当前位置: 仪器信息网 > 行业主题 > >

液体膨胀式温度传感器

仪器信息网液体膨胀式温度传感器专题为您提供2024年最新液体膨胀式温度传感器价格报价、厂家品牌的相关信息, 包括液体膨胀式温度传感器参数、型号等,不管是国产,还是进口品牌的液体膨胀式温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液体膨胀式温度传感器相关的耗材配件、试剂标物,还有液体膨胀式温度传感器相关的最新资讯、资料,以及液体膨胀式温度传感器相关的解决方案。

液体膨胀式温度传感器相关的论坛

  • 液体的黏稠度、腐蚀性、温度等会影响光电式水位传感器检测吗?

    液体的腐蚀性、黏稠程度以及温度等会影响光电水位传感器检测吗?光电水位传感器检测到液位时,必须与液体接触。当液位到达传感器位置,此时液体覆盖光电水位传感器的探头时,传感器的发光二极管发出的光会在液体中折射,而光敏接收器只能接收到少量光或没有光。相反,正常的接收光是无水的。[align=center][img=,622,]https://uploader.shimo.im/f/5FF8s49cfE82qMHt.png!thumbnail[/img][/align]当需要光电传感器检测时,必须与液体接触。水的脏污程度和水温等是否会影响水位传感器的检测?传感器用于检测液位,应用范围广泛,可检测各种液体清水、强酸强碱液体。应用领域如饮水机、热水器、洗鞋机、洗碗机、饮料机等行业。[align=center][img=,320,]https://uploader.shimo.im/f/ZmnouMNWVcEsjU23.jpg!thumbnail[/img][/align]光电水位传感器可靠性高,受液体因素影响小,稳定性强。但是,如果液体的粘度很高,会导致液体粘在传感器的探头上可能造成误判。当然可以根据应用情况找寻其他方案解决这个问题。温度对光电传感器影响不大,并不会造成误判,但不同厂家生产的光电水位传感器存在局限性。比如有的厂家的水位传感器可以检测到80℃以下的液体,有的可以检测到100℃的液体,能点科技的高温款可达到110°。液体的污染程度过高会影响到传感器的检测,如液体中的杂质、漂浮物、底部的沉淀物等,但是可以根据实际的结构,应用情况进行方案设计,避免对传感器的影响。强酸、强碱或其他腐蚀性液体不会影响水位传感器的检测,如柴油、机油等,这类液体具有腐蚀性。如果光电水位传感器是用普通材料制成的,就不能长期使用。但是如果探头是PSU或者PPSU耐腐蚀材质的话,就不会腐蚀掉传感器综合来看,光电水位传感器的应用环境非常广阔。

  • 液体的黏稠度、腐蚀性、杂质、温度等会影响光电式水位传感器检测吗?

    液体的黏稠度、腐蚀性、杂质、温度等会影响光电式水位传感器检测吗?

    [color=#000000]光电式水位传感器的检测液位时是必须要接触液体才能进行检测的。当液体覆盖光电式水位传感器的探头时,传感器内的发光二极管发射出去的光线会折射在液体中,而光敏接收器只能接收到少量光电或者接收不到光线。反之正常接收光线则是无水状态。[/color][color=#000000][img=,566,314]https://ng1.17img.cn/bbsfiles/images/2018/09/201809101521252546_8210_3397320_3.jpg!w566x314.jpg[/img][/color][color=#000000]那么需要光电式水位传感器侦测时必须要接触液体,那么液体的脏污程度及温度等会影响水位传感器检测吗?[/color][color=#000000]水位传感器是用来侦测液位的,而应用的范围广泛,检测各类的液体净水、污水、柴油、机油、强酸强碱液体。例如饮水机、热水器、刷鞋机、洗碗机、饮料机、柴油机、汽车里的动力电池的冷却液等。[/color][color=#000000] [/color][color=#000000]光电式水位传感器可靠性高、稳定性强,受液体因素影响较低。但如果液体传感器粘度很高,在探头上遗留了水珠,那么光线就会折射在液体中,会有可能造成误判影响。当然也有不受影响的光电式水位传感器。[/color][color=#000000] [/color][color=#000000]温度对于光电式水位传感器的影响倒是不大,光电式水位传感器可以检测高温度的液体等。温度并不会导致光电误判,只是不同厂家所生产出的光电水位传感器所能检测的温度的限制。如有的厂家的水位传感器最高可以检测80摄氏度的液体,有的可以检测100摄氏度的液体,有的200摄氏度以内的也可以检测。[/color][color=#000000] [/color][color=#000000]液体的脏污程度其实也并不会影响光电式水位传感器,光电式水位传感器可以检测污水,包括脏污程度比较高的,如液体中有杂质、漂浮物、底部有沉淀物等都不会影响,因此光电式水位传感器的应用范围很广。[/color][color=#000000] [/color][color=#000000]而强酸强碱或者其他有腐蚀性液体也不会影响水位传感器检测。如柴油、机油、化学用剂等,这些类型的液体具有腐蚀性,如果是普通材料的光电式水位传感器则不能长久使用,如探头是PC材料的,而如果采用PSU材质的那么就不受影响。当然同时成本也会增加。[/color][color=#000000] [/color]综合下来我们可以看出光电式[url=http://www.eptsz.com][color=#000000]水位传感器[/color][/url]的应用环境还是很广的。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 传感器市场急速膨胀

