当前位置: 仪器信息网 > 行业主题 > >

压力温度传送器

仪器信息网压力温度传送器专题为您提供2024年最新压力温度传送器价格报价、厂家品牌的相关信息, 包括压力温度传送器参数、型号等,不管是国产,还是进口品牌的压力温度传送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合压力温度传送器相关的耗材配件、试剂标物,还有压力温度传送器相关的最新资讯、资料,以及压力温度传送器相关的解决方案。

压力温度传送器相关的论坛

  • 【分享】压力式温度计知识介绍

    压力式温度计是利用封闭容器内的液体,气体或饱和蒸气受热后产生体积膨胀或压力变化作为测信号。它的基本结构是由温包、毛细管和指示表三部分组成。最早应用于生产过程温度控制的方法之一。压力式测温系统现在仍然是就地指示和控制温度中应用十分广泛的测量方法。压力式温度计的优点是:结构简单,机械强度高,不怕震动。价格低廉,不需要外部能源。缺点是:测温范围有限制,一般在-80~400℃;热损失大响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难于修理,必须更换;测量精度受环境温度、温包安装位置影响较大,精度相对较低;毛细管传送距离有限制。 压力温度计经常的工作范围应在测量范围的1/2--3/4处,并尽可能的使显示表与温包处于水平位置。其安装用的温包安装螺栓会使温度流失而导致温度不准确,安装时应进行保温处理,并尽量使温包工作在没有震动的环境中。

  • 【分享】侧装型翻板液位计的主要技术参数

    CR-UHZ侧装型翻板液位计适用于高温、高压力、强酸、强碱及防爆要求,结构简单、可靠耐用,可加装多种选购配件使控制更加容易。加装液位传送器及磁性开关,不须停机可随时安装或调整。若电源中断,现场磁性开关不受影响,准确性高。每10公分加一不同颜色的色片,使液位容易辨识。适用于染整设备、废水处理、发电厂、化工设备、热煤油锅炉和石化工业等。  CR-UHZ侧装型翻板液位计主要技术指标  量程范围:300~19000mm  介质密度:0.5~2g/cm3  工作温度:-40~350℃  压力等级:≤32MPa  测量精度:≤±10mm  远传距离:1000m

  • 蓝宝石压力传感器原理与应用

    利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。  蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC以内),因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅-蓝宝石半导体敏感元件,无p-n漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。  用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。  表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。  传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。

  • 温度、压力测控简介

    测温目的:1. 方便实验,重现性好。不同种类样品,消解温度不同,只要设定温度大于消解温度,样品一定能被消解,和样品质量无关(在安全压力前提下)。2. 保证消解罐不超温。因为消解罐为工程塑料,熔点较低,如果超温,罐子会熔化,造成不必要损失。测压目的:1. 为了安全。已知消解罐是工程塑料,承受压力有限,如超过消解罐承受值,爆罐,危险,不必要损失。2. 如已知消解样品一定一定不会产生很大压力,不会超过消解罐承受值,不测压也可。3. 对于高有机质含量样品,会有压力骤升情况,比如胶囊,在约160度时压力几乎直线上升,如无压力监控,微波持续发射,温度继续上升,不能保证压力不会超过极限值。特别是在消解罐使用一段时间后,承受值会下降。测温技术:1. 插入式最普遍,测温准确,传感器种类:铂电阻,热电偶,光纤。以光纤最佳,无趋附效应,缺点价格太高,易损坏,成本高。2. 红外测温,消解罐内温度准确度有待考量。测压技术:1. 毛细管连通消解罐内部和压力传感器,直接测量罐内压力;2. 压力传感器置于消解罐外部,间接测压;控温、控压:温度、压力达到设定点,微波受控,关停或者功率变小,保证温度、压力不超过设定值双重测控:CPU同时检测温度、压力数值,任一数值超过设定值,即控制微波,维持设定的温度或压力值。各微波消解仪器厂商都有多种温度、压力测控技术,技术之利弊,需客户多了解。不足之处,请补充。

  • 压力式温度计工作原理

    [size=15px][b]工作原理:[/b][/size]压力式温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值。[size=15px][b]组成及分类:[/b][/size]压力式温度计由敏感元件温包,传压毛细管和弹簧管压力表组成。[list][*]若给系统充以气体,如氮气,称为充气式压力式温度计,测温上限可达500℃,压力与温度的关系接近于线性,但是温包体积大,热惯性大。[*]若充以液体,如二甲苯、甲醇等,温包小些,测温范围分别为-40℃~200℃和-40℃~170℃,[*]若充以低沸点的液体,其饱和汽压应随被测温度而变,如丙酮,用于50℃~200℃。但由于饱和汽压和饱和汽温呈非线性关系,故温度计刻度是不均匀的。[*][color=#3e3e3e]特点:[/color][/list]必须将温包全部浸入被测介质;毛细管最长不超过60m;仪表精度低,但使用简便,而且抗震动。

