当前位置: 仪器信息网 > 行业主题 > >

格光栅模块脉冲展宽器

仪器信息网格光栅模块脉冲展宽器专题为您提供2024年最新格光栅模块脉冲展宽器价格报价、厂家品牌的相关信息, 包括格光栅模块脉冲展宽器参数、型号等,不管是国产,还是进口品牌的格光栅模块脉冲展宽器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合格光栅模块脉冲展宽器相关的耗材配件、试剂标物,还有格光栅模块脉冲展宽器相关的最新资讯、资料,以及格光栅模块脉冲展宽器相关的解决方案。

格光栅模块脉冲展宽器相关的资讯

  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 滨松发布滨松波长可调谐量子级联激光器(QCL)模块L14890-09新品
    滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。本产品不可以销往美国。如果该产品在美国地区,跟客户的设备出现任何不适配的问题,滨松不承担任何责任。详细参数产品型号L14890-09脉冲输出功率(最大值)900 mW光脉冲重复频率(典型值)180 kHz准直透镜Included尺寸(W × H × D)82 mm × 88 mm × 112 mm重量1.2 kg中心波数(典型值)1075 cm-1波数扫描宽度(典型值)200 cm-1产品特点● 内置MEMS光栅● 实现宽波长范围高速扫描● 内置准直透镜● DAU结构基础上的宽带QCL外形尺寸(单位:mm)创新点:滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2× 8.8× 11.2 cm),易于装配。滨松波长可调谐量子级联激光器(QCL)模块L14890-09
  • 海洋光学推出JAZ 光谱仪的高强度脉冲氙灯光源
    微型光谱仪领域的先行者海洋光学,又推出了一种可集成在 JAZ 光谱仪上的脉冲式氙灯光源。Jaz-PX 是一种高频、低弧的氙灯,尤其在吸光率、生物放射、荧光和磷光等紫外线-可见光范围内的应用中特别有用。这种灯的最大脉冲频率为500赫兹,光谱输出范围在 190nm-1000nm 之间。  海洋光学推出JAZ 光谱仪的高强度脉冲氙灯光源  JAZ 是由一组不同功能的模块叠加在一起构成光谱仪。其核心模块是微型线性 CCD 光谱仪,用户可以根据应用需要,自主选择最佳的光栅和狭缝,最多可以有8个光谱仪通道。每个 Jaz 光谱仪包括一个强大的微处理器和显示器模块,不需要电脑就可以独立工作。此外,JAZ 还有电池模块,以太网连接模块,以及各种光源模块。  Jaz-PX 可在自运行模式和和触发模式下使用。在外触发模式下,其脉冲可以用做与其它模块的同步信号。每次闪光输出的稳定性都在1%以内,闪光频率是500赫兹。Jaz-PX 有一个 SMA905 的接头,可与海洋光学的各种配件连接,这些配件包括光纤、试管支架、探针以及其它取样光学仪器。由于 Jaz-PX 产生的是脉冲信号,所以不会引起光纤的外层的老化(光纤外层长时间置于 260nm 以下的紫外光照射下,会产生老化现象)。  此外,Jaz 可以按照不同的场地、实验室和工艺情况来设置。Jaz-PX 非常适用于野外应用,比测量野外生物体的反射率,因为没有电源供应,就需要高强度,低功耗的光源。这种氙灯在实际使用时,它的电池大约能坚持3.5到4个小时。用户也可以选用能储存50瓦时电量的外接电池获得额外的电力供应。  关于海洋光学  总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团(http://www.halma.cn )。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有4000多名员工,近40家子公司,2008/09财年营业额超过4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。
  • 新型脉冲电源通过测试
    7月7日,国家重大科技基础设施强流重离子加速器(HIAF)增强器BRing二极铁首台电源暨国家重点研发计划“大科学装置前沿研究”非谐振快上升速率磁铁电源测试总结会在甘肃省天水市召开。由中国科学院近代物理研究所等单位研制的国际首台大型非谐振全储能快循环脉冲电源通过专家组现场测试。  强流重离子加速器装置是中国科学院近代物理研究所主持建造的国家重大科技基础设施,其中增强器BRing是HIAF装置最核心的组成部分。BRing要求电源输出3900安培的大电流、15兆伏安峰值功率、高达38000安培每秒电流上升速率,以及17—4800伏的极宽动态工作范围和小于200毫安的输出精度。BRing二极铁电源特殊的脉冲工作模式会在电流脉冲波形上升段和下降段产生极大能量吞吐,对电网产生巨大冲击,给电源系统设计提出了前所未有的挑战。  针对上述难点,中国科学院近代物理研究所加速器团队创新性地提出了一种非谐振变前励全储能解决方案。该团队经过4年半集中攻关,解决了41个技术问题,在4项核心技术难题上取得了突破,解决了大功率快循环脉冲电源对电网周期性强冲击和极宽电压范围下的高精度输出指标要求等问题。该电源进入批量生产阶段后,又不断迭代优化工艺方案,实现了电源的模块化、集成化和标准化设计,大幅度提升了电源的可靠性、可维护性和电磁兼容性。7月7日,该电源批量生产阶段的首台电源产品下线,并通过了专家组现场测试,标志着强流重离子加速器的建设又迈出了坚实一步。  大功率非谐振变前励全储能脉冲电源的研制成功,使得大型加速器绿色低碳运行成为可能,在重离子治癌装置及其他应用场合有广泛应用前景,为世界大型加速器特种脉冲电源提供了一种新的实现方案。
  • 脉向成功,冲出未来之脉冲氙灯介绍
    许多前沿技术都在以全新的方式使用光子。无论是在3D打印、印刷电子、光伏、碳纤维铺放、金属沉积退火等领域,通常来讲——光或热的使用在这些领域中都是关键的生产工具。激光或气体烘箱的生产系统体积大、难以使用、且很昂贵。脉冲氙灯工艺技术的出现,极好的替代传统的处理方法。脉冲氙灯系统相对于激光和传统烘箱体积更小、使用更方便,脉冲氙灯系统让生产具有较大的灵活性。现在正是技术革新的时候了。脉冲氙灯是利用贮存的电能或化学能,在极短时间内发生高强度闪光的氙灯。19世纪50年代,脉冲光源进入工业领域。脉冲氙灯一般由密封在玻璃或石英玻璃体内的两个电极组成,壳体中充以氙等惰性气体。脉冲氙灯选择优质滤紫外线石英管作为灯管材料,以高质密度电极为氙灯电极,具有负载能力强,泵浦效率高,激光光束质量好,寿命长等特点。贺利氏脉冲氙灯系统的功能: 紫外到红外光谱 高峰值功率脉冲 - 兆瓦/平方厘米 (MW) 短脉冲持续时间 - 微秒 (us) 快速重复率 - 千赫(kHz) 即时开/关循环 不升温 —— 在低温基板上进行高温处理 综合能源监测 轻松更换灯泡 集成 QRC© 反射器,以获得最佳的能量传递 高吞吐量 可堆叠的光模块允许更大的曝光区域 灵活的操作软件 易于集成到外部系统 无毒(无汞) 您要想改进工艺流程,贺利氏特种光源是您理想的合作伙伴。我们擅长于灯管设计、精确控制、波长优化、光路设计、以及智能化加热。这些都能为您量身定制系统解决方案。想要知道脉冲氙灯工艺技术如何为您的应用带来效益,欢迎联系我们的工程师,一起讨论贺利氏如何让您“脉”向成功、“冲”出未来。 应用: 快速热处理(RTP) 强脉冲光烧结 退火 分子活化 太阳光模拟 加热 杀菌等 贺利氏特种光源拥有最先进的全自动激光灯生产线,在2015年获得“英国女王企业创新奖",自动化生产流程不仅显著提高了生产率,让生产更加灵活便捷,而且还能有效改善灯管的稳定性,极大地延长了使用寿命。而且我们始终和广大客户及研究机构通力合作,不断探索提高产品性能的新方法。贺利氏特种光源携手贺利氏石英玻璃业务部闪亮登场慕尼黑上海光博会(LASER WORLD of PHOTONICS CHINA),为您带来从原材料到光源的众多惊喜!同时欢迎您来我们的展台与光博士合影,丰富的抽奖活动等着您的参与! 欢迎大家跟我们的专家当面沟通,我们在N1馆1700展位恭候您的光临!
