当前位置: 仪器信息网 > 行业主题 > >

硫化橡胶绝缘电阻定仪

仪器信息网硫化橡胶绝缘电阻定仪专题为您提供2024年最新硫化橡胶绝缘电阻定仪价格报价、厂家品牌的相关信息, 包括硫化橡胶绝缘电阻定仪参数、型号等,不管是国产,还是进口品牌的硫化橡胶绝缘电阻定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硫化橡胶绝缘电阻定仪相关的耗材配件、试剂标物,还有硫化橡胶绝缘电阻定仪相关的最新资讯、资料,以及硫化橡胶绝缘电阻定仪相关的解决方案。

硫化橡胶绝缘电阻定仪相关的资讯

  • 专家约稿|硫化橡胶逆向设计中成分测试方法研究
    硫化橡胶逆向设计中成分测试方法研究苍飞飞1,2,3(1.北京橡院橡胶轮胎技术服务有限公司,北京,100143;2.北京橡胶工业研究设计院有限公司,北京,100143;国家橡胶轮胎质量检验检测中心,北京,100143)摘要:轮胎作为汽车行业重要的组成部分,一直在不断的向着新的目标迈进,轮胎胶料成分分析主要包括五个部分:高聚物定性、高聚物含量和炭黑含量、有机物定性、无机物定性定量、硫化体系的定性定量。高聚物定性可以使用裂解气相色谱法、裂解气相色谱质谱法、红外光谱法;高聚物和炭黑的含量采用热重分析仪;有机物定性可以采用裂解气相色谱质谱法、气相色谱质谱法、红外光谱法;无机填料定性、定量采用化学法、原子吸收光谱法、等离子发射光谱法;硫化体系的定性、定量采用化学法。大型仪器的使用,可以测试更准确可靠的实验数据,为轮胎行业的进一步成长,提供有力的依据。关键词:轮胎、成分分析、测试轮胎作为车辆唯一与地面接触的部位,承担着承受载荷、改变方向、缓冲与减震、驱动与制动四个方面的重要作用[1]。轮胎的制备过程中配方和结构都是非常重要的因素。目前在人类社会实现“碳中和”的伟大事业中,百岁老产品与时俱进,在社会可持续性发展的征程上续写着传奇、再立新功,助力人类社会达成“双碳”目标[2]。为了达到这个目标,国产轮胎还要不断努力,缩小与一线品牌轮胎的差异,从北京橡胶工业研究设计院有限公司第一次组织行业轮胎剖析会议到现在已经有40多年的历史了,轮胎行业的配方工程师一直都没有停下脚步,追寻着寻找合理的配方组成,因此开展轮胎成分测试工作是一项非常有意义的工作。在新时代、新环境下,轮胎肩负的责任发生了变化,目前气候变化已经成为世界各国政府关注的焦点,尤其近10年来各种自然灾害给人民生活贺财产造成了巨大损失[3]。为此,巴黎协定以后,各国政府在节能环保方面相继制定了严格的法律,并出台了相关措施,尽量减少碳排放。各个行业纷纷开展相应的政策,并且纷纷表示将于2040年实现“零”排放。因此轮胎的配方研制非常重要。目前欧盟REACH法规、轮胎标签法及美国的SMARTWAY等,轮胎企业针对目前的状况投入大量的人力、物力,开发设计新产品,尤其是新能源汽车轮胎,利用新技术、新材料和新工艺生产制造出高性能的子午线轮胎,进一步提高了汽车的环保、节能和安全性能。 轮胎是一个比较复杂的复合体,它大约有十几个部位组成,如:胎面胶、胎侧胶、基部胶、带束层胶、胎肩垫胶、胎体胶、胎圈胶、子口护胶、三角胶、内衬层胶等。目前针对整条轮胎成分检测有两个权威的检测机构,一个是美国的斯密斯公司,另一个是国家橡胶轮胎质量监督检验检测中心。两者在成分分析检测方面有一些差异,国家橡胶轮胎质量监督检验检测中心检测项目更完整、更全面,从胶型、胶比、橡胶含量、炭黑含量到有机填料、无机填料的定性定量检测;斯密斯公司擅长选择相同规格不同厂商的产品,分别测试,然后对比分析,并且在物理性能方面测试的项目比较完整,两者各有优缺点,剖析配方所呈现出来的结果要通过配方工程师的研究、调整、完善,才能转化为剖析配方。因此剖析配方是基础,是新配方研究得核心和关键。目前轮胎胶料成分分析方法的研究正在逐步的成熟,大量关于轮胎胶料配方组分研究的国家标准[4]-[10]已经发布或正在制定或修订过程中,方法标准的统一,让测试结果更加可靠,为配方的研究提供可靠、准确的实验数据。但方法和方法之间以及标准的应用方面还有一些问题,本研究就是基于相同试验项目采用不同的仪器设备所存在的问题的讨论与研究工作,希望大家能够理解测试工程师的工作,如果人员和设备不存在问题,得出的结果您有异议,可能是方法问题导致的结果,希望大家能够理解,能够正确的分析测试数据,解析出合理的结果,为新配方的研发提供有力的支持。胶料成分分析的方案胶料成分分析方案是根据样品配方设计的特点来确定的,不同的部位由于作用不一样,承受的条件也有差异,因此配方设计过程中是要对每个部位的特点来设计配方,例如[11]胎面胶是轮胎与地面接触的部分,那就需要提高轮胎胎面的胶料的拉伸性能和耐撕裂性能,使用特殊炭黑可以增加轮胎的耐磨性和导电性,并且要注意轮胎的生热,增强轮胎的寿命。轮胎作为橡胶工业的主导产品,其设计及生产制造过程的经济性直接影响企业的内生动力即盈利能力[12],因此在配方设计的过程中,也要考虑成本的计算,其中的配方成本是其中非常重要的一项考虑因素。如果可以实现通过材料替代以节约成本和提高硫化效率的操作实例,其直接影响企业产品效益的最大化[13]。1.高聚物定性高聚物的定性轮胎成分分析非常重要的一个测试环节,胎面胶选择合适的橡胶品种可以改善胎面胶的耐磨性能和降低滚动阻力[14]。高聚物的鉴定目前常采用的方法有:裂解气相色谱法[4]~[5]、裂解气相色谱质谱法[10]、红外光谱法[15]、核磁共振波谱仪。裂解气相色谱法和裂解气相色谱质谱法都是基于裂解器的前处理装置,后面的气相为分离装置,用火焰离子检测器(FID)和质谱检测器(MS)测试高聚物样品的一种方式。裂解器在惰性气体中被快速热解而生成具有高聚物表征的裂解产物(小分子碎片混合物),并随着载气导入分离装置(气相色谱)中的一种前处理方式。此方法的特点是仪器灵敏度高,样品用量少,不受填料的干扰等优点,其缺点是需要建立实验室内部的谱库、本方法属于相对方法[16]。红外光谱法是经典的物质化学结构分析与鉴定方法之一[17],广泛应用于科研领域。红外光谱可以给出物质所包含的官能团、结晶态等化学结构信息;而且,化学结构不同的物质、对应的红外光谱谱图具有指纹特征性[18],在标准中明确说明针对生胶、硫化胶、未硫化胶以及热塑性弹性体进行鉴定的方法,一共有两种分析方法,透射分析法和反射分析法。在轮胎胶料成分分析过程中有两点需要注意,其一是钢丝圈夹胶由于硫黄含量过高,影响特征谱图,对结果的分析有影响;其二顺丁胶和丁苯橡胶混合时,区分有一定的困难。傅里叶变换红外光谱法在高分子鉴定过程中需要注意以上问题,避免存疑数据的存在。核磁共振波谱仪可以有效的表征高聚物的支化度,核磁共振波谱仪目前主要是H谱和C谱两类原子核谱图,H-NMR简便快捷能够通过不同级数C原子上H的积分面积,定量表征高聚物的短链支化度;而对于长链支化,需要利用C-NMR检测支化度C原子、支化点附件C原子的峰来确定支链类型和支化度[19]。2.高聚物及炭黑含量热重分析技术(thermogravimetry,TG)是指 在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程。 基于 TG 法,可对物质进行定性分析、 组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域[20]-[21]。目前用的最多的方法有三个,其中轮胎常用的方法是,GB/T 14837.1-2014《橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第1部分:丁二烯、乙烯-丙烯二元和三元共聚物、异丁烯-异戊二烯橡胶、异戊二烯橡胶、苯乙烯-丁二烯橡胶》,这个标准涵盖了轮胎常用的高聚物:天然橡胶、丁苯橡胶、顺丁橡胶。热重分析仪可以准确的表征胶料配方中高聚物的含量、炭黑含量。在二十世纪初期,热重分析仪主要来自于美国、欧洲以及日本厂商,国内的仪器产品稳定性差,但在最近几年,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.。未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破,同时,我国相关仪器 厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地[20]。3.有机物定性、定量轮胎配方中需要加入有机配合剂,在配方的调整过程中,才能呈现出优异的性能,常加入的有机配合剂有:防老剂、防焦剂、促进剂、增粘剂、增塑剂、粘合剂、加工助剂等等,并且在硫化过程中,这些有机配合剂有的会发生化学反应,给配合剂的定性工作带来一定的难度。轮胎配方定性、定量常用的仪器设备是气相色谱质谱仪、裂解-气相色谱质谱仪、红外光谱仪、液相色谱仪、液相色谱质谱联用仪等。在长期的使用过程中,发现色谱方式由于色谱柱的分离作用,可以将混合物进行分离,可以提升检测的效率和检定结果的准确性。4.无机物定性、定量轮胎是一种常见的高分子复合材料,发展高耐磨、高抗湿滑、低滚阻的新一代轮胎是目前轮胎行业的重要挑战,在轮胎的制备过程中,填料的用量仅次于聚合物。填料的加入能提高聚合物复合材料的性能,改善轮胎的抗湿滑性、耐疲劳性以及耐低温耐高温能力等[22]。二氧化硅是轮胎中常用的填料,由于二氧化硅自身的特点,强吸附性、大比表面积,可以实现对有机分子的多层吸附,提高轮胎的抗撕裂性能[23]。二氧化硅的检测目前采用的化学法,将样品灼烧后,加入氢氟酸,剩余的二氧化硅与氢氟酸反应,生成四氟化硅,以气体的形式挥发掉,通过质量的变化来确定样品中加入的二氧化硅的含量。轮胎胶料中还有一些金属氧化物,如:氧化锌等,可以通过原子吸收光谱法和等离子发射光谱法进行测试。原子吸收光谱仪原理为处理后的液体样品吸入火焰中,火焰中形成的原子蒸汽对光源发射的特征电磁辐射产生吸收。将测定的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量[24]。电感耦合等离子体发射光谱仪原理为过滤或消解处理过的样品在等离子体火炬的高温下被原子化、电离、激发[25]。不同元素的原子在激发或电离时可发射出特征光谱,特征光谱的强弱与样品中原子浓度有关,即可测定样品中各元素的含量[26]。电感耦合等离子体发射光谱仪具有检出限低,准确度高、精密度高的优点, 并且可同时测定多种元素,时效快。但是在测定组分复杂的样品时,容易产生基体效应,从而影响检测结果的准确性。而火焰原子吸收光谱仪检出限较高,准确度、精密度相对较低,但在抗基体干扰能力方面的优势大于电感耦合等离子体发射光谱仪[27]。因此,在测试轮胎胶料样品时,要根据情况选择合适的仪器设备。5.硫化体系的定性、定量轮胎胶料的硫化体系主要是指加入的硫磺、促进剂、以及活化剂,其中硫磺含量的检测是依据国家标准GB/T 4497.1-2010《橡胶 全硫含量的测定 第1部分:氧瓶燃烧法》,将橡胶样品在通氧气条件下,燃烧,用双氧水吸收燃烧后气体,然后滴定生成的硫酸根,反推出胶料中硫含量。本方法测试的是胶料中所有的硫,包括促进剂中的硫、炭黑中的硫。因此对数据的解读需要进行修正。小结本文对轮胎胶料的成分分析进行了全面的介绍,高聚物定性可以使用裂解气相色谱法、裂解气相色谱质谱法、红外光谱法;高聚物和炭黑的定量采用热重分析仪;有机物定性可以采用裂解气相色谱质谱法、气相色谱质谱法、红外光谱法、无机填料定性、定量采用化学法、原子吸收光谱法、等离子发射光谱法、硫化体系的定性、定量采用化学法。合理的使用方法,可以为进一步解析数据提供有力的支持,为轮胎配方胶料的研制提供有力的数据支持。作者简介苍飞飞, 北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量检验检测中心)/北京橡胶工业研究设计院有限公司副总工程师、技术负责人、高级工程师,从事橡胶检测工作22年,主要工作之一为开展轮胎橡胶制品类产品得剖析检测工作,使进口产品国产化提供有力的数据。社会兼职:全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会专家委员;全国橡胶与橡胶制品标准化技术委员会通用试验方法分会专家委员;北京市热分析学会委员;公安部检测中心专家库成员;教育装备协会理事会理事等。主持或参加纵向及横向项目30余项;完成学术论文30余篇;参加国家标准制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖;参加国际标准修订比对工作3项;发明专利13项;实用新型专利3项。参考文献:[1]朱华健,牛金坡,李凡珠,何红,王润国,卢咏来,张立群.新型轮胎结构的现状与发展[J].高分子通报,2019(11):1-14.DOI:10.14028/j.cnki.1003-3726.2019.11.001.[2]许叔亮.百年轮胎续写传奇:轮胎的性能设计与社会可持续性发展(上)[J].中国橡胶,2022,38(01):16-19.[3]吴桂忠.高性能子午线轮胎研发、生产和试验研究概况及发展趋势[J].中国橡胶,2022,38(02):17-26.[4] GB/T 29613.1-2013.橡胶裂解气相色谱分析法 第1部分:聚合物(单一及并用)的鉴定[S].北京:中国标准出版社,2013.[5] GB/T 29613.2-2014.橡胶裂解气相色谱分析法 第2部分:苯乙烯/丁二烯/异戊二烯比率的测定[S].北京:中国标准出版社,2014.[6] GB/T 14837.1-2014. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第1部分:丁二烯、乙烯-丙烯二元和三元共聚物、异丁烯-异戊二烯橡胶、异戊二烯橡胶、苯乙烯-丁二烯橡胶[S].北京:中国标准出版社,2014.[7] GB/T 14837.2-2014. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第2部分:丙烯腈-丁二烯橡胶和卤化丁基橡胶[S].北京:中国标准出版社,2014.[8] GB/T 33078-2016. 橡胶 防老剂的测定 气相色谱-质谱法[S].北京:中国标准出版社,2016.[9] GB/T 14837.3-2018. 橡胶和橡胶制品 热重分析法测定硫化胶和未硫化胶的成分 第3部分:抽提的烃橡胶、卤化橡胶、聚硅氧烷橡胶[S].北京:中国标准出版社,2016.[10] GB/T 39699-2020. 橡胶 聚合物的鉴定 裂解气相色谱-质谱法[S].北京:中国标准出版社,2020.[11]王静,褚文强.航空子午线轮胎胶料配方设计[J].橡塑技术与装备,2022,48(06):39-43.DOI:10.13520/j.cnki.rpte.2022.06.008.[12]李萍.塑料企业的风险控制与经济管理——评《企业风险管理》[J].塑料科技,2021,49(12):124-125.[13]万达淳,郑闻运,陈弩.基于橡胶配方和工艺的轮胎产品经济性分析[J].橡胶科技,2022,20(05):247-249.[14] Kwag G,Kim P,Han S,et al. High Performance Elastomer Composites Containing Ultra High Cis Polybutadiene with High Abrasion and Low Rolling Resistances[J]. Journal of Applied Polymer Science,2010,105(2):477-485.[15]GB/T 7764-2017.橡胶鉴定 红外光谱法[S].北京:中国标准出版社,2018.[16]周乃东.橡胶聚合物的鉴定 裂解气相色谱法[J].中国石油和化工标准与质量,2007(01):33-38.[17]白云,胡光辉,李琴梅,陈新启,髙峡,刘伟丽.傅里叶变换红外光谱法在高分子材料研究中的应用[J].分析仪器,2018(05):26-29.[18] 翁诗甫.傅里叶变换红外光谱仪[M].北 京:化学工业出版社,2005:161.[19]罗俊杰,卜少华,黄铃.核磁共振波谱表征弹性体支化结构方法的研究进展[J].合成树脂及塑料,2017,34(05):92-97.[20]谢启源,陈丹丹,丁延伟.热重分析技术及其在高分子表征中的应用[J].高分子学报,2022,53(02):193-210.[21]Ding Yanwei(丁延伟). Fundamentals of Thermal Analysis(热分析基础). Hefei(合肥): University of Science and Technology of China Press(中国科学技术大学出版社), 2020[22]黄伟,杨凯,张乾,刘建伟,郝泽光,栾春晖.橡胶补强填料中煤矸石活化改性的研究进展[J].洁净煤技术,2022,28(01):166-174.DOI:10.13226/j.issn.1006-6772.Q21110501.[23]李鹏举,吴晓辉,卢咏来,张立群.氧化石墨烯/白炭黑纳米杂化填料在绿色轮胎胎面中的应用[J].合成橡胶工业,2019,42(04):294-299.[24]方琦,罗德伟,洪林.火焰原子吸收光谱仪影响因素与应对措施[J].绿色科技,2010(10):170-173. [25]邓晓庆.电感耦合等离子体发射光谱法测定土壤铜锌锰镍铬钒全钾 [J].环境科学导刊,2010,29(6):90-92.[26]邓晓庆.电感耦合等离子体发射光谱法(ICP-AES)与火焰原子吸收法 (AAS)测定水中铁、锰方法比对[J].环境监控与预警,2013,5(1):26-29.[27] 罗丽霞.火焰原子吸收光谱仪和电感耦合等离子体发射光谱仪在水质检测中的比较分析[J].广东化工,2021,48(23):171-173.