  • 温度压力之争

    近日对于微波消解的控温控压,有些不同意见。我们认为尽管这是一个很基础的问题,但是觉得还是有必要单独列出供大家讨论。其实这是一个最基本的化学问题,不同的样品具有不同的消解温度,当只有达到这个温度,样品才能被彻底消解掉。例如:引用hilpy“我的经验是:如果全消解PP\PE\PVC等样品一般要用到220℃”。200℃能完全消解吗?回答是不能。消解食用油需要多少温度?190℃以上。 植物类样品170℃以上。所以并不是“温度高一点,低一点”没有关系。而是温度高一点没有关系,低一点却不行。如果连这一点都不能认可,那我们也无话可说。那么为什么以前大家在使用没有温度控制的微波消解仪一样在做样品消解,而且样品也可以被消解掉?那是因为在一密闭系统中,对于一个特定样品,在称样量和试剂量已经确定的前提下,温度与压力之间是有一个固定关系式。(注意:样品种类的改变及称样量和试剂量的变化都将直接改变这个温度与压力的关系式)通过微波加热,密闭消解罐罐内温度随即上升,罐内反应物分解产生的气体越来越多,即罐内压力也越来越高。举个例子,例如要消解0.2克PVC,加6ml硝酸2ml盐酸,在没有温度控制的情况下,我只能设定压力,那么我们怎么知道罐内消解温度可以达到220℃呢?当然不知道,只能自己摸索,1MPa,2MPa。。。往上升,假设在3MPa条件下,样品被完全消解掉了,那就说明罐内温度已经超过220℃了。那么我们想先问一个问题:使用的消解罐能够承受多少温度?国内厂家一般都建议用户使用温度不得超过240℃。220℃与240℃只相差20℃,所以在这种没有温度控制的情况下,很容易超温,损坏消解罐。那也就引出了温度控制的另外一个优点,不会让仪器超温使用,保护消解罐。同样还是这个实例,不同厂家生产的PVC,其中的添加剂不同,不同添加剂与酸的反应不同,产生的气体压力也各不相同,因此消解过程中产生的压力就会不同。也许A厂家的PVC能在3MPa条件下被消解,而B厂家的得在3.5MPa。而如果有了温度控制,那么在220℃条件下,样品就能够被消解掉,而无需考虑多少压力。当然压力不能超过消解罐的承受值,否则就要爆罐了。所以我们认为温度控制相对于只有控压一个手段而言具有如下优点:1.令实验简单明了,简化实验过程。2.实验重复性好,不会因为样品的称样量和试剂量改变而改变实验条件。3.保护消解罐不会超温使用。4.对于需要较高消解温度的样品,如只有控压,几乎无法实现样品的完全消解。压力控制只是保证仪器使用的安全。为什么进口仪器把控温作为一个标准配置,而控压作为选项?如果消解罐能够承受足够的压力,保证安全的情况下,可以不选择压力控制系统。而控温是保证实验成功的必要条件,必须安装。

  • 求助:气相7890A,柱箱温度升高导致总流量、压力下降

    事情经过1:这两天刚把顶空7697A接到7890A上(7890A使用自动进样时没有问题),等到仪器就绪且进样后,柱箱温度一旦上升,总流量、压力、色谱柱流速就开始下降。部分仪器参数:总流量32ml/min,压力10psi,分流比1:10,柱箱温度40℃,色谱柱0.32mm*30m。事情经过2:之前方法的分流比是1:5,然后压力死活不达标(设定10的话约有7.8,设定20约有17.8),随后更改分流比为1:10就能让压力达标了。各位大佬怎么看?