  • 中智科仪逐光IsCMOS像增强相机用于纳秒脉冲DBD在空气消毒领域的应用机理研究
    清华大学电机工程与应用电子技术系付洋洋老师团队利用逐光IsCMOS像增强相机进行大气压介质阻挡放电等离子体在空气消毒方面的应用研究,相关成果近期以“Air disinfection by nanosecond pulsed DBD plasma”为题发表在“Journal of Hazardous Materials”期刊上。   1、研究背景   在公共场所的空气消毒应用中,大气压介质阻挡放电(dielectric barrier discharge,DBD)等离子体是一种新兴且有前景的技术。放电电源是其中的关键因素,但其对等离子体空气消毒性能的影响尚不清楚。   作者采用纳秒脉冲电源驱动一种新型光栅式DBD阵列,实现快速单次通过空气消毒。揭示了脉冲参数和环境因素对放电特性和单次细菌灭活效率的影响。为纳秒脉冲DBD的放电特性和空气消毒研究提供了基础认知。   文中给出了两个可能的评估参数:   1. 特定输入能量(Specific Input Energy,SIE),定义为单位体积的气体接受到的放电能量。   2. Z值,定义为使微生物存活率下降一个数量级所需的特定输入能量SIE。Z值越小,意味着消灭同样数量的微生物所需的能量越小。   2、实验装置和材料   实验装置部分是用于测试DBD等离子体对细菌气溶胶单次通过灭活效率的通风管道系统,以下为该系统各部分的说明。   1. 通风管道:在气溶胶入口前增加了一个可调节的管道加热器(0-1200 W),用以瞬间加热入口空气,探究在仅加热或“加热+等离子体”条件下气流温度对等离子体放电特性和细菌气溶胶存活特性的影响。   2. 温度和湿度监测:在加热器出口后安装了温度计,同时在等离子体反应器前后放置了两个温湿度计,用以监测气流的温度和相对湿度。   3. 气流速度:使用风速计测量反应器前的空气面速度(vin),在实验中固定为1米/秒,总流量为40立方米/小时。   4. DBD反应器:建立了一个垂直型光栅式DBD反应器,其电极被石英管包围,交替连接到高压和地线产生等离子体阵列。反应器内部空气通过尺寸为85×85平方毫米,有16个空气间隙。   5. 电源激发:DBD由单极纳秒脉冲源或交流电源激发,测量了电压和电流波形。   6. 放电功率和臭氧浓度:计算了脉冲DBD的平均放电功率,并使用臭氧分析仪测量了臭氧浓度。   7. 光学诊断:使用光谱仪(MX2500+, 海洋光学)记录等离子体的光发射光谱,并使用逐光IsCMOS像增强相机(TRC411-H20-U,中智科仪)和变焦镜头对等离子体进行了成像,以探测放电区域形成的激发的物质种类,确定放电均匀性。   图1 光栅式DBD反应器测试系统示意图   实验装置的设计允许研究者控制和监测影响DBD等离子体放电和细菌灭活效率的关键参数,如气流速度、温度、湿度和电源类型。   3、实验结果和讨论   为了比较由脉冲源驱动的DBD与交流(AC)源的电气参数和光发射信号,保持了气流速率、湿度和放电功率尽可能相同。脉冲电压的基本参数包括脉冲上升时间(tr)、宽度(tw)、下降时间(tf)、频率(f)和电压幅度(Vp),而交流电压包括电压频率(f)和幅度(Vp)。   将电压频率固定在5 kHz,vin为1 m/s,RH在15-17%。脉冲参数如下:tr = tf = 50 ns,tw = 100 ns,Vp约为14 kV。为了保持与脉冲源相当的放电功率34-35 W,将交流源的电压幅度调整为10.75 kV。   图2   图2 共对7个气隙进行了成像,并给出了第3个气隙的线发射密度。(a)脉冲源和(b)交流源的放电图像比较,交流源和脉冲源的线平均强度分别为135.6和175.5 a.u.(相对单位) 。注意:气隙旁边的光是由透明石英管的光折射和反射产生的。对于两种光源,曝光时间固定为200 μs(一个周期)。以上等离子体图像由中智科仪IsCMOS相机拍摄。   为了可视化放电的空间分布,应用了短曝光成像。曝光时间固定在200 μs,对应一个周期,成像区域为45 × 30.5 平方毫米,包括总共七个空气间隙。如图2(a)所示,对于交流DBD,放电丝非常明显,几乎均匀分布在空气间隙中,间隔约1 mm。与此同时,脉冲DBD的放电更加均匀,但整体发射强度似乎更弱(图2(b))。   以第三个间隙为例,图3显示了间隙中心线和线平均强度的发射强度。尽管单个放电丝的最大强度更高,但对于交流源,放电丝更稀疏。结果,平均发射强度比脉冲源低22.7%,这与光谱仪测量结果一致。   4、结论   研究发现,通过提高电压幅度、缩短脉冲上升时间以及增加气流湿度和温度,可以增强光栅式DBD的单脉冲放电能量。相反,提高频率则会降低放电能量。这些发现与先前关于脉冲放电的报告一致。比较了脉冲源和交流源消灭微生物的性能。脉冲源在低频率(1 kHz)下产生的Z值低于交流源,但在某些情况下略高。这表明脉冲源在特定条件下可能更优。建议将特定输入能量(SIE)作为基于等离子体的空气消毒的剂量参数,而Z值主要取决于湿度。该研究提供了纳秒脉冲DBD等离子体空气消毒特性的基础认识,为供暖、通风和空调系统中的高效节能空气消毒提供了理论和工程基础。      免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。   5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • 上海光源实现储存环单束团流强高于20 mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20 mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。 图1. 超导三次谐波腔的安装、就位和带束调试图2. 单脉冲X射线超快成像在激光加载后不同时刻(15 μs、20 μs、30 μs、40 μs、50 μs)获得的水中气泡的瞬态图像并观测到气泡中的射流现象上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2 K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。图3. 快速X光成像线站实验站图4. 研制的单脉冲超快X射线成像探测器。(a)研制的大数值孔径三镜头双路光学转换系统,与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器;(b)研制的大数值孔径三镜头双路光学转换系统,与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器图5. 基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,两幅图像之间最短时间间隔为1.44 μs此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 我国科学家实现储存环单束团流强高于20mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。   上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。   快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。   此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • X射线多层膜在静态和超快X射线衍射中的应用