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 明珠发布硅橡胶再生胶无转子硫化仪新品
    MZ-4010B3 无转子硫化仪 1. 特点及用途:本机符合GB/T 16584《橡胶无转子硫化仪测定硫化特性要求》、ISO 6502要求及意大利标准要求的T30、T60、T90数据。该机用于测定未硫化橡胶的特性,找出胶料的佳硫化时间。本机模腔部分采用新型耐高温高强度隔热材料,控温精度高,稳定性、重现性好。无转子硫化分析系统运用Windows 7操作系统平台,图形图像化的软件界面,灵活的数据处理方式,全面体现高度自动化特点。可用于科研部门、大中专院校和工矿企业对各种材料进行力学性能分析和生产质量检验。 2. 技术参数: 2.1温度范围: 室温~200℃ 升温时间: ≤10min2.2温度范围: 室温~300℃(根据客户要求定制)升温时间: ≤15min2.3温度分辨率: 0~200℃: 0.1℃ 0~300℃: 1℃(根据客户要求定制)2.4温度波动: ≤±0.3℃(加料稳定以后)2.5力矩量程: 0N.m~10N.m 0N.m~20N.m(根据客户要求定制)2.6力矩显示分辨率: 0.001N.m2.7最长试验时间: 120min(可在试验中途修改时间)2.8摆动角度: ±0.5°(总振幅为1°) 2.9模体摆动频率: 1.7Hz±0.1Hz(102r/min±6r/min)2.10电 源: AC220V±10% 50Hz2.11外型尺寸: 645mm×580mm×1300mm(L×W×H)2.12净 重: 210kg 3. 控制软件主要功能介绍3.1操作软件:中文软件、英文软件;3.2 单位选择:kgf-cm, lbf-in, N-m,dN-m ;3.3 可测试数据:ML(N.m)最小力矩;MH(N.m)大力矩;TS1(min)初始硫化时间;TS2(min)初 始硫化时间;T10、T30、T50、T60、T90硫化时间;Vc1、Vc2硫化速度指数;3.4 可测试曲线:硫化曲线、上下模温度曲线;3.5 试验中途可修改时间;3.6 试验数据可自动保存;3.7 多条试验数据及曲线可在一张纸上显示,并可用鼠标点选读取曲线上任意点的数值;3.8 可将历史数据添加在一起进行对比分析并可打印出来;3.9 软件有“温度手动设置”功能,即温控仪可以与计算机相连也可脱机独立操作;3.10 具有扭矩管制和时间管制;3.11 具有SPC管制功能,可进行X-R分析;3.12 具有原始数据导出功能,Excel表格形式;3.13 软件有声光报警功能,即测量结果与扭矩管制或时间管制中数据不符时,可由声光报警器进行报警(根据客户要求定制)。 4. 配置4.1 日本山武公司温控仪 2只;4.2 高精度永磁电机1台;4.3 高精度气缸1套;4.4 高精度传感器1只;4.5 联想品牌电脑及彩色喷墨打印机1套(不含电脑柜);4.6 标准制样裁刀1把;4.7 硫化仪测控软件1套;4.8 关键零部件均由日本小巨人LGMazak加工中心加工 创新点:温度波动由原来的± 0.5℃ 升至± 0.3℃;模腔保温性能改良硅橡胶再生胶无转子硫化仪
  • 橡胶硫化特性的测试 (包括门尼焦烧和硫化曲线)
    硫化是橡胶制品制造工艺中最重要的工艺过程之一。 就是使橡胶大分子链由线性变为网状的交联过程,从而获得良好物理机械性能和化学性能。 橡胶的硫化性能是反映橡胶在硫化过程中各种表现或者现象的指标,对进行科研、指导生产具有很大的实用价值,硫化性能主要包括焦烧性能、正硫化时间、硫化历程等,测定橡胶的硫化性能方法很多。其中以硫化仪和气泡点分析仪最佳。 ⑴ 门尼粘度计法 门尼粘度计法不但能测定生胶门尼粘度或混炼胶门尼粘度,表征胶料流变特性,而且能测定胶料的触变效应,弹性恢复、焦烧特性及硫化指数等性能,因此它是最早用于测定胶料硫化曲线的工具。虽然门尼粘度计不能直接读出正硫化时间,但可以用它来推算出硫化时间。 ⑵ 硫化仪法 硫化仪是近年出现的专用于测试橡胶硫化特性的试验仪器, 类型有多种。按作用原理有二大类。第一类在胶料硫化中施加一定振幅的力,测定相应变形量如流变仪;第二类是目前通用的一类。这一类流变仪在胶料硫化中施加一定振幅变形,测定相应剪切应力,如振动圆盘式流变仪。 3.1 橡胶门尼焦烧试验 胶料的焦烧是胶料在加工过程中出现的早期硫化现象,每个胶料配方都有它的焦烧时间(包括操作焦烧时间和剩余焦烧时间)。在生产中应控制此段时间的长短。如果太短,则在操作过程中易发生焦烧现象或者硫化时胶料不能充分流动,而使花纹不清而影响制品质量甚至出现废品,如果焦烧时间太长,导致硫化周期增长,从而降低生产效率。当前测定焦烧时间广泛使用的方法是门尼焦烧粘度计(测定的焦烧时间称为门尼焦烧时间),此外也可以用硫化仪测其胶料初期时间(t10)。 3.1.1 门尼焦烧的试验原理 用门尼粘度计测定胶料焦烧是在特定的条件下, 根据未硫化胶料门尼粘度的变化,测定橡胶开始出现硫化现象的时间。 3.2 橡胶硫化特性测定 为了测定橡胶硫化程度及橡胶硫化过程过去采用方法有化学法(结合硫法、溶胀法),物理机械性能法(定伸应力法、拉伸强度法、永久变形法等),这些方法存在的主要缺点是不能连续测定硫化过程的全貌。硫化仪的出现解决了这个问题,并把测定硫化程度的方法向前推进了一步。 硫化仪是上世纪六十年代发展起来的一种较好的橡胶测试仪器。广泛的应用于测定胶料的硫化特性。硫化仪能连续、直观地描绘出整个硫化过程的曲线,从而获得胶料硫化过程中的某些主要参数。 上岛 硫化试验仪(无转子) 型号:VR-3110 在规定的温度下,混合橡胶放在上下平板膜腔之间并施以正弦波扭矩振动时,随着橡胶的硫化测定其扭矩的变化。可根据最大扭矩、最小扭矩、焦烧时间、硫化时间、粘弹性等其它因素的变化求出硫化特性的试验机。 上岛 气泡点分析仪型号:VR-9110 气泡点分析仪是能在需要的最小限度抑制橡胶的硫化时间的测试机,而对车胎、皮带、防振橡胶等产品的硫化工程控制有效。对生产性提高、能源消减、摩耗特性或者耐久性等产品特性的提高有益。 橡胶硫化不够时看到的内部气泡在硫化工程中控制 ,知道每种材料的最佳硫化时间。
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定
    近日,全国电磁计量技术委员会在广西壮族自治区南宁市召开了全国电磁计量技术委员会年会暨国家计量技术规范审定会,来自计量、仪器仪表、电力等行业86个单位的代表200人参加了会议。北京市计量检测科学研究院电磁所张磊、谷扬和王跃佟三位同志参加了此次会议。会上,由北京市计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定。   由北京计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范,经过起草组成员一年多的认真筹备,多方听取专家意见,顺利通过了专家审定。专家一致认为,起草组广泛征集了全国各个地区高阻计校准工作中存在的问题,特别是针对不同温湿度条件下进行了大量的实验工作,进行归纳汇总后,制定出适用于全国范围内的高绝缘电阻测量仪(高阻计)校准规范。经过与会专家的充分讨论,对高阻计校准规范的编制工作给予了充分肯定,全票通过审定。   电磁所张磊同志作为电磁委员会委员,全程参与了七项计量技术规范审议工作,认真听取规范起草人的报告,对规范报审稿进行了逐条审查,并且提出了宝贵意见。   《高绝缘电阻测量仪(高阻计)》修订工作,结合了全国各个地区的实际使用和工作情况,规范了高阻计的校准项目和方法,澄清了原来检定过程中存在的一些模糊问题,使生产者、试验者有统一的规范可依。会议之余,北京市计量院同志和同行进行专业上交流,了解更多行业动态,为北京市计量院电磁计量工作的发展起到良好推动作用。
  • 氧阻隔如何保护橡胶轮胎的性能和寿命
    1844年,Charles Goodyear开发了硫化橡胶工艺来制造柔韧、防水、可模塑的橡胶。从那时起,橡胶开始被广泛应用。目前世界橡胶产量的一半用于轮胎生产,可见轮胎耗用橡胶的需求。 随着环保,节能减碳的概念出现,全球市场对汽车和非汽车橡胶产品的改善都面临巨大的压力。供应商的原材料是否合格,他们的橡胶质量是否能够防潮、防止氧气侵入,是否足够耐用,并能够经受高温和极端压力条件的考验?“为什么测试橡胶透氧率对轮胎很重要轮胎作为汽车跟路面的介质,是汽车的主要安全件。在汽车轮胎中,橡胶聚合物与天然橡胶结合使用,这些橡胶聚合物的性能决定了轮胎中每个组件的性能以及轮胎的整体性能。轮胎的内胎则使用卤化丁基橡胶,这种材料使内衬层成为保持轮胎充气的屏障,耐透气性的轮胎对汽车行驶的安全性至关重要。因此,透氧率 (OTR) 测试是评估橡胶阻隔性能的重要步骤。OTR越低,隔氧性越好,使用寿命越长。“橡胶产品的阻隔测试解决方案在高温天气下,除了地面的自然温度升高外,动能也会引起摩擦导致的轮胎热量增加,因此橡胶的OTR测试通常在高温下进行。如果在更高的温度下,橡胶样品易软化变形,MOCON的透氧分析仪具备并排双膜测试盒(10cm2 或 5cm2)可用于测试高达 1/8”(3.18 mm或125mil)的较厚样品(如橡胶板),可以最大限度地满足橡胶软化状态下的测试需求。橡胶材料OTR测试:测试样品:橡胶A和橡胶B样品厚度:86mil测试气体:100% O2测试温度:60°C测试仪器:MOCON OX-TRAN 2/28H测试面积:10 cm2测试得出:在60°C高温条件下,样品A和B两次OTR测试得出的数据几乎都相差无几,可重复性的测试结果,可以准确评估橡胶产品的使用寿命。OX-TRAN 2/28H透氧仪的优势:• Coulox绝对氧传感器符合ASTM D3985标准,确保准确度• 专为高通量测试而设计,有利于QA/QC流程• 自动测试和易操作性• 特殊功能包括厚的测试样品(高达 1/8 英寸)能力和减少测试区域的舱盒• 宽测试温度范围:20 – 60°CMOCON氧气透过率测试仪OX-TRAN 2/28H不管最终生产的是哪种橡胶制品,橡胶制造商都希望通过使用高通量的设备进行可靠的OTR测试,以便够将产品更快地推向市场。从研究到生产,MOCON都能够帮助您开发经受市场考验的产品。
  • 色谱检测方法新国标来啦 —GB/T 41946-2022/ISO 19242:2021 橡胶 全硫含
    橡胶属于高分子材料,未经硫化的橡胶呈线性结构,其抗拉性能较差。为提高其材料性能,通常情况下将原料在加热条件下与硫化剂硫磺发生反应,交联成立体网状结构,然后得到定型的具有实用价值的橡胶制品。总硫含量是橡胶检测的关键指标之一,橡胶的硫化工艺决定了橡胶最终产品的物理性能、力学性能,如强度、弹性、塑性、拉伸模量等。因此,测定生胶或硫化橡胶中总硫的含量对橡胶品质,指导生产控制工艺、评价橡胶性能具有十分重要的意义。本标准描述了通过离子色谱测定生胶和硫化胶或混炼胶中全硫含量的方法。岛津参与本标准的建标、验证工作,并作为验标单位收录于该标准的正文中。本文内容非商业广告,仅供专业人士参考。
  • 《GB/T 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》最新标准解读
    引言氢化丁腈橡胶(简写为HNBR),是丁腈橡胶中分子链上的碳碳双键加氢饱和得到的产物,故也称为高饱和丁睛橡胶。 氢化丁腈橡胶具有良好耐油性能(对燃料油、润滑油、芳香系溶剂耐抗性良好);并且由于其高度饱和的结构,使其具良好的耐热性能,优良的耐化学腐蚀性能(对氟利昂、酸、碱的具有良好的抗耐性),优异的耐臭氧性能,较高的抗压缩永久变形性能;同时氢化丁腈橡胶还具有高强度,高撕裂性能、耐磨性能优异等特点,是综合性能极为出色的橡胶之一。 《GBT 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》介绍了氢化丁腈橡胶以性能特性分为通用类和特殊,按照丙烯腈含量进行了分级以及命名与牌号的规则。阐述了生橡胶和硫化橡胶评价方法。 岛津解决方案 傅里叶变换红外光谱仪傅里叶变换红外光谱仪发射红外光,样品受到频率连续变化的红外光照射时,其分子吸收了某些频率的辐射,引起分子之间的振动和转动,然后通过分析特征吸收可以鉴定化合物的结构,定量成分。,氢化丁腈橡胶的红外图谱应具有明显的丙烯腈(AN)、丁二烯(BD)和氢化丁二烯(HBD)的特征吸收谱带。IRTracer-100 ★ 卓越的灵敏度和可靠性高灵敏度,高速度,高分辨率岛津先进的技术,确保干涉仪的优化和长期稳定性★ 新时代的软件工作站网络化的LabSolutions IR工作站软件标配高质量的标准光谱库快速准确的光谱检索新技术丰富多彩的自动宏程序,省时省力★ 满足多样的应用需求解决“是不是”和“是什么”这两大应用问题强大的单组份和多组分同时定量功能,可实时显示浓度和判定结果良好的可扩展性 差示扫描量热仪差示扫描量热仪(DSC)是材料测试必不可少的工具,此类仪器广泛应用于材料研发、生产及质控。DSC作为质控仪器方法的趋势仍在继续增加。 作为一种新理念,岛津打破了“自动取样器是昂贵、笨重并且专用的机器”的传统观念,推出了代表“内置自动进样器”概念的DSC-60 A Plus。并且,DSC-60 A Plus还使用先进的软件功能来节约成本,提高效率;并且机身小巧,可安装在有限的空间内。 DSC-60 A Plus ★ 通过改进型的DSC探测器提高灵敏度和分辨率★ 优异的信噪比★ 内置的冷却装置★ 操作简单方便的探测器清洁★ 可通过网络传输数据★ 基于OLE的动态报告功能★ 更大兼容Windows的32位应用程序★ 与TA-50系列兼容 试验机岛津材料试验机至今已有100多年的历史,在行业内的探究,钻研,积累了十分丰富的技术与经验。岛津试验机产品线丰富,有电子/液压万能试验机,疲劳实验器,显微维氏硬度计与超显微维氏硬度计,门尼粘度计毛细管流变仪等多系列产品。本文内容非商业广告,仅供专业人士参考。
  • 《橡胶压缩耐寒系数测定仪》团体标准公开征求意见
    根据《关于印发2022年第二批中国石油和化学工业联合会团体标准项目计划的通知》(中石化联质发2023(07)号)要求,由中国石油和化学工业联合会提出,北京橡胶工业研究设计院有限公司等单位组织制定的《橡胶压缩耐寒系数测定仪》团体标准,现已完成征求意见稿编制工作(附件1-2)。为使标准具有科学性、先进性和适用性,现面向社会公开征求意见,欢迎社会各界对标准内容提出意见和建议。标准公示时间为一个月,截至时间为2023年2月23日。橡胶压缩耐寒系数测定仪是用来测试硫化橡胶或热塑性橡胶在常温下压缩,在低温下冷冻保持一定时间去除压缩后,测试橡胶材料在低温下性能恢复的一种测试仪器。目前国内生产压缩耐寒系数测定仪的单位也有很多,但是都没有生产该仪器的技术参数要求的标准,仪器的生产都是满足测试方法或使用需求,这样不利于仪器生产的标准化和市场的规范化,试验结果也存在一定的差异;而在一些橡胶材料规范中,压缩耐寒系数试验是其中的必检项,而这些橡胶材料也一直用在不同的领域,随着国产化的研究,这些材料的应用也会越来越广,所以规范压缩耐寒系数测定仪的技术参数尤为必要。该标准的制定可以为压缩耐寒系数测定仪生产时提供技术规范标准,同时为使用单位采购提供参考文件。本标准规定了橡胶压缩耐寒系数测定仪的术语和定义、原理、结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件,适用于测定硫化橡胶或热塑性橡胶压缩耐寒系数的测试仪器。本仪器是将一定高度的试样在常温下压缩至要求高度,再通过升降装置放置到低温环境中保持压缩一定时间,然后去除压缩力并恢复一定的时间,用测量装置测量试样高度变化值,通过计算可得出试样的压缩耐寒系数的仪器。附件1:征求意见稿.pdf附件2:编制说明.pdf
  • 原子荧光训练营-检测橡胶中的汞