    据权威机构预测,从2004年到2009年,全球车用传感器将呈现9%左右的成长率,2008年市场需求量估计可达14.87亿个。中国市场更是车用传感器发展的温床,计世资讯(CCWResearch)最新调查数据显示,2006年,中国汽车传感器的市场销售额为3.9亿美元,同比增长率为42.8%,2007~2010年中国汽车传感器市场销售额的年度复合增长率将超过35%。其中,2007年市场销售额将达到5.4亿美元,同比增长率为36.3%;2009年其市场销售额将接近10.5亿美元,同比增长40.5%;2010年市场销售额将超过13.2亿美元,同比增长35.2%。  清华大学汽车研究所袁大宏教授告诉记者:“普通汽车传感器的技术难度并不大,目前在车上也有较多应用,比如温度传感器、ABS的车轮转速传感器等。”  中国传感器市场快速发展,得益于车市的快速发展。目前,一辆普通家用轿车上大约安装几十到近百个传感器,而豪华轿车上的传感器数量可多达200个。2006年,中国汽车市场规模突破720万辆,其中乘用车突破500万辆。2007年国内汽车销量将超过800万辆,车用传感器的销量也会水涨船高。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 电动汽车冷却水循环机膨胀阀说明

    电动汽车冷却水循环机在测试新能源汽车电池行业中的需求在不断上升,所以在电动汽车冷却水循环机选择方面是很重要的,其中,膨胀阀作为比较重要的配件,其性能我们也是需要了解清楚的。  电动汽车冷却水循环机电子膨胀阀主要有四部分组成,转子相当于同步电机的转子,其连接阀杆控制阀孔开度大小,定子相当于同步电子的定子;其将电能转为磁场驱动转子转动,阀针其受转子驱动,端部呈锥形,上下移动进行流量调节,阀体一般采用黄铜制造。  电动汽车冷却水循环机电子膨胀阀吸气过热度控制,吸气过热度控制系统由电子膨胀阀、压力传感器、温度传感器、控制器组成,工作时,压力传感器将蒸发器出口压力P1、温度传感器将压缩机吸气过热度传给控制器,控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,将阀开到需要的位置。  电动汽车冷却水循环机电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,开闭特性和速度均可人为设定;电子膨胀阀可在特定的范围内进行精确调节,且调节范围可根据不同产品的特性进行设定。  电动汽车冷却水循环机安装电子膨胀阀时,应以阀体及线圈的断面中心线为轴,且将线圈朝上。在对电子膨胀阀与过滤网焊接时,需对阀体进行冷却保护,使阀主体温度不超过120℃,并目防止杂质进入阀体内。另外,火焰不要直对阀体,同时需向阀体内部充入氮气,以防止产生氧化物。控制器的输出电压必须与线圈的指定电压一致。如果所加电压与指定电压不符,会出现线圈烧毁,或阀针动作异常等故障。  电动汽车冷却水循环机的膨胀阀在安装之前,需要参考厂家提供的安装指南进行安装,避免一些不必要的故障。

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 同时可测8个试样的热膨胀仪是不是很带劲!

    同时可测8个试样的热膨胀仪是不是很带劲!

    对于目前市场上的各种热膨胀系数测定仪,无论采用的是顶杆式、光学式、激光干涉式等测试方法,基本都为单试样结构,一次只能测试一个试样。如果按照通常5℃/分钟升降温速度进行测试,在1000℃范围内,一个工作日一般只能完成一个试样的测试,而昼夜测试最多也只能测试两个试样,这样的测试效率普遍较低。 美国ANTER公司和德国林赛斯公司都在提高热膨胀测试效率方面做出过努力,如美国Anter公司UNITHERM™ 1000 系列热膨胀仪,采用了积木式结构,即将多个单试样热膨胀仪巧妙的组合在一起形成多试样热膨胀测试系统,做多可以集成4套装置对4个试样同时进行测量,测试温度范围-150℃~1600℃。由于此系列热膨胀仪在低膨胀测试中存在较大误差,此系列产品已经停产。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_01_3384_3.png 美国ANTER公司UNITHERM™ 1000 系列多试样热膨胀仪 德国林赛斯公司也出品了多试样热膨胀仪,最多一次可以进行8个试样测量,但测试温度较低,测试温度范围为-40℃~160℃。林赛斯这种一个加热腔体内放置8个试样的思路是可行的,这样可以避免每个加热炉只能加热一个试样的硬件重复性,但还是存在着每个试样测量必须采用对应的独立位移传感器的弊端。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_02_3384_3.png。 德国林赛斯公司常温型多试样热膨胀仪 有次可见,目前市场上并没有测量1000℃以上的多试样热膨胀仪,即采用一个加热加热装置同时加热8个试样,并只用一个位移传感器进行所有试样的变形测量。如果有这种设备,是不是很带劲呢?抛砖引玉,供大家讨论!

  • 红外测温仪里的红外线温度传感器仪器对温度环境有影响吗?

