学院等离子体物理研究所,安徽光机所,工程物理研究院的老师参加此次研讨会,大家就各自感兴趣的领域踊跃发言提问,相互交流,进一步认识了产品性能,深入了解产品应用,取得了很好的效果。图为Frank博士讲解光学参量振荡器激光器技术 上海瞬渺光电技术有限公司成立于 2004 年,坐落于国家级航天科技城--上海莘庄工业园区.主要从事国际知名品牌激光、光电子、光机械、光学仪器和光纤通讯等光电产品的设计、 引进、咨询和经销。团队的核心成员具有 10 年以上的激光光电子领域工作经验,早在 2005年我们就开始立足为客户提供专业级光电实验室解决方案,公司有多名来自知名高校研究所的技术中坚, 加之具有多年丰富商务经验的销售,采购,财务人员.我们坚信我们的服务能让光电领域的科研人员满意.经过数年的勤奋创新,目前已经成为中国最大的光电产品一站式服务供应商之一. 上海瞬渺光电技术有限公司Rayscience Optoelectronic Innovation地址: 上海市闵行区都会路 2338 号总部一号 21 号楼 5 楼邮编:201108电话:021-34635258/59/61/62传真:021-34635260邮件:saleschina@rayscience.com网址:www.rayscience.com
  • 我还不知道系列1:每个孔都在颤抖的微孔板振荡器
    小编原来以为振荡器是很简单的小仪器,今天被德国Heidolph(海道尔夫)的技术专家们培训后,才发现仪器虽小,想要做精做稳却不是那么容易的。 比如下面这款Titramax 1000微孔板振荡器:1.它是市面上[少见]的可同时振荡6块微孔板的振荡器;2.它是[少之又少见]的微孔板每个孔都在“颤抖”(振动)的振荡器,再也不用担心有的孔振不动,有的孔样品都溅出来啦~~~;3.它是[更加罕见]的平均寿命10年、还提供3年质保的振荡器;4.它重心低,底座更稳固,配置防滑脚垫,可放置在潮湿平台操作;5.它具备隔热驱动装置,防止振荡平台受热,可处理热敏性物料;6.它可以定时,实现长时间无人值守操作;7.它[甚至还可以]加装控温模块,实现恒温振荡、孵育功能。8. 它说它准备了大量现货,还提供大量样机试用;9. 它说只要拨打电话就可以预约试用;10. 它还说发邮件也可以预约试用哦~ 小编太激动于告知大家预约试用的事情了,忘记告诉大家它都可以用在哪里啦。。。你可以用它进行如下实验哦: ELISA(酶联免疫吸附测定) 恒温振荡孵育 染色实验 生物分析及细胞化学反应 生物酶及蛋白质分析 DND/RNA检测; 免疫测定,免疫发酵实验 细胞培养 分子杂交 流式分析 抗原抗体反应实验 分子化学矩阵分析 如果您或者您认识的人在制药公司、第三方检测公司、疾控中心、质检系统、食药监等单位工作,或者他们在从事细胞生物学、分子生物学、微生物学、病毒学、病理学、免疫学等方面的研究,我们诚挚地邀请您与我们取得联系,德国Heidolph(海道尔夫)Titramax 1000微孔板振荡器希望能让您一改对振荡器产品的过往使用体验,给您带去更便捷、更高效、更优质的产品和服务!