    随着原子荧光技术的发展,原子荧光光谱仪的应用范围已经从地质行业逐步扩展到我们吃穿住行的各个方面不同样品中砷、汞等重金属的检测中。例如最近一条新闻说一个小孩子穿上新鞋后常出现夜啼不止并且身子红肿疼痛。经检测发现元凶是孩子新鞋的橡胶中重金属汞超标。而检测橡胶中汞的含量是原子荧光光谱仪的主要用途之一。金索坤作为原子荧光行业领跑者,在检测橡胶及其制品中汞含量积累丰富的经验,今天小编和您分享应用原子光谱仪检测橡胶中的重金属。首先,原子荧光光谱仪可以用来检测天然胶、乳生胶、混炼胶及硫化橡胶及其制品中汞的含量。然后就是怎么检。应用原子荧光光谱仪检测橡胶及其制品中的汞可以参照标准《SN/T 3520-2013橡胶及其制品中汞含量的测定 原子荧光光谱法》来执行。其过程可以简述为:将粉碎的样品至于微波消解罐内,加入硝酸和过氧化氢溶液,设定参数进行程序消解,待消解罐冷却至室温后打开,将消解后的溶液移入容量瓶,并用硝酸洗涤,加水定容。需要注意的是如果溶液有沉淀需要过滤。按照所使用的原子荧光光谱仪的推荐测试条件输入相关参数。预热,待原子荧光光谱仪稳定后,先测定标准系列溶液,后测定样品。这就是应用原子荧光法测定橡胶及其制品中汞含量的方法。最后,因为汞的吸附性强,所以在使用原子荧光光谱仪检测样品中的汞含量需要注意它的记忆效应问题,例如所有使用到的玻璃器皿都需要用硝酸浸泡、洗净、烘干后使用。金索坤从事原子荧光光谱仪的研发以及生产二十余载,推出SK-乐析 测汞型原子荧光光谱仪等新一代原子荧光产品,金索坤还会不断地推陈出新,用更加优质的原子荧光服务广大客户。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 我国将制定23项石油化工产品检验新国标
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国石油和化学工业联合会和国家标准化管理委员会将主管制定23项石油化工产品检验新国标,涉及原油、肥料、染料、颜料、涂料、橡胶、胶黏剂、化学试剂、化学化工原料等产品的检测。另外还将修订4项石油化工产品检测标准。2014年第一批国家标准制修订计划之石油化工产品检验标准  《化学试剂 离子色谱测定通则》  化学试剂是科研条件的重要组成部分,是开展科研开发和现代工业所必须的重要支撑条件,是工业的&ldquo 味精&rdquo 、科学的&ldquo 眼睛&rdquo 和质量的&ldquo 标尺&rdquo 。因此本次离子色谱通则制定将做到最大限度地与国外相关标准相一致,以达到离子色谙分析方法与国外要求的一致性。  主要用于化学试剂中氯化物、硫酸盐、磷酸盐、硝酸盐、亚硝酸盐、溴酸盐、铬酸盐等阴离子,钾、钠、钙、镁、锂、铵等阳离子,糖类以及有机酸的质量评估,本标准规定了离子色谱定义、方法原理、试剂和材料、仪器、样品处理和测试方法。  《原油残炭的测定 第2部分:微量法》  本标准修改采用JIS K 2270-2-2009《原油及石油产品残炭含量测定 第二部分 康氏法》,微量法操作简易、样品量少、精密度好等特点,体现了技术进步,而且与康氏法的测定区间和结果等效,因此将&ldquo 原油残炭的测定 微量法&rdquo 纳入到国家标准中,是对原油残炭标准的一个有益的补充和完善,有较为积极的意义。  《中间馏分油中总污染物含量测定法》  总污染物含量是反映中间馏分油清洁度程度的重要指标。柴油中污染物一般包括尘土、水、微生物、碎屑、蜡等。柴油的清洁程度对发动机过滤系统非常重要,污染物的存在会影响燃料的快速过滤,严重时造成滤网堵塞,供油不畅,使发动机不能正常工作。柴油中污染物含量在国外产品标准中有严格限制,受到国际相关部门的重点关注,但目前我国柴油污染物检测方法很少,相关研究也很少。 本标准规定了中间馏分油中总污染物的检测方法。  《肥料中邻苯二甲酸酯含量的测定 气相色谱-质谱法》  邻苯二甲酸酯(PAEs)是环境中的一类常见有机污染物,具有内分泌干扰毒性和生物累积性。本标准针对含有PAEs的肥料施入土壤后存在着被农作物吸收而污染农产品的极大风险,通过对国内外PAEs相关分析方法的查询和研究,以美国EPA确定的6种PAEs优控污染物为对象,研究一种适合定性、定量检测肥料中PAEs的气相色谱-质谱法(GC-MS),为保障食用农产品质量安全提供技术支撑。  《光学功能薄膜 三醋酸纤维素酯(TAC)薄膜 相延迟测试方法》  工业化生产的光学薄膜在不同光学轴方向可能存在各相异性,光线通过时会产生相延迟。普通光学环境中薄膜的存在相延迟通常没有什么影响。光学性能可只测量透过率、雾度。随着液晶显示器(LCD)的应用,偏光系统的中存在相延迟就不可忽视了。在彩色显示领域可能引起较明显的颜色变化。为此,LCD中使用的TAC薄膜需要控制相延迟。尤其是沿显示器光轴方向(Z轴),为此需建立此标准。  《光学功能薄膜 涂层密着性的测定方法》  光学功能偏光片是目前业界投资最为热门的行业之一,偏光片的制造技术一直被日本、韩国、中国台湾等国家和地区所垄断,大陆企业生产TFT 型偏光片在技术上非常困难,因而发展偏光片项目对完善我国液晶上游产业链,降低产品成本,提高市场竞争力有着重要意义。在提高偏光片产品质量,改善和提高偏光片光学性能方面,膜材的涂层起到重要作用。涂层的密着性是对涂层评估的一个重要方面,它影响到偏光片的光学性能与质量。  此标准的制定将统一规范液晶显示器用偏光片及其相关的光学薄膜之涂层密着性的测试方法要求,提高偏光片的质量及光学性能。  《胶乳制品中重金属含量的测定 电感耦合等离子体原子发射光谱法》  胶乳制品广泛应用于人们的日常生活中,目前在胶乳制品中重金属检测国内没有试验方法标准。 本标准将规定用电感耦合等离子体原子发射光谱仪测定胶乳制品中重金属铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、锌(Zn)、铁(Fe)、砷(As)、汞(Hg)、铝(Al)10种元素的总量方法。本标准适用于胶乳材料及其制品。  《胶鞋 苯乙酮含量试验方法》  苯乙酮对眼和皮肤有刺激作用,可引起皮肤局部灼伤和角膜损伤。德国等欧盟发达国家已注意到这类溶剂对人体健康的影响,它们国内的采购商也已开始要求全球各地的供应商检测材料中苯乙酮的含量,超过限量的产品将被拒绝进入他们国内的高端市场。因此,建立胶鞋中苯乙酮标准检测方法,对保障人体健康安全、提升产品质量破除贸易技术壁垒具有重要意义及紧迫性。本标准的制定填补了胶鞋中苯乙酮检测方法的空白,为控制、分析胶鞋所含的对人体有害的溶剂及限量提供了依据。  《胶鞋 烷基酚含量试验方法》  烷基酚为一种仿雌激素,也是已知的内分泌干扰素。具有持久性以及生物蓄积,在胶鞋生产中广泛应用, 极易残留在材料中。也就是说,它一旦被排入的环境中,它会在环境中存在很长时间,而且它可以进入食物链,并且通过食物链逐级放大。同时,它还具有模拟雌激素的作用,因此它一旦进入生物体内之后,就会影响生物体正常的生殖和发育。本标准的制定填补了胶鞋中烷基酚检测方法的空白,为控制、分析胶鞋所含的对人体有害的酚类及限量提供了依据。  《胶印版材用高聚物中乙二醇单乙醚不溶物含量的测定 过滤法》  胶印版材用高聚物中的不溶物,主要来源于聚合物在制备过程中产生的&ldquo 超高分子量聚合物&ldquo 、或者是反应过程中发生了交联、氧化等,甚至是在处理过程中(析出、干燥等)不慎引入的其它不溶性物质。这些不溶物的量的多少,会影响高聚物的使用。由于目前几乎所有胶印版材涂布液使用的主要溶剂成分都是乙二醇单乙醚,因此以乙二醇单乙醚不溶物来确定高聚物不溶物的指标是非常合适的。 本标准规定了用过滤法来测定胶印版材用高聚物中乙二醇单乙醚不溶物的含量。  《胶粘带动态剪切强度的试验方法》  胶粘带动态剪切强度用于表征在动态拉伸过程中胶粘带所能承受的最大剪切力。该性能对于胶粘带在剪切作用下的粘接效果的测试与判定具有重要意义。目前一般用持粘性来表征胶粘带的静态剪切力。 本方法表征在动态拉伸过程中胶粘带所能承受的最大剪切力,是对胶粘带剪切性能的完善和补充。  《硫化染料产品中硫化钠含量的测定》  硫化染料是我国染料行业很重要的一染料类别,在出口染料中也占有很大的比例。由芳胺类、酚类或硝基物与硫磺或多硫化钠硫化反应而生成。硫化钠是腐蚀性物质,与皮肤和粘膜接触有强烈的刺激性和腐蚀性,与酸类反应,产生剧毒和易燃的硫化氢。国内外用户对硫化染料中硫化钠的含量都有提出限制的要求,尤其是产品出口到发达的国家和地区要求格外严格。而国内目前还没有硫化染料中硫化钠含量测定的统一标准。因此,为填补标准上的空白,丰富我国染料行业方法标准体系,制定本方法标准是十分必要。  《车用汽油中总硅含量的测定 电感耦合等离子体发射光谱法》  车用汽油中硅含量过高会导致汽油火花塞堵塞、三元催化转化器中催化剂中毒等现象发生,对汽车本身性能造成较大的损害。例如2010年5月岳阳中石化&ldquo 问题汽油&ldquo 致上千辆汽油火花塞堵塞事件,事故原因分析即可能与硅含量异常有关。对车用汽油中总硅含量的检验鉴定技术研究,开发快速准确的检验方法,制定相关的检验标准,将一方面有利于对我国成品油市场进行有效的质量监管,减少和避免因成品油质量问题引发的群体性质量事故而造成消费者的人身安全事故和经济损失,具有较为显著的经济效益和社会效益。  《硫化橡胶 恒定形变压缩永久变形的测定方法》  本标准规定了将硫化橡胶试样压缩到规定高度下,经一定温度和时间,或经介质浸润后,测定试样压缩永久变形率的方法。本试验方法是橡胶物理性能试验中最常用的方法,试验设计简单易行,可直观的反应橡胶的硫化程度,因此得到国内外众多试验室普遍采用。本标准的前身是GB/T 1683《硫化橡胶恒定形变压缩永久变形的测定方法》,于1981年修订至今得到广泛使用。但是在国标清理整顿时,该标准在国家标准目录库中丢失,因此现急需补充制定。  《硫化橡胶或热塑性橡胶 耐臭氧龟裂 测定试验箱中臭氧浓度的试验方法》  臭氧是橡胶老化失效的重要因素之一,考察橡胶耐臭氧老化的性能时,臭氧浓度是影响臭氧老化试验结果的重要影响因素。目前国内尚无专门测量臭氧浓度的方法标准,导致国内橡胶耐臭氧相关试验方法标准测试结果没有可比性,因此亟需制订相应的国家标准。 本次国家标准制定建议等同采用ISO 1431-3:2000。  《氯化聚氯乙烯树脂 残留氯含量的测定 电位滴定法》  氯化聚氯乙烯树脂(CPVC)是由聚氯乙烯经氯化而制得的改性高分子化合物,是一种新型工程塑料原料,其耐热性及耐酸碱、盐、氧化剂腐蚀的性能十分优异,综合性能远高于聚氯乙烯树脂。残余氯含量是评判CPVC质量优劣的一项重要技术指标。本标准作为试验方法标准,拟在氯化聚氯乙烯树脂产品标准中被引用。  《毛用反应染料 色光和强度的测定》  毛用反应染料是近年来快速发展的一类产品,相比传统的羊毛用酸性等染料,因反应染料与纤维产生共价键结合而具有无法比拟的优异色牢度和应用性能,在行业内备受推崇。随着毛用反应染料的不断开发成功和面市,其生产企业越来越多,应用也越来越据活跃,商品化产品在国内外贸易也越来越频繁,而考核这类染料染色性能和质量要求的最重要指标(色光和强度)的测定还没有有一个统一的测试方法标准。为完善我国染料领域的标准体系建设,提高反应染料产品质量、规范生产,保证产品国内外贸易的顺利进行,制定本标准是十分必要的。  《木材胶粘剂拉伸剪切强度的试验方法》  木材粘接的使用条件各不相同。粘接后性能的表征可按受力方向的不同,分为拉伸剪切和压缩剪切。本标准提供了在给定环境条件下,利用标准试件进行拉伸载荷,测定木材与木材粘接剪切强度的方法。本标准完善了木材用胶粘剂剪切强度的试验方法,完整地反映了胶粘剂在木材上的粘接性能。  《色漆和清漆 电导率和电阻的测定》  虽然目前有许多涂料品种需求了解其电导率或电阻参数,但国内仅有产品标准HG/T 3952-2007 《阴极电泳涂料》涉及了涂料产品的电导率的测定方法,但该产品标准中对测试仪器和装置无规定,试验步骤比较简单,因此试验误差较大。对于涂料的电阻测定则无相关方法,国内一些企业各自建立了试验方法,但由于对试验仪器、操作步骤规定不科学和过于简单,造成较大的结果偏差,且不同企业之间产品难以相互比较。因此,制定准确测定涂料的电导率和电阻的标准对于涂料配方设计、指导施工、性能检测都具有十分重要意义。  《涂料中石棉的测定》  涂料是一类与人们生活息息相关的产品,为改善其性能有时需加入一些天然矿物(常会掺杂有石棉纤维的伴生物)或石棉物质。 石棉纤维对人体健康有不良影响,进入人体内的石棉纤维具有致病可能。国际癌症研究组织(IARC)已经宣布石棉是A类致癌物。随着各类石棉控制或禁用法规的实施,涂料就成为无法规避的被检材料。目前国内外关于涂料中石棉的检测还没有统一的标准 ,制定涂料中石棉的检测方法标准势在必行。  《颜料和体质颜料 灼烧损失和灼烧残余物的测定》  颜料和体质颜料是涂料、油墨等生产的重要原材料之一,灼烧损失和灼烧残余物的测定是许多颜料生产厂及用户很重视的项目之一,其测定方法应用频率较高。灼烧损失和灼烧残余物的测定结果对于颜料和体质颜料样品分析有着重要的意义,可用于了解和判定样品成分组成等信息。目前国内、国际尚没有颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准,仅在相关产品标准中作具体描述。因此尽快制定统一的颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准十分必要。  《液体酸性染料 色光和强度的测定》  液体酸性染料作为色素最基本的应用性能指标就是其色光和强度,由于其下游应用的特殊性,其色光和强度的测定不同于传统的粉剂染料的测定,目前还没有形成统一的测定方法标准,不利于国内外产品贸易和产品技术进步。为促进产业结构调整,推动清洁生产工艺技术深入,为保证产品下游应用的顺利开展,制定该方法标准是非常必要的。  《异丁烯-异戊二烯橡胶(IIR)不饱和度的测定 第1部分:碘量法》  自1999年国内第一套丁基橡胶生产装置开车以来,丁基橡胶的生产工艺和质量水平都有了较大的提高,2012年完成丁基橡胶产品国家标准的制定。不饱和度是产品标准中一项重要检测项目,直接影响橡胶的加工和应用性能,有必要单独针对其制定方法标准。目前国际标准中也没有不饱和度方法标准,本项目将填补此项空白。本次制定丁基橡胶不饱和度的测定方法,分为两个部分:第1部分 碘量法 第2部分 核磁共振氢谱法,保证了方法的配套性,同时满足不同用户的需要。
