当前位置: 仪器信息网 > 行业主题 > >

蛋白质生物信息学分析

仪器信息网蛋白质生物信息学分析专题为您提供2024年最新蛋白质生物信息学分析价格报价、厂家品牌的相关信息, 包括蛋白质生物信息学分析参数、型号等,不管是国产,还是进口品牌的蛋白质生物信息学分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质生物信息学分析相关的耗材配件、试剂标物,还有蛋白质生物信息学分析相关的最新资讯、资料,以及蛋白质生物信息学分析相关的解决方案。

蛋白质生物信息学分析相关的资讯

  • 安捷伦科技生物信息学套装新增整合生物学分析功能
    安捷伦科技生物信息学套装新增整合生物学分析功能 GeneSpring 现可实现通路水平的多组学及新一代测序数据分析 2012 年 3 月 27 日,加利福尼亚州圣克拉拉市&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日发布了其广受欢迎的生物信息学软件的重要扩展版本 GeneSpring 12.0,该软件的推出使医学研究水平达到一个新的高度。使用新版 GeneSpring,用户可以在熟悉的软件环境中分析新一代测序数据,并可以在通路水平进行跨多组学平台数据的联合分析。 这些新功能是在GeneSpring 之前已有的转录组学、基因组学、代谢组学和蛋白组学的数据分析模块上的进一步扩展。 安捷伦副总裁生物系统事业部总经理 Gustavo Salem 谈到:&ldquo 随着GeneSpring 12.0 的发布,安捷伦再次实现了一直以来的承诺,提供先进的仪器和功能强大的软件,帮助系统生物学研究人员取得研究成果。GeneSpring 生物信息学软件套装集复杂分析、可视化和数据管理于一体,让新一代整合生物学研究成为现实。&rdquo 从现在起到 8 月 17 日截止,所有客户均可免费测试集成了新型通路构建模块(Pathway Architect module)的 GeneSpring 12.0 。 GeneSpring 12.0还包含可以用于新一代测序数据分析的 NGS 模块。NGS 模块经过设计和测试,可与安捷伦 SureSelect 靶向序列捕获平台联用,也可用于不采用靶向序列捕获的新一代测序实验。质量控制(QC)管理工具是 NGS 模块的一个重要组成部分,为研究人员提供了针对靶向序列捕获结果图形化、测序碱基质量、序列比对以及拼接等环节质量控制的工具。GeneSpring NGS 模块中的 DNA-SEQ 工作流程,包括可以用于已知和未知变体鉴定和特征图谱分析、SNP标注、SNP 效应预测、结构变异检测的工具。RNA-SEQ 工作流程,则支持在绝对和相对空间进行 mRNA 特征图谱分析,可以实现基因和剪切变异体的检测和差异表达分析。该工作流程包括用于新基因和外显子检测、基因融合分析以及复杂的统计和通路分析的工具。 安捷伦的全新生物信息学软件GeneSpring 12.0,能够帮助对新一代测序生物信息学没有经验的的生物学家,通过工作流程向导轻松实现测序数据的管理和分析。生物信息学中心也可以使用该软件,简化数据的分组、分类和研究过程。GeneSpring 12.0 还可以结合安捷伦免费的 eArray portal 使用,用户通过简便易用的界面就可以完成定制实验。 整合来自不同组学技术的数据是系统生物学研究的重要组成部分,涉及在相同或非常相近的生物样品中检测不同生物学组分的丰度。研究人员可使用 GeneSpring 通路构建模块对几乎所有的生物学组分进行通路水平的联合分析。这些生物学组分包括转录本、剪切变异体、变异分析得出的受影响基因组合、代谢物以及蛋白质。 GeneSpring 通路构建模块,能够帮助科学家观察和分析人工注释的通路内容。该功能通过WikiPathways公众数据库,来完善建立、注释和查询生物通路方面的信息。用户还可以通过连接另一个公众数据库 BridgeDB ,实现在多个公开和专有注释数据库中进行生物标记物的比对分析。任何单组学实验的原始数据都可以合并到多组学实验当中,通过联合分析,找出在许多生物学过程中均涉及的具备显著统计学意义的通路,例如信号传导、疾病恶化或毒性等。 GeneSpring 12.0 的定制化功能现已支持 Jython 和 R 编程语言。通过嵌入式脚本编辑器,生物信息学科学家可在 GeneSpring 12.0 的编程框架中编写、执行和保存自己的算法和工作流程。 GeneSpring 12.0 由安捷伦与 Strand Scientific Intelligence 公司联合研发,基于 Strand 的 Avadis技术平台,该平台专门为科学家简化和应对复杂的生命科学挑战而设计。 要了解更多有关 GeneSpring 12.0 的信息,包括要参加一系列的免费在线研讨会,请访问 www.genespring.com.cn。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 北京蛋白质组研究中心第六期蛋白质组信息学培训班