    x射线多层膜在静态和超快x射线衍射中的应用x射线光学组件类型根据x射线和物质作用的不同原理和机制,目前主流的x射线光学组件可以大致分为四类:以滤片、窗片、针孔光阑为代表的吸收型组件;基于反射,全反射原理的各种镜片以及毛细管、波导等反射型器件,还有基于折射原理的各种复折射镜。而本文的主题多层膜镜片,其底层原理和晶体、光栅、波带片一样,都是基于衍射原理。吸收型反射型折射型衍射型滤片窗口针孔/光阑镜片:kb、wolter、超环面镜… … 毛细管:玻璃毛细管、金属镀层毛细管复折射镜:抛物面crl、菲涅尔crl、马赛克crl、… … 晶体光栅多层膜波带片多层膜的原理和工艺一般来说,反射型镜片存在“掠射角小、反射率低”的问题。而多层膜镜片则是通过构建多个反射界面和周期,并使反射界面等周期重复排列,相邻界面上的反射线有相同的相位差,就会发生干涉,如果相位差刚好为2pi的整数倍,则会干涉相长,得到强反射线。从布拉格公式可以看出:多层膜就是通过对d值的控制,来实现波长选择的人工晶体。而在工艺实现方面,目前制备x射线多层膜镜的主要工艺有:磁控溅射、电子束蒸镀、离子束蒸镀。一般使用较多的是磁控溅射或离子束镀膜工艺,即在基板上交替沉积金属和非金属层,通过选择材料,控制镀膜的厚度及周期的选定,实现对硬x射线到真空紫外波段的光的调制。上图为来自德国incoatec的四靶材磁控溅射镀膜系统。可实现多种膜系组合的高精度镀膜。[la/b4c]40 多层膜b-kα(183ev)用多层膜,d:10nm单层膜厚:1-10nm0.x nm的镀膜精度tem: 完美的镀层界面frank hertlein, a.e.m. 2008上图为40层la-b4c多层膜的剖面透射电镜图像和选区电子衍射,弥散的衍射环说明膜层是非晶结构。同时可以明显看到:周期为10nm的膜层界面非常清晰和规则。这套镀膜系统可获得0.x nm的镀膜精度。多层膜的特点示例—单色和塑形多层膜最显著的特点和优势在于可以通过基底的面型控制和镀层的膜厚控制,将x光的塑形和单色统一起来。当然,这是以精度极高的镀膜工艺为前提。下图的数据展示了进行梯度渐变镀膜时,从镜片一端到另一端镀膜的周期设计数值 vs. 实际工艺水平。可以看到:长度为150mm的基底上,单层镀膜膜厚需要控制在3.8-5.7nm,公差需要在1%以内。相当于在1500公里的长度上,厚度起伏要控制mm水平。这是非常惊人的原子层级的工艺水平。frank hertlein, a.e.m. 2008通过面型控制来实线x射线的塑形;通过极高精度的膜厚控制实现2d值渐变—继而实现单色;0.x nm尺度的镀膜误差——需要具备原子层级的工艺水平!多层膜的特点示例—带宽和反射率除了可以通过曲面基底和梯度镀膜实现对x光的塑形和单色,还可通过对膜层材料、膜厚、镀膜层数等参数的设计和控制,来实现带宽和反射率的灵活调整。如窄带宽的高分辨多层膜,以及宽带宽的高积分反射率多层膜。要实现高分辨:首先要选择对比度较低的镀膜材料,如be、c、b4c、或al2o3;其次减小膜的厚度,多层膜的厚度降为10~20å;最后增加镀膜层数,几百甚至上千。from c. morawe, esrf多层膜的特点示例—和现有器件的高度兼容左侧: [ru/c]100, d = 4 nm r 80% for 10 e 22 kev中间: si111 δorientation0.01°右侧: [w/si]100, d = 3 nm r 80% for 22 e 45 kevdcmm at sls, switzerland, m. stampanoni精密、灵活的膜层设计和镀膜控制镀膜材料的组合搭配;d/2d值的设计和控制;带宽和反射率的灵活调整。和现有器件的高度兼容多层膜主流应用方向目前,多层膜的主流应用方向和场景主要有:粉末、x射线荧光、单晶衍射以及同步辐射的单色、衍射、散射装置搭建。粉末衍射x射线荧光单晶衍射同步辐射基于dac的原位高压静态x射线衍射典型的静高压研究中,常利用金刚石对顶砧来获得一些极端条件。在极端的高压、高温下,利用x射线来诊断新的物相及其演化过程是重要的研究手段。x-ray probe利用金刚石对顶砧可以获得极端条件(数百gpa, 几千°c) 利用x射线探针来诊断和发现新物相;由于对x光源、探测器以及实验技术等方面的苛刻要求,尤其是需要将微束的x光,精准的穿过样品而不打到封垫上。长期以来,基于dac的x射线高压衍射实验只能在同步辐射实现。但同步辐射有限的机时根本无法满足庞大的用户需求。不能在实验室进行基于dac的x射线高压衍射实验和样品筛选,一直是广大高压科研群高压衍射实验室体的一大痛点。以多层膜镀膜工艺为技术核心,将多层膜镜片与微焦点x光源耦合,我们可以为科研用户提供单能微焦斑x射线源,使得在实验室实现高压衍射成为可能。下图是利用mo靶(左)和ag靶(右)单能微焦斑x射线源获得的dac加载下的lab6样品的衍射图。曝光时间300s,探测器为ip板,样品和ip板距离为200mm。可以看到:300s曝光获得的衍射数据质量是可接受的。特别地,对于银靶,由于其能量更高,可以压缩倒易空间,在固定的2thelta角范围内,可以获得更多的衍射信息,这对于很多基于dac的静高压应用来说非常有吸引力。dac加载下的lab6样品的衍射数据:多层膜耦合mo靶(左)和ag靶(右)曝光时间300s,探测器为ip板,样品和ip板距离为200mmbernd hasse, proc. of spie vol. 7448, 2009 (doi: 10.1117/12.824855)基于激光驱动超快x射线衍射在利用激光驱动的x射线脉冲进行超快时间分辨研究中,泵浦探针是常用的技术手段。脉宽为几十飞秒的入射激光经分束后,一路用于激发超快x射线脉冲,也就是探针光;另一路经倍频晶体倍频作为泵浦光。通过延时台的调节,控制泵浦激光和x射线探针到达样品的时间间隔,可实现亚皮秒量级时间分辨的测量。而在基于激光驱动的超快x射线衍射实验中,如何提升样品端的光通量?如何获得低发散角的单色光束?如何抑制飞秒脉冲的时间展宽?如何同时兼顾以上的实验要求?都是需要考虑的问题。很多时候还需要兼顾多个技术指标,所以我们非常有必要对各类光学组件和x射线飞秒脉冲源的耦合效果和特点有一个比较清晰的认知。四种光学组件和激光驱动x射线源的耦合效果对比首先我们先对弯晶、多层膜镜、多毛细管和单毛细管四种组件的聚焦效果有个直观的了解。以下是将四种光学组件和激光驱动飞秒x射线源耦合,然后进行了对比。四种光学组件在聚焦和离焦位置的光斑:激光参数:800nm/1khz/5mj/45fs源尺寸:10um 打靶产额:4*109 photons/s/sr这是四种组件的理论放大倍率和实测聚焦光斑的对比。可以看到:弯晶和多层膜的工艺控制精度很高,实测光斑和理论值比较接近。而毛细管的大光斑并不是工艺精度的误差,而是反射型器件的色差导致的,不同能量的光都会对聚焦光斑有贡献,导致光斑较大。而各种组件的工艺误差,导致的强度不均匀分布,则是在离焦位置处的光斑中得到较为明显的体现。ge(444)双曲弯晶多层膜镜片单毛细管多毛细管放大倍率1270.7收集立体角 (sr)+---++反射率--+++-有效立体角 (sr)---+++1维会聚角 (deg)+---++耦合输出通量(ph/s)---+++聚焦尺寸 (μm)2332155105光谱纯度好好差差时间展宽 (fs)++++--激光参数:800nm/1khz/5mj/45fs打靶产额:4*109 photons/s/sr等级: ++ + - --利用针孔+sdd,在单光子条件下,测量有无光学组件时的强度和能谱,可以推演出相应的技术参数。这里我们直接给出了核心参数的总结对比。其中,大多数用户最为关注,同时也是对于实验最为重要的,主要是有效立体角、输出光通量、光谱纯度和时间展宽。可以看到:典型的有效收集立体角在-4、-5sr的水平,而在样品上的输出光通量在5-6次方每秒这样的水平。但是需要指出的是:毛细管并不具备单色的能力,虽然有效立体角大,但输出的是复色光。对于时间展宽的比较,很难通过实验手段获得测量精度在几十到百飞秒水平的结果,所以主要通过理论分析和计算来获得。对于同为衍射型组件的ge(444)双曲弯晶和多层膜镜片,光程差引入项主要是x光在组件内的贯穿深度。对于ge(444),8kev对应的布拉格角约为70度,x光的衰减长度约为28um,对应的时间展宽约90fs。对于多层膜镜片,因为它属于掠入射型的衍射组件,x光的衰减长度在um量级,对应的时间展宽甚至可以到10fs水平,因此这里的数据相对比较保守的。而对于毛细管这种反射型器件,光程差引入项主要是毛细管的长度差。对于单毛细管,光程差在10fs水平,对于多毛细管,位于中心区域和边缘的子毛细管长度是有较大的差异的,光程差可达ps水平。小结1. 弯晶:单色性好、时间展宽较小、有效立体角小、输出通量低;2. 多层膜:单色性好、时间展宽较小、有效立体角大、kα输出通量高;3. 单毛细管:复色、时间展宽很小、有效立体角大、复色光通量高;4. 多毛细管:复色、时间展宽较大、有效立体角最大、复色光通量最高。每一种光学组件都有其适用的场景,对于非单色的超快应用,如超快荧光、吸收谱,毛细管可能更为合适,而对于追求单色的超快应用,如超快衍射,多层膜是比较好的选择,兼顾了单色性、时间展宽和有效立体角(输出通量)三个核心指标!如果您有任何问题,欢迎联系我们进行交流和探讨。北京众星联恒科技有限公司致力于为广大科研用户提供专业的x射线产品及解决方案服务!