  • "诚邀参加“光学参量振荡器(OPO)”(安徽光机所)研讨会 "
    尊敬的老师,您好! 2014年8月上旬上海瞬渺光电技术有限公司将携美国Qioptiq公司技术总工在安徽光机所举办"光学参量振荡器(OPO)"技术讲座,诚挚邀请您参加此次技术沙龙。 连续光学参量振荡器,早在1968年就被首次提出。它不仅能输出高功率单频光源,且波长能拓展到中红外,广泛地应用于计量学、气体探测、高分辨分子光谱、材料检测等领域。Qioptiq公司(并购德国Linos)是全球先进OPO设备的制造商之一。 2013年,Qioptiq和上海瞬渺光电技术有限公司正式签署独家代理合作协议。 作为独家代理商,瞬渺成功于2014年前期引进两台OPO设备,目前已在中国大陆某实验室正常运行。 此次研讨会,您将有机会现场观摩高性能产品,与同行专家进行交流。 期待您的光临和指导!时间:2014年8月4日-7号(详细时间待定)地点:安徽光机所光学遥感中心会议室 合肥市蜀山湖路350号 组织单位:上海瞬渺光电技术有限公司 主 讲 人:Frank Mueller博士(Qioptiq OPO 产品总设计师,资深设计师,资深专家) 如您有意参加本次技术研讨会,请提前与我们联系以便会议安排!联系人:李飘电 话:021-34635258/59E-mail:saleschina@rayscience.com网址:www.rayscience.com http://www.qioptiq-shop.com/en/Instruments/Light-Sources-Laser/Optical-Parametric-Oscillator-OPO/OS-4500.html 请勿直接回复此邮件,如有疑问或需帮助请发送邮件至:saleschina@rayscience.com
  • ZW-A微量振荡器---价格优惠现货供应
    便携式气体检测仪水质检测仪主要适用于各大中院校、医疗、石油化工卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。本机具有结构合理、操作简便、稳定性能高等特点,是实验室工作人员得心应手的理想设备该振荡器已广泛普及各医药注射室及卫生防疫等单位的化验室,主要作微量血清之用电源:交流220V 50Hz振荡频率:1200次/分容量:96孔血凝板2块机重:2.5Kg欢迎您的来访致电,我方愿真诚为您服务。
  • 上海智城精密细胞振荡器喜入上海市自主创新产品目录
    2019年度上海市自主创新产品推荐目录最近公布。由上海智城分析仪器制造有限公司研发制造的ZWYC—290A精密细胞培养振荡器,被列入2019年度上海市自主创新产品推荐目录。据了解,本次创新产品的推荐活动经过专家的严格评审,最终遴选出80个具有代表性的创新产品。为贯彻落实上海市加快具有全球影响力的科技创新中心建设和“创新驱动、转型发展”等战略,促进创新产品的市场化和产业化,推动产业转型升级和企业创新发展,由上海市经济信息化委、上海市科委、上海张江高新技术产业开发区管理委员会牵头,制定了上海市创新产品推荐目录编制办法。据了解,上海市以推荐目录形式,在促进政府采购招标环节中鼓励创新的举措至今已经连续了第五年。 细胞生长对温度、CO2浓度、剪切、培养基浓度等培养环境有着极高的敏感度。尤其对于抗体、动物细胞这一类既价格昂贵,又十分娇弱的细胞样品,实验室人员一般都采用进口的细胞培养振荡器进行实验。国家每年耗用大量外汇采购进口高价的细胞培养振荡器。随着细胞研究、应用领域的快速发展,精密细胞培养振荡器的需求正面临着一个爆发式的增长,科研人员急盼国产的精密细胞振荡器能及早面世。ZWYC-290A型精密细胞培养振荡器ZWYC-290A型精密细胞培养振荡器含有多项发明专利。产品凝聚了上海智城公司中国研发团队二十多年恒温培养振荡器的专业设计经验和现代生物技术的应用经验,是携手海外专家技术攻关,在引进、消化、吸收基础上,再创新,再提高而形成的一个填补国内空白的创新产品。该产品的研发融入了先进的设计思想和领先的控制技术,体现了对细胞培养各个环境因素的最优化考量。目前,产品已经进入了国内大型动物疫苗制造企业和具有美资背景的大型培养基制造企业。这些企业对这款产品均作了与国际顶尖同类产品的母细胞对照试验,其结果表明,在细胞密度、细胞活率和细胞产量这三个核心指标中,智城的这款产品完全可以与国际顶尖品牌的细胞培养设备媲美。据了解,目前,该产品已经批量进入德国、英国等十几个国外市场。