  • 真空压力控制技术在低温恒温器高精度温度恒定中的应用

    真空压力控制技术在低温恒温器高精度温度恒定中的应用

    [color=#990000]摘要:针对低温恒温器中低温介质温度的高精度控制,本文主要介绍了低温介质减压控温方法以及气压控制精度对低温温度稳定性的影响,详细介绍了低温介质顶部气压高精度控制的电阻加热、流量控制和压力控制三种模式,以及相应的具体实施方案和细节。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=left][size=18px][color=#990000]1. 引言[/color][/size][/align] 在低温恒温器中,低温介质(液氦和液氮等)温度波动产生的主要原因是沸腾的低温介质顶部气压(真空度)的变化。因此,为了实现低温介质内部的温度稳定,就需要对低温介质顶部的气压进行准确控制。 国内外针对低温恒温器的温度控制大多采用以下三种技术途径: (1)主动控制方式:在浸没于低温介质的真空腔里直接引入加热电路,利用温度计对真空腔温度的实时监测数据,与目标温度值进行比较后来控制加入到加热电路中的电流。 (2)被动控制方式:对低温介质顶部气压进行控制,使低温介质温度稳定。 (3)复合控制方式:复合了上述两种控制方式,在浸没于低温介质的真空腔里直接引入加热控制电路之外,还同时对低温介质上部的气压进行控制。 电阻加热控温方式已经是一种非常成熟的技术,本文将主要针对低温介质顶部气压控制方式,介绍气压控制精度对低温温度稳定性的影响,以及高精度气压控制的实现途径和具体方案。[align=center][img=真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2021/12/202112080959307199_6660_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#990000]图1 液氦饱和蒸气压与温度关系曲线[/color][/align][size=18px][color=#990000]2. 气压控制精度与温度稳定性关系[/color][/size] 以液氦为例,液氦的饱和蒸汽压与对应温度变化曲线如图1所示。 由图1可以看出,在很小的温度范围内,上述曲线可以用直线段来描述,所以可以得到4K左右的温度范围内,气压大约100Pa的波动可引起1mK左右的温度波动。由此可以认为,如果要实现1mK以下的波动,气压波动不能超过100Pa。[size=18px][color=#990000]3. 顶部气压控制的三种模式[/color][/size] 低温介质顶部气压控制一般采用三种模式:电阻加热、流量控制和压力控制。[size=16px][color=#990000]3.1 电阻加热模式[/color][/size] 在低温恒温器的恒温控制过程中,电阻加热模式是在低温介质中放置一电阻丝加热器,如图2所示,真空计检测顶部气压变化,通过PID控制器改变加热电流大小来调节和控制顶部气压,将顶部气压恒定在设定值上。从图2可以看出,电阻加热模式比较适合增加顶部气压的升温控温方式,但无法实现减压降温。[align=center][color=#990000][img=真空度控制,690,569]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000054776_8294_3384_3.png!w690x569.jpg[/img][/color][/align][align=center][color=#990000]图2 电阻加热模式示意图[/color][/align][size=16px][color=#990000]3.2 流量控制模式[/color][/size] 流量控制模式是一种典型的减压降温模式,如图3所示,真空泵按照一定抽速连续抽取低温恒温器来降低顶部气压,真空计、电动针阀和PID控制器构成闭环控制回路,通过电动针阀调节抽气流量使顶部气压准确恒定在设定真空度上。由此可见,流量控制模式比较适合降低顶部气压的降温控温方式,但无法实现增压升温。[align=center][color=#990000][img=真空度控制,690,504]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000399321_2525_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 流量控制模式示意图[/color][/align] 另外流量控制模式中,真空泵的连续抽气使得低温介质的无效耗散比较严重。[size=16px][color=#990000]3.3 压力控制模式[/color][/size] 压力控制模式是一种即可增压也可减压的控温模式,如图4所示,当采用真空泵抽气时为减压模式,当采用增压泵时为增压模式,由此可实现宽温区内温度的连续控制。所采用的调压器自带一路进气口(大气压),结合真空泵在对顶部气压进行恒压控制的同时,可有效避免低温介质的大量无效耗散。[align=center][color=#990000][img=真空度控制,690,518]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000533816_3012_3384_3.png!w690x518.jpg[/img][/color][/align][align=center][color=#990000]图4 压力控制模式示意图[/color][/align] 另外,这里的增压方式也可以采用低温介质中增加电加热器来实现。[size=18px][color=#990000]4. 其他实施细节[/color][/size] 在上述三种控制模式实施过程中,还需特别注意以下细节: (1)真空计的选择 真空计是测量顶部气压变化的传感器,是决定低温恒温器温度控制稳定性的关键,所以一定要选择高精度真空计。 目前高精度真空计一般为电容薄膜规,一般整体精度为0.2%。 如前所述,在液氦4K左右的恒温控制过程中,要求气压波动不超过100Pa,及±50Pa,如果对应于100kPa的气压控制,则真空计的精度要求需要高于±0.05%。由此可见,对于温度波动小于1mK的恒温控制,还需要更高精度的真空计。 (2)PID控制器的选择 在恒温控制过程中,PID控制器通过A/D转换器采集真空计的测量值,计算后再将控制信号通过D/A转换器发送给执行器(电动针阀、调压器和加热电源等)。为此,要保证能充分发挥真空计的高精度和控制的准确性,需要A/D和D/A转换器的精度越高越好,至少要16位,强烈建议选择24位高精度的PID控制器。 (3)调压器的配置 调压器是一种集成了真空压力传感器、控制器和阀门的压力控制装置,但真空压力传感器的精度远不如电容薄膜规,控制器精度也比较低。为此在使用调压器时,要选择外置控制模式,即采用电容薄膜规作为控制传感器。 另外,需要特别注意的是,调压器中控制器的A/D和D/A转换器精度较低,因此对于高精度和高稳定性的顶部气压控制而言,不建议采用控压模式,除非采用特殊订制的高精度调压器。[hr/]

  • 【讨论】温度和压力的关系

    今日同版友lxx5052讨论了在GCMS测试中温度与压力的关系,我们都使用岛津2010plus,采用的是恒线速度模式,但是我在测试的过程中发现,随着温度的升高,压力其实也是在升高的,我们讨论了这个问题,感觉都是根据经验在判断,后来我想到了[b]阿弗加德罗定律:PV=nRT。[/b]用它来解释,因为我们觉得,柱流量是恒定的,那么V是不变的,同时我们进入柱子的气体氦是一定的,那么物质的量n也不变,而且R是个常数,由此得出结论[b]P正比于T。[/b]以上是我们讨论的结果,不知道是否可行;请版友们一起来讨论这个问题,并拿出你们的依据。