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 填补空白!中智科仪发布数字脉冲延迟发生器“STC810”
    导读:中智科仪(北京)科技有限公司最近成功自主研发出STC810八通道数字延迟脉冲发生器,该产品以10ps延迟精度和35ps超低抖动性能脱颖而出,打破了国外技术垄断,为我国高端科研仪器自主创新树立了里程碑。STC810拥有8个独立高精度延时通道,采用了软件、触屏和旋钮操控模式相结合,同时配备多功能接口以适应多元化需求。这一技术突破填补了国内关键设备空白,极大提振了我国自主创新信心。STC810的成功为我国科技自主发展树立了榜样,鼓舞着更多企业积极从事科技创新,共同推动我国科研装备产业向更高层次迈进。正文:在当前信息化、智能化社会中,精准的时间和信号控制技术作为众多高科技领域发展的基石,在通信、雷达探测、医学成像等重要应用中发挥着不可或缺的作用。然而,在我国市场上,高端数字延时脉冲发生器这一关键设备长期以来被美国厂家的数字延迟脉冲发生器所主导。虽然国内部分企业也投入研发同类型产品,但在核心技术指标上,如延时精度与外触发抖动等方面仍难以达到与该厂家相媲美的水平。然而,为打破国际垄断局面,实现高端数字仪器设备国产化替代的目标,中智科仪(北京)科技有限公司的研发团队历经艰辛攻关,成功推出了自主研发的台式数字延迟脉冲发生器——STC810。这款专为科研工作者精心打造的产品,在性能和人机交互体验方面都取得了显著的进展。中智科仪自主研发的STC810八通道数字延迟脉冲发生器,内置八个独立可调延时输出通道,使用户能够轻松灵活地调节延迟时间、脉冲宽度以及频率等多种参数,以满足多元化应用场景需求。在核心性能方面,STC810以卓越的10ps延时精度挑战,同时将外触发抖动降低至35ps,达到了国际一流水准,充分体现了我国在该领域的自主研发实力和技术进步。STC810摒弃了传统的数码管显示模式,采用了先进的彩色触摸屏界面设计,大大提升了操作便捷性和直观性,使得实验过程中的参数设置更为高效、准确。通过自主研发的智能软件控制系统,STC810进一步简化了实验操作流程,无论是调整延迟、设置脉冲宽度还是频率,都能迅速响应,从而极大地提高了科研工作的效率。值得一提的是,STC810还具备分频处理功能,能在外部触发模式下实现70纳秒内的超短内置延迟,并支持低至0.25V的触发阈值,兼容上升沿和下降沿触发,同时适应高阻抗和低阻抗环境下的稳定运行。通过多功能输出端口的设计,确保了STC810能够在各种复杂的应用场景下发挥出色作用,真正实现了与国际标准比肩的精准同步延时能力。为了全面剖析“STC810”八通道数字延迟脉冲发生器的研发历程、技术创新及市场前景,我们特意与中智科仪(北京)科技有限公司的研发部负责人进行了一场深度对话,共同探讨了国产同类产品目前所遭遇的挑战以及蕴含的发展机遇。通过深入挖掘“STC810”的研发故事及其关键技术突破,我们揭示了这款产品如何成功应对国际竞争压力,实现对高端市场的突破,并为我国科研领域的自主可控提供了强有力的支撑,同时也展示了国产科学仪器在追求卓越性能与便捷操控上的不懈努力与创新成果。以下视频链接是与研发负责人探讨STC810数字延迟发生器发展历程与背后故事的对话:在与中智科仪研发负责人的深度对话中,我们共同追溯和剖析了STC810数字延迟发生器的研发历程及其背后的创新故事。这次互动使我们全面回顾了产品从设计构想到实际应用的发展历史,并深入体悟到其中所经历的曲折过程和取得的重大成就,从而深刻认识到创新道路上的挑战与突破对于产品研发的重要性。中智科仪在长期深耕时间分辨成像系统领域的基础上,为应对市场和技术挑战,以及降低潜在的供应链风险,自主研发了一款台式数字延迟脉冲发生器——STC810。这款产品源自公司核心相机技术中的时序控制功能扩展,不仅实现了对延时和脉冲宽度的高精度调节,还能够与镜头耦合型sCMOS相机及EyeiTS高速像增强模组完美融合,成为时间分辨成像系统不可或缺的核心组件。研发过程历经近五年的时间,团队在面对国内同类型技术空白、基础理论研究与算法层面相对薄弱的挑战时,以及在高科技竞争日益激烈的国际环境下的担忧中,决定主动出击,攻克关键技术难题。经过数年的持续努力,去年终于取得了突破性进展,成功研发出性能媲美国际先进水平的STC810。产品的核心亮点在于其外触发抖动达到了35皮秒的极低水平,远超国内市场上最优产品的500至800皮秒表现。同时,设备采用了先进的彩色屏幕显示技术,提供丰富全面的信息展示和便捷的操作体验,极大地提升了人机交互效果。展望未来,STC810同步时序控制器有着广阔的应用前景,可广泛适用于医学成像、激光雷达、时间分辨成像、量子精密测量、仪器触发与同步等多个尖端科技领域。这款自主知识产权的产品不仅彰显了中智科仪在高端科学仪器领域的研发实力,更预示着公司在国际市场上的强大竞争力,有望为中国乃至全球科研事业的进步作出重要贡献。图1 优于35ps外触发抖动图2 10ps延时精度图3 彩色触摸屏显示图4 数字延迟脉冲发生器经典应用以下视频链接是STC810分别在PC端软件/触屏操作/面板旋钮操作下的视频演示:以下链接是华中科技大学强电磁工程与新技术国家重点实验室借助中智科仪STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制的应用分享的文章:STC810数字延迟脉冲发生器用于等离子体诊断的时序系统控制-中智科仪(北京)科技有限公司 (cis-systems.com) 以下链接是上海交通大学航空航天学院光学精细成像实验室借助中智科仪STC810数字延迟脉冲发生器用于测试激光器触发与火焰动态拍摄的应用分享的文章:STC810八通道数字延迟脉冲发生器用于激光同步触发与火焰动态拍摄-中智科仪(北京)科技有限公司 (cis-systems.com)结论:通过深入听取研发工程师对STC810数字延迟脉冲发生器从最初构思到最终实现的全程回顾,以及分享的产品在开发过程中所遭遇的各种技术难关及其克服经历,结合当前我国高端设备自主研发所面临的挑战与机遇,我们有充分理由认为,国产数字延迟脉冲发生器未来的发展路径将尤为强调核心技术的自主突破、市场疆域的有力拓展和应用领域的深层次挖掘,具体体现在以下几个核心层面:1. 核心技术自主可控: 持续投入研发,提升脉冲产生、精确延时等关键技术的自主研发能力,实现核心部件和整机系统的全面自主可控。2. 高性能产品持续创新: 瞄准国际先进水平,研制更高精度、更稳定、更具灵活性和智能化的新型数字延迟脉冲发生器产品,满足不同行业领域对精密时序控制的高端需求。3. 应用场景不断拓宽: 不断探索并进入新的应用场景,如量子计算、超快激光、高速通信、粒子加速器等领域,提供定制化解决方案和服务。4. 市场竞争力增强: 通过技术创新与品质升级,提高国产设备在国内外市场的份额和影响力,积极参与国际竞争,树立国产品牌形象。5. 产学研深度融合: 加强与高校、科研院所及产业界的协同合作,推动科技成果快速转化,共同构建完善的产业链条,支撑行业的长远健康发展。
  • 仅持续53阿秒!迄今最短电子脉冲创建
    英国《自然》杂志网站近日报道,德国科学家已创造出迄今最短的电子短脉冲,其持续时间仅为53阿秒,速度之快足以让显微镜捕捉到电子在原子间跳跃的图像。研究团队表示,最新突破有望催生更精确的电子显微镜,在原子尺度上捕捉清晰的图像,还可加快计算机芯片中数据的传输速度。电子脉冲用于表示计算机内部的数据或被电子显微镜用于捕捉图像,脉冲越短,信息被传输的速度越快,研究人员一直致力于尽可能缩短电子脉冲的持续时长。普通电路内的电场产生的电子脉冲受限于电子在物质内振荡的频率。一个电子脉冲至少需要持续半个振荡周期,因为正是这种振荡周期为电子产生了“推动力”。而光能以更高频率振荡,因此研究人员一直尝试使用短脉冲光来触发电子脉冲。2016年,研究团队创造了持续时间仅为380阿秒的可见光闪烁。借助同样的技术,该团队聚焦激光,从钨针尖端剥落电子并将其打到真空中,获得了持续时间仅53阿秒的电子脉冲。研究人员表示,他们探测到的53阿秒电子脉冲甚至比引发它的光脉冲还要短。根据玻尔的氢原子模型,这一持续时间仅为氢原子中电子绕其原子核运行一周所需时间的1/5。如此短的电子脉冲可使电子显微镜及时聚焦于较短的切片上,类似于降低相机的快门速度,从而更清晰地揭示粒子的运动。研究人员称,如果利用此次获得的阿秒电子脉冲创建电子显微镜,不仅有足够的分辨率来观察运动中的原子,甚至可看到电子在这些原子之间是如何跳跃的。
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 创迈思与LUMILEDS和VIAVI合作开发世界上第一个用于智能手机的消费类光谱模块