  • 上海市自主创新产品目录公布 上海智城精密细胞振荡器入选
    p style="text-align: justify text-indent: 2em "2019年度上海市自主创新产品推荐目录最近公布。由上海智城分析仪器制造有限公司研发制造的ZWYC—290A精密细胞培养振荡器,被列入2019年度上海市自主创新产品推荐目录。据了解,本次创新产品的推荐活动经过专家的严格评审,最终遴选出80个具有代表性的创新产品。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/de5048e3-0fff-4da4-be41-45ceb11ae3d9.jpg" title="001.jpg" alt="001.jpg"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/57e5d9ef-de76-4e94-844e-5bebe5fca12d.jpg" title="002.jpg" alt="002.jpg"//pp style="text-align: justify text-indent: 2em "为贯彻落实上海市加快具有全球影响力的科技创新中心建设和“创新驱动、转型发展”等战略,促进创新产品的市场化和产业化,推动产业转型升级和企业创新发展,由上海市经济信息化委、上海市科委、上海张江高新技术产业开发区管理委员会牵头,制定了上海市创新产品推荐目录编制办法。据了解,上海市以推荐目录形式,在促进政府采购招标环节中鼓励创新的举措至今已经连续了第五年。/pp style="text-align: justify text-indent: 2em "细胞生长对温度、CO2浓度、剪切、培养基浓度等培养环境有着极高的敏感度。尤其对于抗体、动物细胞这一类既价格昂贵,又十分娇弱的细胞样品,实验室人员一般都采用进口的细胞培养振荡器进行实验。国家每年耗用大量外汇采购进口高价的细胞培养振荡器。随着细胞研究、应用领域的快速发展,精密细胞培养振荡器的需求正面临着一个爆发式的增长,科研人员急盼国产的精密细胞振荡器能及早面世。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/5d3ace4c-25ef-4712-9227-aaac3b49ba07.jpg" title="ZWYC-290A型精密细胞培养振荡器.jpg" alt="ZWYC-290A型精密细胞培养振荡器.jpg"//pp style="text-align: justify text-indent: 2em "strong2019年01月11日由上海市高新技术成果转化项目认定办公室召开的2018年度第10批高新技术成果转化认定颁证大会上,共有70个项目被认定为上海市高新技术成果转化项目,其中上海智城分析仪器制造有限公司自主研制生产的“ZWYC-290A精密细胞培养振荡器”(简称:“细胞摇床”)名列其中。/strong/pp style="text-align: justify text-indent: 2em "strong/strong/pp style="text-align: justify text-indent: 2em "WYC-290A精密细胞培养振荡器是智城公司推出的具有我国自主知识产权的细胞振荡器新品。该产品凝聚了智城公司中国研发团队二十年恒温振荡器的专业设计经验和现代生物技术的应用经验,携手海外专家攻关,在引进、消化、吸收国外一线同类旗舰产品的基础上,再创新提高而形成的技术成果。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "产品/spanspan style="text-indent: 2em "广泛应用于微生物细胞发酵、动物细胞和植物细胞培养,在生物医药、食品开发、生物农业环境治理等领域进行微生物培育、菌种或细胞系筛选等有着很好的应用前景,也可应用于对温度、供氧、剪切等具有较高要求的细菌培养、动植物细胞培养、杂交和生物化学反应以及酶反应研究。/span/pp style="text-align: justify text-indent: 2em "strongbr//strongstrong延伸阅读:/strong/ppa href="http://https://www.instrument.com.cn/news/20190221/480423.shtml" target="_blank"上海智城细胞摇床获上海市高新技术成果转化扶持/a/pphttps://www.instrument.com.cn/news/20190221/480423.shtml/p
