当前位置: 仪器信息网 > 行业主题 > >

聚四氟乙烯制品际分析

仪器信息网聚四氟乙烯制品际分析专题为您提供2024年最新聚四氟乙烯制品际分析价格报价、厂家品牌的相关信息, 包括聚四氟乙烯制品际分析参数、型号等,不管是国产,还是进口品牌的聚四氟乙烯制品际分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚四氟乙烯制品际分析相关的耗材配件、试剂标物,还有聚四氟乙烯制品际分析相关的最新资讯、资料,以及聚四氟乙烯制品际分析相关的解决方案。

聚四氟乙烯制品际分析相关的资讯

  • 助力色谱分析,迪马气体过滤器火热促销
    迪马科技提供多种规格和配置的气体过滤器,可有效去除载气或检测器用气中的氧气、水分和烃类等常见污染物。极大降低了色谱柱损坏、灵敏度损失及仪器停机的风险。 活动期间,气体过滤器产品8 折优惠;另外,一次性购买气体过滤产品,订单达到一定金额,额外赠送以下礼品或产品。订单金额礼品/产品3000 元(含)以上送双千兆无线路由器(速度最大提升10 倍)或送价值≤ 800 元样品瓶或针头式过滤器产品6000 元(含)以上送新秀丽多功能双肩包14 英寸或送价值≤ 1800 元样品瓶或针头式过滤器产品10000 元(含)以上送微型投影仪家用办公(移动家庭影院)或送价值≤ 3200 元样品瓶或针头式过滤器产品备注:1、充填吸附剂、super-clean 气体过滤器、专用气体过滤器产品不参与促销;2、赠送的样品瓶和针头式过滤器产品,详见附录。本活动最终解释权归迪马科技所有附录:迪马样品瓶和针头式过滤器 2 ml 螺纹广口瓶(12 x 32 mm, 9 mm, 兼容agilent 等)大开口,为自动进样器提供更多方便组装好的瓶盖和垫,方便直接使用带书写处,方便铅笔等标记(可选)适用agilent,waters,varian 和岛津等各种型号自动进样器瓶颈尺寸精确,保证自动进样器抓取无误严格的品质保证,每批产品尺寸完全一致平底保证与内衬管相配名称货号产品描述价格样品瓶10322 ml 螺纹口广口瓶,透明 100/pk10010332 ml 螺纹口广口瓶,透明,带书写处和刻度 100/pk10910342 ml 螺纹口广口瓶,棕色,带书写处和刻度 100/pk109盖、垫1035螺纹盖,蓝色,开孔,ptfe / 白色硅胶垫 100/pk1451036螺纹盖,蓝色,开孔,ptfe / 白色硅胶垫 ( 预切口) 100/pk360 fitmax 针头式过滤器用于hplc、gc 前处理样品及溶剂的过滤标准luer 接头超洁净聚丙烯壳体,低溶出物,适合于痕量分析低残留体积经济、环保 名称货号产品描述价格滤器(13 mm)30039fitmax 针头式过滤器,13 mm 0.22 μm 尼龙(nylon)100/pk29030040fitmax 针头式过滤器,13 mm 0.45 μm 尼龙(nylon)100/pk29030043fitmax 针头式过滤器,13 mm 0.22 μm 聚四氟乙烯(ptfe) 100/pk29030044fitmax 针头式过滤器,13 mm 0.45 μm 聚四氟乙烯(ptfe) 100/pk290滤器(25 mm)30041fitmax 针头式过滤器, 25 mm 0.22 μm 尼龙(nylon)100/pk32030042fitmax 针头式过滤器, 25 mm 0.45 μm 尼龙(nylon)100/pk32030045fitmax 针头式过滤器, 25 mm 0.22 μm 聚四氟乙烯(ptfe) 100/pk32030046fitmax 针头式过滤器, 25 mm 0.45 μm 聚四氟乙烯(ptfe) 100/pk 320
  • iCAP 7400 ICP-OES测定阴极铜及铜制品中多种微量元素
    纯铜,是发电机、电缆、电路板等电工器材和热交换器等器材制造的原材料;而铜合金在制造轴承、齿轮、钟表零件、武器弹壳、精密阀门、船用螺旋桨精密弹簧和电接触元件被广泛使用,又是制造精密电工仪器、变阻器、精密电阻、热电偶等用的制造材料。由此可见,基于纯铜及铜合金等应用领域的区别限制,能够准确控制和精准测量各种铜制品中添加的合金元素和杂质元素含量,对于产品质量控制和使用安全具有重要的指导意义。 在以铜为基体的原子发射光谱分析中,尽管铜并非典型的富线光谱元素,但在180-800nm依然包含约300多条发射谱线,特别是180-350nm为铜谱线集中区域,绝大部分杂质控制元素最佳灵敏谱线又处于该光谱区,这对于杂质元素分析而言,将会受到严重基体效应所造成的邻近谱线干扰和跨级光谱干扰。 蓝色方框为所有铜元素发射谱线 准确测量,赛默飞有新招!iCAP 7000优异的光学系统设计,采用全固定式分光元件的二维色散系统,具有最大化的光栅常数和闪耀角,实现高光通量情况下的高分辨率保证,结合CID专利的非破坏式读取NDRO和防溢出Anti-Blooming技术,有利于多种杂质元素在共存基体的条件下获得最佳的信噪比指标,降低了基体效应对分析过程所产品的影响,样品无需要标准方法中共沉淀富集微量元素或电解除铜的基体分离方法,即可实现准确测量阴极铜及铜制品中多种微量元素含量。 样品前处理准确称取1g样品(精确至0.0001g)于聚四氟乙烯烧杯中,加入10mL混合酸于180度条件下加热溶解样品,至样品全部溶解溶液呈蓝色透明状,以超纯水稀释定容至50mL HDPE容量瓶中,摇匀,待测溶液,按同法制备试剂空白。阴极铜采用标准加入法测量,铜米、阳极板、铜线坯采用基体匹配标准曲线法。 仪器参数及配置点击查看大图 检出限测试依据JJG-768仪器检定规范要求,实验选择进行连续11次试剂空白测试,以连续11次空白的3倍标准偏差做为方法检出限,各元素检出限数据如下:点击查看大图 样本结果 iCAP 7000Series ICP-OES做为现代高端光谱仪器的市场需求典范,光学元件采用了全固式结构中阶梯光栅和棱镜二维交叉色散设计,光室部分采用38±0.1℃高精度恒温,所有等离子体气均采用质量流量控制器(控制精度0.01L/min)和291600像素单元构成的面阵式固态CID检测器。 这些设计无疑地代表着现行最高端的设计技术,基于这些种技术设计的使用,保证了iCAP 7000 ICP-OES具有无与伦比的稳定性指标、最佳的灵敏度和抗光谱干扰能力。对于能够有效检出的主量元素的多次测量精密度可以控制在0.1%以内,仪器具有优异的连续运行稳定性指标,能够最大程度上保证测量结果的可靠性和重复性。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 莱驰为食品接触材料及制品的样品前处理提供完美解决方案
    日常生活中,食品包装与食品的密切关系早已被千家万户所认知。无论是商店、超市,还是每个家庭,处处可见设计精美、实用方便的食品包装。很难想象,没有包装的食品被送到每个消费者手中,将会是一个怎样的景象。在很大程度上,食品包装已经成为食品不可分割的组成部分,对食品质量将产生直接或间接的影响。我国食品包装安全检测手段与检测设备远远落后于发达国家,通常检测需由专门的检测机构利用大型仪器设备进行,且检测周期一般较长,缺乏简单易行的检测手段与快速高效的检测设备,使得大多数食品包装安全检测无法实现。中华人民共和国国家标准GB 31604.30-2016 食品安全国家标准 食品接触材料及制品 邻苯二甲酸酯的测定和迁移量的测定中,食品塑料包装材料及制品经粉碎后,用正己烷超声提取,提取液经过虑后,采用气相色谱-质谱联用法测定。采用特征选择离子监测扫描模式(SIM),以保留时间和碎片的丰度比定性,外标法定量。其粉碎过程需要将样品粉碎至直径小于0.2cm,这对于实验室人员手工操作来说是极其困难和费时的,德国retsch(莱驰)研磨仪能快速帮助实验室人员处理这类样品。食品包装材料能成功的在液氮冷冻下进行精细研磨,可大大简化实验室人员就样品前处理的操作时间,从而方便实验人员进行后续的实验分析。德国Retsch(莱驰)的Cryomill是专为冷冻粉碎设计的仪器。具有一个完美的冷却系统,在运行过程中不断地向冷冻腔输送液氮。因此样品催化便于研磨,并防止样品中挥发性物质的挥发。液氮自动持续地进入冷冻腔,使得研磨过程始终处在-196℃。使用者不会直接与液氮接触保证了操作的安全性。智能冷冻系统保证在样品结束冷冻之前不会开始粉碎运行,既节省了能源又能保证实验的可重复性。Cryomill配备一个研磨平台,研磨罐有10毫升,25毫升,35毫升及50毫升可供选择。还有多种适配器用于4个5毫升研磨罐以及6个2毫升研磨罐的使用。为了防重金属污染,我们还提供25毫升的氧化锆和聚四氟乙烯(PTFE)研磨罐和研磨球。 食品包装的种类主要有:塑料制品;橡胶制品;陶瓷器、搪瓷容器;铝制品、不锈钢食具容器、铁质食具容器;玻璃食具容器;食品包装用纸;复合包装袋—复合薄膜袋等。以下为三种食品外包装的实验应用举例,分别是透明塑料薄膜,纸张和酵母包装纸以及牛奶包装薄膜,用Cryomill冷冻研磨,具体实验结果如下:一号样品:透明塑料薄膜参数:预冷冻8min,粉碎30s,中间冷冻2min,再粉碎30s,共4个循环,振动频率30Hz,25ml研磨罐,20mm研磨球。出样细度:0.5mm左右 二号样品:纸张和酵母包装纸参数:预冷冻8min,粉碎30s,中间冷冻2min,再粉碎30s,共2个循环,振动频率30Hz,25ml研磨罐,20mm研磨球。出样细度:300um以下 三号样品:牛奶包装薄膜参数:预冷冻8min,粉碎30s,中间冷冻2min,再粉碎30s,共4个循环,振动频率30Hz,25ml研磨罐,20mm研磨球。出样细度:1mm左右 食品包装材料能成功的在液氮冷冻下进行精细研磨,可大大简化实验室人员就样品前处理的操作时间,从而方便实验人员进行后续的实验分析。在我们一致关注食品安全的同时,也要对食品的包装安全加以重视,由食品包装引发的食品安全问题已不容忽视,只有全社会加以关注,并采取有效措施,为食品安全多加一把锁!