    红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。  我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。  在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为:  ΔT=ΔL/L(α1-α2)  其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。  红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。  由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。  从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。

  • 【分享】世界十大怪异蛙类:彩蛙遇威胁身体膨胀吓跑捕食者

    【分享】世界十大怪异蛙类:彩蛙遇威胁身体膨胀吓跑捕食者

    (from sina 科技)据国外媒体报道,青蛙是我们熟悉的两栖动物,在池塘边、草地上以及茂密的森林,到处都能看到它们的身影。但我们经常看到的都是青蛙家族中的普通成员,而对于其它一些主打“怪异牌”的成员,不要说亲眼得见,很多人甚至闻所未闻。以下是十种最怪异的蛙类:1.马达加斯加彩蛙马达加斯加彩蛙生活在马达加斯加伊萨罗马希夫的多岩且气候干燥的森林地区。它们会在溪谷中发现的暂时性浅水池产卵。经过长时间的进化,彩蛙已经具备相当高的攀爬能力,能够应对周围的多岩坏境,甚至可以征服垂直表面。当遇到威胁时,这种青蛙会触发一种防御机制,即用身体膨胀的方式将捕食者吓跑。[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907161124_160139_1607864_3.jpg[/img]2.透明蛙透明蛙学名“Hyalinobatrachium pellucidum”。顾名思义,它的身体呈透明状,体内器官暴露无遗,也被称之为玻璃蛙或者水晶蛙。透明蛙现已处在灭绝边缘,对于环保人士来说,发现这种青蛙绝对会令他们兴奋不已。[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907161125_160140_1607864_3.jpg[/img]

  • 检测有腐蚀性的液体用什么传感器呢

    检测有腐蚀性的液体用什么传感器呢

    [font=宋体]不锈钢光电液位传感器的安装过程简单方便,不需要复杂的操作。传感器的功耗较低,能够有效节省能源。传感器具有较高的耐压能力,能够适应高压环境。[/font][font=宋体]传感器采用不锈钢材质制作,具有较高的耐腐蚀性能,能够在强腐蚀性液体环境下长时间稳定工作。传感器具有较高的防水等级,能够在潮湿环境下正常工作。[/font][font=宋体]传感器没有机械运动部件,减少了故障发生的可能性,提高了稳定性。升泽传感科技可以根据用户的需求进行个性化定制,满足不同应用场景的需求。[/font][align=center][img=光电液位传感器,644,291]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041753590001_2486_4008598_3.png!w644x291.jpg[/img][/align][font=宋体]不锈钢[url=https://www.eptsz.com]光电液位传感器[/url]适用于商用设备、工业设备、医疗设备以及高耐压或者强腐蚀性液体设备。同时,该传感器可以测量多种液体,包括水、汽油、刹车油、酸碱溶液、香薰液、消毒液、饮料、植物营养液、海水等。因此,不锈钢光电液位传感器是一种适合检测有腐蚀性液体的传感器。[/font]

  • 【分享】湿度传感器知识

    高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为78.36,在T=20℃时为79.63。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为3.0一3.8。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。

  • 【资料】在线液体粘度传感器

    【资料】在线液体粘度传感器

    FWS-3型在线液体粘度传感器超声波振动技术。国际先进水平 高精度,长期稳定,无运动部件,无维护. 不受环境的影响 应用于很宽范围的工作温度,工作压力以及流体粘度变化 无须特殊安装. 适用各种流体实际工业生产中,经常需要在线检测流体的粘度,以保证最佳的过程运行环境与产品质量,从而提高生产效益。通过在线测量过程中的液体粘度,可以得到液体流变行为的数据,对于预测产品工艺过程的工艺控制,输送性以及产品在使用时的操作性有着重要的指导价值。液体的特性往往与产品的其他特性如颜色,密度,稳定性,固体成分含量和分子量的改变有关系,而检测这些特性的最方便和灵敏的方法就是在线检测液体的粘度.在生产过程中 根据工艺技术要求的范围进行在线粘度检测,可以最大限度的减少产品的报废率和生产线的停工期.FWS-3 型在线液体粘度传感器是各类涂料,各种基质的胶油墨 食品、制药、化学处理、橡胶、油、或任何需求高精度与快速反应时间粘度测定法应用的理想选择. 新型超声振动方法在一个较宽的连续与实时测量范围内保证了极好的精确度与可重复型.用于泡沫状的、流动的以及低粘度等难测量流体的极好的解决方案。应用:1. 低粘度物体溶剂型胶粘剂、化学品、果汁、日用品、油、石油石油产品、涂料、油墨、涂料、药品、聚合物2.中等粘度物体 热熔胶、石蜡、热熔胶、沥青、陶瓷浆料、钻井液、食品、凝胶、树脂、丝印油墨、纸张涂料、淀粉3.高粘度物体: 环氧树脂、填缝化合物、凝胶、密封剂、油墨、糖蜜技术参数测量范围: 0 - 10000cP 分 辨 率: 2%FS 输 入: 12VDC 0.5A输 出: 1-2000Hz响应时间: 2s 工作温度: -10℃-120℃探头外径: M42×2 M36×1.5长 度: 160mmhttp://ng1.17img.cn/bbsfiles/images/2011/04/201104160846_289149_1826493_3.jpg

  • 检测有腐蚀性的液体用什么传感器呢?

    检测有腐蚀性的液体用什么传感器呢?