  • 双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    [size=14px][color=#ff0000]摘要:本文针对真空型热离子能量转换器(发电装置)中真空压力和温度的关联性复杂控制,提出一个简便的控制方式和控制系统的解决方案,控制系统仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个可调参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个电源的功率即可实现真空室气压和阴极温度的同时控制,由此可大幅减小设备造价且无需使用任何软件。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、问题的提出[/b][/color][/size][size=14px] 热离子能量转换器(TEC)是一种将热能直接转化为电能的静态装置,是一种基于热离子发射的转换方法。TEC可分为真空、带有正离子的铯离子和由辅助放电产生的惰性气体(如氩气)等形式。[/size][size=14px] 真空型TEC的简化示意图如图1所示,电极被放置在高真空环境中。阴极与热源热连接,阳极与热沉连接。电极颜色反映了它们温度之间的关系。[/size][align=center][size=14px][color=#ff0000][img=01.真空热离子能量转换器结构示意图,500,373]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931128921_2824_3221506_3.jpg!w690x515.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 真空热离子能量转换器结构示意图[/color][/align][size=14px] 一般情况下,最常见的商用温度控制器都能控制TEC阴极的温度,但如果使用了钡钨分压器阴极,因其氧化性问题则对加热过程有特殊的要求并不可忽视。在使用前,阴极必须烘烤并激活。为了保护阴极免受来自周围结构或焙烤过程中产品的氧化和污染,在真空室中必须保持必要的超高真空水平。此外,为了防止阴极可能被水分永久性污染而造成发射能力降低和钨阴极表面损伤,阴极必须允许浸泡在200~400℃足够长的时间,以允许完全的水蒸气出气。[/size][size=14px] 为了防止上述情况出现,最佳控制指标就是真空压力,即真空室中的压力必须始终小于1.33E-04Pa。因此,在TEC运行过程中,当给阴极加热器通电时,由于出气,温度会升高,真空室压力会增加。如果压力超过1.33E-04Pa,则需要关闭加热器电源,直到压力降到这个水平以下。真空室排气和焙烧后的活化是通过将钨基体中的氧化钡转化为阴极表面的游离钡来实现的。活化速率是真空室清洁度、阴极污染、时间和温度的函数。一般来说,阴极在工作温度或略高于工作温度时被激活。阴极温度不应超过1473K。[/size][size=14px][/size][size=14px] 由此可见,在TEC运行过程中,一个重要前提条件是供电加热和温度控制应确保整个过程的真空压力水平不应超过设定的超高真空度,即在运行过程中,除了温度控制之外,还需控制真空室内的真空度始终不超过额定值,但只有加热功率一个可调装置。[/size][size=14px] 从上述真空型TEC的运行要求可以看出,阴极的加热过程是通过调节一个可控变量(加热功率)来实现两个参数(气压和温度)的同时控制。[/size][size=14px] 为了实现这个特殊的控制过程,文献1采用一种复杂的控制机构,此控制机构基于类似的串级控制方法,使用了一个典型的PID控制器结合一个PXI单元,并编制了专用程序进行整体控制,其控制框图如图2所示。[/size][align=center][size=14px][color=#ff0000][img=02.文献1中使用的控制框图,600,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931510435_9811_3221506_3.jpg!w690x410.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 文献1中使用的控制框图[/color][/align][size=14px] 从图2所示的控制框图可以看出,整个控制装置结构较复杂,还需编制控制软件,整体造价也高。为了实现更简便的控制,本文提出一个更简便的控制方式和控制系统的解决方案,控制系统中仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个调节参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个调节小功率电源来实现真空室气压和阴极温度的控制。[/size][size=18px][color=#ff0000][b]二、解决方案[/b][/color][/size][size=14px] 由于在真空型TEC运行过程中只能调节阴极加热温度而同时不能使真空室内的气压超过设定值,这使得整个工作过程只有阴极加热功率一个可调节变量。为了实现阴极温度和腔室真空度的同时控制,解决方案采用了两个串联电源的新型结构,如图3所示。[/size][align=center][size=14px][color=#ff0000][img=03.新型真空压力和温度同时控制系统结构示意图,600,276]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932179007_2110_3221506_3.jpg!w690x318.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 新型真空压力和温度同时控制系统结构示意图[/color][/align][size=14px] 如图3所示,解决方案中采用了一个高精度的两通道PID控制器,此控制器具有两个独立的PID控制通道。第一通道与真空计和电源1组成第一闭环控制回路,第二通道与安装在阴极上的热电偶温度传感器(TC)和电源2组成第二闭环控制回路。这里的第一控制回路提供阴极的基础温度,其主要用于较低温度段的烘烤,并同时起到控制腔室真空度的作用。第二控制回路是在阴极温度达到一定温度后(如600℃)才开始起作用,其主要作用是将阴极温度最终恒定控制在设定的高温温度上。整个过程的真空压力和温度的控制效果基本与文献1所述的图4和图5所示相同。[/size][align=center][color=#ff0000][size=14px][img=04.全温域的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932441901_8566_3221506_3.jpg!w690x449.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图4 全温域的真空压力和阴极温度的变化[/align][align=center][size=14px][/size][/align][align=center][size=14px][img=05.加热初期的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230933014212_1816_3221506_3.jpg!w690x449.jpg[/img][/size][/align][size=14px][/size][align=center][color=#ff0000]图5 加热初期的真空压力和阴极温度的变化[/color][/align][size=14px] 在实际运行过程中的控制步骤如下:[/size][size=14px] (1)首先抽取腔室真空,使其达到2E-06Pa的超高真空水平。然后运行第一控制回路,真空计采集腔室压力,然后自动调节电源1的加热功率使得阴极温度从室温逐渐升高,其中的压力控制设定值为5E-06Pa。在此控制期间腔室压力始终不会超过设定值,但温度则会逐渐快速升高,且电源1始终有一定的输出功率。[/size][size=14px] (2)当第一控制回路控制中阴极温度达到初级设定温度(如600℃)后,第二控制回路自动开始运行,这使得电源2开始输出加热功率,此时电源1和电源2同时输出,使得阴极温度进一步升高,最终恒定在第二控制回路的温度设定值上。[/size][size=14px] (3)在第二回路工作期间,阴极温度进一步上升,势必会造成腔室气压升高而超出设定值5E-06Pa水平,此时第一回路会自动减小电源1的输出功率,使得阴极温度变化速度放缓。在第二回路运行过程中,第二回路相当于一个正向调节作用,第一回路实际上则是一个反向调节作用,这样既能保证腔室气压不会超出设定值,又能保证阴极温度逐步升高而达到设定的高温温度。[/size][size=14px] 总之,通过上述解决方案及其自动控制,可很便捷的实现热离子能量转换器中真空压力和温度的同时控制,压力水平和阴极恒定温度可根据阴极材料要求任意设定。而且整个控制装置得到了大幅度的简化,且无需进行采用任何软件。[/size][size=18px][b][color=#ff0000][/color][color=#ff0000]三、参考文献[/color][/b][/size][size=14px][1] Kania B, Ku? D, Warda P, et al. Intelligent Temperature and Vacuum Pressure Control System for a Thermionic Energy Converter[M]//Advanced, Contemporary Control. Springer, Cham, 2020: 253-263.[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 相同的温度下,载气压力越大,流量越大。在一定的压力下,温度上升,流速下降。请问载气线速度和载气流速及压力是什么关系?