  • 食品包装含氟化物 人体降解需四年
    新知客2月9日报道 应用了半个多世纪的全氟化合物,由于可能损害人体健康,即将要被终结。  2009年5月9日,联合国环境规划署重新审订《持久性有机污染物名录》,全氟辛烷酸及其盐类(PFOS)和胺类(PFOA)化合物被列入黑名单,成为继滴滴涕之后的又一位上榜者。曾经一度被隐瞒20多年、几年前还在欧美等国就其去留问题引发争吵的全氟辛烷酸,终于被终结了。  北极熊和新生儿之劫  2008年,科学家在格陵兰岛的北极熊肚子里,检测出一种只有在人类化学工业里才使用的致癌物质:全氟辛酸胺(PFOA)。  科学家很快将这消息和之前进行的调查结果联系起来。2007年,约翰霍普金斯医学中心对在该院出生的300名婴儿的血液进行了抽样调查,发现100%的血液样本中含有PFOA,99%含有PFOS。PFOS和PFOA几乎普遍存在于母体子宫中。  这种人工合成的化学物质,在1997至2002这30年间,总产量在10万吨左右,主要用于生产杀虫剂、防护剂以及材料的表面改性。  无论PFOS还是PFOA都属于含氟化合物的一种。但和众所周知的氟利昂不同,这类化合物中的氢被氟全部代替,在碳链的末端形成一层致密的“氟壳”,不仅普通的酸碱对它根本不起任何作用,油、水和高温均奈何不了它,化学性能极其稳定。  但这同样也导致它很难降解。“PFOA在雌鼠体内的降解速度是几个小时,在雄鼠体内几天,在猴子体内是几个月,而在人体内则几乎是4年。”美国环保署污染预防和有毒品办公室的Jennifer Steed指出。动物和人身上表现出毒理实验的差异令科学家困惑。  “我们确实不清楚是什么样的生物学作用造成了这些差异。”美国环保署国家健康和环境影响实验室的首席生物学家Lau说。  更困难的是确定这些化合物的来源。因为这些化合物通常不作为商品出售,它们只是降解产物或制造其他商业化学品过程中的加工助剂,难以追踪。  这种只有化工里使用的成分,究竟是怎样进入人体,并最终漂洋过海袭击北极熊的?  氟从口入?  霍普金斯大学的研究指出,PFOS和PFOA应该是从消费产品渗透并污染整个生态环境,它们普遍存在于家庭用品中。PFOS常用于纺织品、皮革的防污防水涂层,而PFOA则广泛用于各种家具、金属、防火泡沫、包装材料的表面。  最著名的全氟化合物当属杜邦的“特氟龙”系列,这是杜邦公司对其研发的各种碳氢树脂的总称。其中最广泛的是聚四氟乙烯,它被称作“塑料之王”,作为一种最常用的表面涂料,在工业生产和日常生活中几乎无所不在。它由杜邦公司化学师Roy Plunkett在1938年偶然发明,并投入商业化生产。  然而近半个世纪后,这款曾经造福于人类的化工产品却遭到美国环境署的投诉。2006年,该署对杜邦公司提出抗议,称特氟龙的生产过程中添加了PFOA作为助剂,并被广泛用于全世界使用特氟龙涂料的不粘锅上,抗议还称,杜邦公司早在20多年前就已知道PFOA对人有害,却将这一秘密守口如瓶。  全球第一款采用杜邦特富龙不粘涂料的炊具诞生于1962年。除了不粘锅,很多快餐店也在铝质蛋盘上使用这种不粘涂料来降低成本,使得重复涂覆频率大大降低。玉米片制造商则用它涂在切马铃薯的刀面上,降低残渣的集积,使停工时间缩短。  继不粘锅之后,越来越多的线索将焦点指向了食物。科学家发现,一个重要入口就是食品包装。不仅美国人最喜欢的爆米花和比萨的防油包装纸上使用了聚四氟乙烯涂层,而且面包、奶酪以及方糖,从生产过程中的模具,到专卖店里的托盘,到家庭用的包装袋,几乎都离不开这种涂料。  全球狙击  杜邦事件并非孤例。早在2000年,美国3M公司就宣布全球召回PFOS。它曾是该公司著名的斯科奇加德防油防水剂的主要组分。3M的研究人员 .现,PFOS不仅会造成工作人员中毒,还会向环境释放。2 0 0 3年,3M宣布停止生产PFOS。  尽管对其危害性评估和每一个中间环节的整体论证仍需时日,一些国家已经坐不住了。  继美、加、英、挪等国之后,2006年12月27日,欧盟理事会发布限令,禁止PFOS在欧洲范围内生产、销售和使用,并出台了严格剂量标准和检测方法。  杜邦坚称,聚四氟乙烯本身是对人体无毒的,而作为生产助剂的PFOA即使对人体有毒,含量也很微小。在经过380度高温的烧结时,“不到两秒钟就消失了”。  真的如此吗?就算成品完全不含PFOA,在高温下特氟龙仍有可能会分解,释放出PFOA。为此,美国环境署特别对特富龙在高温焚化时大气环境中PFOS和PFOA的含量展开了测试。但目前的实验研究显示,特富龙涂料只会长链降解形成短链聚合物,而不会分解成PFOA或PFOS。  “理论上说很难完全清除”。中科院上海有机化学所的氟化学专家陈庆云院士说。他表示,国内这方面的研究还开展得很少。  据了解,环保部国际合作司正委托中国印染行业协会进行行业调查,至于相关研究,主要还停留在对检测方法的摸索上。这在很大程度上来自于履行国际公约的承诺,及欧盟限令对中国出口贸易的影响。卫生部门则尚未将其纳入近期工作计划。
  • MA系列直接汞分析仪 – 食品中总汞测定的好帮手
    MA系列直接汞分析仪– 食品中总汞测定的好帮手 GB5009.17 的亮点之一是增加了食品的直接汞分析方法。直接汞分析是如何提高我们实验室的性能的? 让我们先了解一下传统方法存在的问题:l 长时间的样品制备和可能的分析物损失基于汞的特性,传统方法所涉及的冗长的样品前期准备步骤让大多数分析人员感到很麻烦。漫长的过程容易出错,而且汞的高挥发性很容易造成分析物的不可避免的损失或交叉污染,从而导致数据的不确定性。即便是有经验的分析人员也对汞的损失和交叉污染也无可奈何,只能重新进行分析。在操作过程中必须小心翼翼,以尽可能降低这种可能性。l 更高的运营成本由于汞是痕量污染物,分析所用试剂必须是高纯度的,以避免对样品的干扰或在分析过程中造成汞添加,导致“假阳性”结果。在传统方法中所使用的高纯度试剂通常价格昂贵,增加了实验室操作成本。l 更长的步骤意味着更高的错误机会从人为错误到玻璃器皿清洁度,每个步骤都有可能引入一定程度的污染物。用于汞分析的玻璃器皿或实验室器皿必须使用特定程序进行清洁,或由聚四氟乙烯等不同材料制成,以减低汞的记忆效应。因此,通过传统方法进行汞分析通常会导致较差的或不确定的质量控制 (QC)、加标回收率、准确度和精密度。 让NIC MA系列分析仪成为您的得力助手NIC 在直接热分解方面的知识、经验和技能的优势可追溯到 40 多年前。因为传统方法面临挑战,直接汞分析便成为被广泛接受的汞检测替代方案之一, MA 系列正是为此而设计。NIC的 MA 系列直接汞分析仪可以轻而易举地克服上述所有难题。MA 系列包括 2 种不同的型号:MA-3000 和 MA-3 Solo,分别适用于不同规模的实验室。 MA 系列仪器已被全球范围内的实验室所使用,因此 NIC 拥有大量的应用数据。所有应用数据均通过对实际样品和标准参考材料 (SRM) 的分析而获取。 欲了解更多解决方案与产品信息,请查阅:仪器信息网NIC展位: https://www.instrument.com.cn/netshow/SH104984/
  • 德氟参展:大连实验室安全建设与管理创新发展论坛现场
    由中国仪器仪表行业协会代理商分会主办承办的2019实验室安全建设与管理创新发展论坛于11月22日在大连顺利召开。此次论坛邀请了多位政府主管部门负责人,企事业单位、科研院所和大专院校负责仪器采购和实验室管理负责人,仪器使用单位代表、仪器生产商等相关人士出席。同时,多位行业专家在现场为我们分享了实验室安全管理与建设方面的内容。    此次会议分为两个主题  其一是“仪商汇”仪器渠道峰会   其二是2019大连实验室安全建设与管理创新发展论坛。  主题一 “仪商汇”仪器渠道峰会  《仪器经销商的本地化服务实践》无论是深度还是广度,售后服务的宗旨就一个:提升客户满意度。  《探索科学仪器售后服务与精益管理系统的成功之道》、《智能管理,价值与创新并进》、《渠道商转型升级发展思路》、《经销商在新形势、新趋势下的投标注意事项》等对行业深入分析,对未来发展方向以及服务都做出了评价和畅谈。未来“仪商汇”还会联合多家单位与机构开展职业教育培训,为众多科研机构与高校实验室输送大量的实用性人才。   主题二 2019大连实验室安全建设与管理创新发展论坛  实验室安全的重要性。只有安全的实验环境才能保证实验室安全,通过技术和智能的方法为实验室环境安全提前预警,消除安全隐患,是现代实验室建设和管理的重要课题。  德氟作为本次特邀嘉宾以及特约参展商参与,德氟是一家专业从事聚四氟乙烯制品(又名PTFE)的工业企业,产品广泛应用于五金、机械、电子、阀门、石油化工和航空等领域,产品技术指标达到德国、美国、日本等先进工业国家的技术质量标准,并坚持每年都更新的聚四氟乙烯的产品认证,如RoHS、 FDA等。我司紧随国家经济转型升级的大趋势,推广为切入点,在国内分析仪器行业中另辟蹊径,具有象征性和代表性。  我公司致力于大健康领域的整体提升,聚焦于分析仪器市场的深耕与拓展,以国际视野,全球整合的眼界与格局,把握前沿技术,锻造保障能力,追求事业品质。  德氟的企业愿景:打造极具影响力的聚四氟乙烯品牌。【用千份真心,做百年德氟】
  • 助力“土壤三普”- AAS单元素分析之高效率
    引言2022年2月16日,国务院印发《关于开展第三次全国土壤普查的通知》。2022年2月24日,国务院第三次全国土壤普查领导小组办公室发布《第三次全国土壤普查工作方案》。在《第三次全国土壤普查工作方案》的测试化验部分,提到重金属指标的测试方法与全国农用地土壤污染状况详查相衔接一致。以下是全国农用地土壤污染状况详查中涉及到的用AAS测定元素的标准:(点击查看大图)接下来分享一件在使用AAS测试土壤样品时的趣事… … 小飞小赛,实验做完了吗?小赛做完了。飞飞What??那么多土壤样品,怎么会做的这么快呢?那可是用原子吸收单元素测定的仪器啊?小赛是啊,因为我用的是赛默飞iCE3500 AAS做的啊。小飞快跟我说说,是怎么实现的呢?小赛好好好,且听我道来!虽然原吸是单元素分析,远不及ICPOES和ICPMS的测试效率高,但它的成本低,属于经济适用型的仪器,而赛默飞的原吸又具有较高的分析效率。首先,iCE3500 AAS火焰和石墨炉分别采用2套独立的光路系统,见下图,左边火焰,右边石墨炉,即双原子化器配置,由软件全自动控制切换,无需手动切换。不仅原子化器位置固定,更无需手动拆卸石墨炉自动进样器、无需重复调整自动进样器进样针的位置,节省了切换原子化器调节仪器的时间。(点击查看大图)然后,iCE3500 AAS石墨炉部分采用的是快速升温的纵向加热系统,最高升温温度可到3000℃,最快升温速率大于3500℃/s,升温速率快,且石墨炉在分析样品的同时,自动进样器可以采集下一针样品并等待测定,缩短了石墨炉分析周期,70s左右就可以实现一次进样分析,如果每个样品重复三次测定,测定一个样品也就用时210s左右,比同类型仪器测试时间更短,从而面对大量样品分析时就可以节约时间喽。(点击查看大图)其次,赛默飞zhuan利ELC长寿命石墨管,确保2800℃使用2000次,寿命是其它公司产品的4-5倍,在测试大量土壤样品时,不但可以实现无人操作长时间过夜运行,而且节省了运行成本,也不耽误白天工作的时间哦!点击查看大图)小赛所以,我才能较快的完成了实验哦!小飞哦哦,原来如此!那数据准确度能得到保证吗?小赛当然可以啦!首先,iCE3500 AAS石墨炉部分具有氘灯、塞曼和联合背景校正系统,对基体不复杂的样品如各类饮用水可采用氘灯扣背景,提高分析灵敏度;对高背景样品如食品、化妆品、血液尿样及土壤等改用塞曼效应背景校正以保证准确度。两种校正方式全自动切换,且可在一个样品分析中组合使用,所以购买一台iCE3500 AAS相当于购买了两台不同功效的石墨炉,大大提高了分析工作的灵活性。其次,最快升温速率达到3500℃/s,快速升温有利于原子化时形成良好的峰型,保证准确的测试结果。你看,下图就是用iCE3500 AAS石墨炉原子吸收法测定土壤和沉积物中Pb的标液与样品峰叠加图,具有良好的峰型,而且可以获得理想的标曲。(点击查看大图)另外,值得一提的是,iCE3500 AAS 具有GFTV石墨炉可视系统,可以清晰地观察到石墨管中进样情况,并可方便调整自动进样器进样位置,还可以观察干燥和灰化的情况,以便及时调整时间和温度等,从而为获得准确稳定的数据结果提供多一重保障!GFTV石墨炉可视系统可以清晰地观察到石墨管中包括进样、干燥和灰化的情况,并可方便调整自动进样器进样位置下图便是我测定的5种土壤和沉积物标准物质Pb数据结果,5种高低含量标准物质的实际测量结果均能够控制在标准物质的推荐值范围内哦!(点击查看大图)而且火焰部分采用的是惰性进样系统,惰性聚四氟乙烯雾化室,包括碰撞球与扰流器,耐腐蚀Pt/Ir合金与聚四氟乙烯喷嘴组成的雾化器,可直接测定用氢氟酸处理过的土壤样品 。并且具有安全性,防“回火”薄膜和水封传感可以确保人体和设备的安全哦。(点击查看大图)看,下图便是赛默飞iCE3500 AAS的真容哦!小飞哇哦,真心不错呢!我要赶快把这款仪器推荐给其他小伙伴去使用!小结赛默飞iCE3500 AAS不但可以提高单元素测定的分析测试效率,保证数据结果的准确性,而且可以节约运行成本,从而可以助力“土壤三普”对于元素的分析需求,是实验室经济适用型元素分析仪器的bu二选择。如需合作转载本文,请文末留言。
  • 《土壤和沉积物 9种酯类化合物的测定》6项团标征求意见