    [size=24px][font=宋体]一般检测这种有腐蚀性的液体,可以选择不锈钢材质的[b]液位传感器[/b],不锈钢液位传感器可以检测水、消毒液、刹车油、酸碱溶液、海水等。可应用于工业设备、医疗设备及高耐压或者强腐蚀性液体设备。[/font][font=宋体][font=宋体][url=http://www.eptsz.com/Products.aspx?CategoryID=10][b]不锈钢光电液位传感器[/b][/url]是利用了光学的原理对液位进行检测,当液位下降(或者上升)到传感器检测点位置时,[b]传感器[/b]发出信号提醒加水或停止加水,还可以实现自动加水功能。[b]不锈钢液位传感器[/b]可检测无杂质液体,含有杂质液体如污水、沉积物、粘稠液体等。还能检测高温、腐蚀性液体,[/font][font=Calibri][url=http://www.eptsz.com/Products.aspx?CategoryID=2][b]EPT[/b][/url][/font][font=宋体][url=http://www.eptsz.com/Products.aspx?CategoryID=2][b]不锈钢液位传感器[/b][/url]的检测温度可达[/font][font=Calibri]80[/font][font=宋体]℃,并且安装简易(全方位安装)、可靠性高、寿命长。[img=,344,216]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011137089057_3322_4008598_3.png!w344x216.jpg[/img] ——深圳市能点科技有限公司 [/font][/font][/size]

  • 膨胀罐有哪几种分类

    膨胀罐的主要分类有哪几种,对于这一个问题,南京捷登流体设备有限公司的小编通过文章介绍膨胀罐的类型,让客户更好的了解产品。结构膨胀罐有哪几种分类膨胀罐—由罐体、气囊、进/出水口及补气口四部份组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无需自己加气。原理膨胀罐的工作原理:当外界有压力的水进入膨胀罐气囊内时,密封在罐内的氮气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到膨胀罐内气体压力与水的压力达到一致时停止进水。当水流失压力减低时膨胀罐内气体压力大于水的压力,此时气体膨胀将气囊内的水挤出补到系统。分类膨胀罐分为气囊式和隔膜式两种,前者在使用的过程中水与罐体内壁完全不接触,所以杜绝了生锈和水质的二次污染,是2010年至今市场上的主流产品,无论国内还是国外大部分都是采用气囊式;隔膜式膨胀罐是早期第一代的产品,工作时有一半的罐体内壁直接与水接触,容易锈蚀,严重影响其使用寿命,隔膜式膨胀罐已经淡出市场。

  • 液体流量传感器有哪些

    液体流量传感器有哪些

    [font=宋体][color=#1E1F24]液体流量传感器是一种用于检测流量多少,控制流量开关一种电子元器件,常用于咖啡机、啤酒机等需要控制流量的设备等。根据不同的工作原理,液体流量传感器有多种类型,其中常见的包括霍尔流量计和光电流量计。[/color][/font][font=宋体][color=#1E1F24]霍尔流量计是一种利用霍尔效应测量液体流量的传感器。当带有两极磁铁的叶轮在垂直于磁场中旋转时,叶轮会切割磁力线并产生霍尔电压,通过测量霍尔电压可以计算出叶轮的转速,从而得出液体流量。[/color][/font][font=宋体][color=#1E1F24] [/color][/font][align=center][img=小型流量开关,439,378]https://ng1.17img.cn/bbsfiles/images/2023/11/202311101645241564_7993_4008598_3.png!w439x378.jpg[/img][/align][font=宋体][color=#1E1F24][url=https://www.eptsz.com]光电流量计[/url]则是一种利用光学原理测量液体流量的传感器。它通过在管道中安装一个叶轮,叶轮的转动会切断光通路并产生脉冲信号,通过计算转轮的转动次数,可以测量液体流量。光电流量计具有不含磁铁、纯光学感应、对水质保护更好等特点,适合透光率高的液体。[/color][/font][font=宋体][color=#1E1F24] [/color][/font][font=宋体][color=#1E1F24]霍尔流量传感器和光电流量传感器各有优势,在选择哪种流量计取决于具体应用场景。[/color][/font]

  • 光电液位传感器可以检测哪些液体

    光电液位传感器可以检测哪些液体

    [font=宋体]光电液位传感器采用的是光学原理,利用光在不同介质中的折射来判断液位的变化,那么光电液位传感器可以检测哪些液体呢,今天小编带大家了解一下相关内容。[/font]1[font=宋体]、净水,如饮水水等不带任何杂质,此环境其他类很多液位传感器也适合使用。[/font]2[font=宋体]、污水含杂质的液体包括污水等,其中包括漂浮物、沉淀物、杂质等,在此环境下,适合的液位传感器较少,光电式液位传感器也可以正常工作。其他的电容式液位传感器限制于材料需是非金属的。[/font][align=center][img=光电液位传感器,598,300]https://ng1.17img.cn/bbsfiles/images/2023/11/202311171617103449_5710_4008598_3.jpg!w598x300.jpg[/img][/align]3[font=宋体]、高低温液体,光电式液位传感器可以检测高、低温液体,如[/font]+90[font=宋体]°[/font]C[font=宋体]的热水、[/font]-25[font=宋体]°[/font]C[font=宋体]的低温液体。[/font]4[font=宋体]、具有腐蚀性的液体,如石油、柴油等具有腐蚀性的液体,可以采用不锈钢液位传感器可以正常检测有腐蚀性的液体。[/font]5[font=宋体]、及其他液体,各类饮料,如咖啡、碳酸饮料、啤酒、红酒、白酒。[/font][font=宋体]由此可以看出[url=http://www.eptsz.com]光电式液位传感器[/url]应用是很广泛的,可以检测各类各样的液体,光电式液位传感器的可以应用的电器设备有饮水机、电蒸锅、咖啡机、热水器、香薰机需要检测液位的设备等。[/font]

  • 怎样选择压汞仪膨胀计?