    北京蛋白质组研究中心  第六期蛋白质组信息学培训班  时间:2017年11月7-10日  地点:北京蛋白质组研究中心(北京市昌平区科学园路38号,中关村生命科学园内)  主办单位  国家蛋白质科学中心· 北京(凤凰中心)  北京蛋白质组研究中心(BPRC)  蛋白质组学国家重点实验室(SKLP)  中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)  国家蛋白质科学中心?北京(简称“凤凰中心”)/北京蛋白质组研究中心(BPRC)坐落在国家科技创新示范区——中关村生命科学园,是我国生命科学领域的国家科技基础设施,也是国际人类肝脏蛋白质组计划执行总部、蛋白质组学国家重点实验室和首都科技条件平台。  凤凰中心/BPRC在以院士领衔,入选“千人计划”、国家杰青、北京市科技新星为骨干的专家团队带领下,在生命科学领域不断开拓,建立了高通量、高分辨率、高精度的蛋白质组学,以高性能“天河”超级计算机为核心的生物信息学,蛋白质相互作用,多功能多层次显微成像,流式分选,模式生物构建,抗体药物筛选等技术体系与平台。我们愿与从事生命科学研究的有识之士一起,推动生命科学新发现、新技术、新产品的涌现,实现“创造历史,引领世界”的梦想。  培训目的  本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。  培训对象  ●从事生命科学、农学、医学等领域科研工作者和高校教师及研究生  ●迫切希望提升生物信息分析能力的学者  培训内容  质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。  课程安排2017年11月6日15:00-17:00软件安装2017年11月7日主持人:杨冬邵晨主题:蛋白质组信息学蛋白质鉴定时间主讲人培训内容9:00-10:00讲座邵晨●课程介绍●蛋白质组学●蛋白质组信息学工作流程10:00-10:45讲座邵晨工作流原理●序列数据库●肽段鉴定●蛋白组装●蛋白定量●质量控制和标准10:45-11:00茶歇11:00-11:45讲座杨冬工作流原理●翻译后修饰●数据挖掘●数据注释●聚类和其他分析11:45-12:30练习杨冬常用的生物信息数据库和工具12:30-13:30午餐13:30-14:30讲座杨冬Mascot:实践中的搜索工具14:30-15:15练习杨冬搜索工具的环境15:15-15:30茶歇15:30-16:30讲座杨冬搜索工具实际应用16:30-17:15讲座OmicsBean题目待定17:15结束2017年11月8日主持人:朱云平主题:定量蛋白质组时间主讲人培训内容9:00-10:00讲座常乘标记定量蛋白质组学:母离子标记方法10:00-10:45讲座常乘标定定量蛋白质组学:子离子标记方法10:45-11:00茶歇11:00-11:45练习常乘马洁冯晓东MaxQuant上机练习11:45-12:30练习常乘马洁冯晓东MaxQuant上机练习12:30-13:30午餐13:30-14:30讲座常乘非标定量蛋白质组学14:30-15:15练习常乘差异表达蛋白的统计分析15:15-15:30茶歇15:30讲座常乘PANDA和PANDA-view介绍16:30练习常乘马洁冯晓东PANDA和PANDA-view上机练习17:15结束2017年11月9日主持人:冯晋文主题:工作流数据发布时间主讲人培训内容9:00讲座冯晋文TPP(transproteomepipeline)数据分析平台介绍10:00练习冯晋文●基于X!Tandem肽段鉴定●基于peptideProphet肽段验证10:45-11:00茶歇11:00练习冯晋文蛋白质定量●Libra蛋白质组装●ProteinProphet11:45练习冯晋文实际操作12:30-13:30午餐13:30讲座冯晋文Firmiana简介14:30练习冯晋文Firmiana上机练习15:15-15:30茶歇15:30讲座HenningHermjakob数据存储与索引:ProteomeXchangeandOmicsDI16:30练习马洁实际操作:基于Iprox的数据存储17:15-18:00Phototime2017年11月10日主持人:李栋主题:网络和通路时间主讲人培训内容9:00讲座李栋蛋白质网络的构建与分析10:00讲座李栋蛋白质数据集深度挖掘10:45茶歇11:00练习李栋网络工具介绍:●KEGG,Reactome●STRING11:45练习李栋上机练习12:30午餐13:30讲座刘中扬Cytoscape简介14:30练习刘中扬Cytoscape上机练习15:15-15:30茶歇15:30-16:30练习HenningHermjakobReactomepathwayanalysis17:15结束  培训费用  ●即日起至11月6日之间注册:每人4500元,学生4000元。  ●网上注册地址:http://111.198.139.71/training/cn/  ●培训费用包含:培训资料、培训期间的午、晚餐。  ●住宿费用自理,请自行联系酒店登记住宿信息。  报到时间和地点  ●报到:11月6日全天,凤凰中心/BPRC  ●培训:11月6-7日,凤凰中心/BPRC(北京市昌平区科学园路38号,中关村生命科学园内)。  ●住宿:北京梧桐苑商务酒店(紧邻凤凰中心大楼),预订电话:010-61777200(预定时请说明参加此次培训)  ●学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。  注意事项  · 学员可使用自己的数据进行练习,在主讲人时间允许的情况下可给予一定的指导。  · 参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站:http://www.bprc.ac.cn/guidance/list.php?catid=27或http://www.ncpsb.org/cn/%E6%9C%8D%E5%8A%A1  汇款信息  帐号:0200004909200041055  账户名称:北京蛋白质组研究中心  开户银行:工商银行北京市永定路支行  注:汇款时请务必注明学员姓名、单位和“信息学培训班”字样。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。  如需发票请注明发票抬头,培训结束后统一开具发票(培训费、会议费等)。  联系方式  联系电话:注册:(010)61777015  咨询:(010)61777010  传真:(010)61777050  电子邮件:bprctrain@163.com  通信地址:北京市昌平区科学园路38号(102206)