    [font=微软雅黑][size=16px]1.线速度:指载气每秒钟流过色谱柱多少厘米。[/size][/font][font=微软雅黑][size=16px]恒线速度控制方式:柱温箱温度变化时,线速度保持不变,在柱箱温度升高时,载气粘度系数变大,这时入口压力增大来保持线速度不变。[/size][/font][font=微软雅黑][size=16px]2.隔垫吹扫气流速过小可能会导致基线下降,隔垫吹扫气流速和分流流速过低可能会导致溶剂峰拖尾及峰面积重现性差,在不分流模式中采用了高流速载气会导致峰分裂。[/size][/font][font=微软雅黑][size=16px]3.流速越大,线速度越大,成正比,但变化比例可以不一致。[/size][/font][font=微软雅黑][size=16px]4.在程序升温情况下,流量恒定,随着温度的升高,气体膨胀,线速度变大;若线速度恒定,随着温度的升高,气体膨胀,流量变小才能保证线速度恒定。[/size][/font][font=微软雅黑][size=16px]5.线速度=柱长(cm) /不保留组分的保留时间(sec)[/size][/font]

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】关于商品天然气压力和温度的工况条件

    众所周知气体是可压缩的,所以要使对气体的计量有意义,一定要约定压力和温度工况条件。对于我们现在广泛使用的天然气的计量,自然是约定好其压力和温度的工况条件。可是现在不少燃气公司给出天然气售价时,甚至是政府有关部门批准天然气售价时,很少规定压力和温度工况条件。 当对天然气计量收费时,应规定压力和温度工况条件若何?我查阅了GB17820—1999《天然气》,只在其表1 天然气的技术指标之注中找到:“本标准中气体体积的标准参比条件是101.325kPa,20℃。”那么,该气体体积的标准参比条件就是商品天然气压力和温度的工况条件吗?显然不是。试想,如果商品天然气压力为101.325kPa,也就是说与大气等压,那么天然气怎么能从管导中流向燃器具去燃烧发热呢?是否该参比条件是指商品天然气测得实际压力和温度后,应换算到的计价的气体体积的标准参比条件呢?可是现实生活中我们的天然气燃气表,并没有去测得实际的压力和温度去折算。而是对实际的压力和温度下的天然气,直接计量。 全面细读GB17820—1999《天然气》,我们不难认识到:该标准表1 天然气的技术指标之注1,给出的该气体体积的标准参比条件101.325kPa,20℃,是用于评价天然气质量的。那么商品天然气计价的压力和温度的工况条件若何?我觉得很有必要明确规定。否则,根本无公平交易可言。