    实验分析中膨胀计的选择需考虑三个标准:(1) 样品类型: 如果你的样品是粉末,颗粒状,或具有良好颗粒松散度的大块状,使用粉末膨胀计。如果你的样品是固体形态或大块,使用固体膨胀计。(2) 样品体积:使用能够接近填满膨胀计的样品量。膨胀计样品室有三种型号:3,5和15cm³。因此,如果你的样品体积是4cm³那么适合放入5 cm³的样品室,从而5cm³的膨胀计是最适合的。(3)样品浸入体积:填充满样品孔的理想汞体积应该介于膨胀计“最大浸入体积”的25%至90%。一个理想范围内的有效浸入体积将会提供好的清晰度。换句话说,确保膨胀计包含足够的汞以便填充满样品孔。同时考虑粉末样品粒内孔隙的额外浸入体积也作为浸入体积测量 。

  • FOT-L光纤温度传感器在生物医疗领域中的应用

    FOT-L光纤温度传感器在生物医疗领域中的应用

    医学临床及动物实验要求对温度进行精确快速的测量,尤其在肿瘤热疗中,温度传感器在对组织温度进行多点实时测量的同时还要消除传统温度计受电磁辐射干扰的问题。相比于传统温度传感器,光纤温度传感器以其良好的电绝缘性可以很好的应用于生物医疗领域。[img=,301,300]https://ng1.17img.cn/bbsfiles/images/2018/12/201812140942513236_2945_3332482_3.jpg!w301x300.jpg[/img]本文针对现有医用温度传感器的不足,根据光纤布拉格光栅(FBG)和长周期光纤光栅(LPFG)的理论,找到由工采网从加拿大进口的光纤温度传感器 - FOT-L-BA,这是一款非常适合在极端环境下测量温度的光纤温度传感器,这种极端环境包括低温、核环境、微波和高强度的RF等。都是完全不受EMI和RFI影响,同时,它们的尺寸小、针对危险环境内置安全装置、耐高温、耐腐蚀并且具备较高的精度。最后并对其传感特性进行了研究,具体工作如下:1、医用FBG温度传感器的研制及其特性研究 利用相位掩模板法在普通石英光纤和包层模抑制(CMS)光纤上刻制FBG,并进行了温度和弯曲特性的相关实验研究。实验发现,两种光纤刻制的FBG具有相似的温度灵敏度,分别为11.5pm/℃和10.6pm/℃,且具有良好的线性度,相关系数大于0.99。CMS光纤制备的FBG对弯曲曲率的敏感度较普通光纤制备的FBG低,更适用于人体温度的测量。2、医用FBG温度传感器的温敏式封装及其特性研究 根据温敏式封装的原理,选用热膨胀系数大、温变性质稳定的材料对FBG温度传感器进行了封装,在对FBG起到保护作用的同时,使其具有较高的温度灵敏度,较好的重复性、线性度和稳定性。首先用环氧树脂将FBG封装在聚四氟乙烯管中,虽然温度增敏效果明显,约为裸FBG的12倍,但其线性度不如裸FBG。为了不破坏裸FBG良好的线性度,使FBG在毛细套管中处于自由状态,在毛细套管两端点胶用来固定光纤光栅。分别使用毛细玻璃管,毛细钢管,聚四氟乙烯管作为基底材料,其温度灵敏度系数分别为8.7pm/℃,38pm/℃,23.4pm/℃,并且中心波长的漂移量与温度变化呈现良好的线性关系。为了避免粘胶剂对光纤光栅的影响,提出一种双管无胶封装方式,封装后的温度传感器具有更好的线性度,温度灵敏度系数为18.9pm/℃。实验结果表明,封装后的FBG温度传感器的灵敏度不仅与热膨胀系数有关,与封装材料的导热性也有密切的联系。3、LPFG温度传感器的研制及其传感特性的研究 用高频CO_2激光脉冲在普通石英光纤中写入LPFG。实验研究了LPFG的温度及弯曲特性。其温度灵敏度约为75pm/℃,约为裸FBG的7.5倍,并且呈现良好的线性度。其透射峰幅值对温度不敏感,但对弯曲曲率敏感。为了使其更适合于工程中的应用,提出了一种灌装酒精的封装方式。封装后出现两个明显的谐振峰。1508nm处的谐振峰随温度的升高发生蓝移,温度灵敏度为56.9pm/℃。1472nm处的谐振峰随温度的升高发生红移,温度灵敏度为531.2pm/℃,是裸LPFG的7倍,裸FBG的53倍。有效提高了长周期光纤光栅温度传感特性、避免外界其他因素的干扰。4、封装后的光纤光栅温度传感器在微波及超声波环境中测试将封装好的光纤光栅温度传感器分别放入微波环境及超声波环境中,并进行温度特性测试。实验表明,封装后的光纤光栅温度传感器不受微波及超声波的干扰,仍然保持原有的温度灵敏度,并且具有良好的线性度及稳定性。本项目研制的光纤光栅温度传感器分辨率达到0.02℃,并且具有抗微波、超声波、电磁干扰的优点,可以广泛应用于磁流体热疗、核磁共振等有电磁场、微波、超声波干扰的生物医疗领域。