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料 GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40908-2021 家具产品及其材料中禁限用物质测定方法 阻燃剂 GB/T 40907-2021 家具产品及其材料中禁限用物质测定方法 2,4-二氨基甲苯、4,4’-二氨基二苯甲烷 GB/T 40906-2021 家具产品及其材料中禁限用物质测定方法 邻苯二甲酸酯增塑剂 GB/T 40904-2021 家具产品及其材料中禁限用物质测定方法 偶氮染料 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度 GB/T 40917-2021 纺织品 全氟己烷磺酸及其盐类的测定 GB/T 40912-2021 纺织品 定量化学分析 聚酰胺酯纤维与某些其他纤维的混合物 GB/T 40910-2021 纺织品 防水透湿性能的评定 GB/T 40909-2021 纺织品 甲基环硅氧烷残留量的测定 GB/T 40905.1-2021 纺织品 山羊绒、绵羊毛、其他特种动物纤维及其混合物定量分析 第1部分:光学显微镜法 GB/T 40903-2021 纺织品 DNA分析法鉴别某些特种动物纤维 山羊绒、绵羊毛、牦牛绒及其混合物 GB/T 29493.2-2021 纺织染整助剂中有害物质的测定 第2部分:全氟化合物(PFCs)的测定 GB/T 29493.1-2021 纺织染整助剂中有害物质的测定 第1部分:禁限用阻燃剂的测定 GB/T 40628-2021 籽棉衣分率试验方法 锯齿型试轧法 GB/T 3903.25-2021 鞋类 整鞋试验方法 鞋跟结合强度 GB/T 3903.14-2021 鞋类 外底试验方法 针撕破强度 GB/T 3903.12-2021 鞋类 外底试验方法 撕裂强度 GB/T 40828-2021 绵羊毛分级规程 GB/T 40826-2021 分梳山羊绒手排长度试验方法 图板电子扫描仪法 GB/T 40673-2021 计时仪器 辐射发光涂层检验条件 GB/T 3903.9-2021 鞋类 内底试验方法 跟部持钉力 GB/T 28004.1-2021 纸尿裤 第1部分:婴儿纸尿裤 GB/T 26703-2021 皮鞋跟面耐磨性能试验方法 GB/T 25036-2021 布面童胶鞋 GB/T 20096-2021 轮滑鞋 机械交通航空航天标准(72个)GB/T 8601-2021 铁路用辗钢整体车轮 GB/T 40861-2021 汽车信息安全通用技术要求 GB/T 40855-2021 电动汽车远程服务与管理系统信息安全技术要求及试验方法 GB/T 40822-2021 道路车辆 统一的诊断服务GB/T 40816.11-2021 工业炉及相关工艺设备 能量平衡测试及能效计算方法 第11部分:各种效率评估 GB/T 40810.2-2021 产品几何技术规范(GPS) 生产过程在线测量 第2部分:几何特征(形位)的在线检测与验证 GB/T 40810.1-2021 产品几何技术规范(GPS) 生产过程在线测量 第1部分:几何特征(尺寸、表面结构)的在线检测与验证 GB/T 40742.5-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第5部分:几何特征检测与验证中测量不确定度的评估 GB/T 40742.4-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第4部分:尺寸和几何误差评定、最小区域的判别模式 GB/T 40742.3-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第3部分:功能量规与夹具 应用最大实体要求和最小实体要求时的检测与验证 GB/T 40742.2-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第2部分:形状、方向、位置、跳动和轮廓度特征的检测与验证 GB/T 40742.1-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第1部分:基本概念和测量基础 符号、术语、测量条件和程序 GB/T 40809-2021 铸造铝合金 半固态流变压铸成形工艺规范 GB/T 40808.1-2021 机床环境评估 第1部分:机床节能设计方法 GB/T 40807-2021 微系统用生产设备 末端执行器与处理器的接口 GB/T 40806-2021 机床发射空气传播噪声 金属切削机床的操作条件 GB/T 40805-2021 铸钢件 交货验收通用技术条件 GB/T 40804-2021金属切削机床加工过程的短期能力评估GB/T 40803-2021 机械加工过程 能量效率评价方法 GB/T 40802-2021 通用铸造碳钢和低合金钢铸件 GB/T 40800-2021 铸钢件焊接工艺评定规范 GB/T 40799-2021 机械加工过程 能效基础数据检测方法 GB/T 40741-2021 焊后热处理质量要求 GB/T 40740-2021 堆焊工艺评定试验 GB/T 40738-2021 熔模铸造 硅溶胶快速制壳工艺规范 GB/T 40737-2021 再制造 激光熔覆层性能试验方法 GB/T 40735-2021 数控机床固有能量效率的评价方法 GB/T 40734-2021 焊缝无损检测 相控阵超声检测 验收等级GB/T 40733-2021 焊缝无损检测 超声检测 自动相控阵超声技术的应用GB/T 40732-2021 焊缝无损检测 超声检测 奥氏体钢和镍基合金焊缝检测 GB/T 40731-2021 精密减速器回差测试与评价方法 GB/T 40730-2021 无损检测 电磁超声脉冲回波式测厚方法 GB/T 40729-2021 精密齿轮传动装置疲劳寿命试验方法 GB/T 40728-2021 再制造 机械产品修复层质量检测方法 GB/T 40727-2021 再制造 机械产品装配技术规范 GB/T 40711.3-2021 乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调GB/T 40709-2021 耙吸挖泥船波浪补偿器技术要求 GB/T 40701-2021 动车组驱动齿轮箱润滑油 GB/T 40700-2021 上面级自主导航系统设计要求 GB/T 40698-2021 航天控制系统工程通用要求 GB/T 40578-2021 轻型汽车多工况行驶车外噪声测量方法GB/T 40574-2021 大型工业承压设备检测机器人通用技术条件 GB/T 40565.4-2021 液压传动连接 快换接头 第4部分:72 MPa螺纹连接型 GB/T 40565.3-2021 液压传动连接 快换接头 第3部分:螺纹连接通用型 GB/T 40565.2-2021 液压传动连接 快换接头 第2部分:20 MPa~31.5 MPa平面型 GB/T 40564-2021 电子封装用环氧塑封料测试方法 GB/T 40563-2021 氟化物红色荧光粉 GB/T 40562-2021 电子设备用电位器 第6部分:分规范 表面安装预调电位器 GB/T 39851.3-2021 道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求 GB/T 39560.8-2021 电子电气产品中某些物质的测定 第8部分:气相色谱-质谱法(GC-MS)与配有热裂解/热脱附的气相色谱-质谱法 (Py/TD-GC-MS)测定聚合物中的邻苯二甲酸酯 GB/T 39560.702-2021 电子电气产品中某些物质的测定 第7-2部分:六价铬 比色法测定聚合物和电子件中的六价铬[Cr(VI)] GB/T 39560.5-2021 电子电气产品中某些物质的测定 第5部分: AAS、AFS、ICP-OES和ICP-MS法测定聚合物和电子件中镉、铅、铬以及金属中镉、铅的含量 GB/T 39560.4-2021 电子电气产品中某些物质的测定 第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞 GB/T 27840-2021 重型商用车辆燃料消耗量测量方法 GB/T 26548.8-2021 手持便携式动力工具 振动试验方法 第8部分:往复式锯、抛光机和锉刀以及摆式或回转式锯 GB/T 26548.12-2021 手持便携式动力工具 振动试验方法 第12部分:模具砂轮机 GB/T 26548.11-2021 手持便携式动力工具 振动试验方法 第11部分:石锤 GB/T 26548.10-2021 手持便携式动力工具 振动试验方法 第10部分:冲击式凿岩机、锤和破碎器 GB/T 23931-2021 三轮汽车 试验方法 GB/T 20933-2021 热轧钢板桩 GB/T 19290.7-2021 发展中的电子设备构体机械结构模数序列 第2-5部分:分规范 25 mm设备构体的接口协调尺寸 各种设备用机柜接口尺寸 GB/T 1805-2021 弹簧 术语 GB/T 16895.33-2021 低压电气装置 第5-56部分:电气设备的选择和安装 安全设施 GB/T 16895.10-2021 低压电气装置 第4-44部分:安全防护 电压骚扰和电磁骚扰防护 GB/T 15055-2021 冲压件未注公差尺寸极限偏差 GB/T 12678-2021 汽车可靠性行驶试验方法 GB/T 12535-2021 汽车起动性能试验方法 GB/T 10919-2021 矩形花键量规 GB 40161-2021 过滤机 安全要求 GB 40160-2021 升降工作平台安全规则 GB 40159-2021 埋刮板输送机 安全规范 GB 17957-2021 凿岩机械与气动工具 安全要求 电子电器标准(111个)GB/Z 40825-2021 电器附件 总则协调 GB/Z 40776-2021 低压开关设备和控制设备 火灾风险分析和风险降低措施 GB/Z 40680-2021 直流系统用剩余电流动作保护电器的一般要求 GB/Z 17624.6-2021 电磁兼容 综述 第6部分 测量不确定度评定指南 GB/T 6346.24-2021 电子设备用固定电容器 第24部分:分规范 表面安装导电聚合物固体电解质钽固定电容器GB/T 5169.9-2021 电工电子产品着火危险试验 第9部分:着火危险评定导则 预选试验程序 总则 GB/T 5169.2-2021 电工电子产品着火危险试验 第2部分:着火危险评定导则 总则 GB/T 5169.20-2021 电工电子产品着火危险试验 第20部分:火焰表面蔓延 试验方法概要和相关性 GB/T 4942-2021 旋转电机整体结构的防护等级(IP代码) 分级 GB/T 40867-2021 统一潮流控制器技术规范 GB/T 40863-2021 生态设计产品评价技术规范 电动机产品 GB/T 40862-2021 输变电设施运行可靠性评价指标导则 GB/T 40823-2021 配电变电站用紧凑型成套设备(CEADS) GB/T 40819-2021 架空线缆微风振动疲劳试验方法GB/T 40815.4-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第4部分:电子机柜中供水热交换器的冷却性能试验 GB/T 40815.2-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第2部分:强迫风冷的确定方法 GB/T 40813-2021 信息安全技术 工业控制系统安全防护技术要求和测试评价方法 GB/T 40786.2-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第2部分:数据链路层规范 GB/T 40786.1-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第1部分:物理层规范 GB/T 40784.1-2021 信息技术 用于互操作和数据交换的生物特征识别轮廓 第1部分:生物特征识别系统概述和生物特征识别轮廓GB/T 40783.1-2021 信息技术 系统间远程通信和信息交换 磁域网 第1部分:空中接口GB/T 40777-2021 家用及类似用途断路器、RCCB、RCBO自动重合闸电器(ARD)的一般要求 GB/T 40775-2021 生态设计产品评价技术规范 灯具 GB/T 40774-2021 生态设计产品评价技术规范 办公设备系列产品 GB/T 40773-2021 变电站辅助设施监控系统技术规范 GB/T 40739-2021 燃气轮机 燃气轮机设备的数据采集和趋势监测系统要求 GB/T 40678-2021 PXI总线模块通用规范 GB/T 40676-2021 PXI Express总线模块通用规范 GB/T 40659-2021 智能制造 机器视觉在线检测系统 通用要求 GB/T 40654-2021 智能制造 虚拟工厂信息模型 GB/T 40649-2021 智能制造 制造对象标识解析系统应用指南 GB/T 40648-2021 智能制造 虚拟工厂参考架构 GB/T 40647-2021 智能制造 系统架构 GB/T 40617-2021 电气场所的安全生态构建指南 GB/T 40615-2021 电力系统电压稳定评价导则 GB/T 40613-2021 电力系统大面积停电恢复技术导则 GB/T 40610-2021 电力系统在线潮流数据二进制描述及交换规范 GB/T 40609-2021 电网运行安全校核技术规范 GB/T 40608-2021 电网设备模型参数和运行方式数据技术要求 GB/T 40606-2021 电网在线安全分析与控制辅助决策技术规范 GB/T 40602.2-2021 天线及接收系统的无线电干扰 第2部分:基础测量 高增益天线方向图室内平面近场测量方法GB/T 40602.1-2021 天线及接收系统的无线电干扰 第1部分:基础测量 天线方向图的室内远场测量方法 GB/T 40598-2021 电力系统安全稳定控制策略描述规则 GB/T 40594-2021 电力系统网源协调技术导则 GB/T 40593-2021 同步发电机调速系统参数实测及建模导则 GB/T 40592-2021 电力系统自动高频切除发电机组技术规定 GB/T 40591-2021 电力系统稳定器整定试验导则 GB/T 40589-2021 同步发电机励磁系统建模导则 GB/T 40588-2021 电力系统自动低压减负荷技术规定 GB/T 40587-2021 电力系统安全稳定控制系统技术规范 GB/T 40586-2021 并网电源涉网保护技术要求 GB/T 40585-2021 电网运行风险监测、评估及可视化技术规范 GB/T 40584-2021 继电保护整定计算软件及数据技术规范 GB/T 40581-2021 电力系统安全稳定计算规范 GB/T 40580-2021 高压直流输电系统机电暂态仿真建模技术导则 GB/T 40559-2021 平衡车用锂离子电池和电池组 安全要求 GB/T 40532-2021 电力系统站域失灵(死区)保护技术导则 GB/T 40427-2021 电力系统电压和无功电力技术导则 GB/T 40366-2021 电气设备用图形符号列入IEC出版物的导则 GB/T 38775.7-2021 电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端 GB/T 38775.6-2021 电动汽车无线充电系统 第6部分:互操作性要求及测试 地面端 GB/T 38659.2-2021 电磁兼容 风险评估 第2部分:电子电气系统 GB/T 38428.2-2021 数据中心和电信中心机房安装的信息和通信技术(ICT)设备用直流插头插座 第2部分:5.2 kW插头插座系统GB/T 3836.9-2021 爆炸性环境 第9部分:由浇封型“m”保护的设备 GB/T 3836.8-2021 爆炸性环境 第8部分:由“n”型保护的设备 GB/T 3836.5-2021 爆炸性环境 第5部分:由正压外壳“p”保护的设备 GB/T 3836.4-2021 爆炸性环境 第4部分:由本质安全型“i”保护的设备 GB/T 3836.35-2021 爆炸性环境 第35部分:爆炸性粉尘环境场所分类 GB/T 3836.34-2021 爆炸性环境 第34部分:成套设备 GB/T 3836.3-2021 爆炸性环境 第3部分:由增安型“e”保护的设备 GB/T 3836.31-2021 爆炸性环境 第31部分: 由防粉尘点燃外壳“t”保护的设备 GB/T 3836.29-2021 爆炸性环境 第29部分:爆炸性环境用非电气设备 结构安全型“c”、控制点燃源型“b”、液浸型“k” GB/T 3836.28-2021 爆炸性环境 第28部分:爆炸性环境用非电气设备 基本方法和要求 GB/T 3836.2-2021 爆炸性环境 第2部分:由隔爆外壳“d”保护的设备 GB/T 3836.13-2021 爆炸性环境 第13部分:设备的修理、检修、修复和改造 GB/T 3836.1-2021 爆炸性环境 第1部分:设备 通用要求 GB/T 36450.7-2021 信息技术 存储管理 第7部分:主机元素 GB/T 33598.3-2021 车用动力电池回收利用 再生利用 第3部分:放电规范 GB/T 33133.2-2021 信息安全技术 祖冲之序列密码算法 第2部分:保密性算法 GB/T 29618.5120-2021 现场设备工具(FDT)接口规范 第5120部分:通用对象模型的通信实现 IEC 61784 CPF 2 GB/T 29618.5110-2021 现场设备工具(FDT)接口规范 第5110部分:通用对象模型的通信实现 IEC 61784 CPF 1 GB/T 2900.104-2021 电工术语 微机电装置 GB/T 