    德国路德维希港/美国拉斯维加斯/美国亚利桑那州斯科茨代尔,2023年11月30日--创迈思trinamiX,智能手机小型化近红外光谱模块的先驱,开发了一种微型的光谱模块,可以与顶级技术合作伙伴:LUMILEDS(汽车行业LED照明和特殊照明解决方案的领先制造商)和VIAVI(光学滤光片制造领域的全球领导者,在消费电子市场拥有丰富的经验)一起集成到智能手机中。该近红外(NIR)光谱模块运行在高通公司最新的第三代骁龙参考设计上,并在2023年高通骁龙®峰会上首次亮相。未来,消费者将能够使用移动设备看到以前“看不见”的健康指标(即所谓的生物标记物),并随时随地进行无创式的身体检测。基于真实反应的分子测量,智能应用程序将为皮肤健康、营养和未来的许多其他应用提供有根据的个性化建议。在寻找最佳光源的过程中,创迈思找到了LUMILEDS作为理想的合作伙伴。LUMILEDS使用的荧光LED发射长波近红外范围内的宽带光,满足智能手机制造商在尺寸、能耗、寿命和稳定性方面的严格要求。VIAVI Solutions作为创迈思另一个强大的合作伙伴,它们的滤光片能够精确确定相关波长,以从光谱中提取生物标志物信息。其过滤器的卓越品质和精度使该公司成为整个价值链(从原型设计到大规模生产)中的可靠合作伙伴。探测器和读出电子器件由创迈思专门为智能手机兼容尺寸的模块开发。由于采用专利封装,高灵敏度红外探测器体积特别小,但坚固耐用。创迈思还贡献了光谱学和化学计量学专业知识,并开始将消费者光谱学集成到智能手机中。创迈思公司trinamiX GmbH北美和欧洲消费电子总监Wilfried Hermes博士表示:“如果没有LUMILEDS和VIAVI,创迈思个人消费类光谱不可能实现彻底改变我们理解和评估健康、营养等方面的方式。两位合作伙伴都多次突破技术的界限。和他们一起,我们共同创造了一项令人兴奋的技术,它将重新定义智能手机的使用。”Lumileds LED产品营销和管理主管Noman Rangwala表示:“创迈思和Lumileds之间的密切合作使集成在智能手机中的小型光谱仪成为了现实。这项创新在消费者医疗应用中实现的许多应用确实具有影响力。我们很高兴成为这个创新团队的一员。”VIAVI解决方案光学安全和性能产品组产品管理副总裁Adam Scheer表示:“VIAVI很荣幸能够成为行业领先的生态系统合作伙伴团队的一员,共同努力将光谱技术交付给消费者。在过去的十年中,我们已经开发出独特的能力,利用我们专有的磁控溅射镀膜平台,在智能手机规模上开发和制造具有卓越性能特征的光学滤光片。我们期待看到创迈思解决方案能够实现的所有消费光谱应用。”与生态圈伙伴的成功合作证明,创迈思可以为不同的甚至是高度专业化的应用实现量身定制的解决方案:例如可穿戴设备、物联网设备以及其他家用和消费电子产品等。
  • 阿拉莫斯国家实验室创人类最强脉冲磁场(图)
    磁场既看不见也摸不着,但是其却是一股强大的力量  据国外媒体报道,洛斯阿拉莫斯国家实验室的两位科学家野茨库尔特(Yates Coulter)和迈克戈登(Mike Gordon)成功创造了在最强磁场领域的世界级记录。该国家实验室的高脉冲磁场实验室的研究小组取得了97.4特斯拉的的磁感强度,这比金属废品收购站使用的巨型电磁铁产生的磁感强度高出100倍。  在今年的8月18日(星期四),一个德国科学家组成的研究团队取得了92.5特斯拉的磁感强度值,而紧随其后,洛斯阿拉莫斯国家实验室的科学家就创造了97.4特斯拉的磁感强度。别小看这些看似数值并不是很高的磁感强度值,要知道,地球的磁感强度为0.0004特斯拉,而一个垃圾场用于吸取废旧金属的磁铁产生的磁感强度为1特斯拉,以及医疗用得核磁共振成像扫描的磁感强度为3特斯拉。在物理学中,描述磁场的强弱用磁感强度(磁感应强度)来表示,在国际单位制中,磁感应强度单位为特斯拉(T),而高斯与特斯拉换算比为,1特斯拉等于1万高斯。  能够产生极高磁感应强度的无损脉冲为科学家提供了一个前所未有的工具,这项技术可以应用于研究材料的基本属性,范围可以从金属和超导体到半导体和绝缘体。而在高磁感强度下,也为科学家提供了有关材料性能的研究方向,以及关于电子相互作用的有价值线索。随着近年来对高磁感强度领域的成就,洛斯阿拉莫斯国家实验室脉冲磁场实验室将定期为磁场研究领域的科学家提供高磁感强度的脉冲磁场,可以达到95特斯拉的水平,这同时也说明,洛斯阿拉莫斯国家实验室可以为全世界的磁场研究人员提供研究服务。  而能够将磁感应强度达到100特斯拉,是来自全世界各国磁场研究人员的共同梦想,其中包括德国、中国、法国和日本的磁场实验室,都在追逐着100特斯拉的极限目标,而洛斯阿拉莫斯国家实验室则率先将磁感强度提高至非常接近这个极限目标。  如此强大的磁铁产生的磁场,有着非常广泛的科学研究价值,同时也对相关领域的调查研究产生深远的影响,特别是在微观领域上,让科学家了解如何设计和控制材料的性质和功能。在这种类型的强磁场下,可以让研究人员仔细地调整材料的参数,实现更加完美的非损性磁场。高磁感强度的磁场可以使电子局限于纳米尺度的轨道上,从而有助于揭示材料的基本量子性质。  在阿拉莫斯国家实验室8月18日的实验中,物质凝聚态学的科学家们,高场磁体技术人员,技师以及脉冲磁铁的工程师们目睹了NHMFL-PFF高强度磁感发生器夺回世界纪录的瞬间时是多么地兴奋,而在此之前,磁场实验室的氛围是非常地窒息,科学家们都聚集在控制显示屏前,显示了创纪录前的紧张与期待感。而当迈克戈登指挥控制1.4千兆瓦发电器系统对准磁铁时,实验室中的所有目光都聚集在监控显示器上,显示了接近100特斯拉的世界级磁感强度。而其中还有一个小插曲,在实验进行之前,实验室所在在大楼根据安全协议必须是个无人区。  在实验过程中,实验室的科学家们听到了一种变形程度较低的嗡嗡声,紧随其后的是金属发出刺耳的声音信号,感觉到类似脊柱刺痛感,精确的分布式电流超过了100兆焦耳的能量。随着声音的消退,以及显示器显示磁铁的完美表现,科学家将注意转向在实验过程中的现成测量,证明磁铁已达到92.5特斯拉,这个数据对于洛斯阿拉莫斯国家实验室而言,早在五年前就已经达到了,这同时也是德国的科学家小组所取得的数据。  而在第二天的下一阶段的实验中,实验室一举达到97.4特斯拉的成就。后来,研究人员查尔斯米尔克(Charles Mielke)、尼尔哈里森(Neil Harrison)、苏珊(Susan Seestrom)和阿尔伯特(Albert Migliori)联名向吉尼斯世界纪录申请认证。
  • 丹麦福斯公司推出“原料奶质量保证模块”
    众所周知,理想的原料奶是乳品厂加工更高价值的乳制品的基础。然而,原料奶中掺加其他成分的问题,长期以来一直困扰着各个乳品加工企业。原料奶中掺加其他外源成分,不仅对于加工出的成品质量有不良影响,更重要的是,掺假这种行为扰乱了原料奶按质论价的公平交易体系,也可能使公众对乳品行业产生怀疑。 随着技术的发展和进步,原料奶中掺加的物质种类也在不断发生改变,掺假方式也越来越熟练。但是,过去市场上一直缺乏一种快速的检测方法来迅速判断出其中的掺加成分,那些掺加了其他外源成分的原料奶可以堂而皇之地与正常奶一样进入奶罐。 针对上述情况,丹麦福斯公司在其FT-120多功能乳品成分析仪的成熟技术平台上,最新推出一种的“原料奶质量保证模块”,这是一套用于原料奶中不同掺假的鉴定模块,可实现快速鉴定外源加入植脂沫,水解蛋白 ,乳清粉,豆浆,水等物质的原料奶。 据福斯公司有关人士介绍,该模块不与FT-120现有模块冲突,无需试剂,不再增加运行成本。对于已有FT-120的用户,无需再增加硬件,从而降低了用户的运行成本。
  • 华东师大重庆研究院首次提出多维等离子体光栅诱导击穿光谱技术