  • 光电液位传感器适合检测哪些液体

    光电液位传感器适合检测哪些液体

    [font=宋体][back=white]光电液位传感器是一种适用于液体检测的先进设备。安装方式上,需要在水箱或机体上开孔安装,适合用于不需要移动的设备,如一体式加湿器、净水器、热水器、咖啡机、洗碗机、电蒸锅、冷气扇、家电宠物饮水机、水泵、鱼缸、智能机器人、工业设备、超声波雾化器等需要液体检测的电器设备。[/back][/font][back=white] [/back][font=宋体][back=white]光电液位传感器可以测量多种液体,包括水(污水[/back][/font][back=white]/[/back][font=宋体][back=white]净水)、香薰液、消毒液、饮料、植物营养液、海水等。在无水状态下,发射管所发出的光经过透镜后会折射到接收管中;而有水状态时,光线会折射到液体中,从而使接收器收不到或只能接收到少量光线。通过检测光线的变化,光电液位传感器可以准确判断液体的存在与否,实现液位的检测。[/back][/font][align=center] [img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/08/202308291512106807_8752_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][back=white]光电液位传感器具有高精度、高灵敏度和高可靠性的特点,广泛应用于各种液体检测领域。它不仅可以用于家用电器,还可以应用于工业设备等领域。通过使用光电液位传感器,可以实现液体的自动控制和监测,提高设备的安全性和稳定性。[/back][/font][back=white] [/back][font=宋体][back=white]总之,[url=https://www.eptsz.com]光电液位传感器[/url]是一种先进的液体检测设备,适用于多种液体的检测。它具有高精度、高灵敏度和高可靠性的特点,广泛应用于家用电器和工业设备等领域。通过使用光电液位传感器,可以实现液体的自动控制和监测,提高设备的性能和可靠性。[/back][/font]

  • 低温冷冻箱膨胀阀如何调试?

    低温冷冻箱的有效运行与需要的制冷效果息息相关,要想保证好一点的制冷效果,正确的调试膨胀阀就尤为重要,那么,怎么调试低温冷冻箱膨胀阀呢?低温冷冻箱运行过程中,膨胀阀的开启度小,制冷剂通过的流量就少,压力也低,低温冷冻箱膨胀阀的开启度大,制冷剂通过的流量就多,压力也高。根据制冷剂的热力性质,压力越低,相对应的温度就越低;压力越高,相对应的温度也就越高。所以,如果低温冷冻箱膨胀阀出口压力过低,相应的蒸发压力和温度也过低,但由于进入蒸发器流量的减少,压力的降低,造成蒸发速度减慢,单位容积制冷量下降,制冷效率降低。与之相反,如果低温冷冻箱膨胀阀出口压力过高,相应的蒸发压力和温度也过高,进入低温冷冻箱蒸发器的流量和压力都加大,由于液体蒸发过剩,过潮气体(甚至液体)被压缩机吸入,引起压缩机的湿冲程,使压缩机不能正常工作,造成一系列工况恶劣,甚至损坏压缩机。所以说,低温冷冻箱的膨胀阀开启度,应根据当时的低温冷冻箱温度进行调节,即在低温冷冻箱相对应的压力下调整。低温冷冻箱压缩机的吸气压力由于存在吸气管的压力损失和过热度(取决于管路的长短和隔热效果),一般较蒸发压力稍高。此时膨胀阀的调节压力应基本与蒸发压力相似(蒸发压力稍高)。调节低温冷冻箱膨胀阀必须仔细耐心地进行,调节压力必须经过低温冷冻箱蒸发器与低温冷冻箱温度产生热交换沸腾(蒸发)后再通过管路进入压缩机吸气腔反映到压力表上的,需要一个时间过程。无锡冠亚提醒,每调动低温冷冻箱膨胀阀一次,一般需10~15分钟的时间后才能将膨胀阀的调节压力稳定在吸气压力表上,调节不能操之过急,低温冷冻箱压缩机的吸气压力是膨胀阀调节压力的主要依据参数,低温冷冻箱膨胀阀技术性能的好坏,直接影响其能否正常调节运行的标志。低温冷冻箱膨胀阀如果出现堵塞以及冰堵等故障,需要各位及时解决,以免影响低温冷冻箱的使用。

  • 液体颜色是否会影响光电液位传感器的判断

    液体颜色是否会影响光电液位传感器的判断

    [font=宋体][back=white]液体的颜色通常不会对红外水位开关的工作产生影响。红外水位开关是一种非机械式的传感器,它内置了红外发射管和接收管。红外发射管会发射出红外光,而接收管则用于接收光信号。当红外光照射到液体表面时,光会发生折射,如果液体中存在水,光会被吸收,不会反射回来。而如果液体中没有水,光会反射回来被接收管接收到。根据接收到的光信号,传感器可以判断液体是否存在。[/back][/font][back=white] [/back][font=宋体][back=white]大部分液体的颜色对红外水位开关的工作没有影响。无论液体是水性墨水、黄墨水、污水、液压油、精油还是洗手液等,只要液体中存在水,红外水位开关就能正常工作。这是因为红外光在液体中的折射和反射特性与液体的颜色无关。[/back][/font][align=center] [img=光电液位传感器,690,559]https://ng1.17img.cn/bbsfiles/images/2023/09/202309061429088252_7798_4008598_3.png!w690x559.jpg[/img][/align][font=宋体][back=white]红外水位开关是一种可靠的[url=https://www.eptsz.com]液位传感器[/url],它不受液体颜色的影响。无论液体是什么颜色,只要液体中存在水,红外水位开关就能准确地检测到液位变化,实现缺液提醒或其他相应的功能。这使得红外水位开关在各种应用场景中都能发挥重要作用,为用户提供便利和安全保障。[/back][/font]

  • 液位传感器检测有泡沫液体会误判吗?