  • 北京蛋白质组研究中心第二期蛋白质组信息学培训班(第一轮通知)
    时间:2014年5月20-23日  地点:北京蛋白质组研究中心(北京市昌平区科学园路33号,中关村生命科学园内)  主办单位:  北京蛋白质组研究中心(BPRC)  蛋白质组学国家重点实验室(SKLP)  中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)  北京蛋白质组研究中心是蛋白质组学国家重点实验室,国际联合研究中心,国际人类肝脏蛋白质组计划(HLPP)执行总部。建立了世界上最大的人类蛋白质组数据库及数据管理平台,和国际领先的蛋白质相互作用网络构建和分析平台。对人类肝脏蛋白质组进行了系统的生物信息研究,包括蛋白质鉴定、修饰、定位、相互作用网络、代谢通路及肿瘤标志物发现等研究。讲师团队长期致力于蛋白质组数据分析及相关知识发现,为国际人类肝脏蛋白质组计划提供了全方位的生物信息支持。2012年,集体获中国电子学会电子信息科学技术奖一等奖:蛋白质组学计算方法的研究及其支撑平台的构建和应用 2007年,集体获北京市科学技术一等奖:蛋白质组支撑技术及其在人类重要疾病与生理过程研究中的应用。  前言  本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。  培训对象  从事生命科学、农学、医学等领域科研工作者和高校教师及研究生  迫切希望提升生物信息分析能力的学者  培训内容  质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。  课程安排时间培训内容2014年5月20日9:00-10:00蛋白质组信息学概论10:00-12:00质谱数据处理-搜库与质控13:00-15:00蛋白质组定量分析(以无标定量为主)15:00-16:00蛋白质翻译后修饰分析16:00-17:00蛋白质鉴定上机实习2014年5月21日9:00-11:00质谱数据深度挖掘11:00-12:00蛋白质定量上机实习13:00-15:00蛋白质组数据分析/生物标志物发现15:00-17:00蛋白质组数据分析上机实习2014年5月22日9:00-10:30 蛋白质组数据库/数据提交10:30-12:00数据库及数据提交实习13:00-15:00蛋白质组软件包的使用(TPP等)15:00-17:00TPP安装及使用实习2014年5月23日9: 00-10:30蛋白质相互作用网络和蛋白质组学知识挖掘的基础知识10:30-12:00蛋白质相互作用的生物信息学资源介绍13:00-14:00Cytoscape软件使用介绍14:00-17:00蛋白质相互作用数据分析上机  培训费  4月18日前注册:每人4200元,学生3900元。  4月19日至5月20日之间注册:每人4500元,学生4200元。  其他优惠:同一单位2人以上参加,每人优惠200元。  提前注册截止日期:2014年4月18日,以银行汇款凭证为准。  网上注册地址: http://61.50.138.116/training/cn/  培训费用包含:培训资料、培训期间的午、晚餐。  可协助安排住宿,住宿费用自理。需住宿的学员请在网上注册时填写住宿信息。  报到时间和地点  报到:5月19日全天,北京扬子江药业海诺康会馆(北京市昌平区生命园路16号,中关村生命科学园内) 20日8:30-10:00,北京蛋白质组研究中心。  住宿:北京扬子江药业海诺康会馆,标准间298元/天(含早餐)。  学生报到时须持学生证。  学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。  注意事项  培训结束后颁发北京蛋白质组研究中心和蛋白质组学国家重点实验室培训证书,需要中国生物化学与分子生物学会继续教育证书的学员报到时需要另交1张2寸免冠照片及20元工本费。  中心通过了ISO/IEC 17025实验室认可,为社会各界提供科研技术服务。参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站: http://www.bprc.ac.cn/guidance/list.php?catid=27  汇款信息  帐 号:0200004909200041055  账户名称:北京蛋白质组研究中心  开户银行:工商银行北京市永定路支行  注:汇款时请务必注明&ldquo 信息学培训班&rdquo 和学员姓名。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。  如需发票请注明发票抬头,培训结束后统一开具发票(培训费、注册费、会议费、技术服务费等),有其他特殊要求请声明。  联系方式  联系电话: 注册:周建平(010)80705277  咨询:史冬梅(010)80705888  传 真:(010)80705155  电子邮件:bprctrain@163.com  通信地址:北京市昌平区科学园路33号(102206)