  • 多功能振荡器:恒温快,控温好结构合理,体积小巧
    A1230全自动多功能振荡仪符合GB/T17623、DL/T703、DL/T429.4标准 ,A1230主要用于绝缘油气相色谱检测中的振荡脱气、油中水溶性酸测定中的恒温、定时、振荡,还可用于石油、化工、医药、生化等科研生产单位试验中的恒温、定时振荡。仪器特点采用双CPU微型计算机控制。温度超值自 动停止加热。仪器故障自诊断。液晶显示,无标识按键。恒温快,控温好结构合理,体积小巧。技术参数温度控制:室温~100℃温控精度:室温~50℃±0.2℃ 50℃~100℃±0.3℃振荡频率:275±3次/分振荡幅度:35mm每次振荡样品数量:8支100ml注射器 4个250ml三角瓶自定义:0~99分钟内任意设定振荡、静止时间±10秒 0~99℃内任意设定温度噪  音: <40分贝工作电源:AC220V±10%,50Hz功 率:800W显示方式:液晶显示环境温度:5~40℃相对湿度:≤85%外形尺寸:500mm×350mm×370mm重 量:30.5kg
  • 智城精密细胞培养振荡器荣获“用户青睐仪器”奖
    由中国仪器仪表行业协会和仪器信息网共同举办的2019年度“科学仪器行业年度用户青睐仪器”获奖名单近日出炉。上海智城公司自主研发制造的“ZWYC—290A精密细胞培养振荡器”喜获生物工程领域“用户青睐仪器”奖项。ZWYC—290A精密细胞培养振荡器含有多项自主知识产权。该产品温场极为均匀,能满足对温场要求极高的,使用PP实验管进行动、植物母细胞培养的国产细胞培养设备。精密细胞智能培养摇床或称细胞培养振荡器,广泛应用于动、植物细胞在离体条件下,将愈伤组织或其他易分散的组织置于液体培养基中,通过振荡、继代培养增殖获得大量的细胞,这实际是通过“生物细胞反应器”完成细胞增殖的一个过程。ZWYC—290A精密细胞培养振荡器国家微生物相关的重点实验室、部分重点高校生物实验室和不少疫苗生产企业都开始采用该型号设备替代进口。有几家用户采用该型号产品与国际顶级同类产品进行母细胞培养的对照实验,其结果表明:“细胞密度”、“细胞活率”和“细胞产量”这三大重要的指标,可以媲美国际一线同类产品。该型号产品2019年被收录于“上海市自主创新产品推荐目录”,也被国内同行誉为“德国人爱上中国智造”的一个案例。目前,该型号产品已经批量进入十多个欧州国家。据了解,本次评选最终选出科学仪器行业国内、国外用户青睐仪器共40台。
  • WIGGENS发布WIGGENS WOS-101SRC CO2 培养箱专用振荡器新品
    维根斯(WIGGENS)CO2培养箱专用振荡器详细说明* 维根斯(WIGGENS)CO2培养箱专用振荡器采用电磁感应驱动技术,驱动力强,但发热量小保证了培养箱体内的温度稳定性* 控制系统与驱动系统独立,驱动系统中电子元件均有涂层保护,这些设计保证了维根斯(WIGGENS)CO2培养箱专用振荡器能够在高湿度环境下稳定运行* 远程控制器,使得WIGGENS二氧化碳培养箱专用振荡器可以在箱体外控制振荡器,有效的减少热损失及CO2消耗* WIGGENS CO2培养箱专用振荡器的控制器与驱动器通过电缆线连接,控制器后部有磁铁,保证了使用过程的舒适,便捷维根斯(WIGGENS)CO2培养箱专用振荡器特点* 低发热量 采用电磁感应驱动技术,驱动力强大,但几乎不发热,几乎没有任何热量进入培养箱。保证了培养箱中的温度稳定性,是放在培养箱或者其他箱体里细胞培养的理想选择。* 防水蒸汽设计 电线圈、振动电机等电子元件都有环氧树脂涂层保护,适用于高湿度环境。而其余的电路元件如控制面板、LED 显示器全都放置在箱体外部。* 远程控制单元 远程控制器置于箱体外面。