    液位传感器检测有泡沫液体会误判吗?

    [size=24px][font=宋体]液位传感器是用来检测液体状态的一种传感器,通过传感器检测来判断水箱内是否缺水,从而提示用户及时加水。[/font][font=宋体][font=宋体]当传感器在检测一些比较特殊的液体时,例如洗手液、清洗液等容易产生泡沫的液体,液位传感器在检测时会出现误判的情况吗[/font][font=Calibri]?[/font][/font][img=,601,371]https://ng1.17img.cn/bbsfiles/images/2022/12/202212281108042028_2047_4008598_3.jpg!w601x371.jpg[/img][font=宋体]能点科技的光电液位传感器采用的时光学原理检测,内部由红外发光二极管和光敏接收器,检测探头是棱镜结构。此类[url=https://www.eptsz.cn/FAQ_Details/99409.html][b]传感器[/b][/url]对于液体泡沫问题都提前利用软件做了规避处理,所以不会出现气泡误判情况。光电液位传感器可靠性高、安装方便、体积小、还具有免调试、免维护的优点,应用非常的广泛。[img=,660,405]https://ng1.17img.cn/bbsfiles/images/2022/12/202212281108242168_3442_4008598_3.jpg!w660x405.jpg[/img][/font][/size]

  • 分体式液位传感器在除湿器里面实现什么功能?

    除湿器,可分为民用除湿器和工业除湿器两类,属于空调家庭的一部分,一般由压缩机、热交换器、风机、水贮器、外壳和控制器组成。分离式液位传感器通常用于除湿器内水箱液位变化的检测。通常,当贮水器内部上升到传感器位置时,传感器给出信号,以实现满水提醒功能,防止水溢出。分离式液位传感器是非接触式的检测,顶部的透镜与传感器分离。因此,使用分离式光电液位传感器时,必须在水箱上设计一个透镜(可由我们的结构工程师协助)。通常,透镜与水箱一起成型,以避免成本的增加。[align=center][img]https://uploader.shimo.im/f/VFkrEvRSPrse2bWF.jpg!thumbnail[/img][/align]分离的光电液位传感器采用光学反射原理,内置发射接收管。当液体不接触时,发射极管发出的光直接返回接收器。当液体覆盖透镜时,光在液体中折射,因此只能接收到少量的光。分离的光电液位传感器不受温度、压力、磁、腐蚀等因素的影响,具有可靠性高、寿命长、无需维护等特点。而且面校验,免调试,可以直接安装。因此,在除湿器上采用了分离的液位传感器,直接连接电路即可分离液位传感器还可实现咖啡机、净水器等的缺水保护功能。

  • 分离式液位传感器代替浮球传感器的优势

    分离式液位传感器代替浮球传感器的优势

    [font=宋体][color=#212121]分离式液位传感器和浮球传感器是常见的两种液位传感器,它们都可以用于检测液体的高度。但是,它们的工作原理和适用场景有所不同。下面我们来对比一下这两种传感器,并突出分离式光电液位传感器的优势。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]工作原理[/color][/font][font=宋体][color=#212121][/color][/font][align=center][/align][font=宋体][color=#212121]浮球传感器是利用浮球的浮力来检测液位高度的。当液位升高时,浮球会随着液位上升,从而触发传感器的报警系统。但是,浮球传感器的精度受到浮球的大小和液体密度的影响,而且容易受到液体的振动和波动的干扰。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]分离式液位传感器则是利用光电效应来检测液位高度的。它通过发射光线和接收光线的方式来检测液位高低。当液位高于传感器的位置时,光线被液体阻挡,传感器接收到的光线信号就会变弱,从而判断液位高度;当液位低于传感器的位置时,光线不会被液体阻挡,传感器接收到的光线信号就会变强,从而判断液位低度。分离式液位传感器的精度高、响应速度快、不易受到液体性质的影响。[/color][/font][font=宋体][color=#212121][/color][/font][align=center][img=分离式液位传感器,482,236]https://ng1.17img.cn/bbsfiles/images/2023/06/202306161417563868_4673_4008598_3.jpg!w482x236.jpg[/img][/align][font=宋体][color=#212121]适用场景[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]浮球传感器适用于液体容器较小、液体稳定的场景,如水箱、油箱等。但是,它不适用于液体容器较大、液体波动较大的场景。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]分离式液位传感器适用于液体容器较大、液体波动较大的场景,如化工、制药、食品等行业。它的优点是精度高、响应速度快、不易受到液体性质的影响。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]安装方式[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]浮球传感器需要安装在液体容器内部,浮球会随着液位上升或下降,触发传感器的报警系统。而分离式液位传感器则可以安装在液体容器的侧面或顶部,以便发射和接收光线。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121] [/color][/font][font=宋体][color=#212121]总之,分离式[url=https://www.eptsz.com]液位传感器[/url]相比浮球传感器具有更高的精度、更快的响应速度、更广泛的适用场景。在选择液位传感器时,需要根据实际情况进行选择,以保证传感器的准确性和可靠性。[/color][/font][font=宋体][color=#212121][/color][/font]

  • 赛默飞CAD报错液体传感器感应到液体

    开机初始化报错FLOOD SENSOR 是F,点击继续报错29009,液体传感器activated。冲了两天氮气好了,这几天没用重新开机又出现此现象,有没有什么好的解决办法