  • 沃特世推出新一代LC-MS生物信息学产品Progenesis QI 组学分析软件
    功能强大,广泛应用于蛋白质组学、代谢组学和脂质组学研究 2014年4月—— 沃特世公司(纽约证券交易所代码:WAT)发布了两款新的数据分析软件:用于代谢组学/脂质组学的Progenesis QI软件以及用于蛋白质组学研究的Progenesis QI蛋白质组学软件。新发布的软件是由沃特世子公司Nonlinear Dynamics开发,其组学软件在全球处于领先地位。 Progenesis QI软件利用独特方法和设计来处理和展示LC-MS数据,使研究人员能够对感兴趣的化合物和蛋白质进行精确地定量分析和鉴定。Progenesis QI软件支持所有常用的LC-MS数据格,采用直观的导向性工作流程,使用户能够快速、客观且可靠地发现宝贵样品中的相关生物标记物。 “将Nonlinear Dynamics在生物信息学软件方面的专业与沃特世在色谱和质谱仪器的创新和全球领导地位相结合,Progenesis QI的推出是一个由沃特世前瞻性、专注于组学研究的科学家和实验室的创新成果的良好示例。”沃特世全球市场和信息部门副总裁Rohit Khanna博士表示。“借助这些最新发布的产品,我们已将传统组学数据分析软件包的功能整合到功能更强大且应用更广泛的延伸产品中。Progenesis QI保持了前几代生物信息学软件的优良性能,使我们的资源专注于提供世界领先的用于多组学数据处理和分析的信息学软件包。” 根据客户的反馈,Progenesis QI软件包含了诸多新功能,如在化合物搜库和鉴定时包含碎片离子信息、自动化数据处理工作流程以及数据导入流程的改进,增强了信号与背景噪音的差异。同时,新推出的软件能够处理包含沃特世的离子淌度分离的数据以及非数据依赖型MSE和HDMSE二级质谱数据,这也是沃特世与Nonlinear Dynamics强强联合的直接成果。 有关Progenesis QI软件的详细信息,请访问:www.nonlinear.com。 关于沃特世公司(www.waters.com) 50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2013年沃特世拥有19亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 赛默飞发布iOmics Cloud多组学云,打造一站式蛋白质组与代谢组生物信息分析平台
    2017年9月22日,在上海代谢组学前沿技术交流会上,赛默飞重磅发布iOmics Cloud多组学云,打造一站式蛋白质组、代谢组生物信息分析平台,致力于将繁琐的生物功能分析、统计分析、可视化图表制作变得简单、快速、可靠,弥补组学分析“最后一公里”的短板,帮助科学家加速组学研究进程,造福科学研究。iOmics Cloud多组学生物信息分析云平台首次发布的iOmics Cloud多组学云包含近20种生物信息学常用工具,帮助客户实现一站式分析。样本 – 数据 – 结果 – 知识是组学分析的“信息流”,在样本处理、数据产出、数据分析已日趋成熟的情况下,“结果 – 知识”的转化成为制约组学分析的最后一环。iOmics Cloud的发布,将有效弥补这一制约环节,让繁琐的生物功能分析、统计分析、图表制作变得简单易懂、快速可靠,即便没有专业背景,也可以一键完成过去大咖才能玩得转的复杂统计和功能分析。iOmics Cloud包含常见的统计分析、生物功能分析、可视化图表制作赛默飞中国区色谱质谱高级商务运营总监李剑峰先生在iOmics Cloud发布时表示“赛默飞质谱已经走过50年,在过去的50年以及未来更长时间我们专注的不仅仅是产品创新,客户体验与应用更是我们关注的焦点。 今天发布的iOmics Cloud多组学云平台解决了样品处理分析的“最后一公里”。质谱分析的趋势就是更易用,更好用,成为医护工作人员都能用的好质谱。我们希望通过领先的云平台解决方案进一步携手广大科学家,医护工作人员推动组学研究,加速科学研究,推动中国的大健康事业;使世界更健康、更清洁、更安全。”赛默飞中国区色谱质谱高级商务运营总监李剑峰先生正式发布iOmics Cloud赛默飞中国区色谱质谱组学业务发展经理吴泽明博士为大家详细讲解了iOmics Cloud的功能,他表示“iOmics云平台的搭建使得赛默飞的蛋白质组学与代谢组学系统解决方案更具领先性与体系完整性,这些创新将加速客户的研究进程,迸发出更大的数据计算价值。” 同时,赛默飞中国研发中心云团队架构师毛智东博士为大家现场演示了iOmics Cloud的注册、登陆和使用方法,让每一位参会人员现场感受iOmics Cloud的功能强大和触手可及。赛默飞色谱质谱组学业务发展经理吴泽明博士和研发中心云团队架构师毛智东博士为大家现场讲解和演示iOmics Cloud由赛默飞与合作伙伴易算生物、悟空平台共同打造和维护,专注于蛋白质组、代谢组的一站式生物信息分析,与另一重要平台Thermo Fisher Cloud形成优势互补,帮助客户让多组学分析变得更简单、更全面、更快捷。iOmics Cloud合作伙伴iOmics Cloud将在10月10日 – 13日举办的北京分析测试学术报告会暨展览会(BCIEA)期间提供现场演示和操作体验,欢迎广大有志之士到赛默飞展位抢先体验。赛默飞iOmics Cloud多组学云平台将在BCEIA后正式上线,敬请期待。