  • 超强冷却能力沸腾传热式膜基散热器的低压压力和温度控制解决方案

    超强冷却能力沸腾传热式膜基散热器的低压压力和温度控制解决方案

    [size=16px][color=#990000][b]摘要:膜辅助相变散热器(MHS)作为一种新型高效冷却技术正逐渐成为研究热点,其中的真空压力和温度控制是有效实施MHS技术的关键因素,为此本文提出了相应的解决方案。解决方案的核心内容是同时为MHS工作液体提供准确的高压压力控制和为MHS沸腾蒸发提供低压真空度控制,另外解决方案还包含了MHS隔膜的渗透性测试方法和测试装置结构,包含了MHS冷却能力和传热系数测量装置。[/b][/color][/size][align=center][size=16px][color=#990000][b]============================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 高功率密电子设备的激增催生了高性能计算及其数据中心的发展,由此带来的需求是开发高性能的散热器。目前,普遍都采用比空气冷却效果更好的水冷和浸没式液冷的单相散热技术,而随着功率密度的快速增加和电子设备的小型化要求更高的冷却效率。当前高效冷却的研究领域之一是具有更高传热系数的相变散热,这样每单位工作流体质量流量可移除更多热量,且可以提高散热面积上的温度均匀性。[/size][size=16px] 目前出现一种膜辅助相变散热器(MHS)技术,其沸腾冷却工作原理如图1所示,水作为冷却过程的工作流体,采用薄膜将液体和蒸汽分离。蒸汽空间压力(P蒸汽)为16kPa,对应于饱和温度55℃。此冷却技术的临界热流极限(CHF)随着传热面积比和液体空间压力(P水压)的增加而增加,据报道在具有3.45的增大面积比的表面上的最大CHF为670W/cm2,获得的传热系数高达1MW/m2K。[/size][align=center][size=16px][color=#990000][b][img=膜辅助散热器压差下渗透膜蒸汽排出冷却原理图,550,167]https://ng1.17img.cn/bbsfiles/images/2023/09/202309201758191124_9322_3221506_3.jpg!w690x210.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 膜辅助散热器压差下渗透膜蒸汽排出冷却原理图[/b][/color][/size][/align][size=16px] 如图1所示,与具有液体入口和两相流出口的传统散热器不同,MHS仅包含一个液体入口,工作液体通过该入口以压力P水压供应到散热面。放置在散热面上方的疏水蒸汽渗透膜允许蒸汽从液体池中排出。[/size][size=16px] MHS这种独特的设计将沸腾的液体限制在散热器内表面,并对气泡产生全方位的压力。随着气泡的足够生长,在加热器内表面和膜之间建立了蒸汽桥,导致膜上的液体接触线减少(由于膜的疏水性),将气泡从加热器表面拉出和排出。由此可见,膜的渗透性和压差决定了蒸汽流过膜的速率,而压差太大则会导致膜破裂,这样使得MHS工作机理及其散热能力的研究评价主要内容是膜渗透性测量装置和膜辅助散热器装置的搭建,其中关键涉及到真空压力和温度的精密控制技术。为此本文针对压力和温度的准确控制提出了完整的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px][color=#990000][b]2.1 膜渗透性测量装置[/b][/color][/size][size=16px] 薄膜渗透性测量装置如图2所示,测量装置包括测试腔室、调压器、质量流量控制器、压力计、真空计、电动针阀、双通道真空压力控制器和真空泵。测试腔室由不锈钢制成,由上腔室、下腔室和观察窗组成。被测薄膜固定在下室上,测试流体进入上腔室,穿过隔膜流入下部腔室,通过真空泵抽气流出下腔室。[/size][align=center][size=16px][color=#990000][b][img=薄膜渗透性测量装置结构示意图,600,316]https://ng1.17img.cn/bbsfiles/images/2023/09/202309201758468846_1005_3221506_3.jpg!w690x364.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 薄膜渗透性测量装置结构示意图[/b][/color][/size][/align][size=16px] 在每次测试中,通过双通道真空压力控制器,并结合相应的压力传感器和真空度传感器,自动调节腔室入口处的调压器使上腔室恒定在设定压力,自动调节下腔室出口处的电动针阀使下腔室恒定在设定真空度,由此使得被测隔膜两侧达到所需的测试压差,根据压力、真空度、压差和流速可计算得到薄膜的渗透率。[/size][size=16px][color=#990000][b]2.2 膜辅助相变散热器试验装置[/b][/color][/size][size=16px] 膜辅助相变散热器试验装置的作用是用来研究不同散热器微结构、薄膜特性和真空压力等条件下的散热能力以及对传热系数进行测量,整个装置的结构如图3所示。MHS放置在一个不锈钢耐压腔室内,腔室两侧相对的法兰上安装有光学观察窗。[/size][align=center][size=16px][color=#990000][b][img=膜辅助相变散热器试验装置结构示意图,650,359]https://ng1.17img.cn/bbsfiles/images/2023/09/202309201759137821_6145_3221506_3.jpg!w690x382.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 膜辅助相变散热器试验装置结构示意图[/b][/color][/size][/align][size=16px] MHS结构与图1近似,只是在散热面处布置了薄膜加热器和温度传感器,加热器和温度传感器引线连接到腔室外的温度控制器上以控制散热面温度和热流密度。[/size][size=16px] 真空压力控制原理和结构与图2近似,即往腔室内通入高压气体使腔内压力按照设定值进行控制,MHS内的真空度也同样进行自动控制以使内部液体处于饱和条件(如16kPa绝对压力)。[/size][size=16px] 冷却过程中采用去离子水作为工作液体,液体通过腔室内的压力被压入MHS中,从MHS排出的蒸汽流经帕尔贴TEC蒸汽冷却器成为液体后再流回腔室,由此形成工作液体的循环。此蒸汽冷却器采用了专用的TEC控制器进行温度控制。[/size][size=16px] 在实验过程中,首先对MHS内的真空度进行控制,然后通过加热器向MHS散热面供热,同时将腔室内部的工作压力保持恒定,在此压差恒定条件下测量得到相应的冷却温度和热流密度。如果施加的热流以步进或线性方式逐渐增加,直到观察到温度突然升高,那么该温度点时的热流就是此特定压差下的临界热流极限CHF(critical heat flux limit)。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 膜辅助相变散热器(MHS)作为一种新型高效冷却技术正逐渐成为研究热点,本文提出的解决方案为MHS的研究提供了宽范围真空压力和控温精密控制的可能性,为MHS的深入研究和冷却性能考核评价提供了有效的技术支撑。[/size][align=center][b][color=#990000][/color][/b][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 温度数据记录仪的特征及功能简介