清晰显示各参数值,不需要开启培养箱即可查看设置参数及运行状态。节省操作时间并且减少了由于开启箱门造成的热损失和CO2 消耗。* 远程控制器跟摇床通过电缆线连接 WIGGENS 的远程控制器是采用一个很薄的线缆连接到振荡摇床上,线缆通过密封的玻璃门,即使您的培养箱内没有电源接口也可以使用。 远程控制器还可以通过磁铁,或挂钩固定在箱体外侧壁,或直接放置在箱体顶部维根斯(WIGGENS)CO2培养箱专用振荡器技术参数:型号WOS-101SRC WOS-101MRC 控制方式微电脑控制,LED 数显,远程控制器驱动方式磁力驱动振荡模式圆周振荡转速(rpm) 30 ~ 300 精度(rpm) ±1 振幅(mm) 22 定时范围连续或者47h 59min 定时增长1min 外形尺寸(W x Lx H mm) / 重量(Kg) 305 x 350 x 75/7.5 465 x 540 x 125/35 平板尺寸(W x Lx H mm) 300 x 330 460 x 455 控制器尺寸(W x Lx H mm) / 重量(Kg) 190 x 50 x 140 / 2 电源220V 50/60HZ 承载量100mL x 16 250mL x 9 500mL x 5 1000mL x 4 2000mL x 1 100mL x 36 250mL x 23 500mL x 16 1000mL x 9 2000mL x 4 订货号189321-02 189322-02维根斯(WIGGENS)CO2培养箱专用振荡器其他可选型号WIGGENS WCI-40 CO2培养箱详细说明* 维根斯(WIGGENS)CO2培养箱可根据客户要求选配包括氧气控制,紫外灭菌等诸多配件,用来满足客户生物培养的最苛刻要求* 六面箱体侧部加热,顶置循环风扇保证了维根斯(WIGGENS)CO2培养箱卓越的空气对流和温场均匀性,同时也避免了使用过程中的液体冷凝问题* 空气夹套的设计,使得WIGGENS二氧化碳培养箱能够保证温度的快速恢复,有效的减少热损失,也不需要定期维护* WIGGENS便携式MINI CO2培养箱在箱体内部设置有双光束CO2传感器,水盘加湿,同时设有报警系统和温度上限设置,保证了生物培养过程中出现异常现象时的迅速响应以及及时处理* 维根斯便携式二氧化碳培养箱使用PID控制系统,自动控制 CO2浓度、温度和报警。WIGGENS WCI-40 CO2培养箱技术参数型号WCI-40WCI-180WCI-850箱体体积(L)42179850温度(℃)范围室温+5~60精度±0.1℃(37"C)分辨率0.1"C控制数字PIDCO2范围0% ~ 20%精度±0.1% (at 5% at 37℃)分辨率0.1%传感器双光束红外CO2传感器控制微电脑控制内部压力范围0.5~0.6bar0.6~' 0.7bar0.9~1.0bar显示LED显示,双显示屏操作面板独立的双通道按键夹套类型气套式(六面梯度加热设计)腔体材料不锈钢(304)隔板数(标准/最大)2/43/83/15内部尺寸(WxDxH)mm320x350x370473x528x710698x799x1528外部尺寸(WxDxH)mm408x482x550560x665x945820x950x1840重量(kg)3578266订货号189121189122189123维根斯恒温培养箱详细说明* 维根斯(WIGGENS)恒温培养箱采用硅胶密封垫和玻璃门的搭配,保证了操作者在无污染状态下观察培养过程* 不锈钢喷涂聚酯内胆及隔板,保证了维根斯(WIGGENS)恒温培养箱箱体内通气性好,清理方便,高低可调* 独特的Bias补正功能,使得WIGGENS恒温培养箱可以在温度发生偏差时及时补正,操作便宜* WIGGENS恒温培养箱有定时功能,可以根据实验计划,设置培养时长,节省人工成本维根斯恒温培养箱技术参数产品型号WH-05WH-15WH-25有效容积 L5070140温度范围 ℃室温+5~ 80温度精确度(ATC 校准) ℃±0.1温度稳定性 ℃ (37℃ )±0.1温度控制器薄膜式按键,数显 PID 自动调节材质内胆: 不锈钢喷涂聚酯(亮白)外壳: 优质冷轧钢板静电喷涂搁板: 不锈钢丝喷涂聚酯(亮白)保温材料: 不可燃聚苯乙烯(EPS )玻内门: 耐高温安全玻璃(5mm)定时器定时开机,定时关机,定时报警(1 