    按照青海省标准化协会团体标准工作程序,标准起草单位已完成《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》等6项团体标准征求意见稿的编制工作,现公开征求意见。《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:试样经前处理后有电感耦合等离子体全谱直读光谱仪测定。将待测溶液引入高温等离子炬中,待测元素被激发成离子及原子,在特定的波长处测量各元素离子及原子的发射光谱强度,特征光谱的强度与试样中待测元素的浓度在一定范围内呈线性关系而进行定量关系。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10μL、25μL、100μL、250μL和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2 μg/kg-1.5μg/kg,测定下限为4.8μg/kg -6μg/kg ,见附录A。《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定水质样品中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 ml 棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5ml的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5ml,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2g/L -1.5g/L,测定下限为4.8g/L -6.0g/L ,见附录A。《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL甲醇(1:1甲醇和水溶液)振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:不小于 60 ml 具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.振荡器:水平振荡器或翻转振荡器。5.恒温振荡器:温度精度为±2℃。6.天平:感量为 0.01 g。7.提取瓶:不小于40ml,具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。8.平底烧瓶:1000 ml,具塞平底玻璃烧瓶。9.离心机:转速≥3500r/min。本标准适用于土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。当样品量为10g,定容体积为20mL时,目标物的方法检出限为、测定下限见附录A。《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL空白试剂水振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:500mL具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.天平:精度为0.01g。5.平底烧瓶:1000 mL,具塞平底玻璃烧瓶。本标准适用于饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。直接进样法,目标物的方法检出限为0.01mg/L,测定下限为0.04mg/L,见附录A 。《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中水质中22种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 mL棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5mL的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中22种挥发性有机物(二氯二氟甲烷、氯甲烷、氯乙烯、溴甲烷、氯乙烷、三氯氟甲烷、碘甲烷、二硫化碳、乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、2-丁酮、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、甲基异丁基酮、乙酸异丁酯、2-己酮、1,1,2-三氯丙烷、甲基丙烯酸丁酯、乙酸戊酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5mL,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.5-5.0g/L,测定下限为6.0g/L -20.0g/L,见附录A。《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中13种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标物标准质谱图相比较和保留时间进行定性,内标法定量。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10、25、100、250和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中13种挥发性有机物(乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、氯丁二烯、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、顺-1,3-二氯丙烯、乙酸异丁酯、反-1,3-二氯丙烯、乙酸戊酯、甲基丙烯酸丁酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.6 μg/kg -2.2μg/kg,测定下限为6.4 μg/kg -8.8μg/kg,见附录A。
  • 激光偏振检测新技术可分析太空垃圾成分
    p  据物理学家组织网20日报道,美国麻省理工学院(MIT)的工程师最近开发出一种激光偏振检测新技术,不仅能确定太空垃圾位置,还能分析其成分。/pp  在地球空间轨道上,数以亿计的太空垃圾高速旋转着,给航天器和卫星带来巨大威胁。目前,美国国家航空航天局(NASA)和国防部在用陆基望远镜和激光雷达(Ladars)跟踪17000块碎片,但这一系统只能确定目标的位置。研究人员指出,新技术能分析出一块残骸由什么组成,有助于确定其质量、动量及可能造成的破坏力。/pp  该技术利用激光来检测材料对光的偏振效应。MIT航空航天系的迈克尔· 帕斯科尔说,涂料的反射光偏振模式和金属铝有明显区别,所以识别偏振特征是鉴定太空残骸的一种可靠方法。/pp  为检验这一理论,研究人员设计了一台偏光仪来检测反射光的角度,所用激光波长为1064纳米,与Ladars激光类似,并选择了6种卫星中常用的材料:白色、黑色涂料、铝和钛,还有保护卫星的两种膜材料聚酰亚胺和特氟龙(聚四氟乙烯),用偏振滤镜和硅探测器检测它们反射光的偏振状态。他们识别出16种主要的偏振态,并将这些状态特征与不同材料对应起来。每种材料的偏振特征都非常独特,足以和其他5种区别开来。/pp  帕斯科尔认为,其他航天材料如防护膜、复合天线、太阳能电池、电路板等,其偏振效应可能也各有特色。他希望用激光偏振仪建一个包含各种材料偏振特征的数据库,给现有陆基Ladars装上滤波器,就能直接检测太空残骸的偏振态,与特征库数据对比,就能确定残骸构成。/p
  • 三生万物,为您而来,十年磨剑现江湖 —— Sanotac三为科学首次亮相慕尼黑生化分析展
    三生万物,为您而来,十年磨剑现江湖 —— Sanotac三为科学首次亮相慕尼黑生化分析展 Sanotac(中国)上海三为科学仪器有限公司, 以“尽善尽美,精细入微” 为参展理念,携蛋白分离纯化系统以及流体精确输送解决方案首次亮相了在上海新国际博览中心举办的第八届慕尼黑上海分析生化展(analytica China 2016),获得与会观众的高度关注。 展馆入口处观众登记大厅“化工流体精确输送方案”广告格外引人注目 化工流体精确输送方案:“泵”发激情,精确输送,使命必达 根据不同的化工流体性质,不同的耐腐蚀要求,我们有针对性的提供不同的化工流体精确输送方案。我们有各种金属和工程塑料的平流泵(柱塞泵)供用户选择,如316L不锈钢、PEEK聚醚醚酮、PTFE聚四氟乙烯,钛金属,哈氏合金材料的泵头和流路管路。三为科学平流泵是腐蚀性化工流体精确输送方案的终结者! 进入21世纪, 化工过程向着更为绿色、安全、高效的方向发展, 而新工艺、新设备, 新技术的开发对于化工过程的进步显得十分重要。在这样的背景下, 微反应器系统的出现吸引了研究者和生产者的极大关注。微反应器专用平流泵是微反应器系统里面使用程度和磨损程度最高的部件之一,我们已经给市场上的几大主流微通道反应器厂商成功配套供应。  生化仪器盛宴,三为科学亮剑 Sanotac系列高压恒流输液泵(平流泵)用于微反应器中微流体的输送,使得微通道反应器性能更出色,如虎添翼,更能发挥微通道反应器的魔力,发挥微通道反应器高效,本质安全、智能制造的新技术优势,打造美丽化工的未来。旗舰降生,一触即发——Biolot系列蛋白纯化系统 Biolot系列蛋白纯化系统是一套简洁高效的层析系统,可用于快速纯化从毫克到克级水平的蛋白、肽和核酸等目标产物。Biolot系统的硬件由PEEK泵、紫外检测器、电导/pH检测器、自动馏分收集器、混合器和阀组成,与bioview软件、层析柱和填料配套使用,仪器可满足任何纯化挑战。系统配置灵活、支持各种层析技术,并满足客户从小试到中试纯化工艺的的开发要求。 主要技术参数:检测波长190~800nm(两波长同时检测),吸光度范围-3—3 AU,电导范围0—999.9ms/cm,pH范围0—14。 在展会现场,Sanotac(中国)三为科学展台集中展示了包括Biolot系列蛋白纯化系统,分析液相色谱系统,制备液相色谱系统,316L高压输液泵,PEEK高压输液泵, 纯钛高压输液泵,聚四氟乙烯(PTFE)平流泵,防爆柱塞计量泵,实验室超纯水机,试剂耗材等众多产品,引来了众多专家领导及专业观众的驻足关注。包括但是不限于中国石油大学,南京工业大学,浙江大学,华东理工,北京航空航天大学,仪器信息网等。 上海三为科学仪器有限公司是一家专业研发和生产色谱、流体设备和化工萃取设备等科学仪器的科技公司,公司的科研团队致力于色谱、流体产品、萃取技术的核心部件的设计。详细内容欢迎访问我们的官网。
  • 环境领域多项最新标准发布!涉及色谱、质谱、光谱等多类仪器分析方法
    近日,为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,国家生态环境部连续发布多项环境领域标准,包括环境空气领域:环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法 (HJ 1271—2022);环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法。水质领域:水质6种苯氧羧酸类除草剂和麦草畏的测定高效液相色谱法(HJ 1267—2022);水质甲基汞和乙基汞的测定液相色谱-原子荧光法(HJ 1268—2022)。土壤领域:土壤和沉积物甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)。仪器信息网摘录部分要点如下:1.环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 (HJ 1271—2022)本标准规定了测定环境空气颗粒物中甲酸、乙酸和乙二酸的离子色谱法,适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。其方法原理为环境空气颗粒物样品中的甲酸、乙酸和乙二酸经水超声提取、离子色谱柱分离后,用抑制型电导检测器检测。根据保留时间定性,峰面积或峰高定量。其中涉及到的仪器及设备包括:环境空气颗粒物采样器:性能和技术指标应符合 HJ 93 和 HJ/T 374 的规定;离子色谱仪:具有电导检测器、阴离子抑制器。若使用氢氧根淋洗液,需配有淋洗液在线发生装置或二元以上梯度泵;色谱柱:阴离子分析柱和保护柱,能实现对甲酸、乙酸和乙二酸的分离;滤膜盒:聚苯乙烯(PS)或聚四氟乙烯(PTFE)材质;样品管:聚乙烯(PE)、聚丙烯(PP)或聚四氟乙烯(PTFE)材质,容积≥100 ml,具螺旋盖;超声波清洗器:功率 400 W 以上,频率 40 kHz~60 kHz;注射器:1 ml~10 ml;水系微孔滤膜针筒过滤器:孔径 0.45 μm;以及一般实验室常用仪器和设备等。2. 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法 (HJ 1270—2022)本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE207和BDE 209 共 26 种多溴二苯醚的测定。其中涉及到的仪器及设备包括:高分辨气相色谱仪,需要配置低流失石英毛细管柱,一根为耐高温柱,柱长 15 m,内径0.25 mm,膜厚0.10μm;另一根柱长 30 m,内径 0.25 mm,膜厚 0.10 μm。固定相为 5%苯基 95%二甲基聚硅氧烷,或其他等效的低流失色谱柱;高分辨质谱仪,要求静态分辨率大于 8000,动态分辨率大于 6000;前处理装置等。3. 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 (HJ 1267—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中 6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法,适用于地表水、地下水、生活污水、工业废水和海水中麦草畏(3,6-二氯-2-甲氧基苯甲酸)、2,4-滴(2,4-二氯苯氧乙酸)、2-甲-4-氯(2-甲基-4-氯苯氧乙酸)、2,4-滴丙酸(2-(2,4-二氯苯氧基)-丙酸)、2,4,5-涕(2,4,5-三氯苯氧乙酸)、2,4-滴丁酸(4-(2,4-二氯苯氧基)-丁酸)和2,4,5-涕丙酸(2-(2,4,5-三氯苯氧基)-丙酸)等 7 种除草剂的测定。其中涉及到的仪器及设备包括:高效液相色谱仪,要求耐压≥60 MPa,具紫外检测器或二极管阵列检测;器。色谱柱,要求填料粒径 2.7 µm,柱长 15 cm,内径 4.6 mm 的 C8反相色谱柱,或其他适用于酸性条件的等效色谱柱;浓缩装置;固相萃取装置;pH计等。4. 水质 甲基汞和乙基汞的测定 液相色谱-原子荧光法 (HJ 1268—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的液相色谱-原子荧光法,适用于于地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:液相色谱-原子荧光联用仪,由液相色谱系统、在线紫外消解装置及原子荧光光谱仪组成;色谱柱,要求填料粒径为 5 μm,柱长 15 cm,内径 4.6 mm 的 C18反相色谱柱,或其他等效色谱柱;汞空心阴极灯;分液漏斗等。5. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法,适用于土壤和沉积物中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:全自动烷基汞分析仪,要求包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪;真空冷冻干燥仪,要求空载真空度达13Pa以下;离心机,要求转速可调;恒温振荡器;涡旋振荡器;尼龙筛;离心管;进样瓶等。