25285.2-2021 爆炸性环境 爆炸预防和防护 第2部分:矿山爆炸预防和防护的基本原则和方法 GB/T 25285.1-2021 爆炸性环境 爆炸预防和防护 第1部分:基本原则和方法 GB/T 24726-2021 交通信息采集 视频交通流检测器 GB/T 24621.1-2021 低压成套开关设备和控制设备的电气安全应用指南 第1部分:成套开关设备 GB/T 22712-2021 变频电机用G系列冷却风机技术规范 GB/T 22459.3-2021 耐火泥浆 第3部分:粘接时间试验方法 GB/T 20184-2021 拉曼光纤放大器 GB/T 21973-2021 YZR3系列起重及冶金用绕线转子三相异步电动机 技术条件 GB/T 19754-2021 重型混合动力电动汽车能量消耗量试验方法 GB/T 1971-2021 旋转电机 线端标志与旋转方向 GB/T 19334-2021 低压开关设备和控制设备的尺寸 在开关设备和控制设备及其附件中作机械支承的标准安装轨 GB/T 18910.61-2021 液晶显示器件 第6-1部分:液晶显示器件测试方法 光电参数 GB/T 18910.203-2021 液晶显示器件 第20-3部分:目检 有源矩阵彩色液晶显示模块 GB/T 18910.202-2021 液晶显示器件 第20-2部分:目检 单色矩阵液晶显示模块 GB/T 18910.201-2021 液晶显示器件 第20-1部分:目检 单色液晶显示屏 GB/T 18910.102-2021 液晶显示器件 第10-2部分:环境、耐久性和机械试验方法 环境和耐久性 GB/T 18910.101-2021 液晶显示器件 第10-1部分:环境、耐久性和机械试验方法 机械 GB/T 18898.1-2021 掺铒光纤放大器 第1部分:C波段掺铒光纤放大器 GB/T 18663.2-2021 电子设备机械结构 公制系列和英制系列的试验 第2部分:机柜和机架的地震试验 GB/T 18113-2021 铬酸镧高温电热元件 GB/T 17215.231-2021 电测量设备(交流) 通用要求、试验和试验条件 第31部分:产品安全要求和试验 GB/T 15972.49-2021 光纤试验方法规范 第49部分:传输特性的测量方法和试验程序 微分模时延 GB/T 14824-2021 高压交流发电机断路器 GB/T 13542.2-2021 电气绝缘用薄膜 第2部分:试验方法 GB/T 12668.7302-2021 调速电气传动系统 第7-302部分:电气传动系统的通用接口和使用规范 2型规范对应至网络技术 GB/T 12274.4-2021 有质量评定的石英晶体振荡器 第4部分:分规范 能力批准 GB/T 11019-2021 镀镍圆铜线 GB/T 10217-2021 电工控制设备造型设计导则 GB 40165-2021 固定式电子设备用锂离子电池和电池组 安全技术规范 能源标准(17个)GB/T 40866-2021 太阳能光热发电站调度命名规则 GB/T 40860-2021 压水堆核电厂设计扩展工况分析要求 GB/T 40858-2021 太阳能光热发电站集热管通用要求与测试方法 GB/T 40821-2021 太阳能热发电站换热系统检测规范 GB/T 40817.2-2021 核电主泵电机技术条件 第2部分:屏蔽泵异步电机 GB/T 40817.1-2021 核电主泵电机技术条件 第1部分:轴封泵异步电机 GB/T 40703-2021 太阳能中温工业热利用系统设计规范 GB/T 40677-2021 微型导热管 GB/T 40620-2021 核动力厂火灾危害性分析指南 GB/T 40618-2021 回旋加速器术语 GB/T 40616-2021 村镇光伏发电站集群控制系统仿真测试技术要求 GB/T 40614-2021 光热发电站性能评估技术要求 GB/T 40607-2021 调度侧风电或光伏功率预测系统技术要求 GB/T 40604-2021 新能源场站调度运行信息交换技术要求 GB/T 13697-2021 二氧化铀粉末和芯块中碳的测定 高频感应炉燃烧-红外检测法 GB/T 20115.1-2021 工业燃料加热装置基本技术条件 第1部分:通用部分 GB/T 11809-2021 压水堆燃料棒焊缝检验方法 金相检验和X射线照相检验其他标准(11个)GB/T 4857.23-2021 包装 运输包装件基本试验 第23部分:垂直随机振动试验方法 GB/T 40868-2021 纳米尺度科研生产受控环境规划与设计 GB/T 40753-2021 供应链安全管理体系 ISO 28000实施指南 GB/T 40681.6-2021 生产过程能力和性能监测统计方法 第6部分:多元正态过程能力分析 GB/T 40681.5-2021 生产过程能力和性能监测统计方法 第5部分:计数特性的过程能力和性能估计 GB/T 40681.4-2021 生产过程能力和性能监测统计方法 第4部分:过程能力估计和性能测量 GB/T 40621-2021 地闪密度分布图绘制方法 GB/T 19789-2021 包装材料 塑料薄膜和薄片氧气透过性试验 库仑计检测法 GB/T 13675-2021 航空派生型燃气轮机包装与运输 GB/T 15717-2021 真空金属镀层厚度测试方法 电阻法 GB 19268-2021 固体氰化物包装 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 优肯2015年新品硫化仪
    优肯新品——无转子硫化仪亮相橡胶轮胎展导语:随着近几年汽车、铁路的快速发展,汽车零配件及铁路检测需求不断增加,为应对不同系统的测试,优肯推出了符合市场需求的检测产品。在2015年中国(广饶)国际橡胶轮胎展上,优肯科技股份有限公司研发部经理黄照洋先生接受了中国化工仪器网的采访,为我们揭开了这款新产品的神秘面纱。优肯科技股份有限公司1986年成立于台北市,唯一一家仪器制造厂,进驻台湾科学工业园区,专业生产硫变机、粘度仪等橡胶检测仪器。至1999年,客户已遍布台湾、东南亚、西班牙等地。致力提升技术,产品项目也为之扩增,成功地开发了欧美及中东等市场。为了满足不断变化的市场需求,2015年中国(广饶)国际橡胶轮胎展上,优肯公司展出了一款贴近用户的新产品【无转子硫化仪】,优肯公司研发部经理黄照洋先生在采访中为我们揭开了这款新产品的神秘面纱。新产品“惊艳"亮相据黄经理介绍,优肯所有的产品都是自主研发,公司设有专业研发团队,包含了机械设计、机电整合、软体编辑以及机构外观设计等。因此,这款无转子硫化仪在研发设计上有着很多的独特之处。据悉,这款产品在机台的刚性上做了大幅提高,能够减少测试的误差,可将结果准确的呈现给用户。在零配件方面(温度传感器以及加热片)选用了国外的零部件,保证了较高的精确度外,故障率也随之降低,从而减少了用户的使用成本。这款产品凭借优肯近三十年来的经验,结合用户的体验及反馈,针对软件也做了一系列的修改,以便满足用户的需求。“因为网络的不断发展,很多用户都会要求将测试资料存放在一个伺服务器上,优肯这款产品同时具备了连接伺服务器的功能,客户可以在不同的位置,随时随地获取最新的检测结果以及设定测试方法。"黄经理介绍道。除了硬件和软件的精进外,产品在机电部分也做了一些更动,使机台和电脑之间的连接更加简单,结果更加准确。此外,优肯为及时响应用户的需求,在国内设有4个分公司及2个办事处,在上海、广州、青岛、重庆、泉州及宁波都有据点,能够从华东、华南、华北为用户提供及时的服务。立足橡胶检测 向多领域发展优肯在橡胶检测领域已有近三十年的发展历程,除了一些传统的测试体系外,累积近三十年得的经验,结合当下的最新技术,不断地对现有产品进行改良。在采访中,黄经理向记者透露,除了橡胶领域外,优肯期望能够根据在橡胶领域的经验,朝着多领域发展。“近年来穿戴式装置很普及,这其中涉及到高分子复合材料。其实我们两年前已经接触了这个领域,并且开始研发符合市场的分析测试仪器,结果都还不错。希望在站稳橡胶领域的同时,可以跨足高分子复合材料领域。"
  • 欧盟环保法规更严格 热塑性橡胶大有可为
    欧盟对石化产品的环保要求越来越严苛。1月16日,在对邻苯二甲酸酯/盐及其替代品积累的科学数据进行分析后,欧盟可能出台更为严格的法规,这给以PVC为原料的石化企业带来巨大压力,寻找可替代PVC的材料势在必行。  2009年10月底,我国一款出口德国的笔壳为PVC(聚氯乙烯)材质的圆珠笔自愿召回,因为该产品的PVC材料中含有39.6%百分比浓度的DEHP(邻苯二甲酸二己酯),不符合欧盟REACH法规中对玩具产品中邻苯二甲酸酯/盐的要求。与此同时,西班牙海关拒绝了原产于中国的“医生器械玩具套装”产品入关,因为产品材料中含有0.43%重量百分比浓度的DEHP和2%重量百分比浓度的邻苯二甲酸二异壬酯。  2007年1月16日,欧盟委员会出台了第2005/84/EC号指令,规定邻苯二甲酸酯/盐的含量不得超过0.1%。指令要求在执行3年之后,位于芬兰赫尔辛基的欧洲化学品管理局针对邻苯二甲酸酯/盐及其替代品累计的科学数据进行分析,重新评估,将于今年1月16日做出新的决定。  环保法规形成绿色壁垒  上世纪90年代,欧盟委员会针对邻苯二甲酸酯/盐的临时禁令早已出台并不断延长禁令时间,直至以下其中一种情况发生为止:1.欧盟采纳一致认可的测试方法,以测量邻苯二甲酸酯/盐的含量,确保不超出欧盟国家的限制。2.反对禁令的业者及科学家能够向欧盟证明邻苯二甲酸酯/盐对人体无害。3.欧盟实施指引,永久全面禁用邻苯二甲酸酯/盐。  由于我国目前对石化产品中的邻苯二甲酸酯/盐含量没有明确规定,该物质用作增塑剂在PVC等塑料产品中普遍使用,因此欧盟针对邻苯二甲酸酯/盐的新法规将直接影响PVC产品的出口。这令国内PVC生产企业和下游PVC塑料玩具、制品生产厂家以及相关行业人员心急如焚。  新法规的实施将大大增加我国企业的出口成本。替代邻苯二甲酸酯/盐的新物质要进行严格的检测,高昂的检测费用全部由企业承担。据欧盟估算,每一种化学物质的基本检测费用约需8.5万欧元,每一种新物质的检测费用约需57万欧元。同时欧盟对化工产品检测试验水平要求相当高,企业需要花大量的精力收集相关数据信息,出口企业的应对难度和成本将逐级加大。由此增加的费用将使我国对欧盟石油化工产品的出口成本普遍提高5%以上,导致我化工品对欧盟出口受阻,甚至退出欧盟市场。这不仅影响中国塑料工业的发展,而且将导致我国相关的下游产品成本增加,效益下降,严重影响我国轻工、电子、汽车等相关产业的发展。  新法规的实施将打破目前国际化学品贸易平衡的局面,迫使中国企业重新开拓欧盟以外的市场,建立新的贸易渠道。新市场的开拓需要一定的时间和投入,市场的转移将会严重影响我国化工产业的发展,削弱我国出口产品在国际贸易中的竞争能力。同时,欧盟化工企业也将失去获得中国廉价化工原料的机会。  新法规实施后,包括世界500强企业中石化、中石油在内的中国石化企业必须进一步调整产品构架,以更好应对这一绿色壁垒。  绿色壁垒催熟SEBS  在塑料行业中,PVC是我国第一、世界第二大通用型合成树脂材料,已被广泛应用于食品包装、玩具、医疗用品、化妆品、鞋、塑料门窗等产业。在PVC增塑剂中,邻苯二甲酸酯/盐的使用又占主要地位,它可使PVC这种天然硬、脆的材料变得柔软而富有弹性。由于增塑剂不能永久地与PVC聚合物键合,因此在塑料产品的使用过程中邻苯二甲酸酯/盐会释放出来,对人体造成危害。PVC及其常用的增塑剂邻苯二甲酸酯/盐于2001年被国际癌症研究中心列为有致癌作用的物质,PVC的使用安全引起公众的关注。随着全世界对环保要求的越来越高,研发能够替代PVC的环保材料势在必行。  热塑性弹性体(TPE)兼具塑料和橡胶的特性,被誉为“第三代合成橡胶”。在TPE中, SBS苯乙烯嵌段共聚物占有重要的地位,是目前世界上产量最大、发展最快的一种可替代PVC、软硫化橡胶的环保热塑性弹性体材料。目前,国内共有5家SBS生产企业,其中巴陵石化(产能20万吨/年)、燕山石化(9万~10万吨/年)、茂名石化(8万~8.5万吨/年)、独山子石化(8万吨/年)。  SBS最大的缺点是抗老化性能较差,其氢化产物SEBS克服了这一缺点。热塑性橡胶SEBS是壳牌公司于上世纪70年代最早研究开发的,是一种使用性能优、应用领域广的新型环境友好高分子材料,通过了美国FDA的安全认证。由于性能卓越,在业界有着“橡胶黄金”之称。  中国石化巴陵石化公司是国内最早建立SEBS生产装置的企业,目前巴陵石化SEBS年产能达2万吨。  2009年全球SEBS的年消费量约18万吨,其中美国为8万吨,欧盟为3万吨,日本为2.4万吨。国内SEBS消费量比2008年有较大提高,预计全年超过2.6万吨。  南京海旗环保科技有限公司是国内专业从事SEBS产品市场推广的公司。公司SEBS业务主管谈秋说:“SEBS完全符合欧盟REACH法规、美国FDA相关标准。2009年我们针对SEBS的特点开拓了三四个新的应用领域,客户生产的产品大多用于替代PVC产品出口美国、欧盟,SEBS销售量比2008年增加了90%。”  “橡胶黄金”大有可为  在欧盟1月16日公布新指令前,SEBS已率先成为攻破国外绿色壁垒的产品。随着欧盟相关法规日益严格,“橡胶黄金”未来大有可为,将广泛应用于医疗器械和玩具以及日常用品。  淄博康圣弹性体橡胶科技有限公司是国内知名的医用弹性体材料生产企业。公司总经理侯秋生表示:“我们已经将SEBS应用于医用管材制品中,目前国外订单全部使用了SEBS材质。由于这种产品的售价高出普通PVC产品好几倍,国内只有一线城市的大医院开始部分使用。如果有国家相关政策扶持,我们可用SEBS新产品替换PVC产品,年使用SEBS将达到2000吨以上。”  2007年起,义乌的玩具生产企业使用巴陵石化的SEBS生产了2亿多个毛毛球玩具,出口创汇3000多万美元。当地一家毛毛球生产企业负责人说:“巴陵石化的SEBS做了相关检测,不含DEHP等REACH法规高度关注的15种有害物质,不用担心出口欧盟国家时因为材质问题而被召回。”  江苏扬州的牙刷生产企业较为集中,以前牙刷手柄上的包覆材料大多以PVC为主。随着环保标准的要求越来越高,越来越多的牙刷厂家选择SEBS/PP材料来包覆牙刷手柄。江苏奥尔玛新材料有限公司总经理王强表示:“我们生产的SEBS/PP越来越受到下游牙刷厂家、牙刷使用者的欢迎,包覆在牙刷手柄上的那一点软胶,会带给使用者更多的舒适感。”  SEBS给人们生活带来的不仅是安全、环保,而且是高品质的生活享受。
  • 国标计划溶液聚合丁苯橡胶微观结构测定红外ATR法拟立项
    p  日前,国家标准委发布201项拟立项推荐性国家标准项目征求意见的通知,其中国家标准计划《溶液聚合丁苯橡胶(SSBR)微观结构的测定 第2部分:红外光谱ATR 法》由TC35(全国橡胶与橡胶制品标准化技术委员会)归口上报,TC35SC6(全国橡胶与橡胶制品标准化技术委员会合成橡胶分会)执行,主管部门为中国石油和化学工业联合会。主要起草单位 中国石油天然气股份有限公司石油化工研究院 、中国石油天然气股份有限公司独山子石化研究院 、国家合成橡胶质量监督检验中心 、怡维怡橡胶研究院有限公司 。项目周期24个月。/pp  SSBR的微观结构含量直接影响着抗湿滑性,滚动阻力、冲击强度、软化温度和硫化特性等重要性能,因此SSBR微观结构含量的控制在SSBR工艺技术研究、新产品开发、产品质量控制等工作中具有重要意义。目前,测定SSBR微观结构含量的方法有核磁共振法与红外光谱法。/pp  核磁共振法需要配备核磁共振仪,因该仪器价格昂贵,维护、运行成本很高,不是通用型仪器,运用不广泛,很少用于常规检测,多用于标准物质定值。/pp  红外光谱法是测定SSBR微观结构含量的通用方法。测定SSBR微观结构的红外光谱法包括红外光谱溶液涂膜方法和红外光谱ATR方法。GB/T 28728—2012规定了采用核磁法和红外光谱溶液涂膜法,对SSBR中微观结构含量进行定量测定的分析方法。但红外光谱溶液涂膜法需要将样品溶解再涂膜,溶解过程需要5个小时以上。且涂膜法直接读取吸光度,没有采取通常的扣除基线法,因此,基线对测定结果的影响很大。而且溶解的完全性和膜片的光滑、平整性都会影响基线,从而对测定结果产生较大的影响,测定结果的重复性不是很好。同时,该方法需要将样品溶解,对环境和实验人员健康有一定的不良影响。/pp  ATR(衰减全反射)技术通过样品表面反射的光信号获得样品表层有机成分的结构信息。该技术由于无需溶解样品,也不需要制备样品盐片及设置透射池,并无损样品表面,完成1次测定只需要1分钟,且不消耗任何原材料和备品备件,方便、环保、快速,因此被广泛用于物质成分的定性和定量分析。/pp  目前国内尚没有测定SSBR微观结构含量的红外光谱ATR法的相关标准,为了与国际标准接轨,扩大国际交流,同时也为SSBR的科研、生产、外贸提供一个统一、方便快捷、环保的微观结构测定方法,因此制定该标准十分必要。/pp  本标准规定了采用红外光谱衰减全反射(ATR)法,对溶液聚合丁苯橡胶(SSBR)中丁二烯单体的微观结构和苯乙烯单体的含量进行定量测定的分析方法。 适用于溶液聚合丁苯橡胶,不适用于乳液聚合丁苯橡胶。/pp  主要技术内容如下: 1)获得ATR谱图的步骤。 2)丁二烯微观结构和苯乙烯含量的测定:每个微观结构组分相应吸光度的测定 微观结构的计算( 每一个吸收谱峰的基线校正、吸光度的比值、二阶项、苯乙烯和微观结构的质量百分含量通过回归方程得到、微观结构的质量百分含量) 3)精密度。 4) 微观结构回归方程的获得。 5)核磁法测定微观结构。/ppbr//p