    近日,华东师范大学重庆研究院的科研团队与精密光谱科学与技术国家重点实验室进行合作,在超快激光诱导击穿光谱的研究中取得重要进展,团队首次提出多维等离子体光栅诱导击穿光谱(Multidimensional-plasma-grating induced breakdown spectroscopy,MIBS)技术,并实验证实新技术比常规激光诱导击穿光谱具有更高的探测灵敏度和克服基体效应。相关成果以题为Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating发表在光谱类一区期刊Journal of Analytical Atomic Spectrometry杂志(胡梦云,施沈城,闫明,武愕,曾和平,JAAS,2022)。《Journal of Analytical Atomic Spectrometry》杂志刊登曾和平教授团队研究成果激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)是一种非常实用的分析测试工具,可以用于确定固体,液体和气体的元素成分。传统的纳秒激光诱导击穿光谱受基体效应与等离子体屏蔽等干扰,而飞秒光丝激发(Filament-induced breakdown spectroscopy,FIBS)受限于峰值功率钳制,灵敏度难以提高。团队前期发展飞秒等离子体光栅诱导光谱(Plasma-grating-induced breakdown spectroscopy, GIBS)技术,基于两束飞秒光丝非共线耦合形成等离子体光栅,突破峰值功率钳制效应,光功率及电子密度提高近2个量级,等离子光栅中多光子电离与电子碰撞激发协同,提高探测灵敏度(胡梦云,彭俊松,牛盛,曾和平,Advanced Photonics, 2020, 2(6), 065001);GIBS等离子体干涉激化可克服基体效应,首次实现成分探测自定标。为了进一步提高对样品的激发效果,延长激发产生的等离子体寿命,增强光谱信号,团队提出基于等离子体光栅的多脉冲耦合激发诱导击穿光谱MIBS新技术。团队利用三束非共线、非共面的飞秒脉冲进行相互作用对样品进行激发,成功观察到等离子体光栅的衍射效应,等离子体光栅实现从一维突破到二维。二维等离子体光栅对样品进行激发时,二维等离子体通道中具有更为精细的周期性结构和更高阶的非线性效应,提升了等离子体密度和光功率密度,多光子激发以及电子碰撞双重激发更为明显,从而进一步提高探测灵敏度,克服基体效应。MIBS实验装置,二维等离子体光栅的周期性结构使得三次谐波发生衍射值得一提的是,研究发现所获得的谱线信号会随着激光能量的提升而增强,当单脉冲能量超过2 mJ时,MIBS技术将取得更明显的优势。此外,MIBS技术仅在激发源上进行了改进,并未引入复杂的样品处理步骤以及额外的装置,与大多数改进技术相比保留了LIBS技术原有的快速、简单、便捷的优点,这使得其能够满足特定场景中的原位实时检测需求。随着GIBS/MIBS技术的研究发展与应用拓展,为了适应野外恶劣环境下移动作业,实现非接触式在线实时探测,对激发光源提出了更高要求,需要性能更加稳定的高能量飞秒光源进行激发。与此同时,华东师范大学重庆研究院发展高能量飞秒脉冲激光光源。基于掺Yb光纤种子脉冲产生与固体再生放大相结合的飞秒激光放大方案,通过搭建宽带可调谐的光纤脉冲种子源解决信号光和放大介质光谱窄化和增益失配的问题,实现激光高效率放大;结合啁啾脉冲放大和固体再生放大技术,抑制激光放大过程中的非线性累积,提升放大效率和功率,输出mJ级高能量飞秒脉冲激光。高集成化、高稳定性混合系统1030nm mJ级高能量飞秒激光光源满足实验室以外苛刻环境下应用,为GIBS/MIBS技术试验野外在线检测提供了技术和仪器的支撑。1030nm高能量飞秒激光器此外,华东师范大学重庆研究院开发多个系列超快飞秒激光光源,形成多款超快飞秒激光器产品,其中包括:FemtoCK,FemtoLine和FemtoStream等。针对GIBS/MIBS技术、强场激光物理、微纳加工等应用研究,开发的1030nm mJ级高能量飞秒激光器YbFemto HP采用光纤固体混合放大技术方案,种子源采用全保偏光纤结构的振荡器FemtoCK产生稳定脉冲序列;该光源通过啁啾脉冲放大技术,结合掺镱增益介质的固体再生放大技术,输出中心波长1030nm、能量达毫焦(mJ)量级,脉冲宽度小于300fs的高能量飞秒激光脉冲。该光源重复频率调谐范围覆盖单脉冲~ 250 kHz,增加定制模块可进行倍频操作,实现515nm、343nm等飞秒脉冲激光输出,满足科研、工业等多场景应用需求。华东师范大学重庆研究院将依托自研的毫焦级高能量飞秒激光器,输出高稳定的激化光源,与GIBS/MIBS技术相结合,集成实现轻量化高灵敏检测仪器,实现技术创新,仪器创新,装备创新,进而实现土壤、液体自标定痕量分析等应用创新,深入优化仪器系统的稳定性与可靠性,使更多野外极限环境下应用成为可能,进一步应用于环境监测、深海勘探、地质勘探、工业冶金、航天探测以及生物制药等领域。激光诱导击穿光谱技术应用毫焦级高能量飞秒激光器不仅仅在LIBS上产生重要应用,同时可用于设备集成,面向如半导体芯片制备、柔性OLED显示器件切割、玻璃切割、非金属/金属材料加工、打孔以及微纳加工等重要应用。另一方面,可用于光谱检测、非线性光学、高次谐波产生、医疗成像、双光子3D打印、相控阵等科研应用。
  • 赛默飞与EAG合作开发脉冲GDMS
    赛默飞世尔科技和Evans Analytical Group合作开发脉冲GDMS用于非导电材料的深度剖析。  科学家将很快能够应用功能强大的高分辨率辉光放电质谱法(GDMS)分析非导电、高纯度材料样品。例如,用于平板显示器的高纯度蓝宝石,陶瓷,氧化铝粉末及硬盘驱动器组件薄层分析等。  GDMS目前可用于分析导电材料,如高纯度金属和用于微电子学、可再生能源、航空航天,医疗设备、核电等领域的半导体材料等。  为了扩展GDMS分析非导电材料的能力,赛默飞世尔科技与领先的材料表征实验室Evans Analytical Group (EAG)合作将&ldquo 脉冲&rdquo 离子源技术添加到GDMS,其目标是形成脉冲离子源与商业GDMS平台的集成功能。  标准辉光放电质谱分析使用样品作为阴极,施加电流,在样品和阳极之间形成辉光。采用脉冲模式,样品的表面被&ldquo 溅射&rdquo ,溅射出的原子通过质量分析仪测定。这种高度敏感的技术只需要很少或无需样品制备,一般在10分钟左右就可获得高品质的结果。除了用于分析非导电的样品,脉冲模式离子化也增强了仪器的稳定性、数据的精确度、并降低能量溅射,从而对某些类型的样品产生更好的分析结果。  EAG副总裁Karol Putyera说:&ldquo 脉冲模式下的快速流动源是最好的辉光放电源。&rdquo 赛默飞GDMS、ICPMS应用专家Joachim Hinrichs 说:&ldquo 我们非常高兴看到辉光放电质谱法能够进行更广泛的材料分析。&rdquo
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008 年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 科普干货!脉冲EPR技术在量子传感中的应用
    自量子力学创立以来,科学家通过对量子行为的研究,研发出了核磁共振成像、激光、半导体等在内的众多技术产品,对人类生活产生了重大影响。随着技术进步,第二次量子ge命蓬勃发展,利用量子精密测量技术实现的精密仪器使物理量的测量达到了前所未有的分辨率和灵敏度。何为量子传感器?CIQTEK量子传感器利用量子力学的原理和技术来测量一系列物理量。与经典传感器不同,量子传感器利用量子态的特殊性质(例如叠加态和纠缠态)来实现高精度、高灵敏度、高分辨率的测量。其测量的物理量包括磁场、电场、温度、压力、pH值、时间和频率等。此外,量子传感器还可以用于探测微小的物理效应,例如引力波、暗物质等,为天体物理等领域提供了新的测量手段。量子精密测量技术脉冲EPR技术简介CIQTEK脉冲电子顺磁共振 (pulsed EPR)是一种涉及到在恒定磁场中测量电子自旋净磁化矢量的磁共振技术。在实验中,通常施加一个短的振荡场(比如微波脉冲)来对电子自旋磁化矢量的状态进行扰动,然后测量由样品磁化产生的微波发射信号,再将微波信号通过傅立叶变换在频域中产生 EPR 频谱,从而可以获得有关顺磁性化合物的结构和动力学信息,电子自旋回波包络调制(ESEEM)或脉冲电子-核双共振(ENDOR)等脉冲 EPR 技术还可以揭示电子自旋与其周围核自旋的相互作用。与传统的连续波EPR(CW EPR)相比,脉冲EPR在控制和测量样品中的自旋态方面具有更高的灵活性和精度。脉冲EPR技术在量子传感中的应用CIQTEK在量子传感中,我们可以以电子自旋为探针,来探测核自旋的相关信息。基于脉冲EPR的弛豫测量和超精细光谱法可以识别顺磁粒子并对其浓度进行测量。其测量的原理为在脉冲EPR中,由于核自旋会影响电子自旋的T1(纵向弛豫时间)和T2(横向弛豫时间),浓度会影响电子自旋与核自旋的平均相互作用强度,从而影响电子自旋的弛豫时间。因此通过监测电子自旋的T1和T2的变化可以推断核自旋的浓度。同时,核自旋会调制电子自旋的进动频率,从而可通过电子自旋来对核自旋进行表征。Sun Lei课题组以有机量子比特的MOF材料(MgHOTP)为探针,通过电子与核之间的超精细耦合作用实现了室温下溶液相中离子的量子传感,可用于检测环境中的化学分析物(Li+、Na+)并对其进行定量分析。研究人员将有机自由基嵌入MOF骨架中,在实现室温可操作性的同时还能使有机量子比特与分析物通过吸附作用密切接触。图1基于MOFs中的有机自由基的室温量子传感。(a)将具有有机量子比特的MOF颗粒悬浮在待测分析物的溶液中。