  • 【原创】一款低成本的在线监测低粘度液体传感器和测量装置介绍

    在实际工程和工业生产中,经常需要在线监测一些高水基流体介质如浆液的浓度和粘度,以保证最佳的过程运行环境与产品质量,从而提高生产效益。通过在线测量生产过程中的液体浓度和粘度,可以得到液体流变行为的数据,对于预测产品工艺过程的工艺控制,输送性以及产品在使用时的操作性有着重要的指导价值。液体的特性往往与产品的其他特性如颜色,密度,稳定性,固体成分含量和分子量的改变有关系,而检测这些特性的最方便和灵敏的方法就是在线检测液体的浓度和粘度。在生产过程中,根据工艺要求的范围进行在线浓度和粘度检测,可以最大限度的减少产品的报废率和生产线的停工期。作为高水基流体介质其共同特性就是粘度比较低,一般在0---50个CP之间,目前在线检测的仪器主要是旋转粘度计和光通量浓度计,超声波浓度计以及微波浓度测试仪器等 光通量浓度计,光纤浓度传感仪是利用溶液折射率和浓度的关系测量浓度的,由于浆液温度的变化以及浆料沉积在测量棱镜上和浆液在工业生产过程中的其它遗留杂物—如纺织浆沙浆液中常遗留的纤维都对折射率的影响比较大。为避免测量误差 棱镜需要用蒸汽按一定周期冲洗。超声波浓度计以及微波浓度测试仪器都存在着,成本高 结构复杂等问题 而且超声测量方法需要有强大数字信号处理能力和硬件支持,传感器的安装方式也比较复杂。应用上受到限制。 目前在国际纺织界较成熟的浓度检测均是采用光学折射仪测量浆液浓度,也仅是在进口设备上有应用,国内设备和其他测试方法的应用未见报道旋转粘度在线测量方法由于测矩转子结构复杂,成本高,采取的粘度信号不稳定,测控稳定性差,更主要的是测矩转子的机械结构上使其在线难以随时调节和保持零点,特别是对微粘浆液-如浆纱浆液粘度的变化感知不敏感,且测试的粘度和浓度之间没有相关关系,因此不适合用于在线生产检测。国内纺织业界主要是现场人工测定浆液的粘度,或是专人负责用遮光仪对浆液浓度经常测定并做相应调节。或采用人工-漏斗法。既由工人定时用漏斗法测量浆液流完所需的时间,以时间表征浆液粘度。时间用秒表测定,以肉眼观察浆液的出流和结束时间。这些方法中,肉眼观察精度不高,人对测量结果的影响较大。不能有效的保证浆纱质量且生产效率低下。在线监测浆液浓度和粘度装置未见报道和使用。本产品是利用先波科技的专利技术,提供一种基于敏感器件的在线监测浆液浓度和粘度传感器。本传感器能够同时测量浆液的浓度和粘度变化,主要是对微粘的液体具有较高的灵敏度。测试范围0—50CP. 而且可以根据实际工况,单独作为测量浆液浓度或粘度的传感器使用,本发明提出的传感器体积小,价格低,分辨率高,使用方便,并根据实际应用环境进行温度补偿和设置预警信号,主要应用在高水基流体介质的测量中,也可以应用在包括具有各种成分组成的液体如溶液,生物体液以及各种化工合成液体的测量中。不仅应用于纺织领域,在造纸,蔗糖,石油煤炭以及农业等领域有着很广泛的应用。FWS-2A在线检测液体粘度传感器技术参数测量方式: 在线实时测量.: 测量参数:浆液粘度,和浓度粘度范围:0 - 10cP (可以标定成其它粘度单位)测量分辨率: 0.5cP 输出信号:直流电压(0---5V), 响应时间: 小于2 秒工作温度: -10℃ -120℃ 输入电压 直流12V, 1.A

  • 新能源汽车电机测试设备热力膨胀阀

    新能源汽车电机测试设备中每个配件的性能都是很重要的其中热力膨胀阀作为主要配件之一,其性能以及调整也是很关键的,那么新能源汽车电机测试设备热力膨胀阀怎么调整呢?  新能源汽车电机测试设备热力膨胀阀具体的调整步骤:将数字温度表的探头插入到蒸发器回气口处(对应感温包位置)的保温层内,将压力表与压缩机低压阀的三通相连。(测试蒸发压力与回气温度);让压缩机运行15分钟以上,进入稳定运行状态,使压力指示和温度显示达到稳定值。  读出新能源汽车电机测试设备数字温度表温度T1与压力表测得压力所对应的温度T2,过热度为两读数之差T1- T2,进行调节时先将热力膨胀阀下方的阀帽拧下;过热度偏小时顺时针旋转阀杆,使阀体的针孔开启度关小,即供液流量减少(简述为顺旋开小);过热度偏大时逆时针旋转阀杆,则针孔开大,即供液流量增大(简述为逆旋开大)。与调节水阀控制水流大小的方法一样。流量调节时需在新能源汽车电机测试设备制冷系统正常运行中进行,而且要缓慢操作,逐渐调节。  其次,新能源汽车电机测试设备的膨胀阀的品牌以及性能也需要我们注意,好品牌的新能源汽车电机测试设备的膨胀阀的质量更加靠谱,在运行的时候有一点的质量保障,不会轻易产生故障,更够高效的运行。  新能源汽车电机测试设备热力膨胀阀调整还是比较简单的,如果还是调整不了的话,可以联系新能源汽车电机测试设备厂家来解决。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制