  • 鼎泰生化科技携新一代消解仪、超声清洗机产品亮相BCEIA 2017
    2017年10月10日,鼎泰(湖北)生化科技设备制造有限公司(以下简称鼎泰公司)携新一代DTI系列全自动石墨消解仪、DTA系列静音型超声清洗机等产品精彩亮相BCEIA 2017盛会。鼎泰公司产品经理简要介绍了本次展出的两款重点产品以及公司未来3年发展规划。DTI系列全自动石墨消解仪  DTI系列全自动石墨消解仪是鼎泰最新一代全自动石墨消解仪,鼎泰公司产品经理重点强调了它的三大优势。  首先它外观小巧,为实验室节省空间。在市场上同样位数,同样功能以及同样处理能力的同类产品比较,该款仪器具备最小体积。  其次该款产品全身防腐设计,大大延长使用寿命。仪器内外经过特氟龙(聚四氟乙烯)处理,在高温下,即使是浓酸腐蚀,也能承受,耐腐蚀能力非常强。  再者该产品售后返修率少,因为产品质量过硬,产品稳定性强,返修率少,所以基本不会涉及售后维修等问题,这对于提升实验室工作效率益处很大。  DTI系列智能操控、性能稳定,它将电热消解、自动通风系统、自动试剂选择添加系统、非接触式机械振荡、液位传感定容、机械臂托举、PC、智能控制等部件集成,一站式完成样品消解的自动加酸、加热消解、样品混匀、赶酸、托举冷却、定容等实验操作,是无机样品前处理实验人员的得力助手,轻松高效的实现实验方案。  小编也仔细扒了一下详细资料,小小产品涵盖了很多技术亮点:  1、聚四氟乙烯全密闭封装,无传动皮带外露,长久抵抗酸雾腐蚀  2、双臂支撑结构,保持超声波传感器水平高度长久稳定,准确定容  3、双加热温控,两个石墨体独立加热,独立控制  4、可选蠕动泵和注射泵互补、协同加液,发挥两种泵的加液优势  5、通过触屏电脑、台式机、笔记本无线操控  6、声音提醒功能,实验进度提示,试剂空声音报警  7、断点闪存,突发断电时,实验断点闪存,接断点继续消解  8、离线运行,脱离控制器,继续消解DTA系列超声波清洗机——全自动注、排水程序控制 可随机变换超声功率频率 加速实验效率 DTA系列超声波清洗机是鼎泰公司新一代超声波清洗机,该仪器可满足全自动注排水,并且可随机变化频率和功率,这在市场同类产品中是一大优势,可大大加速实验效率,提高实验结果。通过仪器前面彩色触摸屏进行程序设定操作,进行全自动注排水设置,还可以类似液相梯度那样,设置在不同时间使用不同的超声功率、不同的超声频率来工作,这尤其对化工合成、化工工艺研究实验室带来更大便利,是科研研发实验室得力工具。也是国内外同类产品中,处于前沿技术的产品。  DT系列超声波清洗机不仅优化了工业级超声波阵子以提高超声稳定性,采用304不锈钢材质以提升清洗机的耐用性,而且在产品的外形和结构设计方面更是进行了全新定位,流线型ABS材质机身耐腐蚀、清洁方便,通过密合式紧密设计以降低超声时产生的噪音,实验人员使用过程中感受不到噪声的存在,更安心的投入工作。  该超声波清洗机可广泛用于精密清洗、固体溶解、颗粒分散、细胞裂解以及样品制备前处理如液体脱气、混合、均质等。  除了BCEIA现场展出的上述两款重点产品外,鼎泰公司先后在市场推出了多项前处理产品如恒温加热板、磁力搅拌器、柱温箱、真空抽滤泵等。  立足前处理领域 扩充产品线   谈及未来3年发展,鼎泰产品经理向小编透露,鼎泰将持续立足前处理领域,将现有产品做稳定,做扎实前提下,扩充更多新品类,目前更多新品现已进入研发阶段。相信鼎泰公司产品未来将具备更广泛的市场空间。
  • 低本底、自动化 | FAAS 8000ICS在线离子色谱分析系统
    在半导体行业芯片的生产过程中,环境的洁净程度直接关乎产品的良品率。空气中的分子污染物(AMC)是半导体生产工艺中最重要的化学污染之一,其中酸性物质(MA)、碱性物质(MB)是AMC污染物的重要组成部分,直接影响产品质量。● ● ●洁净室AMC中酸碱性污染物的监测主要是通过离子色谱分析仪,结合人工采样、超纯水吸收法等前处理过程。此监测分析过程繁琐低效,并可能引入人工污染的风险,导致监测数据结果偏差。FAAS 8000ICS在线离子色谱分析系统 应用于半导体厂区气态分子污染物(AMC)中酸性物质(MA)、碱性物质(MB)污染物的在线监测系统。系统采用撞击式气体吸收技术结合离子色谱分析方法,实现了多点采样、气体自动吸收富集、在线质量控制等全自动在线监测功能,解决了洁净室AMC监测过程中人员投入大、数据监测频率低、数据反馈不及时等问题。性能特点自控程度高FAAS 8000ICS 实现了自动远距离采样、自动富集吸收、 自动质量控制、自动分析、数据自动上传全流程自动化。避免人工误差引入,数据准确可靠。检测能力强大体积进样浓缩,大幅提高系统检测能力,检出限可达亚ppt级,缩短系统运行周期。监测范围广单套系统最多可配置32个点位的样品采集;系统通过真空泵远距离采样,可覆盖300m范围内样品的在线监测。系统本底低系统管路及阀组采用洁净的聚四氟乙烯材料设计,满足SEMI F57中相关析出杂质的低本底控制要求。吸收效率高在线双吸收模块设计,提高样品吸收效率,缩短系统运行周期。应用领域FAAS 8000ICS在线离子色谱分析系统主要应用于洁净室环境空气中水溶性酸碱性污染物的在线监测,可扩展至大气中离子污染物的检测。应用案例采用FAAS 8000ICS在线监测洁净室中的NH4+、SO42-、NO3-、NO2-、Cl-、F- 等六种离子浓度10天内变化情况。实验结果与离线手动检测结果一致,符合半导体洁净室检测要求。
  • 格丹纳仪器2015年广州国际分析测试仪器展完美落幕!
    2015年3月12日~14日,《广州国际分析测试及实验室设备展览会暨技术研讨会》在广州保利世贸博览馆隆重召开。 广州格丹纳仪器有限公司展示了最新研发的全自动石墨消解仪、免水定氮仪、玻璃陶瓷实验电热板、石墨消解仪、火焰光度计、脂肪仪等,并在新品发布会上发布了公司最新研发的新型免水N310定氮仪,N310定氮仪为史上的首次突破,基于DDP二代免水冷凝器技术,无需用水冷凝。 格丹纳仪器秉承了广东老一辈仪器研发和应用专家的成就和技术底蕴,以做“最好用的科学仪器”为使命,全新的免水定氮仪、全自动石墨消解仪、玻璃陶瓷电热板等以科技、实用和创新为亮点,吸引了众多的宾客。 N310自动凯氏定氮仪以免水、准确重现为吸引点,仪器无需接水冷凝,不受水龙头和冷水机的限制,可在实验室内自由摆放。粗略估算,新型的免水冷凝技术,每台定氮仪每年节水约1200吨。不仅如此,基于DDP二代免水冷凝器技术,可将蒸馏产生的氨气和水蒸气在1°C的低温下瞬间液化吸收,氨气无损失,保证了实验数据的准确重现。史上首创的免水冷凝技术,体现了格丹纳研发团队科技、创新和实用的科研精神。 全自动石墨消解系统基于现有的DS-360中温石墨消解仪主机而设计的自动消解处理系统,包括自动加酸、消解、赶酸、定容、摇匀、自动酸气排放和自动酸气吸收等功能。体现了格丹纳消解系统健康、安全、高效和智能的人性化理念。 同样,玻璃陶瓷实验电热板及DS系列石墨消解仪也备受宾客的重点关注,该款实验电热板采用顶级号牌的玻璃陶瓷台面,台面不仅能耐强酸强碱,并且易于清洁,一抹即净。而DS系列石墨消解仪覆盖中温、高温两个型号,满足不同的消解温度需求,无线蓝牙控制器、聚四氟乙烯台面、喷涂特氟龙石墨、整机外围无金属部件等体现了格丹纳仪器的精湛防酸碱工艺。 格丹纳仪器诚征全国各地经销商、代理商!
  • 2010《中国药典》中的样品制备新技术:微波消解
    重金属元素测定主要分为样品粉碎、消化和分析仪器测定等三个过程,其中消化处理过程为最关键的步骤。传统的化学消化方法分为湿法分解、干法灰化-酸溶法和高压密闭消解,这些方法虽然分解能力强,但耗时长(通常需要几个小时至数天),试剂用量大,劳动强度大,能耗多,空白值高,测定结果不准确(Hg、As、Pb、Cr等元素易挥发,出现损失)。 微波消解作为常规湿法消化方法的延伸,具有消解速度快、样品消解完全、污染少、回收率高、易于控制等优势,已被广泛应用于各种样品的前处理。 自2005年版《中国药典》编纂伊始,上海新仪微波化学科技有限公司积极参与并广泛协助科研院校和药企展开应对原子吸收分光光度法和电感耦合等离子体质谱法以及电感耦合等离子体原子发射光谱法中供试品溶液的制备方法研究。2010年版《中国药典》更为明确将微波消解法纳入首选方法。 上海新仪微波化学科技有限公司应用技术中心急客户之所需,集中实验精英成功开发出一系列样品制备规范SOP,涵盖100余种中药材粗粉和多种药用辅料(如:胶囊用明胶);同时正式为我司的药业客户发布2010《中国药典》重金属限度含量测定的实验室全程解决方案和仪器设备采购目录及指南,详情可咨询400-888-7840. 2010年版《中国药典》部分附录摘要: (1) 附录Ⅸ B 铅、镉、砷、汞、铜测定法(一部) 一、原子吸收分光光度法 本法系采用原子吸收分光光度法(见《药典》附录V D)测定中药材中的铅、镉、砷、汞、铜,除另有规定外,按下列方法测定。 1.铅的测定(石墨炉法) 供试品溶液的制备 (A 法) 取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml 量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 2.镉的测定(石墨炉法) 供试品溶液的制备(A法) 同铅测定供试品溶液的制备 3.砷的测定(氢化物法) 供试品溶液的制备(A法) 同铅测定供试品溶液的制备 4.汞的测定(冷蒸气吸收法) 供试品溶液的制备 A 法: 取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上,于120℃缓缓加热至红棕色蒸气挥尽,并继续浓缩至2~3ml,放冷,加20%硫酸溶液2ml、5%高锰酸钾溶液0.5ml,摇匀,滴加5%盐酸羟胺溶液至紫红色恰消失,转入10ml 量瓶中,用水洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,必要时离心,取上清液,即得。同法同时制备试剂空白溶液。 5.铜的测定(火焰法) 供试品溶液的制备(A法) 同铅测定供试品溶液的制备 二、电感耦合等离子体质谱法 本法系采用电感耦合等离子体质谱仪(见《药典》附录XI D)测定中药材中的铅、砷、镉、汞、铜。 供试品溶液的制备 取供试品于60℃干燥2 小时,粉碎成粗粉,取约0.5g,精密称定,置耐压耐高温微波消解罐中,加硝酸5~10ml(如果反应剧烈,放置至反应停止)。密闭并按各微波消解仪的相应要求及一定的消解程序进行消解。消解完全后,冷却消解液低于60℃,取出消解罐,放冷,将消解液转入50ml 量瓶中,用少量水洗涤消解罐3 次,洗液合并于量瓶中,加入金单元素标准溶液(1&mu g/ml)200&mu l,用水稀释至刻度,摇匀,即得(如有少量沉淀,必要时可离心分取上清液)。除不加金单元素标准溶液外,余同法制备试剂空白溶液。 (2) 2010年版《中国药典》药用辅料部分新增品种和修订品种(【检查】项目摘录) 铬 取药用辅料(如:明胶)0.5g,置聚四氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中 ,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;另取铬单元素标准溶液,用2%硝酸稀释制成每1ml含铬1.0&mu g的铬标准储备液,临用时,分别精密量取铬标准储备液适量,用2%硝酸溶液稀释制成每1ml含铬0-80ng的对照品溶液。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法(附录Ⅳ D第一法),在357.9nm测定,含铬不得过百万分之二。 附:国家食品药品监督管理局关于实施《中国药典》2010年版有关事宜的公告
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 众瑞仪器发布ZR-3330型 环境空气一氧化碳分析仪新品
    ZR-3330型 环境空气一氧化碳分析仪产品概述ZR-3330型 环境空气一氧化碳分析仪,采用非分散红外法测量环境空气中CO气体的浓度,具有测量准确、受气候条件影响小等优点,是国际公认的测定环境空气中CO的监测方法。参照标准HJ 965-2018环境空气 CO的自动测定非分散红外法HJ 193 环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统安装验收技术规范HJ 654 环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法HJ 663 环境空气质量评价技术规范(试行)HJ 818 环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范 技术特点长寿命可靠红外光源,采用气体滤光相关技术;检出限低,灵敏度高,采用自适应优化算法,使响应时间和信噪比达到较好;开机自判断进入自动测量;测量周期:5min(1-5min可设定);实时浓度显示,测量浓度值可以mg/m3和ppm切换,可适应不同温湿度环境采样;历史数据存储、查询,可以查看数据记录、校准记录与报警记录;具有多参数报警功能;进气管路采用聚四氟乙烯和不锈钢材料,不吸附且不与待测气体成分发生反应。排气管路采用硅胶管,便于布局且节省成本;USB导出和蓝牙打印,具有数据上传功能;外观设计:轻质便携化、小型化、可靠性设计原则,提高产品外观、减少体积和重量。创新点:ZR-3330型 环境空气一氧化碳分析仪,采用非分散红外法测量环境空气中CO气体的浓度,具有测量准确、受气候条件影响小等优点,是国际公认的测定环境空气中CO的监测方法。检出限低,灵敏度高,采用自适应优化算法,使响应时间和信噪比达到较好水平;开机自判断进入自动测量;测量周期:5min(1-5min可设定)。ZR-3330型 环境空气一氧化碳分析仪
  • 镉大米再现!镉,你到底来源于哪?