  • 研究发展出单层二硫化钼低功耗柔性集成电路
    柔性电子是新兴技术,在信息、能源、生物医疗等领域具有广阔的应用前景。其中,柔性集成电路可用于便携式、可穿戴、可植入式的电子产品中,对器件的低功耗提出了极高的技术需求。相对于传统半导体材料,单层二硫化钼二维半导体具有原子级厚度、合适的带隙且兼具刚性(面内)和柔性(面外),是备受瞩目的柔性集成电路沟道材料。然而,推动二维半导体柔性集成电路走向实际应用并形成竞争力,降低器件功耗、同时保持器件性能是关键技术挑战之一。 中国科学院物理研究所/北京凝聚态物理国家研究中心研究员张广宇课题组器件研究方向近年来聚焦于二维半导体,在高质量二维半导体晶圆制备、柔性薄膜晶体管器件和集成电路等方向取得了重要进展。近年来的代表性工作包括实现百微米以上大晶畴及高定向的单层二硫化钼4英寸晶圆,进而利用逐层外延实现了层数控制的多层二硫化钼4英寸晶圆;率先实现单层二硫化钼柔性晶体管和逻辑门电路的大面积集成;展示单层二硫化钼柔性环振电路的人工视网膜应用,模拟人眼感光后电脉冲信号产生、传导和处理的功能。 近期,该课题组博士研究生汤建、田金朋等发展了一种金属埋栅结合超薄栅介质层沉积工艺(图1),将高介电常数HfO2栅介质层厚度缩减至5 nm,对应等效氧化物厚度(EOT)降低至1 nm。所制备的硬衬底上的场效应晶体管器件操作电压可以等比例缩放至3 V以内,亚阈值摆幅达到75 mV/dec,接近室温极限60 mV/dec。同时,研究通过优化金属沉积工艺,使得金属电极与二硫化钼之间无损伤接触,避免费米能级钉扎,使接触电阻降低至Rc600 Ωμm,有效地将沟道长度为50 nm的场效应器件的电流密度提升至0.936 mA/μm @Vds=1.5 V。在此基础上,科研人员将该工艺应用于柔性器件的制作。四英寸晶圆尺度下柔性二硫化钼场效应晶体管阵列及集成电路表现出优异的均匀性以及器件性能保持性(图2)。该工作对随机选取500个场效应器件进行测试发现,器件兼具高良率( 96%)、高性能(平均迁移率~70 cm2 V-1 s-1)以及均匀的阈值电压分布(0.96 ± 0.4 V)。当操作电压在降低到0.5 V以下时,反相器依然具备大噪音容限和高增益、器件单元功耗低至10.3 pWμm-1;各种逻辑门电路也能够保持正确的布尔运算和稳定的输出(图3);11阶环振电路可以稳定地输出正弦信号,一直到操作电压降低到0.3 V以下(图4)。 该工作展示了单层二硫化钼柔性集成电路可以兼具高性能和低功耗,为二维半导体基集成电路的发展走向实际应用提供了技术铺垫。相关结果近期以Low power flexible monolayer MoS2 integrated circuits为题,发表在《自然-通讯》(Nature Communications 2023 14, 3633)上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院战略性先导科技专项(B类)等的支持。该研究由物理所与松山湖材料实验室联合完成。
  • 技术更新|介损及体积电阻率测定仪可测介质损耗因数
    如今市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、中高生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。同时安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。绿色发展已经在社会上形成共识,坚持绿色发展是行业必须要强化的理念,一方面要补足以往的环保欠账;另一方面还要针对不断提高环保标准买单,这对行业来说,是一个巨大的挑战。A1170自动油介损及体积电阻率测定仪符合GB/T5654标准,用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括诸如变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1、采用中频感应加热,室温加热至控温(90℃)并恒温自动测量仅需 15分钟。2、同时测量油介损及体积电阻率或任选一项。3、采用大屏幕液晶显示器,只需按照中文菜单提示,输入指令,仪器即可自动工作。4、具有通讯功能,可配置电脑进行实时监测,动态观察油介损值随油温变化并描绘成图。5、自动显示测量结果,并进行数据打印保存。6、具有过压、过流、短路保护,并具有高压指示,还具有报警提示功能。技术参数体积电阻率测量电压:DC500V±10%体积电阻率范围:2.5×106~2×1013Ω.m精度: 高于±10%电阻测量范围:2M~2TΩ介损测量范围:0.00001~1介损值分辨率:0.00001电容测量范围:10.0pF~200.0pF电容值分辨率:0.01pF空杯电容:60±5pF 介损值测量精度:±(1%读值+0.02%)电容值测量精度:±(1%读值+1pF)工作电源:AC220V±10%,50Hz测控温范围:室温~119.9℃测控温稳定度:±0.5 相对湿度:≤85%介损测量电压:1.5kV、2.0kV、2.5kV(常规使用2.0kV)(正接法) 环境温度:-5℃~50℃外形尺寸:480mm×400mm×420mm重  量:25.7kg
  • 得利特升级多款液体介质体积电阻率测定仪
    石化产业是国民经济重要的支柱产业,产品覆盖面广,资金技术密集,产业关联度高,对稳定经济增长、改善人民生活、保障国防安全具有重要作用。但仍存在产能结构性过剩、自主创新能力不强、产业布局不合理、安全环保压力加大等问题。石油化工产业作为高污染性产业,面临结构性改革的矛盾,国家政策引导对于促进石化产业持续健康发展具有重要意义。得利特顺应发展研发生产了系列石油产品分析仪器。最近技术人员仍然继续着研发工作并且将原来的产品做了部分升级改造。A1150液体介质体积电阻率测定仪符合DL/T421标准,适用于测定绝缘油和抗燃油体积电阻率,可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点采用双CPU微型计算机控制。控温、检测、打印、冷却等自动进行。采用**转换器,实现体积电阻率的高精度测量。具有制冷和加热功能。整机结构合理,安全方便。技术参数测量范围:0.5×108~1×1014Ωcm分辨率:0.001×107Ωcm重复性: ≤15% 再现性: ≤25%控温范围:0~100℃ 控温精度:±0.5℃电极杯参数:极杯类型:Y-18      极杯材料:不锈钢显示方式:液晶显示打印机:热敏型、36个字符、汉字输出环境温度:5℃~40℃ 环境湿度:≤85%工作电源:AC220V±10% ,50Hz功 率:500W外形尺寸:500mm×280mm×330mm重  量:17.5kgA1151油体积电阻率测定仪按DL421.91《绝缘油体积电阻率测定法》的电力行业标准为依据,根据有源电桥的原理研制成功的一种新型电阻率测定专用仪器。具有结构简单、线性度好、灵敏度高、测试结果稳定、操作安全等优点,其性能远高于通常的电压电流法。仪器由参数测量系统、油杯加热控温系统两部分组成,具有自动计时、液晶显示功能。可测量绝缘油体积电阻率。 技术参数测试电压:500VDC测试范围: 10 7~10 13Ωcm重复性: >10 12Ωcm ≯25% ,<10 12Ωcm ≯15% 加热功率: 100W 控温范围: 10℃~100℃ 控温精度: ±0.5℃ 测量误差: ≤±10%测试电极杯: 3个环境温度:0~40℃相对湿度:≤85% 工作电源: AC220V±10%,50Hz
  • 由我国专家牵头制定的绝缘评定领域的国际检测标准发布
    近日,国际电工委员会(IEC)绝缘评定国际标准化领域迎来了一个里程碑式的时刻,首个由同济大学电气工程系教授张冶文牵头制定的国际标准IEC 62836Ed1.0:2024《绝缘材料内部电场的测量——压力波传播法》正式发布。张冶文IEC 62836是目前唯一的测量绝缘材料空间电荷的IEC国际标准,也是我国专家牵头在IEC/TC112(国际电工委员会电气绝缘材料与系统的评估鉴别)制定的第一个IEC标准文件。“IEC 62836标准作为在绝缘评定领域中第一个由我国专家负责制定的IEC国际标准,它的发布对我国绝缘评定领域在国际上的话语权具有重要意义。它开创了我国在这一领域制定国际标准的成功先例。”中国工程院院士、哈尔滨理工大学雷清泉教授告诉《中国科学报》,同时,为我国开展绝缘评定领域国际标准化奠定了良好的基础和积累了丰富的实践经验。在我国开展IEC/TC112领域国际标准化活动中,起到了引领未来的重要作用。张冶文于2012年首次向IEC/TC112国内技术对口单位机械工业北京电工技术经济研究所提出该标准的编制计划,经国家标准化管理委员会提出该标准项目至IEC/TC112。IEC/TC112于2012年国际会议期间讨论其立项情况,但因该标准是我国首次在IEC/TC112领域提出的国际标准项目,鉴于在该领域标准化基础薄弱等原因,该项目最终以国际标准技术报告开展编制。IEC于2013年9月发布了IEC/TR 62836Ed1.0:2013。在张冶文的组织领导下,自2014年1月至2016年12月对该标准技术内容开展了全球范围多家实验室间的平行试验验证。鉴于得出良好的验证结果,于2017年向IEC/TC112提出维护IEC/TR 62836至技术规范的建议。按照IEC标准化工作程序,经牵头人张冶文的努力,于2020年11月IEC发布了IEC/TS 62836Ed1.0:2020。在牵头人张冶文对该标准编制的不懈坚持和努力下,基于应用经验的积累,于2021年12月提出维护IEC/TS 62836 Ed1.0:2020至国际标准的建议。从2012年提出项目编制建议至今,历经12年的不懈努力和坚持,终于完成该国际标准的编制并得以发布。“IEC 62836标准的研制历程,恰能体现张冶文在国际标准研制中对初心的坚守,对技术的不懈钻研和贡献。” 全国绝缘评定标准化技术委员会秘书长、机械工业北京电工技术经济研究所高级工程师刘亚丽指出。据悉,张冶文曾先后两次获得IEC 1906奖,作为召集人除牵头制定了IEC 62836外,还牵头制定着国际标准IEC 62631-2-3Ed1.0《固体绝缘材料介电和电阻特性 第2-3部分:相对介电常数和介质损耗因数 绝缘薄膜的接触电极法(AC方法)》,该标准预计将于2024年末发布。
  • 49个与仪器及检测相关国家标准将在7月份实施
    49个与仪器及检测相关国家标准将在7月份实施为了方便仪器及检测使用者查看7月份实施的标准,我们特意整理了7月份实施的那些国家标准。一共有49个标准与我们仪器及检测相关,这些实施的标准涉及化妆品、饲料、纺织品、地质、医学、环境、橡胶塑料、陶瓷、电力、金属钢材等。具体如下,需要的可以收藏。化妆品标准GB/T 39665-2020 含植物提取物类化妆品中55种禁用农药残留量的测定 饲料标准GB/T 19423-2020 饲料中尼卡巴嗪的测定 GB/T 39670-2020 宠物饲料中硝基呋喃类代谢物残留量的测定 液相色谱-串联质谱法 纺织品标准GB/T 39621-2020 纺织品 定量化学分析 交联型莱赛尔纤维与粘胶纤维、铜氨纤维、莫代尔纤维的混合物(甲酸/氯化锌法) GB/T 39606-2020 纺织品 尼泊金酯类抗菌剂的测定 地质标准GB/T 35210.2-2020 页岩甲烷等温吸附测定方法 第2部分:重量法 医学标准GB/T 39730-2020 细胞计数通用要求 流式细胞测定法 GB/T 39729-2020 细胞纯度测定通用要求 流式细胞测定法 GB/T 7543-2020 一次性使用灭菌橡胶外科手套 环境标准GB 39731-2020 电子工业水污染物排放标准(发布稿) GB 39707-2020 医疗废物处理处置污染控制标准 GB 18599-2020 一般工业固体废物贮存和填埋污染控制标准 GB 18484-2020 危险 废 物焚烧污染控制标准 GB/T 15218-2021 地下水资源储量分类分级 橡胶塑料标准GB/T 7758-2020 硫化橡胶 低温性能的测定 温度回缩程序(TR 试验) GB/T 6036-2020 硫化橡胶或热塑性橡胶 低温刚性的测定(吉门试验) GB/T 39690.2-2020 塑料 源自柔性和刚性消费品包装的聚丙烯(PP)和聚乙烯(PE)回收混合物 第2部分:试样制备和性能测定 GB/T 39690.1-2020 塑料 源自柔性和刚性消费品包装的聚丙烯(PP)和聚乙烯(PE)回收混合物 第1部分:命名系统和分类基础GB/T 39933-2021 滚塑成型 低温冲击试验 GB/T 39719-2020 新鲜和浓缩天然胶乳 镁含量的测定 滴定法(无氰法) 陶瓷标准GB/T 4737-2020 日用陶器渗透性测定方法 GB/T 39716-2020 光催化材料及制品空气净化性能测试方法 氮氧化物的去除 GB/T 39713-2020 精细陶瓷粉体比表面积试验方法 气体吸附BET法GB/T 39686-2020 陶瓷厚涂层的弹性模量与强度试验方法 GB/T 39688-2020 陶瓷涂层密度的测试方法 GB/T 39687-2020 精细陶瓷粉体干燥损失测试方法 电力标准GB/T 39560.701-2020 电子电气产品中某些物质的测定 第7-1部分:六价铬 比色法测定金属上无色和有色防腐镀层中的六价铬[Cr(VI)] GB/T 39560.6-2020 电子电气产品中某些物质的测定 第6部分:气相色谱-质谱仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚 GB/T 39560.301-2020 电子电气产品中某些物质的测定 第3-1部分:X射线荧光光谱法筛选铅、汞、镉、总铬和总溴 GB/T 6113.203-2020 无线电骚扰和抗扰度测量设备和测量方法规范 第2-3部分:无线电骚扰和抗扰度测量方法 辐射骚扰测量 GB/T 33523.71-2020 产品几何技术规范(GPS) 表面结构 区域法 第71部分:软件测量标准 GB/T 33523.70-2020 产品几何技术规范(GPS) 表面结构 区域法 第70部分:实物测量标准 GB/T 33523.1-2020 产品几何技术规范(GPS) 表面结构 区域法 第1部分:表面结构的表示法 GB/T 25897-2020 剩余电阻比测量 铌-钛(Nb-Ti)和铌三锡(Nb3Sn)复合超导体剩余电阻比测量GB/T 39585-2020 光电测量 配光测试系统的性能要求和检测方法 金属钢材标准GB/T 39638-2020 铸件X射线数字成像检测 GB/T 39637-2020 金属和合金的腐蚀 土壤环境腐蚀性分类 GB/T 39636-2020 钢制管道熔结环氧粉末外涂层技术规范 GB/T 39635-2020 金属材料 仪器化压入法测定压痕拉伸性能和残余应力 GB/T 14480.3-2020 无损检测仪器 涡流检测设备 第3部分:系统性能和检验 GB/T 21838.4-2020 金属材料 硬度和材料参数的仪器化压入试验 第4部分:金属和非金属覆盖层的试验方法 GB/T 2976-2020 金属材料 线材 缠绕试验方法 其他标准GB/T 39718-2020 高通量过氧化氢分解催化剂 GB/T 39689-2020 表面活性剂 游离甲醛含量的测定 GB/T 7383-2020 非离子表面活性剂 羟值的测定 GB/T 13892-2020 表面活性剂 碘值的测定 GB/T 39630-2020 纳米银胶体溶液 GB/T 39651-2020 三环唑 GB/T 39724-2020 铯原子钟技术要求及测试方法 目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 青岛科大牵手世界顶级生产商共建橡胶实验室