  • 智能数据采集FLASHIda应用于自上而下蛋白质组学分析
    大家好,本周为大家分享一篇发表在Nature communications上的文章,FLASHIda enables intelligent data acquisition for top–down proteomics to boost proteoform identification counts [1],文章的通讯作者是德国图宾根大学的Oliver Kohlbacher教授。自上而下蛋白质组学(TDP)能够对完整的proteoform进行全面和深入的分析,目前已广泛应用于生物医学研究领域。proteoform在不同的生物系统中具有高度异质性,proteoform水平的信息可以为了解生物生化功能或疾病表型提供重要的信息。近年来,随着TDP样品处理方法、分离技术、碎裂技术和生物信息学方法的进步,proteoform变得更容易被检测和表征。在复杂样本的大规模研究,如微生物或人类细胞裂解液中,proteoform的鉴定数量已达到4000-6000(对应500-1000个蛋白质)。在单次TDP实验中,在大肠杆菌裂解液中可以鉴定出约800种proteoform,在人脑样本中可以鉴定出约1800种proteoform。由于proteoform的多样性和复杂性,完整蛋白质的DDA采集是非常重要的。然而目前的仪器软件在DDA采集中实施的碎裂技术优化主要针对自下而上蛋白质组学(BUP),而不是TDP。尽管这些方案在BUP研究中有效地捕获了各种高质量的肽段离子,但这些选择标准对于TDP中的proteoform离子选择并不是最优的。与BUP中的肽段离子相比,单个proteoform由于其高质量和高电荷会产生许多峰,Top-N采集往往会导致从一个丰度较高的proteoform中选择多个峰,而不是从多个不同的proteoform中进行选择,这会导致proteoform的覆盖率较低。此外,基于强度进行选择可能不会选到能产生多种独特片段的高质量前体。目前,大多数大规模TDP研究使用具有特定调优参数的DDA采集,例如,Top-N采用相对较低的N值(3-5)和相对较高的隔离窗口(1.2-15 Th,超宽隔离)。然而对所选前体离子的分析表明,对proteoform的选择依然不理想。因此,采用更智能的数据采集方式(Intelligent data acquisition,IDAs)是非常有必要的。本文中作者提出了一种用于TDP的基于机器学习的智能在线数据采集算法FLASHIda,该算法可以确保实时选择不同proteoform的高质量前体,最大化TDP中的proteoform覆盖。FLASHIda通过iAPI与tribrid Thermo Scientific质谱仪连接,允许对MS数据进行实时访问。在LC-MS运行期间,将实时去卷积算法和评估前体同位素质量的机器学习技术结合,非冗余选择高质量前体离子,从而提高蛋白质的覆盖率。FLASHIda流程如图1所示,该算法能在20毫秒内处理每个MS全扫描,并优化下一个采集周期,以最大限度地提高采集中的异型多样性。FLASHIda包括以下3个关键步骤,第一步是将输入的m/z-强度谱转换为mass-quality谱图,第二步是在转换谱图中选择前体离子,最大化唯一识别的proteoform离子数量,最后,动态确定每个选定质量的电荷态和隔离窗口大小,以尽量减少噪声或共洗脱的干扰。确定的隔离窗口m/z范围通过Thermo iAPI连接提供给仪器。  图1.FLASHIda总览  在对大肠杆菌裂解液的分析中,与标准DDA模式相比,FLASHIda在三分之一的仪器时间内将proteoform鉴定数量从800增加到1500,或产生几乎相同的鉴定数量。此外,FLASHIda能够灵敏地绘制翻译后修饰和检测化学加合物。作为仪器的软件扩展模块,FLASHIda可以方便地用于复杂样品的TDP研究,以提高proteoform的鉴定率。  图2. Proteoform分析  这项研究展示了IDA在TDP研究中的应用,目前作者依然在开发该算法的不同变体,用于靶向proteoform分析,深度表征,甚至从头测序。此外,由于FLASHIda能够选择无干扰的前体离子,因此它可以用于提高proteoform定量准确性。作者预计,未来在FLASHIda内开发的高级数据采集方法将有助于通过TDP探索proteoform的异质性。  撰稿:张颖编辑:李惠琳  原文:FLASHIda enables intelligent data acquisition for top–down proteomics to boost proteoform identification counts  李惠琳课题组网址www.x-mol.com/groups/li_huilin   参考文献  Jeong K, Babović M, Gorshkov V, Kim J, Jensen ON, Kohlbacher O. FLASHIda enables intelligent data acquisition for top-down proteomics to boost proteoform identification counts. Nat Commun. 2022 Jul 29 13(1):4407.