    云南销毁15万斤大米,镉大米再次引起大众关注!大米是中国大部分地区人民的主要食品,镉是一种环境污染物,通过ICPMS可快速的检测食品、环境等样品中的镉含量,借助高灵敏度的仪器希望通过溯源可以找到污染的源头,确保大米的质量安全。 近日,云南发现米线重金属超标,溯源发现镉大米并销毁15万斤。 大米含有稻米中近64%的营养物质和90%以上的人体所需的营养元素, 镉并不是人体必需元素,而且是一种环境污染物。 急性镉中毒症状主要表现为恶心、流涎、呕吐、腹痛、腹泻,继而引起中枢神经中毒症状,严重者可因虚脱而死亡 。 长期摄入含镉食品,镉可在生物体内富集,其生物半衰期为10~30年,且生物富集作用显著,即使停止接触,大部分以往蓄积的镉仍会继续停留在人体内,从而引起慢性中毒,使肾脏发生慢性中毒及软骨病。世界卫生组织将镉列为重点研究的食品污染物;国际癌症研究机构(IARC)将镉归类为人类致癌物,会对人类造成严重的健康损害;美国毒物和疾病登记署(ATSDR)将镉列为第7位危害人体健康的物质;我国也是将镉列为重点监控指标之一。 根据《GB 2762-2017 食品安全国家标准 食品中污染物限量》,谷物及其制品镉限量如下:根据《GB 5009.15-2014食品中镉的测定》及《GB 5009.268-2016食品中多元素的测定》,镉的测定可以采用原子吸收石墨炉法和电感耦合等离子体质谱法。 不管是大米检测还是其可能的来源土壤、大气等,岛津均可提供完备的解决方案。岛津ICPMS-2030系列 ICPMS-2030测定大米中多元素的含量 样品前处理方法称取0.4g(精确至0.0001g)试样于聚四氟乙烯微波消解罐中,加入4 mL HNO3,盖上消解罐盖,放入微波消解仪消解。消解结束后冷却至室温,打开密闭消解罐,将消解液转移至 50 mL容量瓶中,用超纯水定容至刻线,摇匀,待测。 仪器测定条件实验结果ICPMS-2030测定土壤中多种金属元素的含量 样品前处理方法称取0.1g(精确至0.0001g)试样于聚四氟乙烯微波消解罐中,加入6 mL王水,盖上消解罐盖,放入微波消解仪中按照下表程序消解。消解结束后冷却至室温,打开密闭消解罐,用慢速定量滤纸将提取液过滤至50 mL容量瓶中,待提取液滤尽后,用0.5 mol/L的硝酸清洗消解罐内壁至少3次,清洗液一并过滤至容量瓶中,用超纯水定容至刻线,摇匀,待测。实验结果
  • 饮用水新标准强势来袭,你准备好了吗?
    俗话说:水是生命之源,人体内的水分含量占体重的60~70%,自然界中的生物生存无一不依赖水源,然而以环境为代价的工业发展却致使水源污染日趋严重。饮用水水质的安全性面临着严峻的形势,为了保障公民的健康,各国政府和相关组织均制定了饮用水水质标准,而且为了控制饮用水中不断增加的对人体不安全的组分,标准中所列的检测指标也在不断更新。在水体的各种污染中,以有机物和消毒副产物污染尤为严重。水体中的有机物来源于两个方面:一是外界向水体中排放的有机物;二是生长在水体中的生物群体产生的有机物以及水体底泥释放的有机物。前者包括地面径流和浅层地下水从土壤中渗沥出的有机物,主要是腐植质、农药、杀虫剂、化肥及城市污水和工业废水向水体排放的有机物、大气降水携带的有机物、水面养殖投加的有机物、各种事故排放的有机物等。后者一般情况下在总的有机物中所占的比例很小,但是对于富营养化水体,如水库等是不可忽略的因素。2023年3月17日经国家市场监督管理总局批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准,代替了原有的GB/T 5750-2006《生活饮用水标准检验方法》。此标准将于2023年10月1日起正式实施。而本次修订主要特点在于:增添了高通量的分析方法,扩展了质谱技术的应用范围,加强了自动化程度高的检测方法。大大提高了检测效率,使实验过程更智能,更高效。Detelogy根据即将实施的GB/T 5750.8-2023 《生活饮用水标准检验方法 第8部分:有机物指标》提供饮用水中16种多环芳烃的前处理解决方案:01 水样的采集与保存采集水样时,若含有余氯,先加抗坏血酸于采样瓶中(每升水样加0.1g 抗坏血酸;余氯含量高时可增加用量)。采集2-4L水样,加磷酸调节至ph<2,密封;水样于0℃~4℃避光保存,保存时间为 7 d。注:为降低本底值,试验用玻璃器皿需在马弗炉中300℃烘烤2h,或是盛水样前用5-10ml甲醇润洗玻璃瓶瓶壁两遍,去除瓶中的多环芳烃本底。本底值可能来自溶剂、试剂和玻璃器皿,如使用塑料材料,可选择聚四氟乙烯材质。(尽量避免使用塑料材质的物品)。02 水样的富集与净化取水样 500 mL于广口玻璃瓶或聚四氟乙烯的瓶中,加入 10 mL甲醇,摇匀;将HLB柱固定于iSPE-864全自动智能固相萃取仪,对上述水样进行净化。注:为保证更高的准确性,建议上样结束后用10 mL50%甲醇水溶液(pH2)润洗样品瓶后一并过柱。03 浓缩定容浓缩:向洗脱液表面滴加100 μL吐温-20的甲醇溶液后氮吹,置于FV32plus全自动高通量智能平行浓缩仪中氮吹至近干,加入1.0毫升50%乙腈水复溶,在MultiVortex多样品涡旋混合器震荡混匀,过滤膜,待测。注:氮吹时需控制水浴温度在 40℃以下,用微弱气流氮吹,不要吹干,吹干会导致损失增加。实验仪器优选
  • 2010年物理诺奖得主团队用石墨烯制出特氟龙替代物
    英国曼彻斯特大学科学家海姆和诺沃肖洛夫因发明石墨烯而获得今年诺贝尔物理学奖。最近,他们领导的研究小组又利用石墨烯制成了一种稳定耐高温的新材料,可替代用于不粘锅的特氟龙材料,具有广泛应用前景。  海姆和诺沃肖洛夫等人在新一期纳米科技刊物SMALL上报告说,他们对石墨烯进行氟化处理,获得了这种新材料。现在被广泛应用的特氟龙材料的化学名称是聚四氟乙烯,是由碳元素和氟元素组成的塑料 而石墨烯是由薄薄的一层碳原子组成的物质,对石墨烯进行氟化处理后得到的材料实际上就是只有一层原子结构的特氟龙。  这种新材料同时具有石墨烯和特氟龙两种材料的优点。它像特氟龙那样化学性质稳定和耐高温,可以用于生产不粘锅和密封垫圈等产品 同时它又像石墨烯那样具有很高的强度和可用于生产半导体的电学性能。  海姆说,两方面优点的结合使得这种材料具有广泛应用前景,它不会只是被作为更薄更轻的特氟龙替代物,而是可以用在任何需要超薄、高强度、化学性质稳定、耐高温涂层的场合,比如可以用于生产发光二极管中的超薄介质。
  • CIF发布CIF水质消解仪新品
    CIF公司所生产的水质消解仪采用环绕立体加热技术,智能化分体式设计,具有消解快速、高效、便捷等优点,采用“一站式”消解理念,消解、赶酸、定容可在同一消解罐内完成。根据实验需要,可选择聚四氟乙烯和硼硅玻璃两种试管,充分扩大了用户消解用酸的范围。适用于食品、医药、农业、林业、环保、化工、生化等行业以及高等院校、科研部门对土壤、饲料、植株、种子、重金属、矿石等化学分析之前的样品消解处理。在常压或微压状态下消解样品,利用湿法消解的方法,可以完全取代微波消解,是AA、ICP、ICP-MS、原子荧光、凯氏定氮等分析仪器最理想的样品前处理仪器,同时可用于微波消解的预处理和赶酸处理。技术参数:型号控温范围℃控温精度℃功率kw孔径mm孔深mm孔数外形尺寸mm电源V/HzDS32-260RT-260±0.1或±11.8Φ315024320X235X165220/50Φ445015DS43-2602.4Φ315048400X315X165Φ445030DS32-360RT-3602.4Φ315024320X235X185Φ445012DS43-3603.0Φ315048400X315X185Φ445024创新点:CIF 生产的智能消解仪采用环绕立体加热技术,消解快速、高效、便捷。“一站式”消解理念,消解、赶酸、定容在同一消解罐内完成。聚四氟乙烯和高硼硅玻璃两种消解管可选择,扩大了用户消解用酸的范围。适用于食品、医药、农业、林业、环保、化工、生化等行业以及高等院校、科研部门对土壤、饲料、植株、种子、重金属、矿石等化学分析之前的样品消解处理。高温湿法消解的方法可以取代微波消解,是 AA、ICP、ICP-MS、原子荧光、凯氏定氮等分析仪器最理想的样品前处理仪器,同时可用于微波消解的预处理和赶酸处理。CIF水质消解仪
  • 众瑞仪器发布ZR-D21A型 废气氯化氢采样装置新品
    详细介绍产品简介ZR-D21A型废气氯化氢采样装置适用于采集固定污染源废气中的氯化氢或者盐酸雾,广泛应用于环保、卫生、劳动、安监、军事、科研、教育等部门。执行标准HJ 548-2016 《环境空气和废气氯化氢的测定硝酸银容量法》HJ 549-2016 《环境空气和废气氯化氢的测定离子色谱法》 技术特点整套设备为组合式设计:采样管、颗粒物过滤器、吸收瓶、温控浴、流量计量等功能体有机组合,结构紧凑,轻巧便携。采样管芯管、滤膜夹采用聚四氟乙烯,钛合金等耐蚀材料。采样管、滤膜夹具有恒温功能。适应多种取样瓶的种类。创新点:1、整套设备为组合式设计:采样管、颗粒物过滤器、吸收瓶、温控浴、流量计量等功能体有机组合,结构紧凑,轻巧便携。2、采样管芯管、滤膜夹采用聚四氟乙烯,钛合金等耐蚀材料。3、吸收瓶的工作空间设置有循环水浴/冰水浴/空气浴/热气浴四种方式,适应全国范围的高温、常温、严寒等多种工况的采样。4、吸收瓶恒温浴与颗粒干扰物过滤器恒温箱一体设计,电接口、放水接口、温度设定显示等所有人机交互位于一个操作面,不转身即可全部操控。ZR-D21A型 废气氯化氢采样装置
  • 应用 | 影响喷墨打印质量的重要参数 - 润湿性
    研究背景全反应式喷墨打印(Full Reactive Inkjet Printing, FRIJP)是采用喷墨打印机将一种或多种反应物喷到基材上,利用它们之间产生物理或化学反应以原位形成产物的一种技术。聚二甲基硅氧烷(polydimethylsiloxane, PDMS)是一种因其低成本、好的生物相容性和高的光学透明度而被广泛应用的硅酮弹性体。首次利用FRIJP成功将聚二甲基硅氧烷(PDMS)油墨打印出复杂的三维几何图形。通过使用制备的基底,可以显著提高PDMS的打印精度,打印的特征分辨率可以高达48 ± 2µ m(X,Y)。材料和方法一种市售的两组分硅酮(PolytekPlatSil71-Silliglass)被用作活性油墨的基础。PDMS油墨的两部分分别称为A(含氢化物)和B(含催化剂),反应结果如图1所示。该配方由A与B的比例为1:1(重量)组成,其中硅酮在铂催化剂的存在下发生交联。该反应不受氧气或水分的抑制,因此可以在没有控制气氛的情况下进行。 图1-PDMS在铂催化剂存在下的交联反应,硅酮氢化物键Si-H被一个额外的Si-C键取代。标记的是PDMS配方中每个组分中的化合物。用于打印的Dimatix材料打印头(DMP)(Dimatix,Fujifilm)的建议操作范围分别为粘度10-12 mPa.s和表面张力28-33 mN/m,但打印头可使用高达30 mPa.s粘度和70mN/m的表面张力。使用醋酸辛酯(octyl acetate, OA)(SigmaAldric O5500)作为粘度改性剂。喷墨打印的一个重要因素,同时也影响墨滴如何在基材形成,这就是油墨的表面张力。通过液滴形状分析仪(KRUSS DSA 100)悬滴法测试墨水的表面张力,同时用座滴法测试了制备的PDMS油墨与基底的接触角。 图2 DSA100 液滴形状分析仪结果与讨论PDMS组分、溶剂和最终油墨的粘度和表面张力值见表1。表1-油墨、溶剂和溶液的性质。通过使用无反应的稀释剂和打印头加热;达到了可打印范围内的粘度(30 mPa.s)。 采用三种材料基底物质,标准玻片、聚四氟乙烯和用1%1H、1H、2H、2H-全氟辛基三乙氧基硅烷(PFOTS)对玻璃片进行化学改性,接触角的结果如表2所示。结果表明,玻璃表面被聚四氟乙烯和PFOTS处理后的接触角都高于玻璃。对固化后的PDMS的接触角进行了分析,显示出比PTFE和PFOTS的基底上更好的润湿性。表2-座滴法测试(KRÜ SS DSA100)墨水A在不同衬底上的接触角。 当使用成型技术时,PDMS能够在大多数材料表面上铺展,但对于喷墨打印,会降低特征分辨率。通过对比三种材料基板;玻璃、聚四氟乙烯涂层玻璃和PFOTS涂层玻璃的接触角,来分析油墨在基板上的打印分辨率。从接触角和打印网络测试结果结合来看,油墨在未经处理的玻璃表面完全铺展开,液滴尺寸达到了150μm,同时玻璃表面的接触角也是最小的。PFOTS涂层玻璃和聚四氟乙烯涂层玻璃的液滴尺寸相似,分别为48 ± 2µ m和64 ± 2µ m。油墨在PFOTS涂层玻璃上的接触角最大,使得PFOTS涂层玻璃上的液滴能够更小、更圆,因此使用PFOTS衬底可以获得最好的特征分辨率。 图3-(a)将一滴墨水a和b打印到未经处理的载玻片上的结果。(b)在制备好的聚四氟乙烯涂层载玻片打印组成墨水a和墨水b的印刷网格和(c)在PFOTS涂层玻璃上的网格结论本文研究了PDMS的反应式喷墨印刷技术,并且通过优化PDMS油墨在基底上的润湿性,来获得更好的打印分辨率。在印刷过程中,油墨与印刷介质之间的润湿性能对于印刷质量和油墨的附着力具有重要影响。因此,评估油墨在印刷介质上的润湿性能对于印刷质量的控制和油墨的选择具有重要意义。本文有删减,详细信息请参考原文:C.Sturgess, C.Tuck, I. A. Ashcroft and R. D. Wildman, J. Mater. Chem. C, 2017,DOI: 10.1039/C7TC02412F.