    继全球最大的合成橡胶材料生产厂商德国朗盛将该公司亚洲最大的研发中心落户青岛科技大学之后,日前世界顶级橡胶加工分析仪器生产商美国阿尔法(Alpha)公司也向青岛科技大学伸出橄榄枝,将与该校橡塑材料与工程教育部重点实验室携手共建橡胶测试示范实验室。  Alpha公司座落于世界橡胶科学研究及技术研发的重要基地美国阿克隆(Akron)市,是世界顶级的橡胶加工分析仪器生产商。橡塑材料与工程教育部重点实验室是教育部在国内高校中设立的唯一一个橡塑领域的专业实验室。根据协议,Alpha公司将在橡塑材料与工程教育部重点实验室设置示范实验室,室内将免费放置Alpha公司主打产品橡胶硫化仪、门尼粘度仪、毛细管流变仪以及炭黑分散度测定仪等价值百余万元的国际顶级测试仪器,并负责议器的维护和软件升级 重点实验室将依托这些世界顶级仪器开展橡胶测试技术的示范推广工作,为国内橡胶企业提供更精准的测试数据,提高中国橡胶企业的国际竞争力。
  • 热分析技术在橡胶行业的应用
    热分析技术是表征材料的性质与温度关系的一组技术,它在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。一、常见的热分析方法包括以下几项:  1、DSC是在程序控制温度下,测量样品的热流随温度或时间变化而变化的技术。因此,利用此技术,可以对样品的热效应,如熔融、固-固转变、化学反应等,进行研究。  2、TGA是在一定的气氛中,测量样品的质量随温度或时间变化而变化的技术,利用此技术可以研究诸如挥发或降解等伴随有质量变化的过程。如果采用TGA-MS或TGA-FTIR的联用技术,还可以对挥发出的气体进行分析,从而得到更加全面和准确的信息。  3、TMA可以测量样品在一定应力下的位移变化。利用DMA,则可以在很宽的频率范围内,对材料的粘弹性进行研究,从而得到材料的机械模量和阻尼行为。  目前热分析技术在橡胶材料的研究开发和质量控制中愈来愈成为不可或缺的重要手段之一。二、热分析技术对于橡胶材料可提供如下性能指标的测试:DSCTGATMADMA玻璃化转变组成分析热稳定性,氧化稳定性,降解粘弹性能,弹性模量阻尼行为填充剂含量,炭黑含量蒸发,汽化,吸附,解吸软化温度膨胀,收缩,溶剂中的溶化硫化熔融,结晶反应焓添加剂的表征三、应用介绍:1、利用TGA进行组成分析  TGA经常用来进行组成分析,利用它,可以观察样品由于蒸发、高温分解、燃烧等引起的重量变化。失重台阶的大小与挥发组分(如增塑剂、溶剂等)和分解产物的含量直接相关。在对橡胶进行分析时,当聚合物高温分解后,把气氛从惰性气氛变化为氧化气氛,炭黑就会燃烧,在残渣中就剩余了无机物和灰烬。对于高聚物的混合物,如果各组分的分解温度范围不同的话,则可以利用TGA来确定各个组分的含量。下图所示为几种的包含有天然橡胶的弹性体,第二聚合物组分分别为EPDM(A),BR(B)或SBR(C)。从TGA曲线的失重台阶上,可以清楚的看到各组分的含量,其中(1)为挥发性组分,(2)为天然橡胶(NR),(3)为相应的第二聚合物组分,(4)为炭黑。残渣中为无机化合物。由此曲线分析得到的结果与理论值非常吻合。2、利用DSC进行聚合物的鉴别  如果在高聚物的混合物中,各个组分的高温分解温度相近,那么用TGA进行分析时,就只能得到总的聚合物的含量而不能将各个组分区分开了。但是,借助DSC,就可以根据它们玻璃化转变的不同而对各组分加以区分。玻璃化转变温度Tg表征了聚合物的类型,而玻璃化转变台阶的高度△Cp则反映了聚合物的含量。例如,对于NBR/CR混合物,CR和NBR的玻璃化转变可以清楚的分离开来。台阶高度的比例约为1:1,这与方程式中24.4%含量的NBR和24.4%含量的CR的理论结果相当一致。从结果分析中可以看出,对于其他弹性体的结果分析不是很,这是因为第二个玻璃化转变峰与焓松弛峰或熔融峰重叠的缘故。3、利用DMA进行机械性能分析  DMA可以为我们提供材料的宏观粘弹行为和微观性能。这可以用下面的不同硫化度的SBR来进行说明。在玻璃化转变过程中,贮存模量G’下降约3个数量级,而损耗模量G’’则呈现出一个峰。随着硫化度的增加,玻璃化转变移向较高的温度。在材料处于橡胶态时,G’依赖于硫化度的大小。由于粘性流动,随着温度的升高,硫化度比较小的SBR1的贮存模量G’减小。在交联密度比较高时,G’随着温度线性增大。由此,我们就可以根据材料在橡胶态时的模量来确定它的交联密度,其交联密度k可以根据等式k=G/(2RTρ)进行估算。经计算得到,SBR3的交联密度为1.07×10-4mol/g,SBR4的交联密度为2.03×10-4mol/g。这两个数值的比值与二种材料中硫含量的比值一致。4、利用真空条件下的TGA测试来进行峰的分离  有时候,增塑剂的蒸发与聚合物的分解会彼此重叠。在这种情况下,在较低的压力(真空)下进行TGA测试,往往可以使两个过程得到较好的分离,这当然就相应的增加了结果分析的准确性。5、利用TMDSC增加测试准确度  利用温度调制DSC(TMDSC)技术可以得到更加准确的结果。使用此技术后,焓的松弛效应以及熔融过程对测得的热容曲线的影响明显减小。  利用TMDSC方法对NR/SBR和EPDM/SBR混合物进行了测试,通过对所得曲线的分析,可以看出△Cp的比值与组分中的实际值一致。6、利用DMA进行蠕变性能测试  利用DMA测试,可以了解聚合物与添加剂之间的相互作用,并且可以看出材料的应力与应变之间保持线性关系的范围。  我们对不同炭黑添加量的EPDM弹性体在橡胶态时的性能进行了测试。结果发现,未用炭黑填充的EPDM的贮存模量为0.5Mpa,并且这个值不随着位移振幅的变化而变化。而随着炭黑含量增大,其模量也增大。但是,对于同一炭黑含量的样品来说,当剪切位移的振幅增大时,其模量减小,因此其应力与应变曲线之间就呈现出非线性的关系,这是由于炭黑簇的可逆性破坏造成的。四、结论:  热分析技术能为表征材料的性能提供十分全面 、有用的信息:对于日常的质量控制和保证,单独的质量技术指标的控制可以选择单独的热分析技术就可以完成;而对于材料的研究开发则需要综合运用多种热分析技术,对材料的性能进行全面的研究和评估。
  • 《橡胶 全硫含量的测定 离子色谱法》——标准上新啦
    《橡胶 全硫含量的测定 离子色谱法》——标准上新啦原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼陈洁 郑洪国1月29日1月29日,国家标准计划《橡胶 全硫含量的测定 离子色谱法》,公示阶段已经结束,距离其正式实施也不远了。 本项标准等同采用国际标准ISO:19242-2015,规定了离子色谱仪测定生胶、硫化胶和非硫化胶中硫含量的检测方法,样品通过管式炉燃烧法或氧瓶燃烧法制备。氧瓶燃烧法无法准确测定硫含量低于0.1%及含有金属盐并形成不溶金属硫酸盐的橡胶样品。针对以上难点,采用更合适的管式炉燃烧方法,扩大了样品测试的范围并且提高了准确性,对产品安全、风险防范及提升橡胶制品的检测能力有着重要作用,该标准将会取代《GB/T 4497.1-2010 橡胶全硫含量的测定》。国家标准计划 各位“实验猿”都很清楚,对于固体样品和高粘度样品中的有机卤素和硫,必须将其处理为溶液状态才能在离子色谱上进行测试。上述样品的前处理方法有传统的氧弹燃烧和在线燃烧炉。氧弹瓶及内部结构在线燃烧炉样品中卤素和硫的前处理方法对比简单、快速、准确的卤素及硫测试方法一直吸引着大家的关注。前处理主要有氧瓶/氧弹燃烧离子色谱法和CIC在线燃烧(管式炉)离子色谱法,在线燃烧离子色谱在操作使用及样品测试上具有明显优势。不同前处理方法对比(点击查看大图)飞飞:CIC在线燃烧离子色谱是什么?赛老师:CIC在线燃烧离子色谱全称为燃烧炉-离子色谱联用技术。 飞飞:它的原理是什么?赛老师在全自动分析过程中,氩气氛围下样品在燃烧炉中高温裂解,随后被氧气氧化,所得气体产物被吸收液吸收,zui后进入离子色谱中分析。 飞飞那它能分析哪些离子?赛老师由于物质经燃烧、氧化及吸收的特殊性,其主要用于分析有机物中卤素和硫。 飞飞燃烧离子色谱具体应用在哪些领域呢?赛老师几乎所有能够燃烧的样品,均可通过燃烧炉离子色谱进行分析,该技术可在环保、电子元件、石油化工、材料、染料及医药等众多领域得到广泛应用。 典型应用一、CIC在线燃烧离子色谱测定石脑油馏分 石化行业作为我国支柱行业,在国民经济的发展中起着举足轻重的作用。原油气中的卤素和硫,会引起生产设备的腐蚀,进而造成环境污染,同时还会向下游产品传递,因此卤素和硫的监测十分必要。CIC燃烧离子色谱仪CIC燃烧流程及原理(点击查看大图) 滑动查看更多 石脑油馏分样品中卤素和硫的分离谱图CIC对于石化行业中卤素和硫的测定具有以下技术优势:1. 一次进样可同时分析样品中总硫和卤素;2. 可选气体、液体或者固体自动进样器,满足不同样品的测试需求;3. 燃烧过程实时监控,可选精细燃烧模式,保证样品充分燃烧,重复性好;4. 仪器自带清洗步骤,保证样品结果的重复性和准确性。 典型应用二、CIC在线燃烧离子色谱-测定OLED有机光电材料中的卤素 作为国家十四五规划新材料发展战略之一,OLED有机发光材料将会迎来广阔的发展前景,但其常为复杂的高纯有机基质,所含的卤素杂质浓度低,样品量小,对分析测试带来极大的挑战。 低浓度卤素标样分离谱图(点击查看大图)典型样品分离谱图(点击查看大图) 滑动查看更多CIC 对于有机光电材料中卤素的测定具有以下技术优势:1.可测定限度低至ppm级的硫和卤素,样品检出限可低至0.038~0.1mg/Kg;2.经充分燃烧后硫和卤素释放彻底,样品基质完全消除;3.赛默飞特色的氢氧根体系及高容量离子交换色谱柱(IonPac AS19),提供高基体样品基质兼容能力,可满足高氮含量有机材料中痕量Br的检测;4.样品及标样均通过同一燃烧通道,确保测定结果的准确性;5.全自动化的燃烧-吸收-分析过程,人工干预少,空白低,满足ASTM现行方法要求。 “只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图 滑动查看更多 总结CIC在线燃烧离子色谱不仅可以满足石油、化工、高分子材料及环境固废中较高含量卤素和硫的分析,对于新型有机光电材料中低浓度卤素测定,也能够提供简单、便捷的操作及准确可靠的实验结果,为新型材料的研究发展及品控提供了可靠的技术保障。
  • 绝缘油击穿电压测定仪在润滑油行业中应用
    润滑油作为机械设备的润滑剂,其电气性能对设备的正常运行至关重要。击穿电压作为评价润滑油电气性能的重要指标之一,能够帮助工程师判断润滑油的电气性能是否达到设备要求。下面我们就来具体了解一下击穿电压在润滑油行业中的应用。1. 润滑油电气性能的表征润滑油的电气性能主要包括介电常数、介质损耗因数、电阻率等参数。其中,介电常数反映了润滑油在电场作用下的极化能力,介质损耗因数反映了电流通过润滑油时所消耗的能量,电阻率则反映了润滑油的导电性能。而击穿电压则可以进一步评价润滑油的电气绝缘性能,即当电压达到某一数值时,润滑油内部将产生放电现象,导致电流突然增加,这一电压值就是击穿电压。2. 击穿电压在润滑油选择中的应用在选择润滑油时,需要根据设备的运行工况和润滑油厂商提供的产品手册来选择合适的润滑油牌号在。产品手册中,通常会提供不同牌号润滑油的介电常数、介质损耗因数、电阻率和击穿电压等电气性能参数。在选择润滑油时,需要综合考虑这些参数,尤其是击穿电压,以确保设备在正常运转时,润滑油的电气性能能够满足设备要求。3. 击穿电压在润滑油品质控制中的应用在润滑油的生产过程中,由于原材料、生产工艺等因素的影响,润滑油的电气性能会发生一定的变化。为了确保生产出的润滑油符合产品要求,需要对润滑油的电气性能进行检测和监控。其中,击穿电压作为一项重要的检测指标之一,可以用于评估润滑油品质的稳定性。通过定期检测润滑油的击穿电压,可以对生产工艺和原材料进行及时调整,以确保生产的润滑油具有良好的电气性能。
  • 上海微系统所等制备出石墨烯基量子电阻标准芯片
    电阻标准是电学计量的基石之一。为了适应国际单位制量子化变革和量值传递扁平化趋势,推动我国构建电子信息产业先进测量体系,补充国家量子化标准,开展电学计量体系中电阻的轻量级量子化复现与溯源关键技术研究至关重要。与传统砷化镓基二维电子气(2DEG)相比,石墨烯中的2DEG在相同磁场下量子霍尔效应低指数朗道能级间隔更宽,以其制作的量子霍尔电阻可以在更小磁场、更高温度和更大电流下工作,易于计量装备小型化。此外,量子电阻标准的性能通常与石墨烯的材料质量、衬底种类和掺杂工艺相关。如何通过克服绝缘衬底表面石墨烯成核密度与生长调控的瓶颈,获得高质量石墨烯单晶,并以此为基础,优化器件结构和工艺,开发出工作稳定且具有高比对精度的量子电阻标准芯片至关重要。近日,中国科学院上海微系统与信息技术研究所报道了采用在绝缘衬底表面气相催化辅助生长石墨烯,成功制备高计量准确度的量子霍尔电阻标准芯片的研究工作。相关研究成果以“Gaseous Catalyst Assisted Growth of Graphene on Silicon Carbide for Quantum Hall Resistance Standard Device)”为题,发表于期刊《Advanced Materials Technologies》上。研究人员首先采用氢气退火处理得到具有表面台阶高度约为0.5nm的碳化硅衬底,然后以硅烷为气体催化剂,乙炔作为碳源,在1300°C条件下,生长出高质量单层石墨烯。该温度条件下衬底表面台阶依然可以保持在0.5nm以下。采用这种方法制备的石墨烯可以制成量子电阻标准器件,研究团队直接将该量子电阻标准器件集成于桌面式量子电阻标准器,在温度为4.5K、磁场大于4.5T时,量子电阻标准比对准确度达到 1.15×10-8,长期复现性达到3.6×10-9。该工作提出了适用于电学计量的石墨烯基工程化、实用化的轻量级量子电阻标准实现方案,通过基于其量值的传递方法,可以满足不同应用场景下的电阻量值准确溯源的需求,补充国家计量基准向各个行业计量系统的量传链路。中科院上海微系统与信息技术研究所是该研究工作第一完成单位,陈令修、王慧山和孔自强为共同第一作者,通讯作者为上海微系统所的王浩敏研究员和中国计量科学研究院的鲁云峰研究员。该研究工作得到了国家重点研发计划、国家自然科学基金项目、中科院先导B类计划和上海市科委基金的资助。论文链接:https://doi.org/10.1002/admt.202201127
  • 【技术指导】油介损及体积电阻率测定仪的油杯三种清洗方法及常见故障