  • 解析人类蛋白质组草图公布
    1 人类蛋白质组草图公布  之前,尽管不少大型的蛋白质组数据集,已经收集约上万个蛋白数据,然而覆盖80%的人类蛋白质组的草图却并未绘制。此次的研究,则突破了这一局限。  该图谱由德国慕尼黑工业大学、约翰霍普金斯大学/印度生物信息研究所等机构的两个团队独立完成。其中,在印度生物信息研究所和美国约翰霍普金斯大学等机构绘制了17 924个基因编码的蛋白质草图,其总数约占人类基因总数的84% 而慕尼黑理工大学领衔的团队,则对19 629个基因编码的蛋白质绘制草图,其总数约占人类基因总数的92%。不过,印度和美国团队,与德国团队所采用的实验数据来源略有不同,印度和美国的研究者从30个人体组织的许多不同的样品及细胞系(包括7种胎儿组织和6种血细胞类型)中提取、纯化所有蛋白质,并用质谱技术揭示组成各蛋白片段的氨基酸序列,因而两种数据的分析方法相对统一 德国的团队所采用的数据从公共数据库收集获得,而后与实验室生成的数据合并完成分析。在德国的研究中,慕尼黑工业大学的Bernhard Kü ster等人建立了搜索性公共数据库ProteomicsDB,而公共数据库收集获得的质谱分析数据约占ProteomicsDB数据的60%,其他的数据来自于60个人类组织体液,13个体液,147个癌细胞系。  这些蛋白大多为健康人群中组织和器官中表达的蛋白,对于理解疾病状态下发生的变化,具有现实的意义,如德国团队完成的数据能用于识别数百个翻译的基因间非编码RNAs(lincRNAs),比较分析通过蛋白质对癌症药物的敏感性,发现mRNA和组织中蛋白的定量关系等。同时,这两项研究也发现了许多新蛋白,而编码这些蛋白的基因之前被认为位于基因组的非编码区域,因而也丰富了对于遗传学研究的认识。  2 研究团队的基本背景  此次研究的美国和印度团队,由约翰霍普金斯大学的副教授Akhilesh Pandey领衔,而他也是印度生物信息学研究所首席科学顾问。此前,印度生物信息学研究所和约翰霍普金斯大学的生物信息学团队就有广泛的合作,例如两个机构的26名科学家经过18个月的努力,排列出了人类的X染色体顺序,并将其与黑猩猩、老鼠的基因组相比较,发现了新基因。  慕尼黑工业大学的化学和功能蛋白质组学分析者Bernhard Kü ster,其研究的主要领域是探索蛋白质的相互作用及其与活性药物成分的相互作用,分析癌症发生发展的分子机制,以及开发相应的临床治疗方法。作为研究者,Bernhard Kü ster也曾参与了蛋白质组技术平台上具有雄厚基础的Cellzome公司的发明(新的酶相互作用化合物的方法)。而Cellzome公司的药物研发平台,可对于特定蛋白相互作用的药物进行筛选,其具有高度的灵敏性,而葛兰素史克(GSK)公司也正在看中了这一点已将其并购。  3 中国人类蛋白质组计划(CNHPP)  在人类蛋白质组草图公布的同时,&ldquo 中国人类蛋白质组计划(CNHPP)&rdquo 已经由科技部正式批准启动实施。此前,中国科学家已倡导并领衔人类第一个器官(肝脏)国际蛋白质组计划(HLPP)。  在&ldquo 中国人类蛋白质组计划&rdquo 中,&ldquo 激光解析基体辅助离子源-蛋白测序仪器&rdquo 课题是重点研究方向之一,致力于蛋白质测序仪器和试剂国产化,从而加速蛋白质组学和生物质谱技术在临床领域的研究与应用。  4 蛋白质组测序技术的开发  蛋白质组是一个细胞、组织、有机体在一定时间内表达的所有蛋白质(总蛋白质)。对蛋白质组进行系统的、全面的研究,而快速、准确、低成本的蛋白质分离纯化技术(如双向电泳、计算机图像分析与大规模数据处理技术以及质谱技术等)的发展,则是系统、全面研究的基础。有了基因组计划和基因组测序技术的发展经验,人类在蛋白质组草图公布的前后,也就有了对低成本、高效率的蛋白质组测序技术的格外重视。例如,亚利桑纳州立大学的Stuart Lindsay团队正在致力于研究让单链肽段穿过纳米孔的技术,从而将纳米孔单分子DNA测序技术(第三代基因测序技术,采用纳米孔的单分子读取,与之前的测序技术测序时间长、价格比较昂贵、测序分子需要大量扩增、还需要进行荧光标记等相比,第三代测序技术读取数据更快,测序成本明显降低)的设计理念应用于蛋白质组的测序,开发蛋白质单分子测序技术。  5 蛋白质组学与个性化医疗  人类蛋白质组草图的成果表明,有数百种蛋白质是由此前认为不具备相关功能的DNA片段(脱氧核糖核酸)及&ldquo 假基因&rdquo 形成。这也说明了基因组和蛋白质组之间的巨大差别。例如,表观遗传研究的核心内容即是基因的拼接和翻译后修饰,而蛋白质随时间和空间的动态变化等,使得蛋白质组的研究远比基因组研究复杂。  尽管目前的个性化医疗以基因解析为特征,然而真正衔接基因型与疾病表型的还是蛋白质。随着蛋白质组测序技术的快速发展,也许蛋白质组学的研究会带动个性化医疗新的发展阶段。  本文作者:中国科学院上海生命科学信息中心 于建荣 江洪波。
  • 2013全国生物信息学培训班(第三期)