  • CEM Discover 2.0:微波技术下的惰性反应环境
    01 引言 微波加热技术在众多合成转化中得到了应用,这些转化包括纳米材料组装、聚合反应以及小分子合成。1-3几乎任何传统的加热转化都可以适应微波辐射,包括那些使用敏感的合成单元和过渡金属催化剂的反应。4微波加热的好处包括减少废物产生、提高产品纯度以及缩短反应时间。图1:从二苄基取代的醛亚胺(或二苯甲酮取代的酮亚胺)生成2-氮杂烯丙基阴离子微波辐射所带来的提高的反应速率使得快速反应优化和化合物库筛选成为可能。当与自动进样器配件配合使用时,如 CEM 的 Discover 2.0 配备 12 位或 48 位自动进样器,可以同时准备多个实验并排队依次运行,从而进一步提高了生产效率。然而,对于使用敏感试剂的实验来说,自动进样器的成功应用依赖于反应容器在排队等待和反应后保持惰性气氛的能力。为了证明 Discover 2.0 的 10 毫升和 35 毫升容器保持惰性气氛的能力,进行了一项使用2-氮杂烯丙基阴离子的研究。2-氮杂烯丙基阴离子是通过二苄基取代的醛亚胺(和二苯甲酮取代的酮亚胺)去质子化生成的(图1),由于其在胺组装中的实用性而受到了广泛关注。5-8 形成后,2-氮杂烯丙基阴离子呈现出鲜艳的颜色(通常是紫色),并且在淬灭后变为无色透明(图2)。这种显著的颜色变化使得可以方便地观察容器的气氛条件。图2:2-氮杂烯丙基阴离子溶液在形成时呈现鲜艳的颜色(通常为紫色),在淬灭后变为无色透明 02 材料与方法 试剂双(三甲基硅基)氨基钾(KHMDS)和无水四氢呋喃(THF)均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。α-苯基-N-(亚苄基)苯甲胺(醛亚胺)根据已建立的文献步骤制备5,所用到的二苄胺、苯甲醛、硫酸钠、二氯甲烷和己烷均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。程序5暴露于大气中在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。穿刺硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺的硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。带穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。然后将容器放入Discover 2.0微波腔体中,将溶液加热至 100°C。加热 20分 钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用 35 毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。然后将容器放入 Discover 2.0 微波腔体中,将溶液加热至 100°C。加热 20 分钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。03 结果2-氮杂烯丙基阴离子溶液在形成后 4-6 分钟内暴露于大气中搅拌时会被淬灭。正如所预期的,当2-氮杂烯丙基阴离子溶液在惰性气氛(无水无氧)下搅拌时,2-氮杂烯丙基阴离子的寿命大大延长(表1)。虽然使用了穿刺硅胶帽,但在室温下,35 毫升容器中的2-氮杂烯丙基阴离子持续了 1 小时,而在 10 毫升容器中则持续了 4 小时。在 100°C 加热 20 分钟后,使用穿刺硅胶帽的两个容器都能够使2-氮杂烯丙基阴离子溶液维持更长时间:35 毫升容器为 1.5 小时,而 10 毫升容器则超过 6 小时。当使用未穿刺的硅胶帽时,尤其成功,无论加热程序和容器大小如何,2-氮杂烯丙基阴离子都被维持了 6 小时以上。表1:不同大气和温度条件下2-氮杂烯丙基阴离子的寿命实验微波加热时间阴离子猝灭:10 ml 容器阴离子猝灭:35 ml 容器暴露于大气中N/A6 min4 min穿刺硅胶盖N/A4 h1 h未穿刺硅胶盖N/A6+ h6+ h穿刺硅胶盖+微波20 min,100℃6+ h1.5 h未穿刺硅胶盖+微波20 min,100℃6+ h6+ h04 结论Discover 2.0 10 毫升和 35 毫升容器能够维持惰性气氛超过 6 小时。虽然使用穿刺硅胶帽的容器在室温下静置和/或搅拌时可能会降低效果,但在微波辐射后,这种影响被抵消了。然而,使用未穿刺硅胶帽的容器能够保持敏感合成子和试剂的寿命,无论加热程序如何。这种能力促进了敏感反应条件与自动进样技术的配合使用,从而提高了工作流程效率和生产力。参考文献(1)Zhu, Y.-J. Chen, F. Chem. Rev. 2014, 114, 6462–6555.(2)Kempe, K. Becer, C. R. Schubert, U. S. Macromolecules 2011, 44, 5825–5842.(3)Hayes, B. L. Aldrichimica ACTA 2004, 37, 66–76.(4)Lahred, M. Moberg, C. Hallberg, A. Acc. Chem. Res. 2002,35, 717–727.(5)Li, K. Weber, A. E. Malcolmson, S. J. Org. Lett. 2017, 19,4239–4242.(6)Wu, Y. Hu, L. Li, Z. Deng, L. Nature 2015, 523, 445–450.(7)Zhu, Y. Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,4500–4503.(8)Chen, Y.-J. Seki, K. Yamashita, Y. Kobayashi, S. J. Am.Chem. Soc. 2010, 132, 3244–3245.
  • 禾工实验室——食用油中酸价和过氧化值含量检测技术分享
    国标:《GB5009.229-2016食品安全国家标准 食品中酸价的测定》以及《GB 5009.227-2016食品安全 国家标准 食品中过氧化值的测定》。在这两项标准中明确指出对电位滴定仪的要求是:具有PH校正功能 和动态滴定模式,信号精度0.1mV且能实时显示滴定曲线和一阶微分曲线,具备20mL计量管、防扩散滴 定头以及对应的电极。 根据标准要求上海禾工实验室工程师采用禾工CT-1Plus型多功能电位滴定仪并按照国标的方法进行样品分析测试。 检测方法:酸价:首先标定 NaOH 滴定剂的浓度,做好空白实验,然后精密称取 5~10g 混匀的食用油至滴定杯中, 准确加入 50mL 乙醚—异丙醇混合液,再加入 1 颗干净的聚四氟乙烯磁力搅拌子,将滴定杯放在 CT-1Plus 电 位滴定仪上,以适当的转速搅拌至少 20s,使试样完全溶解并形成样品溶液。输入样品重量,用标定好的氢氧 化钠滴定剂滴定至终点,仪器根据编辑好的公式自动计算酸价结果。 过氧化值:称取 5.00~10g 混匀(必要时过滤)的试样,置于滴定杯中,加50mL 异辛烷—冰乙酸混合液, 轻轻振摇使试样完全溶解。准确加入 0.5mL 饱和碘化钾溶液,加入 1 颗干净的聚四氟乙烯磁力搅拌子,将滴 定杯放在 CT-1Plus 电位滴定仪上,以适当的转速搅拌 60s,用硫代硫酸钠标准滴定溶液(0.01mol/L)在自动电 位滴定仪上滴定至终点。同时做空白实验。HOGON电位滴定样品测定记录样品来源:食用油环境湿度:55%环境温度:24 ℃ NaoH标定滴定记录:样品名称邻苯二甲酸氢钾标准物质测定次序进样量终点体积含量结果10.5191 g27.0211 mL0.0941 mol/L20.5436 g28.2266 mL0.0943 mol/L 样品测定记录:样品名称油样酸价测定次序进样量终点体积含量结果15.025 g3.852 mL3.9637 mg/g---滴定曲线--- 硫代硫酸钠标定记录:样品名称重铬酸钾标准物质测定次序进样量终点体积含量结果11.056 g40.409 mL0.533 mol/L
  • 瑞士万通885顶空卡氏水分样品加热处理器获得2011实验室装备杂志读者推举奖
    瑞士万通885顶空卡氏水分样品加热处理器获得2011实验室装备杂志读者推举奖。最新的卡氏炉技术使卡尔费休滴定实验,比传统方法更简便,对于分析ppm级至100%的样品水含量,这是一个完美的解决方案。 许多物质水分释放缓慢或只有在高温下才能释放水分,不适合直接进行卡尔费休滴定;还有一些物质在醇溶液中的溶解度很低,这种情况下,传统方法通常建议采用复杂的样品制备过程或使用有损健康的助溶剂; 另外,尤其在一些制药厂,材料生产厂,还存在样品间相互污染的问题。其样品中常常存在干扰物质影响卡尔费休反应的正常进行,与KF试剂发生副反应而释放水分或消耗碘,导致错误结果。 885全自动顶空加热卡式水分测定系统可以解决上述难题,专门适用于这些困难样品的水分测定。 本系统操作简单,仅需要设定加热温度、载气流速和被测样品个数,被测样品称重后,放于样品瓶中并密封,将其放入样品架上即可。按开始键,仪器自动开始顺序进行处理,大大节省了人力操作,适合大量样品的测定。 采用样品瓶设计,卡氏炉不会被样品污染,因此不会有携带,没有记忆效应;聚四氟乙烯涂层的密封瓶塞有效地阻止了大气中水分的干扰。然而传统的样品瓶多为一次性设计,使用后只能丢弃,而本系统采用了全新的螺旋口样品瓶设计,可以轻松打开并清洗重复使用,仅需更换内部的聚四氟乙烯垫片,大大降低了成本消耗。 加热炉的方式,360度全方位加热,解决了困难样品的水分释放问题。样品中的水分导入样品杯后再进行测量,解决了样品在卡氏液中的溶解问题,避免了传统的复杂的样品制备过程或使用有损健康的助溶剂,特别适合困难样品的水分测定。
  • 优莱博:实验室温控专家积极开拓制药行业
    第十五届世界制药原料中国展(CPhI China),暨第十届世界制药机械、包装设备与材料中国展(P-MEC China)于2015年6月24日在上海新国际博览中心盛大开幕。来自国内外的2800余家企业同台展示其最新的产品及技术,上万名观众近距离的与参展企业进行了沟通和交流。在此次展会上,仪器信息网编辑有幸采访到了JULABO销售经理Hubert Kirsch和优莱博技术(北京)有限公司大区经理宋路先生。  JULABO Labortechnik GmbH成立于1967年,总部作落在德国黑森林地区的Seelbach,目前在全球拥有11家分公司。作为液体温度控制技术的领导者,JULABO为全球客户提供高品质的温控产品及解决方案。优莱博技术(北京)有限公司是JULABO在中国的分公司,全面负责JULABO在大中华区的市场推广,产品销售及售后服务。优莱博技术(北京)有限公司展位  宋路谈到,在此次CPhI 2015展会上,优莱博针对制药领域用户推出了制药反应系统解决方案,该方案旨在为客户的反应实验提供更高的操作可靠性、设备稳定性、实验结果稳定性和实验人员安全性,帮助用户去解决在实验过程中遇到的整体问题。在此次展会上,优莱博携带了从实验室到中试规模的多种温度控制设备和反应设备参展。展示了在制药反应环节,以及制药反应的上下游环节的相关产品线,展示了他们在温控、反应器、搅拌、真空、压力、特殊反应条件、全自动控制、数据处理和软件等制药反应各相关环节的产品及综合的解决能力。  优莱博作为一家在实验室服务多年的公司,其产品在可靠性方面有着更好的表现。宋路介绍到,优莱博在制药行业解决方案并不是盲目的趋大趋全,而是以&ldquo 反应系统&rdquo 作为明确的方向,会有选择性的将其擅长的解决方案提供给需要的客户。优莱博可以为该领域的用户提供产品研发、药物筛选、反应工艺优化等方面的帮助。例如PRESTO全封闭动态温度控制系统就很好的满足了制药领域用户的需要。用户从研发到放大的生产过程中会遇到一些温度控制方面的问题,例如反应过程中需要超高温、超低温、宽温程变化、快速温度变化等,优莱博为用户提供了从-180℃~400℃的温度控制范围,而且其控温精度,升降温速度,设备可靠性等都非常优秀。JULABO销售经理Hubert Kirsch和优莱博技术(北京)有限公司大区经理宋路  宋路谈到,随着医药研发和生产的发展,部分实验需要一些特殊的工艺,优莱博可以帮助客户提供特殊的反应条件,例如可为做维生素的用户提供完整的光化学反应解决方案 可以提供超声化学方案帮助客户达到更好的药物提取效果或注射剂分散效果 可以在超临界状态下提高药物有效成分的萃取效果等。  此外,很多化学制药的客户在研发和生产上面,可能会用到强腐蚀性试剂或腐蚀性离子,常规的316L不锈钢或者高硼硅玻璃材质无法用于这些工艺,只能在特殊合金装置,甚至只能在聚四氟乙烯(PTFE)装置中做,优莱博可以为用户提供全套的聚四氟乙烯(PTFE)装置,可以帮助用户去完成一些含有氟离子的药物反应实验。  优莱博非常重视售后服务,宋路谈到,优莱博近几年的快速发展得益于其良好的售后服务。优莱博非常重视客户体验,会给客户提供一个标准产品&ldquo 2+1&rdquo 的保修计划。&ldquo 2+1&rdquo 模式为:优莱博为其产品提供两年免费保修,如果用户注册其产品,还可以再延长一年的免费保修。为了保证服务,优莱博有非常强大的售后团队,由总部售后中心以及分散在全国各办事处的一线售后工程师组成,随时为客户提供快速售后响应。另外,优莱博还有一个特殊的免费维护部门,该部门也由技术工程师组成,但并不负责调试和维修,他们的主要任务就是给老客户提供免费增值维护,包括对已有产品的保养,清洁,升级以及问题的预诊断处理,该部门的运行使得优莱博产品的使用体验更加优秀,并进一步降低了维修率。  最后,宋路为编者介绍了全封闭动态温度控制系统PRESTO,新的经济型温控系列VIVO,标准型温控系列CORIO,不锈钢反应系统CHEMTRON等。相信优莱博不断的研发和售后投入,认真负责的工作态度,会持续让客户受益,并继续巩固他们在专业领域的领导地位。