    油介损及体积电阻率测定仪油杯清洗方法、常见故障A1170技术指导产品介绍产品名称:油介损及体积电阻率测定仪产品型号:A1170概 述:油介损及体积电阻率测定仪用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T5654油杯三种清洗方法测量前,应对油杯进行清洗,这一步骤非常重要。因为绝缘油对极微小的污染都有极为敏感的反应。因此必须严格按照下述方法要点进行。方法一:⑴ 完全拆卸油杯电极;⑵ 用中性擦皂或洗涤剂清洗。磨料颗粒和磨擦动作不应损伤电极表面;⑶ 用清水将电极清洗几次;⑷ 用无水酒精浸泡各零件;⑸ 电极清洗后,要用丝绸类织物将电极各部件的表面擦拭干净,并注意将零件放置在清洁的容器内,不要使其表面受灰尘及潮气的污染;⑹ 将各零部件放入100℃左右的烘箱内,将其烘干。有时由于油样很多,所以在测试中往往会一个接一个油样进行测试。此时电极的清洗可简化。具体做法如下:⑴ 将仪器关闭,将整个油杯都从加热器中拿出,同时将内电极从油杯中取出;⑵ 将油杯中的油倒入废油容器内,用新油样冲洗油杯几次;⑶ 装入新油样;⑷ 用新油样冲洗油杯内电极几次,然后将内电极装入油杯。这种以油洗油的方式可大大提高了测量速度,但如遇到特别脏的油样或长时间不用时,应使用方法一。方法二:⑴ 将电极杯拆开(参见油杯示意图)。⑵ 用化学纯的石油醚和苯彻底清洗油杯的所有部件。⑶ 用丙酮再次清洗油杯,然后用中性洗涤剂漂洗干净。⑷ 用5%的磷酸钠蒸馏水溶液煮沸5分钟,然后,用蒸馏水洗几次。⑸ 用蒸馏水将所有部件清洗几次。⑹ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。⑺ 各部件洗净后,待温度降至常温时将其组装好。方法三:超声波清洗方法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件。⑶ 在超声波清洗器中用肥皂水将所有部件振荡20分钟;取出部件,有自来水及蒸馏水清洗;在用蒸馏水振荡20分钟。方法四:溶剂清洗法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件,更换二次溶剂。⑶ 先用丙酮,再用自来水洗涤所有部件。接着用蒸馏水清洗。⑷ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。 当试验一组同类没有使用过的液体样品时,只要上次试验过的样品的性能优于待测油的规定值,可使用同一个电极杯而无需中间清洗。如果试验过的前一样品的性能值劣于待测油的规定值,则在做下一个试验之前必须清洗电极杯。常见故障1、屏幕显示“电极杯短路”答:首先查看内电极与外电极的定位槽是否对准,再检查“内电极”安装是否有松动。2、屏幕显示“请进行【空杯校准】”答:空杯电容值不在60±5pF的范围内的时候,需要空杯校准;①油杯的内外电极未放好或内电极未组装好,有放电现象;②油杯不干净,在内外电极之间有杂质需要进行清洗 。3、蜂鸣器响5声后仪器返回到开机界面。答:①检查空杯电容值是否在60±5pF范围之内,②检查油杯是否放 好,有无放电现象。4、在做直流电阻率时,电化60秒时间不变化。答:检查仪器的时钟是否在运转,调整时钟。5、被设电压参数个位显示不为零时,怎么办?答:用【减小】键使被设电压值变为最小,再用【增加】键调整即可。
  • 862项标准获批,涉及半导体、化工检测和检测仪器等领域
    2020年12月25日,工信部发布《中华人民共和国工业和信息化部公告》,批准《霍尔元件 通用技术条件》等669项行业标准,批准《白云石标准样品》等76项行业标准样品,批准《高纯铝锭》等23项行业标准外文版,批准《75℃热稳定性试验仪校准规范》等94项行业计量技术规范。在669项标准中,多项标准涉及半导体行业(包括了半导体器件、半导体设备和半导体材料等方面)和多种化学品的检测。此外,94项行业计量技术规范涉及了热稳定性试验仪、便携式挥发性有机物泄漏检测仪、漆膜弯曲试验仪、漆膜附着力测定仪、直流辉光放电质谱仪、双联电解分析仪等多种分析检测仪器,相关标准如下:附件:23项行业标准外文版编号、名称、主要内容等一览表.doc94项行业计量技术规范编号、名称、主要内容等一览表.docx76项行业标准样品目录.docx669项行业标准编号、名称、主要内容等一览表.doc半导体相关标准(部分)标准号标准名称标准内容JB/T 9473-2020霍尔元件 通用技术条件本标准规定了霍尔元件的术语和定义、基本参数和符号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于非集成的半导体霍尔元件。JB/T 9481-2020扩散硅力敏器件本标准规定了扩散硅力敏器件的术语与定义、分类与命名、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于半导体扩散硅力敏器件。HG/T 5736-2020高纯工业品过氧化氢本标准规定了高纯工业品过氧化氢的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。本标准适用于高纯工业品过氧化氢。该产品主要用于太阳能光伏行业、液晶显示器件和半导体行业制程的清洗或刻蚀,以及其他对高纯过氧化氢有需求的行业。XB/T 515-2020钪铝合金靶材本标准规定了钪铝合金靶材的要求、试验方法、检验规则与标志、包装、运输、贮存及质量证明书。本标准适用于铸造法制得的钪铝合金靶材,主要用于半导体及光电等领域。QC/T 1136-2020电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法本标准规定了电动汽车用绝缘栅双极晶体管(IGBT)模块环境适应性要求和试验方法。本标准适用于电动汽车用IGBT模块,其他半导体器件模块可参考使用。SJ/T 11761-2020200mm及以下晶圆用半导体设备装载端口规范本标准规定了晶圆承载器与晶圆制造/检测设备之间的机械端口要求,主要包括晶圆承载器在设备上的位置和方向。本标准适用于加工直径200 mm及以下晶圆的半导体设备装载端口。SJ/T 11762-2020半导体设备制造信息标识要求本标准规定了半导体设备制造信息标识的术语和定义、设计和原则、使用及相应的综合标签库。半导体设备制造信息标识包括半导体制造设备选择、安装、使用和维护时需要的各种类型的技术和商业信息。信息类型包括操作手册/指南、安装手册、维护手册、维护计划、备件/零部件清单、维修/故障排除手册、发行说明、培训手册等。SJ/T 11763-2020半导体制造设备人机界面规范本标准规定了半导体制造设备人机界面的术语和要求。本标准适用于半导体制造设备。SJ/T 10454-2020厚膜混合集成电路多层布线用介质浆料本标准规定了厚膜混合集成电路多层布线用介质浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于与金、钯银导体浆料相匹配的厚膜混合集成电路多层布线用介质浆料。SJ/T 10455-2020厚膜混合集成电路用铜导体浆料本标准规定了厚膜混合集成电路用铜导体浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于厚膜混合集成电路用铜导体浆料。化工检测相关标准(部分)标准号标准名称标准内容SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法 本标准规定了采用电感耦合等离子体发射光谱法(ICP-OES)测定聚乙烯和聚丙烯树脂中镁(0.10 mg/kg~50.00 mg/kg)、铝(0.20 mg/kg~100.00 mg/kg)、钙(0.40 mg/kg~130.00 mg/kg)、锌(0.50 mg/kg~200.00 mg/kg)、铬(0.10 mg/kg~3.00 mg/kg)、钛(0.10 mg/kg~6.00 mg/kg)等微量元素含量的方法。 本标准适用于粉末状、颗粒状聚乙烯和聚丙烯树脂。SH/T 1830-2020丙烯腈-丁二烯橡胶中壬基酚含量的测定 气相色谱-质谱法 本标准规定了采用气相色谱-质谱法测定丙烯腈-丁二烯生橡胶中壬基酚含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,壬基酚单组分含量最低检出限为1.4mg/kg。SH/T 1831-2020丙烯腈-丁二烯橡胶中游离丙烯腈含量的测定 顶空气相色谱法 本标准规定了采用顶空气相色谱法测定丙烯腈-丁二烯生橡胶中游离丙烯腈含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,游离丙烯腈含量最低检出限为1.8mg/kg。SH/T 1832-2020异戊二烯橡胶微观结构的测定 核磁共振氢谱法 本标准规定了采用核磁共振氢谱法测定异戊二烯橡胶(IR)中顺式1,4结构(cis-1,4)、反式1,4结构(trans-1,4)和3,4结构(3,4)含量的方法。 本标准适用于异戊二烯生橡胶。SH/T 1142-2020工业用裂解碳四 液态采样法 本标准规定了采取供分析用的工业用裂解碳四以及其他碳四液态烃类样品的设备和方法。 本标准适用于采取工业用裂解碳四及其他碳四液态烃类样品。SH/T 1482-2020工业用异丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异丁烯纯度及烃类杂质的含量。 本标准适用于纯度大于98.00%(质量分数),丙烷、丙烯、异丁烷、正丁烷、反-2-丁烯、1-丁烯、顺-2-丁烯、丙炔、1,3-丁二烯、正戊烷、异戊烷等烃类杂质含量不小于0.0010%(质量分数)的工业用异丁烯测定。SH/T 1483-2020工业用碳四烯烃中微量含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用碳四烯烃中的微量含氧化合物含量。 本标准适用于工业用碳四烯烃中微量二甲醚、甲基叔丁基醚、甲醇和叔丁醇等含氧化合物的测定,其最低测定浓度为0.0001%(质量分数)。SH/T 1492-2020工业用1-丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-丁烯的纯度及其烃类杂质含量。 本标准适用于纯度不小于99.00% (质量分数),丙烷、丙烯、异丁烷、正丁烷、乙炔、反-2-丁烯、异丁烯、顺-2-丁烯等烃类杂质含量不小于0.001%(质量分数),丙二烯、丙炔含量不小于2mL/m3,1,3-丁二烯含量不小于10 mL/m3或0.001%(质量分数)的工业用1-丁烯试样的测定。SH/T 1549-2020工业用轻质烯烃中水分的测定 在线分析仪使用导则本标准规定了测定轻质烯烃气体中微量水分的在线分析仪的工作原理、一般特征、分析程序和结果报告等要求的指南。本标准适用于工业用轻质烯烃中水分的测定。SH/T 1763-2020氢化丁腈生橡胶(HNBR)中残留不饱和度的测定 碘值法 本标准规定了用韦氏(Wijs)试剂测定氢化丁腈生橡胶(HNBR)残留不饱和度(即碘值)的方法。 本标准适用于氢化丁腈生橡胶。SH/T 1814-2020乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的测定 本标准规定了用分光光度法和电感耦合等离子体发射光谱法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的方法。 本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的钒含量范围在0.5 µg/g~40 µg/g的乙丙橡胶。SH/T 3042-2020合成纤维厂供暖通风与空气调节设计规范 本标准规定了合成纤维(涤纶、锦纶、维纶、腈纶、氨纶)厂供暖、通风与空气调节设计的空气计算参数和设计要求。 本标准适用于新建、扩建和改建的合成纤维厂的生产厂房及辅助建筑物的供暖、通风与空气调节设计。SH/T 3523-2020石油化工铬镍不锈钢、铁镍合金、镍基合金及不锈钢复合钢焊接规范 本标准规定了铬镍不锈钢、铁镍合金、镍基合金、不锈钢复合钢的材料、焊接工艺评定、焊工考试、焊接工艺、焊接检验和焊后热处理要求。 本标准适用于石油化工、煤化工、天然气化工设备与管道的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。SH/T 3545-2020石油化工管道工程无损检测标准本标准规定了石油化工金属管道射线检测、超声检测、磁粉检测、渗透检测、衍射时差法超声检测、相控阵超声检测和便携式荧光光谱检测的工艺要求及质量评定。本标准适用于下列管道无损检测的质量评定:1)公称厚度为2 mm~100 mm的金属管道对接焊接接头、支管连接焊接接头的射线检测与质量评定;2)公称厚度大于或等于6 mm、外径大于等于108 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的超声检测与质量评定;3)铁磁性材料的表面和近表面缺陷磁粉检测与质量评定;4)表面开口缺陷的渗透检测与质量评定;5)公称厚度为16 mm~100mm、外径大于等于273 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的衍射时差法超声检测与质量评定;6)公称厚度3.5 mm~60 mm、外径大于等于57 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的相控阵超声检测与质量评定;奥氏体不锈钢管道对接焊接接头的相控阵超声检测与质量评定按附录M的规定进行;7)金属材料(包括熔敷金属)中金属元素的便携式荧光光谱检测。行业计量技术规范(部分)技术规范编号技术规范名称技术规范主要内容JJF(石化)030-202075℃热稳定性试验仪校准规范本校准规范适用于爆炸品分类用的75℃热稳定性试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)031-2020固体氧化性试验装置校准规范本规范适用于固体氧化性试验装置的校准,不适用于氧化性固体重量试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)032-2020易燃固体燃烧速率试验装置校准规范本校准规范适用于易燃固体燃烧速率试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)033-2020便携式挥发性有机物泄漏检测仪(氢火焰离子法)校准规范本规范适用于量程小于50000µmol/mol的便携式挥发性有机物(VOCs)泄漏检测仪(氢火焰离子法)的校准,其他相似原理和用途的仪器校准可参照本规范。其主要内容包含本规范的适用范围、引用的技术文件、计量性能、校准条件、校准方法、校准结果、校准时间间隔和不确定度评定示例等。JJF(石化)034-2020石油化工产品软化点试验仪(环球法)校准规范本规范适用于环球法测定软化点的软化点试验仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)035-2020漆膜弯曲试验仪(圆柱轴)校准规范本规范的校准适用于测试漆膜圆柱弯曲试验时用的漆膜弯曲试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)036-2020漆膜附着力测定仪(划圈法)校准规范本规范的校准适用于测试漆膜划圈试验用的漆膜附着力试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)037-2020橡胶门尼黏度计校准规范本规范规定了橡胶门尼黏度计的计量特性、校准条件、校准用设备及校准方法。本规范适用于橡胶门尼黏度计的校准。JJF(石化)038-2020硫化橡胶回弹性试验机校准规范本规范规定了硫化橡胶回弹性试验机的计量特性、校准条件、校准用设备及校准方法。本规范适用于硫化橡胶回弹性试验机的校准。JJF(石化)039-2020橡胶阿克隆磨耗试验机校准规范本规范适用于橡胶阿克隆磨耗试验机的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。JJF(石化)040-2020橡胶压缩应力松弛仪校准规范本规范适用于橡胶压缩应力松弛仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制