    生命科学的迅猛发展以及新一代的测序技术创造了海量的生物数据,但生命的奥妙并未就此解开,众多科研人员泡在数据的海洋里确打捞不到有效的信息 一些宝贵的数据被挖掘后又无法进行科学系统的分析。到底该如何利用生物信息技术挖掘有效数据,如何从大量数据中获得重要的科研成果,请选择生物信息学前沿技术专题培训班!  现将有关事项通知如下:  培训时间  2013年12月10日&mdash 2013年12月13日  主办单位  湖南省赢通基因与细胞工程技术研究中心  湖南省生物医学信息专业委员会  承办单位  中南大学湘雅三医院  长沙赢润生物技术有限公司  湖南能润医学诊断技术股份有限公司  协办单位  中南大学湘雅医院  中南大学湘雅二医院  湖南省医院协会  支持单位  仪器信息网www.instrument.com.cn  中国生物器材网  生物帮  培训地点  湖南省赢通基因与细胞工程技术研究中心  培训对象  从事生命科学、农学、医学等领域科研工作者和高校教师及研究生  培训方式  理论讲授和实验操作紧密结合。  培训特色  1. 小班授课,环境优雅,一人一机,无需自备电脑   2. 全程在计算机前讲授和操作,每位学员在辅导教师的指导下,独立完成数据的查询、分析、编辑以及绘图等操作   3. 精心挑选相应的上机软件及配套练习案例,为每位学员提供充足的实际操作机会,让每位学员学到扎实的操作技能   4. 技术团队可协助解答学员平时在科研上遇到的疑问和技术难题。  培训费用  3600 元/人, 费用包括:培训资料、教学、培训期间的午餐 可协助安排住宿,住宿费用自理。  本次课程限定名额20名,为确保培训资源得到最佳利用,请尽快申请报名参加。  课程安排时间课程时长第一天基因组学、生物信息学前沿技术动态1.5h常用生物数据及数据库介绍(NCBI、UCSC、ENSEMBL、EBI/SWISSPROT Kegg 、Rice/Silkworm等)2h基因组数据挖掘2h新一代测序技术原理与数据处理1.5h第二天Linux操作基础2h新一代生物信息分析工具平台介绍2h基因组de novo 组装方法与软件4h第三天基因组注释和基因注释2h全基因组或目标区域重测序数据分析3h比较基因组和进化分析3h第四天蛋白质结构分析与预测2hRNA分析原理及其应用(转录组、SmallRNA、long no-coding RNA)2h表观基因组介绍及应用(经典案例分析,经典文章解读,主流技术)3.5h  报名地址:http://train.360bio.com.cn/  联系人:吴双 0731-84318721 15874081849
  • 仪器信息网参观北京蛋白质组研究中心
    北京蛋白质组研究中心(Beijing Proteome Research Center,BPRC)经过国际人类蛋白质组组织(HUPO)认可,已经成为国际人类肝脏蛋白质组计划(HLPP)的执行总部,是蛋白质组科学研究的数据与信息中枢、科技成果与知识产权的交流中心。同时也是中国人类肝脏蛋白质组计划(CNHLPP)的组织者和主要承担单位,是国家蛋白质组科学研究的基地和蛋白质药物国家工程研究中心。2008年3月18日,仪器信息网相关人员应邀参观。图一 北京蛋白质组研究中心研发大楼  在中心副主任魏开华老师的带领下, 仪器信息网人员参观了中心研发大楼内(总建筑面积达12600平方米)学术走廊、展报、墙报、研究室和分析测试实验室。中心已建成的十大国际一流水平研究平台如下:蛋白质表达谱研究室/技术平台、蛋白质修饰谱研究室/技术平台、蛋白质相互作用研究室/技术平台、蛋白质定位研究室/技术平台、抗体工程研究室/技术平台、生物信息学研究室/技术平台、功能蛋白质组研究室/技术平台、功能基因组研究室/技术平台、蛋白质组新技术研究室/技术平台、蛋白质工程研究室/技术平台。大家对中心分析实验室内国际先进的蛋白质分离、鉴定系统,LTQ-FT、LTQ、MALDI-TOF-MS、MALDI-TOF-TOF-MS、ESI-Q-TOF-MS、ESI-Ion Trap-MS等大型质谱设备以及超级计算机检索系统赞叹不已。图二 研发大楼内办公区图三 研发大楼内办公区展报走廊1图四 研发大楼内办公区展报走廊2图五 研发大楼内实验室区学术走廊1图六 研发大楼内实验室区学术走廊2图七 研发大楼内实验室区分析实验室图八 研发大楼内实验室区小型质谱仪室图九 研发大楼内实验室区MALDI-TOF-TOF-MS仪  蛋白质组研究中心的先进大型仪器和优越检索系统,形成了高通量、高灵敏度、高分辨率和规模化的蛋白质组技术检测体系,结合相应的标记技术(DIGE、ITRAQ、SILAC等)和富集技术(IMAC等),构建了较完整的差异蛋白质以及修饰蛋白质的分析技术。  目前北京蛋白质组研究中心已开展重大疾病,尤其是肝脏疾病和肿瘤相关的蛋白质组研究,为下一步重要药物靶标的发现奠定了基础。中心平台承接各类蛋白质组学技术服务,开展规模化、高通量的蛋白质组学委托科研服务。同时,中心长期从事生物质谱和蛋白质组学研究方面的培训服务,详情可登陆网站:http://www.bprc.ac.cn 查询。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 【综述】蛋白质组学研究进展