  • TOC-3000型TOC分析仪在色谱样品瓶质量控制中的应用
    气相色谱、液相色谱和气相色谱-质谱联用一般用于样品中有机物的定性或定量测试,进行此类测试时为了避免储样容器内残留的有机物影响测试结果,需对取样瓶内有机碳含量进行严格控制。现取5组不同材质、不同规格的样品瓶及配套瓶盖,按照标准对样品进行前处理,将所得溶液进行有机碳含量的分析检测。根据测试要求,我们选用检测灵敏度高、检出限低的TOC-3000型总有机碳分析仪进行测试,以观察这5种不同规格、型号的样品瓶是否能符合《中华人民共和国药典》2020年版 第四部中9622“药用玻璃材料和容器指导原则”中对储样容器的要求。 一、仪器与试剂仪器:TOC-3000型总有机碳分析仪(上海元析仪器有限公司)试剂:邻苯二甲酸氢钾 (基准试剂)、过硫酸钠(优级纯)、磷酸 (优级纯)、去二氧化碳蒸馏水。 二、溶液配制1、标准溶液的配制 [ρ(有机碳,C)=1000 mg/L ] : 称取2.1254g邻苯二甲酸氢钾(先在115℃下干燥2h),定容至1000mL,混匀,配制成TOC值为 1000mg/L的标准溶液。 2、过硫酸钠溶液(体积分数为8%)称取40g过硫酸钠,加入50mL98%的磷酸,用纯水定容至500 mL,混匀。 三、实验方法及实验数据1、标准曲线的绘制将标准溶液配制成有机碳浓度分别为0.0、0.5、1.0、2.0、5.0mg/L的标准使用液,选用直接法(NPOC)模式,采用同体积不同浓度进样,以碳的质量为横坐标,以积分面积信号为纵坐标,绘制校准曲线;NPOC曲线方程:Y=-1737955.6X2+266286.9X+18.3,相关系数R= 0.9999 图1 NPOC标准曲线 2、样品介绍“样品1”、“样品2”、“样品3”均为2mL进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为聚丙烯材质,内附红色硅胶隔垫(见图2);“样品4”为20mL顶空螺口进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为铝塑组合盖,内附白色PTFE(聚四氟乙烯)硅胶复合垫片(见图3);“样品5”为30 mL进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为PP(聚丙烯)塑料盖,内附透明PE(聚乙烯)硅胶垫(见图4)。因五种样品的瓶盖及垫片均为高分子材料,碳元素的存在易对气相色谱、液相色谱等有机物的定性、定量测试产生影响,故需对整套样品瓶以2020年版第四部《中华人民共和国药典》0682章节中“制药用水中总有机碳测定法”为指导原则进行前处理,收集样品瓶中溶液,进行有机碳含量的测试,检测产品是否能符合相关标准及要求。 图2 图3 图4 3、样品前处理3.1供试溶液配制取适量现制现用的超纯水,使用98%的磷酸将其pH调至3-4,作为供试溶液,待用。 3.2样品制备用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品1”,拧紧瓶盖,在实验室环境下倒置存放48h;用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品2”,拧紧瓶盖,在实验室环境下倒置存放48h;用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品3”,拧紧瓶盖,在实验室环境下倒置存放48h;将供试溶液直接倒满5瓶20mL的“样品4”,拧紧瓶盖,在实验室环境下倒置存放48h;将供试溶液直接倒满3瓶30mL的“样品5”,拧紧瓶盖,在实验室环境下倒置存放48h。 3.3储样容器准备准备6个100mL容量瓶,制取超纯水后将准备好的容量瓶清洗三遍,放入烘箱烘干,使储样容器条件一致且不会对测试结果产生影响。 3.4样品收集将制备好的20瓶“样品1”、20瓶“样品2”、20瓶“样品3”、5瓶“样品4”、3瓶“样品5”中溶液分别收集于5个处理干净的100mL容量瓶中,作为样品溶液待测,另取一洁净的容量瓶倒入供试溶液作为空白样,待测。 3.5测试结果将收集的5个容量瓶中的5个样品溶液及1个空白溶液,使用TOC-3000型总有机碳分析仪,选用NPOC模式进行有机碳含量测试,测试结果如下表所示:表2 测试结果样品名称序号NPOC(mg/L)均值(mg/L)RSD(%)空白10.220.222.4120.2330.22样品110.450.432.5420.4330.42样品210.310.302.0420.2930.31样品310.310.301.7920.2930.30样品410.200.212.2120.2230.20样品510.340.342.9120.3230.35 注:上表中样品溶液测试数据均为扣除空白后溶液中总有机碳测试结果。四、总结TOC-3000型总有机碳分析仪采用高强紫外射线和强氧化剂配合的紫外消解方式来消解样品,进样量高达20mL,可满足超纯水级别样品的应用需求;采用先进的精密气体流量控制技术,屏蔽流速波动带来的影响,保证实验数据的稳定性;自主研发的高性能非色散型红外检测器(NDIR),采用进口光源和探测器,检测灵敏度高、稳定性好,符合2020版第四部《中华人民共和国药典》 的相关测试要求,在制药用水、注射用水、纯化水等质量控制方面有着十分重要的作用。
  • 一线防护服告急!一文了解医用防护服材料与检测标准
    p  近期,国务院应对新型冠状病毒肺炎疫情联防联控机制医疗物资保障组提出《医用防护服生产用压条机信息征集倡议书》。医用防护服是抗击新冠肺炎疫情的重要医疗物资,是保护医护人员生命安全的关键屏障。工业和信息化部作为国务院应对新型冠状病毒肺炎疫情联防联控机制医疗物资保障组组长单位,坚决落实党中央、国务院决策部署,把医用防护服供给作为重中之重,向全国医用防护服重点生产企业派出了驻企特派员,协调企业从原料配备到跨省运输中遇到的困难和问题。医用防护服产量已经从1月28日的0.87万件上升到2月4日的3.16万件,但仍难满足当前的防疫救治需求。br//pp  缺少压条机(又称热风缝口密封机、贴条机、热封机)是制约医用防护服增产扩能的瓶颈。工业和信息化部积极支持主要压条机生产企业恢复生产,但目前恢复的产能远远不能满足医用防护服生产需求。/pp  当前,医用防护服供需矛盾日益突出。为充分利用有限资源,指导医务人员正确做好个人防护,维护医务人员队伍的身体健康,国家卫生健康委就疫情期间医用防护服的使用管理提出要求,下发《国家卫生健康委办公厅关于进一步加强疫情期间医用防护服严格分级分区使用管理的通知》。/pp  一是高度重视医用防护服的合理使用。重点强调《新型冠状病毒感染的肺炎防控中常见医用防护用品使用范围指引(试行)》和《国家卫生健康委办公厅关于加强疫情期间医用防护用品管理工作的通知》等文件的落实。实行一把手负责制,按照“优先保障高风险区域、高风险操作、高风险人员”的原则,严格分级分区使用,确保医用防护服合理使用。/pp  二是加强医用防护服的分级分区使用管理。防护服应当在隔离留观病区(房)、隔离病区(房)和隔离重症监护病区(房)使用,其他区域和在其他区域的诊疗操作原则上不使用防护服。明确了符合国标(GB19082)的一次性无菌医用防护服,在境外上市符合日标、美标、欧标等标准的医用防护服,以及“紧急医用物资防护服”的使用要求。/pp  三是加强管理,促进合理使用医用防护服。医疗机构应当将医用防护服纳入全院统一管理,建立台账,根据医务人员工作所在不同区域、开展的不同操作及管理患者的症状轻重程度,科学合理分配防护服。要根据收治患者的实际情况,合理安排医务人员在隔离区域工作的班次,发挥资源利用最大效益。/pp  一般认为,医用防护服起源于手术服。100多年前,医生做手术时大多穿着一种黑色外套,被认为是最早的医用防护服。当时,这种医生穿着防护服的目的并不是防护自身免受伤害,而是为了保护衣服不被血液或分泌物污染。/pp  早期的防护服材质一般为棉质,在干燥状态下具有防细菌渗透的能力,但是在湿态下却无法抵抗细菌的入侵。二战时期,美国的军需部门为了使防护服的材料应该能阻挡液体进入带入细菌,开发了一种经氟化碳和苯化合物处理的高密机织物,增强防护衣的防水性能。战后,民用医院开始采用这些织物作为医用防护服的面料。/pp  20世纪80年代以后,人类对于艾滋病毒、肝炎B病毒、肝炎C病毒等血载病原体有了深入的了解,深刻认识到医护人员在救治患者过程中存在受感染的风险,开始着力开发医用防护服,使得防护服行业得到了蓬勃发展。/pp  2003年,我国在抗击“非典”疫情过程中,充分认识到医护人员面临的生物职业危害。在SARS流行过程中,我国内地累计报告非典型性肺炎5329例,其中医护人员969例,占18%,属于高发人群。由于医护人员在治疗、护理、转运等环节中,因直接接触病人而被感染的现象十分普遍,甚至出现为抢救一名病人而导致数十名医务人员被感染的罕见现象,令社会各界大为震惊。我国相关领域开始研发医用防护服。常见的医用防护服通常由帽子、上衣、裤子组成的连身式结构,在制作中有着严格标准,包括防护性(密封性)、服用性、安全卫生性。通过裁剪、缝合、上松紧、粘合压胶条才能制作出的医用防护服,涉及到的机器离不开这三种:平缝、包缝、压胶。/pp  医用防护服作为防化服中的一类,主要用于医护人员穿着,不仅要排湿透气、穿着自如,还要让医护人员免受诊疗过程中病毒、细菌等各种污染物的感染,抵挡住水液、酒精、油渍侵入,而且要有效抗静电,甚至防止灰尘进入。医用防护服的作用是产生细菌阻隔层,以防止细菌泳移,减少交叉感染。近年来一些科研单位和企业已经开发出不少医用防护服,大多以非织造布为主要面料。医用防护服按面料的组织结构可分为机织、非织造布和复合材料 按使用期限分为用即弃型(一次性使用)、限次型和可重复使用型 按加工复合技术来说有整理加工、涂层和覆膜三大类方法。/pp  医用防护服要求做到“三拒一抗”,即拒水、拒血液、拒酒精以及抗静电的医用防护服,与一般的织造材料不同,采用的是微纳米级别材料。这种复合材料可以通过不同材料复合,如用聚乙烯/聚丙烯纺黏非织造布,与透气微孔薄膜或其他非织造布复合,或用水刺非织造布与透气微孔薄膜复合,或用木桨复合水刺非织造布。/pp  目前国内市场上正在销售和研发的几种医用防护服所用的非织造材料主要有以下几种:/pp strong 聚丙烯纺粘布/strong/pp  聚丙烯纺粘布可经抗菌、抗静电等处理,制成抗菌防护服、抗静电防护服等。相对于传统的棉布防护服,聚丙烯纺粘布防护服无疑是一大进步。因其价格较低,而且是一次性使用,可以大大减少交叉感染率,在刚推出的相当长时期内,在国外得到大量推广。但是,材料的抗静水压比较低,对病毒粒子阻隔效率也比较差,只能作为无菌外科手术服、消毒包布等普通防护用品。/pp  strong聚酯纤维与木浆复合的水刺布/strong/pp  材料手感柔软,接近传统的纺织品,而且可以经三抗(抗酒精、抗血、抗油)和抗静电、抗菌等处理,可以用γ射线进行消毒,是一种比较好的医用防护服材料。但它的抗静水压也相对较低,对病毒粒子阻隔效率也比较差,因此也不是理想的防护服材料。/pp  strong聚丙烯纺粘一熔喷一纺粘复合非织造布,即SMS或SMMS/strong/pp  熔喷布的特点是纤维直径细、比表面积大、蓬松、柔软、悬垂性好、过滤阻力小、过滤效率高、抗静水压能力强,但强力低,耐磨性差,在相当程度上限制了其应用领域的发展。而纺粘布纤维线密度较大,纤网又是由连续长丝组成,其断裂强力和伸长比熔喷布大得多,恰恰可以弥补熔喷布的不足。这种材料有均匀美观的外观、高抗静水压能力、柔软的手感、良好的透气性、良好的过滤效果、耐酸碱能力强。另外,还可以对SMS非织造布进行三抗(抗酒精、抗血、抗油)和抗静电、抗菌、抗老化等处理,以适应不同用途的需要。/pp  strong高聚物涂层织物/strong/pp  用于防护织物的涂层种类很多,有聚氯乙烯、聚乙烯、聚氯丁橡胶和其他各种合成橡胶,该种防护服的防水性、阻隔细菌粒子的性能非常好,可重复使用,但透湿性能差,人体的大量汗液无法排出,穿着舒适性能差,非典时期使用橡胶涂层织物的防护服实在是不得已之举。