    温度数据记录仪是专门设计用于超低功耗,超长时间温度数据记录的数据记录仪。温度数据记录仪可以按照组态时间间隔定时采集记录温度参数,并可将采集记录的数据传送给计算机进行处理,绘制图表。温度数据记录仪选用进口传感器、进口高能锂电池供电,采用低功耗技术设计,无需外部电源,体积小巧、整机功耗小、精度高,可连续工作三年以上。 温度数据记录仪设计新颖,能满足各种记录需求,操作简单、性能可靠。能以图表、曲线、报表等形式输出数据,进行数据的分析统计,并能将数据短信的方式传输。温度数据记录仪可多次重复使用,均可直接选择接收多种热电偶、热电阻、压力变送器、电压、电流信号,并可对被测信号进行数字显示及进行趋势记录和数字记录。 温度数据记录仪可以应用在医药行业,包括药品车间、仓库、药店等环境温度的观测记录,应用在食品行业,包括食品车间、仓库等环境温度的观测记录,应用在电子行业,包括电子车间、洁净环境、机房等环境温度的观测记录。数据温度记录仪广泛应用于农业实验室、工业、环保、卫生防疫、仓储运输、博物馆、精密电子、医药、食品、农林业、仓库、机房、冷库等领域。

  • 【求助】微波压力 温度

    谁知道食品样品微波消解的温度和压力大概范围是多少啊 温度和压力怎么对应设置啊 急用 请赐教 谢谢 QQ907221577

  • LPTC1000-40压力传感器温度补偿电阻测试系统

    [b][font=宋体][color=black]系统概述:[/color][/font][/b][font=宋体]LPTC1000-40[/font][font=宋体]压力传感器温度补偿电阻测试系统解决芯片电桥下电阻值不一致,独立操作繁琐,此系统电阻值全自动计算、检测,达到电阻值一致,实现一键操作。[/font][font=宋体]系统以纯净干燥氮气为工作介质,以测试系统软件为核心,通过计算机进行自动控制高低温箱、压力源、供电电源、恒流源、恒压源等设备,根据软件设定,达到设定温度、设定压力,通过专用工装接口传递到待调试压力传感器,数据采集单元自动采集被校压力传感器的响应数据,计算出被检传感器所需电阻值,数据并自动记录、存储。[/font][b][font=宋体][color=black]系统功能:[/color][/font][/b][font=宋体]1) [/font][font=宋体]软件自动控制压力源、温箱、恒流源、恒压源、数采等硬件设备,一键操作;[/font][font=宋体]2) [/font][font=宋体]通过软件自动计算出所需电阻值,快速便捷;[/font][font=宋体]3) [/font][font=宋体]提高效率:整套系统,除人工必须的装夹操作外,其他的均由设备完成,包括数据对比,数据筛选,数据采集等;[/font][font=宋体]4) [/font][font=宋体]提高准确度:整套系统在工作过程中最大限度的使用机器设备来代替人工,这样在系统运行过程中,避免了因人为操作不当造成的误差等因素,从而提高了生产过程中的准确度;[/font][font=宋体]5) [/font][font=宋体]提高质量;通过软件控制硬件,整套系统完全根据相关规程及质量标准编写,严把质量关,保证产品的高品质,高性能;[/font][font=宋体]6) [/font][font=宋体]实现系统定制化、个性化及更好的人机交互体验。[/font][font=宋体]7) [/font][font=宋体]提供word或excel报告格式。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]应用领域:[/font][/b][font=宋体]计量院、军工、航空航天、生产厂家等。[/font]