分~99 时 59 分)加热功率W450电源AC 220~240 V,50/60 Hz隔板数量(标准/ 最大)2/32/42/5箱内尺寸(WxDxH) mm400 x 400 x 320400 x 400 x 400550 x550 x 460外形尺寸(WxDxH) mm510 x 535 x 698550 x 535 x 778660 x 690 x 858可选配置RS232/RS485 通讯接口及软件,温度编程控制,测试孔订货号211622117221182创新点:1、低发热量采用电磁感应驱动技术,驱动力强大,但几乎不发热,几乎没有任何热量进入培养箱。保证了培养箱中的温度稳定性,是放在培养箱或者其他箱体里细胞培养的理想选择2、防水蒸汽设计WIGGENS WOS-101SRC CO2 培养箱专用振荡器
  • 工信部批准上海智城公司主持起草“恒温培养振荡器”行业标准
    长期困扰我国实验室仪器行业的“恒温培养振荡器”无行业标准的落后局面有望得到改变。在近日由国家工业和信息化部发布的2014年第二批行业标准制修订计划中,确定了上海智城分析仪器制造有限公司和机械工业仪器仪表综合技术经济研究所为该产品标准的主要起草单位。根据计划安排,此标准的制定将在2016年底完成。另据了解,上海市科技情报研究所通过对“恒温培养振荡器”标准的国际检索所得到的结果显示,国际上尚无此产品的标准可查。 “恒温培养振荡器”在行业中亦称作“恒温摇床”。该设备广泛应用于对温度、振荡频率有着较高要求的细菌培养、发酵、杂交和生物反应以及酶、细胞组织研究等。在医学、生物学、分子学、制药、食品、环保等研究应用领域有着广泛而重要的应用。 标准起草单位之一的上海智城分析仪器制造有限公司自上世纪末在国内研发成功首台多振幅轨道恒温摇床以来,坚持人性化的设计理念和差异化的产品研发思路。近二十年来,该公司对自身研发的各类恒温摇床坚持持续地,有针对性的性能改良和功能拓展,建立了由三十多项发明、实用新型等专利和多个商标、版权、著作权所组成的知识产权体系,还建立了多品种、多规格的较为完整的“恒温摇床”产品体系。与此同时,该公司出品的各类“恒温摇床”以期领先的技术、精良的工艺、完美的造型和专业化的制造水准,形成了国内高端恒温摇床的产业格,并获得了国家重点新产品、上海市专利新产品等一系列的殊荣,上海智城公司也荣获2012年度中国教育装备行业最具影响力的十大民族品牌之一。
  • 百典发布上海百典旋涡振荡器HD-2500混匀仪新品
    HD-2500多管旋涡混匀仪外型紧凑简洁,采用了直流无刷电机技术以及微电脑控制技术,功能多样,适用于生物工艺学,微生物学和医学分析等领域。 本产品具有以下特点:? 一次最多混合处理50样品;? 人机友好的触摸式操作界面,LED定时时间及转速显示;? 设有定时功能,1秒--9999分钟范围内任意设定混匀时间,显示屏显示剩余时间,定时;? 直流无刷电机驱动、速度精确,长寿命、免保养。型号HD-2500转速500~2500rpm调速精度±10rmp振幅4mm定时范围1S ~9999min脉冲间隔时间范围1-10S脉冲运行定时范围1S~99min:59S载重5kg顶部盖板尺寸L.311×W.184mm输入电源AC 100~230V,50/60Hz功率60W熔断器250V,1A Φ5×20外形尺寸(mm)426×250×480净重(kgs)15 型号描述试管数模块尺寸mmAΦ10mm泡沫试管架50 245×132×45BΦ12mm泡沫试管架50245×132×45CΦ13mm泡沫试管架50245×132×45DΦ16mm泡沫试管架(可放15ml离心管)50245×132×45EΦ25mm泡沫试管架15245×132×45FΦ29mm泡沫试管架(可放50ml离心管)15245×132×45H可替换托盘垫/305×178.5×25DIΦ11亚克力试管架(可放1.5/2.0ml离心管)40 169X84X41创新点:采用直流无刷电机驱动代替传统碳刷电机、速度更精确,长寿命、免保养.由原来的旋钮式键盘,改成数显按键式键盘,震动波动度更小,精准度更高,同时更美观.上海百典旋涡振荡器HD-2500混匀仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制