国内外最新进展是采用微孔聚四氟乙烯薄膜与织物复合获得防水透气功能,但作为一次性用品价格昂贵。/pp  strong聚乙烯透气膜/非织造布复合布/strong/pp  根据防护等级的不同要求,所采用的非织造布与薄膜也有不同。聚乙烯透气膜/非织造布复合材料,对于阻隔细菌粒子穿透和液体渗透有优良的效果,且手感可通过改变复合面料的柔软度来调整,其抗拉强力强,透气性好,舒适性能大大提高,能经受消毒处理,不含有毒成分,克重60~100g/msup2/sup ,有良好的性价比,用它制成的医用一次性防护服可保护医务人员免遭污染源污染,克服交叉感染,起到有效防护的作用。/pp  strong重复使用型:/strong/ppstrong  聚四氟乙烯层压织物/strong/pp  医用防护服是一个广义的概念,包括了医疗环境下医护人员穿戴的各类服装,如日常工作服、外科手术服、隔离衣以及防护服等。根据应用环境及功能不同,医用防护服对于液体及细菌渗入有不同的标准等级,所采用的材料也各不相同。不过,按照基本功能大致可分为重复使用型和用即弃型(一次性)两类。/pp  重复使用型防护服,一般作为医护人员的日常工作服和手术服等。主要采用传统机织布、高密织物、涂层织物及层压织物等材料制成。由于层压织物是将普通织物与一层特殊薄膜通过层压工艺复合在一起制得,因防护性能及透湿透汽性能较好成为业内主流选择。/pp  比较高端的层压织物是聚四氟乙烯超级防水透湿复合面料。该面料是以聚四氟乙烯为原料,经过膨化拉伸后形成一种具有微孔性的薄膜,将此薄膜用特殊工艺覆合在各种织物和基材上,成为新型过滤材料。由于该膜孔径小,分布均匀,孔隙率大,在保持空气流通的同时,可以过滤包括细菌在内的尘埃颗粒,达到净化且通风的目的。这种层压织物能够防风、防水、透气、透湿,而且舒适性极好。目前,发达国家大多使用聚四氟乙烯材质。采用聚四氟乙烯复合膜作为隔离层研制的医用多功能防护服,具有耐久的防水、拒水、抗菌、抗静电、阻燃、透湿等物理机械性能,对血液、病毒(液体重或气体重)在自然条件和压力条件下都具有很好的阻隔性能,阻隔(过滤)效率大于99%。/pp  strong一次性防护服:/strong/ppstrong  聚烯烃纤维无纺布/strong/pp  理想的医用防护服应该具有多功能性,既要能保护医护人员免受有毒有害的液体、气体或具传染性的病毒和微生物侵袭,又要穿着舒适,在具备阻隔性能的同时,还要具备透气性、抗菌性及防致敏性,不得危害人体健康。除此之外,防护服面料选择还要考虑成本及废弃后的环保问题。/pp  可重复使用的防护服,每次使用后都要进行洗涤和消毒,操作不方便,大大限制了它的织造结构,而且使用一段时间后,其防护性能有所下降。鉴于此,国际上逐渐采用一次性非织造(无纺布)材料制成的防护服。这种防护服,经过进一步的抗菌、抗静电等处理,手感和性能跟传统纺织品比较接近,而且价格较低。因此,在医疗领域的隔离衣和防护服中应用较为广泛。/pp  目前,国内用于无纺布生产的三大纤维分别为聚丙烯、聚酯和粘胶纤维。其中聚丙烯所占比例最高,占62%。一般而言,用于生产无纺布的聚丙烯主要指的是高熔指聚丙烯纤维料,近年来,聚丙烯高熔纤维料的需求受多重利好因素的影响,被市场看好,生产企业也在积极的研发拓展聚丙烯纤维市场。数据统计,2019年国内聚丙烯纤维料产量约170万吨左右,同比2018年增长7.5%。其中高熔指聚丙烯纤维料95万吨,同比增长了15.8% 中熔指聚丙烯纤维料77万吨,相比基本持平。/pp  无纺布生产工艺主要有纺粘法、水刺法、闪蒸法、SMS复合材料等。纺粘法无纺布主要利用化纤纺丝的方法形成聚丙烯长丝,再借助气流或机械的方法分丝成网,其在手感和性能方面很接近于传统的纺织品 水刺法无纺布,是通过高压水柱高速水流对涤纶、锦纶、丙纶等纤维纤网喷射,使纤网中纤维运动而重新排列和相互结,以达到固结成布的日的 闪蒸法无纺布,以聚烯烃为主要原料,采用静电分丝,使丝条在拉伸过程中相互摩擦形成静电分丝,彼此相互排斥保持单纤维状态,然后靠静电装置使纤维凝聚成网,纤网再经热轧而成 SMS复合无纺布,就是将两种以上性能各异的非织造纤网通过化学、热或机械等方式复合在一起,或者是结合不同的成网工艺制造的无纺布。/pp  目前,一次性防护服多采用聚乙烯透气膜制成复合无纺布。聚乙烯透气膜在LDPE/LLDPE树脂载体中,添加50%左右的特种碳酸钙进行共混,经挤出成膜后定向拉伸一定倍率而成。由于聚乙烯树脂为热塑性塑性材料,可在一定条件下进行拉伸和结晶,拉伸时聚合物与碳酸钙颗粒之间发生界面剥离,碳酸钙颗粒周围就形成了相互连通的蜿蜒曲折的孔隙或通道,正是这些孔隙和通道赋予了薄膜的透气(湿)功能,从而沟通了薄膜两面的环境。/pp  截至目前, 现行的防护服国家标准有21条;其中,医用防护服主要使用spanGB 19082-2009《span医用一次性防护服技术要求/span》,标准中涉及外观、结构、号型规格、液体阻隔功能(抗渗水性、透湿量、抗合成血液穿透性、表面抗湿性)、断裂强力、断裂伸长率、过滤效率、阻燃性能、抗静电性、静电衰减性能、皮肤刺激性、微生物指标、环氧乙烷残留量的检测。/span/pp style="text-align: center "表 现行防护服国家标准/ptable border="0" cellpadding="0" cellspacing="0" height="396" style="" align="center"colgroupcol width="134" style="width:100.50pt "/col width="394" style="width:295.50pt "//colgrouptbodytr height="18" style="height:13.50pt " class="firstRow"td height="13" width="157" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"标准号/tdtd width="331" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"标准名称/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 33536-2017/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 森林防火服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 29511-2013/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 固体颗粒物化学防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 28895-2012/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 抗油易去污防静电防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 28408-2012/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 防虫防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 24539-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 化学防护服通用技术要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 24540-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 酸碱类化学品防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 24536-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 化学防护服的选择、使用和维护/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 24278-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"摩托车手防护服装/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width="143"GB 19082-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width="331"医用一次性防护服技术要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 8965.1-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 阻燃防护 第1部分:阻燃服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB 8965.2-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 阻燃防护 第2部分:焊接服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 23462-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 化学物质渗透试验方法/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 23463-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 微波辐射防护服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 23464-2009/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 防静电毛针织服/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 13640-2008/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"劳动防护服号型/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 18136-2008/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"交流高压静电防护服装及试验方法/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 13459-2008/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"劳动防护服 防寒保暖要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 20654-2006/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 机械性能 材料抗刺穿及动态撕裂性的试验方法/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 20655-2006/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服装 机械性能 抗刺穿性的测定/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 20097-2006/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服 一般要求/td/trtr height="18" style="height:13.50pt "td height="13" x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="143"GB/T 17599-1998/tdtd x:str="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="331"防护服用织物 防热性能 抗熔融金属滴冲击性能的测定/td/tr/tbody/tablep  /ppbr//p
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制