  • 【原创】鸿丰介绍阀门公称通径,阀门公称压力,阀门工作压力,阀门工作温度

    表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。一、公称通径 公称通径DN 是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母“DN”后紧跟一个数字标志。如公称通径250mm应标志为DN250。二、公称压力 公称压力PN 是一个用数字表示的与压力有关的标示代号,是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!" 的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以“MPA”表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种“K”级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。三、压力—温度额定值 阀门的压力—温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力—温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力—温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力——温度额定值标准。1、美国标准在美国标准中,钢制阀门的压力—温度额定值按ASME/ANSI B16.5a-1992、ASME B16.34-1996的规定;铸铁阀门的压力—温度额定值按ANSI B16.1-1989~B16.4-1989,ANSI B16.42-1985的规定:青铜阀门的压力—温度额定值按ASME/ANSI B16.15a-1992、ASME B16.24-1991的规定。1)美国ASME/ANSI B16.5a-1992中规定了英制单位和米制单位两种法兰尺寸系列,同时分别列出了适用了两种单位制的法兰压力温度额定值。在该标准附录D 中给出了确定英制单位压力—温度额定值的方法。2)美国ANSI B16.42-1985《球墨铸铁管法兰及法兰管件》标准中规定了CL150和CL300球墨铸铁法兰压力—温度额定值在标准附录中又规定了压力—温度等级的制订方法,其基本原理、使用范围、限制条件及制订程序与ASME/ANSI B16.5a-1992基本一致。3)美国ASME B16.34-1966纳入了ASME/ANSI B16.5a-1992中法兰连接阀门的温度—压力额定值数据。该标准中法兰连接阀门的压力—温度额定值采用了ASME/ANSI B16.5a-1992的制订方法。该标准列出了法兰连接和对焊连接的标准级阀门及对焊连接特殊级阀门的压力—温度额定值数据表。标准中所列的阀门材料有100多种,共划分为27组。2、德国标准德国标准DIN2401-1977第二分册《管道压力级、钢和铸铁管道部件的允许工作压力》是一个比较综合的压力—温度额定值标准。其中,列出了无缝管、焊接管、法兰、阀门、管件及螺栓在不同材料,不同温度条件下的允许工作压力。该标准包括法兰材料6种、法兰连接铸铁阀门材料4种、铸钢5种、锻钢5种,这些均为原始材料。钢材均为碳钢和低合金钢,未包括不锈钢。标准中明确规定,当选用与原始材料不同的其他材料时,其允许工作压力根据使用材料的强度特性值与标准中规定的原始材料在20℃时的强度值之间的比值进行计算。对于不锈钢材料的压力一温度额定值,ISO/DIS70651《钢法兰》中进行了补充说明。3、原苏联标准原苏联标准TOCT356-1980《阀门与管路附件的公称压力、试验压力和工作压力系列》,全部符合经互会标准。原苏联标准中,对材料进行了分组。在该标准中将200℃以下的最大允许工作压力值均视为常温下的工作压力,并等于公称压力。4、国际标准国际标准ISO/DIS7005-1-1992《普通管法兰》是将美国标准ASME/ANSI B 16.5a-1992和德国标准中公称压力级的法兰标准合并在一起。因此,压力—温度额定值标准也分别采用了美国和德国两个国家的法兰压力—温度额定值标准的制订方法及相应数据。ISO/DIS7005-1-1992中的公称压力等级PN0.25、0.6、1.0、1.6、2.5、4.0MPA属德国法兰体系;PN2.5、10、15、25、42MPA属于美国法兰体系。每一体系的压力—温度额定值标准只适用于各自体系的法兰标准。5、我国国家标准国家标准GB/T9124-2000(附录A)《钢制管法兰 技术条件》参考了德国DIN2401-1977和美国ASME/ANSI B 16.5a-1992标准中压力温度额定值的制订原则及方法,利用我国常用的法兰材料,参照国际标准ISO/DIS7005-1-1992分别制订了适用于两个公称压力系列(PN0.25-4.0MPA、PN2.0-42.0MPA)的法兰压力—温度额定值。标准中规定了13种法兰材料在12个公称压力等级下,工作温度为20-530℃的最大允许工作压力。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制