(b)化学分析物被吸附到MOF中,并通过超精细耦合与嵌入的自由基相互作用。(c)基于超精细光谱可以识别与自由基量子比特相互作用的原子核,并进一步对化学分析物进行量化。(J. Am. Chem. Soc. 2022, 144, 19008&minus 19016)MgHOTP中的自由基表现为电子自旋量子比特,其量子态可以被外部磁场部分极化,使用微波脉冲操控,并通过电子自旋回波读出。利用脉冲弛豫方法以及CP-ESEEM方法可对Li+进行检测并定量,检测范围为5*10-3 mol/L-0.5 mol/L。图2 室温下MgHOTP定量检测THF溶液中的Li+。(a) 不同[Li+]的LiClO4 THF溶液中MgHOTP的T1和Tm。(b) [Li+] = 2.0 mol/L的LiClO4 THF溶液中MgHOTP的部分时间域CP-ESEEM谱图。(c) 不同τ值下CP-ESEEM的二维光谱。(d) MgHOTP在含不同[Li+] LiClO4的THF溶液中的频域CP-ESEEM谱。(e) 2ω(7Li)/ 2ω(1H) ESEEM峰值比与[Li+]的关系。(f) MgHOTP在含0.1 mol/L NaClO4和不同浓度LiClO4的THF溶液中的频域CP-ESEEM谱。(J. Am. Chem. Soc. 2022, 144, 19008&minus 19016)国仪量子X波段脉冲式电子顺磁共振谱仪CIQTEK国仪量子X波段脉冲式电子顺磁共振谱仪EPR100是一款集连续波EPR、脉冲EPR、瞬态EPR为一体的多功能EPR谱仪,在支持连续波EPR实验的同时,还可实现弛豫时间测量、电子-电子双共振、电子-核双共振等多类型脉冲实验测试。国仪量子X波段脉冲式电子顺磁共振谱仪EPR100随着研发能力与产品工程化能力不断提升,国仪量子目前已推出具有核心自主知识产权,商用化的X波段电子顺磁共振波谱仪全系列产品:X波段脉冲式电子顺磁共振波谱仪EPR100、X波段连续波电子顺磁共振波谱仪EPR200-Plus、台式电子顺磁共振波谱仪EPR200M;并向前沿高端技术的高频谱仪进军,研发出了W波段脉冲式电子顺磁共振波谱仪EPR-W900。
  • 上海光机所大口径脉宽压缩光栅用膜研制取得突破性进展
    近日,中科院强激光材料重点实验室承担的大口径脉宽压缩光栅用膜研制工作取得突破性进展。该项目组参与研制的大口径脉宽压缩光栅应用在大能量拍瓦激光系统上,获得了皮秒级的较高能量输出,在光栅面上经受了0.54J/cm2(5ps,1053nm)的激光作用而没有任何损坏,光栅抗激光破坏能力与美国OMEGA-EP、日本FIREX-I装置采用的光栅水平相当,达到了国际先进水平。  中科院强激光材料重点实验室在光栅用大口径介质膜的研制工作中重点解决了以下几个问题:  1.  同时满足了中心波长1053nm宽波段范围内的高反射和413nm高透过的要求,均匀性控制在±0.5%范围内   2.  满足了大口径光栅高破坏阈值的要求   3.  有效控制了光栅用膜的应力形变,确保了大口径光栅面形指标要求的实现   4.  满足了光栅制作过程对光栅膜提出的强度要求。在经过光刻胶反复涂覆、真空反应离子束的刻蚀和反应气体的腐蚀、水溶液、强酸弱碱液的长时间浸泡清洗等条件下,光栅膜和在其上刻蚀的光栅均能保证稳定的光学和力学特性。  该项突破性进展将对相关专项工作的顺利实施起到积极的推动作用。中科院强激光材料重点实验室将在此基础上进一步提升大口径光栅膜特性。
  • 我国宽带脉宽压缩光栅研制获进展
    中科院强激光材料重点实验室在800nm中心波长宽带脉宽压缩光栅的研制上取得阶段性重要进展。课题组采用模拟退火和傅里叶模式结合的全局优化设计方法,设计出了800nm中心波长宽带全介质脉宽压缩光栅(Pulse Compression Gratings, PCG,图1)(详见:Optical Letters,35(2010)187)。  该课题组成员经过大量的优化和容差计算,结合优良的制膜技术,获得了阈值~1J/cm2(50fs,TE,57°入射)的全介质膜,相关光栅参数具有较大工艺容差。中科大同步辐射光学实验室和清华大学衍射光栅课题组对课题组提供的全介质膜进行了光栅参数的刻蚀验证,得到带宽优于110nm的PCG样品。课题组测试了样品0级反射率谱(图2),采用-1级和0级反射率互补的计算方法,反演得到-1级衍射效率大于95%的带宽110nm以上(图3),在国际同领域中首次得到了带宽百纳米以上全介质PCG样品。  全介质膜PCG相对现行使用的金膜光栅具有高衍射效率和高损伤阈值的优点,在800nm高能飞秒激光器中具有重要应用前景。本项研究得到国家高技术863计划和国家自然科学基金支持。
  • 我国宽带脉宽压缩光栅研制取得重要进展
    中科院强激光材料重点实验室在800nm中心波长宽带脉宽压缩光栅的研制上取得阶段性重要进展。课题组采用模拟退火和傅里叶模式结合的全局优化设计方法,设计出了800nm中心波长宽带全介质脉宽压缩光栅(Pulse Compression Gratings, PCG)(详见:Optical Letters,35(2010)187)。  该课题组成员经过大量的优化和容差计算,结合优良的制膜技术,获得了阈值~1J/cm2(50fs,TE,57°入射)的全介质膜,相关光栅参数具有较大工艺容差。中科大同步辐射光学实验室和清华大学衍射光栅课题组对课题组提供的全介质膜进行了光栅参数的刻蚀验证,得到带宽优于110nm的PCG样品。课题组测试了样品0级反射率谱,采用-1级和0级反射率互补的计算方法,反演得到-1级衍射效率大于95%的带宽110nm以上,在国际同领域中首次得到了带宽百纳米以上全介质PCG样品。  全介质膜PCG相对现行使用的金膜光栅具有高衍射效率和高损伤阈值的优点,在800nm高能飞秒激光器中具有重要应用前景。本项研究得到国家高技术863计划和国家自然科学基金支持。
  • 模块化显微光学光谱系统满足仪器多功能需求——点亮光谱仪器“高光”时刻
    2012-2021年,光谱仪器及技术突飞猛进,相关的新产品、新技术层出不穷:拉曼、近红外、激光诱导击穿光谱、太赫兹、高光谱、超快光谱、光谱成像......不仅给科研注入了新的活力,更是给企业带来了客观的经济效益。“光谱十年”之际,仪器信息网特别策划《点亮光谱仪器 “高光”时刻》系列活动,以期盘点光谱仪器及相关技术的突出成果,展现光谱仪器及相关厂商的“高光”时刻。从最简单的光学光谱模块到定制化的解决方案,HORIBA Scientific(Jobin Yvon光谱技术)旗下的光学光谱部门一直致力于光谱仪部件及集成光谱仪系统的研制和生产,可提供各种规格的单色仪、探测器、光源、附件及应用软件,可为科研人员组建高性能的光谱测量系统。本期,我们特别邀请到了HORIBA 科学仪器事业部技术支持工程师吴鹤讲述HORIBA光谱仪的“高光”时刻。HORIBA 科学仪器事业部技术支持工程师 吴鹤仪器信息网:过去十年间,哪些光谱技术的进步让您印象深刻?HORIBA:对于不同的科研人员,其具体需求也不尽相同,模块化光学光谱搭建系统凭借其高度灵活性在光谱技术研究领域占据着重要地位,针对不同的应用如拉曼、光致发光、暗场散射、时间分辨光致发光、等离子体发射、可调单色光源等可提供灵活多样的解决方案。另外,随着对微结构或材料的研究日趋广泛,模块化显微光学光谱搭建系统也应运而生,且在各个研究领域有广泛应用。仪器信息网:截至目前,贵公司有哪几款光谱仪器曾经获得“科学仪器优秀新品”奖 ?该仪器研发的背后有什么样特别的故事? HORIBA:HORIBA Scientific(Jobin Yvon光谱技术)有着两百多年的光学光谱研究历史,顺应技术的发展、时代的进步,不断进行技术革新。Horiba的多款仪器包括拉曼、荧光、光学光谱搭建系统多次获得仪器信息网颁发的各类奖项。其中,MicOS显微光谱测量系统获得了“2013年科学仪器行业优秀新产品奖”。一般来说,采用标准显微镜与光谱仪耦合测量光谱常采用光纤耦合方式,一方面,信号损失大,耦合效率较低,另一方面,很多样品在应用显微镜测量时会遇到困难,比如:侧面发光样品或者在正置低温恒温器中的样品。在做光致发光光谱测量时,若应用多个波长激发,标准显微镜的灵活性会受到限制。MicOS开创性地将显微测量和光谱测量高效率地耦合于一体,光谱仪最多可同时接三个探测器,能与多个激发波长匹配,并且可提供物镜朝下或物镜侧向的两种配置选择,以满足不同客户的特定需求。仪器信息网:获奖产品的销售情况如何?解决了哪些关键问题?有哪些典型用户或典型的应用案例?行业影响力及用户的反馈情况如何?HORIBA:MicOS显微光谱测量系统用户遍布全球,用途多种多样,如二维材料特性研究、电致发光材料的表征、半导体材料或器件的质量检测和缺陷研究等等。MicOS将显微测量和光谱测量高效率地耦合于一体,将显微探测头直接与iHR三光栅光谱仪耦合,光谱仪最多可同时接三个探测器,使其可覆盖紫外、可见、近红外的宽光谱范围(200nm~1600nm);能与多个激发波长匹配,灵活性极强且易于操作;内置数码相机设计,可实时观察样品;可提供物镜朝下或物镜侧向的两种配置选择,便于测量侧向发光器件或放置在正置低温恒温器中的样品;配合自动平台可进行mapping测量。MicOS系统已有很多工业用户,在工业生产中,无论是器件的研发过程还是质量检测过程,MicOS系统都发挥着十分重要的作用。仪器信息网:贵公司光谱仪器的生产工艺是如何把控的?在产品的质控及生产车间管理方面有什么独特的地方? HORIBA:HORIBA Scientific有着十分丰富的光学光谱研究、设计和生产经验,根据客户的实际需求,既可以单独提供光谱仪、探测器、光源、以及光栅等部件,也可以提供完整的解决方案,并且对于生产的仪器都有严格的质量把控。对于单独的部件,在生产时会进行质量测试,确保部件质量,对于外购附件也同样对其质量严格把关;对于整套的系统,有标准的技术参数和验收流程,依据标准进行整体的性能测试,以保证整套系统的性能与质量。仪器信息网:未来贵公司光谱产品线的发展规划,重点发展哪些类别的光谱产品?HORIBA:HORIBA Scientific自创立以来,始终致力于科研级光学光谱产品的研发生产,顺应技术进步与时代潮流,不断创新与发展。除了模块化光学光谱部件与系统,HORIBA还提供高性能整机系统,包括拉曼光谱仪、荧光光谱仪、粒度分析仪、椭圆偏振光谱仪、射频辉光放电光谱仪(GD-OES)、等离子体共振成像仪(SPRi)、阴极荧光光谱仪、碳硫氧氮氢分析仪以及各种OEM光谱仪。涉及的应用包括材料、化学、生命科学、制药、环境、地质、能源、光伏、考古、艺术品等等,对于不同的测量及应用需求提供合适的解决方案。仪器信息网:从行业发展角度来说,您认为目前光谱仪器整体技术水平怎么样?未来最具前景的光谱仪器或者技术是什么?最具前景的应用将体现在哪些方面?HORIBA:光谱技术作为重要的分析技术,所涉领域非常广泛。目前微纳材料及显微结构的研究仍然十分热门,因此显微光谱的测量需求只增不减。另外,随着研究方向的多样化,对仪器的多功能性要求也日益增强。HORIBA Scientific的MicOS系统将显微探测头与iHR三光栅光谱仪高效耦合,配置灵活、可覆盖光谱范围宽,易于通过内置相机观察样品情况,可以进行mapping测试,是显微水平光致发光、电致发光和光调制反射光谱研究的理想选择。另外,HORIBA scientific新推出的SMS(Standard Microscope Spectroscopy Systems)是基于iHR光谱仪与标准显微镜通过定制化耦合模块(MicroSpex)集成的系统,该模块与标准显微镜耦合可适用于从深紫外到近红外的显微光谱测量,如显微拉曼、显微光致发光、暗场散射、显微时间分辨光致发光、反射/透射、电致发光等多种光谱研究,灵活性高,可根据需求进行搭建的定制化系统,为用户提供高质量光谱测量与成像。
  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展  我国飞秒脉冲激光参数准确度国际领先  日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。  该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。  据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 太赫兹脉冲可提高砷化镓电子密度
    据美国物理学家组织网2011年12月20日报道,日本京都大学最近发现,用一种强太赫兹脉冲照射普通的半导体材料砷化镓(GaAs)会导致载荷子密度提高1000倍。研究人员表示,这一发现有望带来超高速晶体管和高效光伏电池。相关论文今天发表在《自然?通讯》杂志网站上。  研究载荷子倍增是多体物理和材料科学的基础部分,在设计高效太阳能电池、场致发光发射器和高灵敏光子探测仪方面具有重要作用。为了研究这种现象,研究人员设计了专门的实验,将一小块无掺杂的标准半导体材料砷化镓量子阱样本固定在氦流低温保持器上,用一种持续1皮秒(10的-12次方秒)的近半周期太赫兹脉冲照射该样本,发现电子空穴对(激子)突然暴发了雪崩式反应,使其密度比开始时提高了1000倍。  京都大学集成电池材料科学院(iCeMS)副教授广理英基解释说:“太赫兹脉冲使样本处于强度为每平方厘米1毫伏的电场中,能产生大量的电子空穴对,形成激子,发出近红外冷光。这种明亮的冷光与载荷子倍增有关,这表明强电场驱动的载荷子相干能有效获得足够的动能,从而引发一系列碰撞离子化,在皮秒时间尺度内,使载荷子数量增加约3个数量级。”  此外,京都大学集成电池材料科学院的田中耕一郎教授领导的实验室为该实验提供了太赫兹波,他在研究包括生物成像技术在内的太赫兹波的多种应用。他说:“我们的目标是制造出能实时观察到活细胞内部的显微镜,但实验结果表明,将太赫兹波用于研究半导体是一个完全不同的科学领域。”
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 中科院物理所成功研制高精度脉冲升温-纳秒时间分辨中红外瞬态光谱仪
    &ldquo 十年磨一剑,不敢试锋芒,再磨十年剑,泰山石敢挡&rdquo 。每一位从事实验研究的科研人员都梦想手中有一把利器,能够和侠客一样在科学的天地里纵横天下,快意恩仇。然而当看准一个研究方向后,手头不可能都有现成的设备,尤其是遇到国外设有技术壁垒的时候。  5月27日,Review of Scientific Instruments 发表了中科院物理研究所软物质物理重点实验室翁羽翔研究组的一篇题为A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity的仪器研制论文,便是一项磨剑之作。  蛋白质的动态结构信息是理解其生物学功能的基础。为此国际上发展多种蛋白质动态结构的测量方法,各有千秋。脉冲升温-纳秒时间分辨瞬态红外光谱便是其中的一种,相比较而言,该方法的特点时具有高的时间分辨率。其中涉及的关键设备之一为可调谐连续工作中红外激光源,用于蛋白质二级结构变化的红外指纹光谱指认。由于其在军事用途方面的敏感性,在2009年之前一直属于对华出口限制物资。  翁羽翔研究组长期致力于脉冲升温纳秒时间分辨红外光谱技术的发展及其在蛋白质动态结构方面的应用研究。该课题组与大连理工大学于清旭教授开展长期合作,于2005年建立了基于国内一氧化碳气体中红外激光技术的宽谱带脉冲升温-时间分辨瞬态光谱仪(测量精度为千分之一的吸光度差10-3&Delta OD ,Chin. Phys. 2005, 14, 2484),并用于蛋白质动态结构的研究,取得了系列成果(Biophysical Journal, 2007,93, 2756-2766  2009, 97, 2811-2819  Scientific Reports, 2014, 4,4834)。在前期大量工作的基础上,该课题组意识到只有将已有设备的测量精度再提高一个数量级,即到达万分之一的吸光度差(10-4&Delta OD)之后才能满足普适性要求,由此对脉冲升温光源和一氧化碳气体红外激光光源提出更高的要求。  为此该课题组在2008年申请了中科院科研装备研制项目,提出研制新一代具有国际先进水平的脉冲升温-纳秒时间分辨中红外吸收差光谱仪 包括研制高稳定连续输出可调谐一氧化碳中红外激光探测光源,以及研制新型的脉冲激光加热光源,即空间模式稳定、输出能量稳定的纳秒调Q的Ho:YAG脉冲近红外激光光源(2.1微米,与安徽光机所吴先友研究员合作)。该设备对蛋白质细胞色素c的脉冲升温-时间分辨中红外光谱测量结果表明,在蛋白质酰胺I' 光谱范围(1600-1700 cm-1)内达到的平均测量精度为2× 10-4&Delta OD 。该指标目前领先于国际上同类设备。论文第一作者为物理所博士研究生李得勇,署名单位为中科院物理所,安徽光机所和大连理工大学,并申请了国家发明专利。  该工作的意义在于,通过对高性能设备的自主研发,不仅能够满足基础研究的需求,同时还带动了国内特种激光技术的发展。  此项工作得到了中科院科研装备研制项目和国家自然科学基金委的资助。  图例. 脉冲升温诱导的细胞色素c在重水中温度由25℃阶跃到35℃、温度跳跃2微秒后在酰胺I' 内的瞬态吸收谱。作为比较,实线为35℃和25℃间测得的傅里叶红外吸收差谱。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制