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201601/insimg/4a14f65e-cb82-47d8-87d5-ea4b0d204756.jpg" title="sss_56a5b6877c56c.jpg"//pp  1、蛋白质组和基因组br//pp  蛋白质组是指一种基因组所表达的全套蛋白质1,其英文为“proteome”。 有关蛋白质组的系统研究是蛋白质组学,英文为“proteomics”。基因组是生命体中全部基因的集合体,其英文为“genome”。有关基因组的系统研究是基因组学,其英文为“genomics”。 “proteome”和“proteomics”是由Marc Wilkins 及其同事于20世纪90年代初参照基因组和基因组学两个英文单词而创造出来的2。蛋白质组学是研发、利用、改进各种技术手段研究蛋白质组或在细胞某一生理通路中相关蛋白质集合的组成、结构、功能、代谢的一门新兴科学。/pp  基因决定蛋白质的水平,然而,蛋白质的水平分为转录水平和表达水平,mRNA只包含前者,后者则是由mRNA被翻译所实现,而在翻译过程中通常伴随对蛋白质功能和活性起至关重要的修饰过程,如糖基化、泛素化等3。通过研究蛋白质组学,可以获取蛋白定位与修饰的定性信息和相关定量数据,丰富认知蛋白质表达水平和相关蛋白作用,对了解生命复杂活动有更深更全的认识。/pp  2、蛋白质组的发展背景/pp  自二十世纪九十年代以来,传统生物学得以突飞猛进地发展,并取得瞩目成就,其中三个重要点彪炳史册,也促使传统生物学获得质的转变。/pp  第一 基因、表达序列标记(EST, expressed sequence tag)、蛋白质序列数据库的成长。细菌、酵母、线虫、果蝇的全部基因序列逐渐明了,甚至后来人类基因组计划也顺利告捷 其它的植物、动物、微生物也不断在探索。人们把已经掌握的基因分门别类地建立了序列数据库。/pp  第二 生物信息学的发展。易获取的浏览型生物信息工具层出不穷,这种免费的网页式数据库可以让我们从其中获得所需的特殊的物质结构,如蛋白质结构中的结构域和模体等。/pp  第三 寡核苷酸微阵列技术的发展。通过不同荧光标记的DNA样本同时与微阵列反应,形成不同荧光的现象,大幅提高Northern blot 的效率4。/pp  3、蛋白质组学分类/pp  蛋白质组学分类可有不同原则。/pp  根据蛋白质来源可分为植物蛋白质组学、动物蛋白质组学、微生物蛋白质组学。植物蛋白质组学是以来源于植物或与植物相关蛋白质为研究对象,分析其在植物发生、生长、调节、凋谢等生命过程中的作用、功能、代谢、结构等的体系。同理,动物蛋白质组学是以来源于动物或与动物相关蛋白质为研究对象,最重要的一大内容就是研究人类相关蛋白质。微生物蛋白质组学是以来源于微生物或与微生物相关蛋白质为研究对象。/pp  根据研究目的和阶段不同可分为结构蛋白质组学、表达蛋白质组学、功能蛋白质组学。结构蛋白质组学主要分析蛋白质大分子的多级结构形态,包括氨基酸顺序、二级结构、三级结构和四级结构 并着重于研究其共性结构特征和特殊功能基团 也是用于建立细胞内信号转导的网络图谱并解释某些特定蛋白表达对细胞产生特定的作用5。表达蛋白质组学是以经典蛋白质组技术如双向凝胶电泳和图像分析为方法着重于研究细胞内蛋白质表达过程及结果的体系3。功能蛋白质组学是以细胞内单一同种蛋白质功能体现、蛋白质之间、蛋白质与其他大分子之间相互作用关系为研究目的,研究和表述选定蛋白质,探明有关蛋白的修饰和信号转导通路,疾病机制或蛋白-药物作用关系3。/pp  根据研究内容,还可分为组成性蛋白质组学、差异显示蛋白质组学、相互作用蛋白质组学。组成性蛋白质组学是鉴定某个体系的蛋白质并阐述其翻译后修饰的特性。差异显示蛋白质组学又名比较蛋白质组学,是对重要生命过程或人类重大疾病进行生理、病理体系或过程的蛋白质表达比较。相互作用蛋白质组学则是研究蛋白质间相互作用,绘制某体系蛋白质作用网络图谱8。/pp  4、白质组学研究工具/pp  蛋白质组学研究的重要工具主要有四个。/pp  第一,蛋白质、表达序列标记(EST, expressed sequence tag)、基因序列数据库的建立与成熟 也可以说是生物信息学。因为蛋白质组学中所用的大多数技术所获得的数据通常都是高通量、高复杂度的,只有通过生物信息学分析才能对蛋白质的种类、结构和功能进行分析确定。/pp  第二,质谱(MS)技术。其将样品分子离子化,根据离子间质荷比的差异分离并确定质量,实现高灵敏度、高特异性。首先,质谱技术能准确测量高达100kDa的完整大分子蛋白质,其准确度和特异度比SDS-PAGE还要高。其次,质谱技术也能准确测量从蛋白质分解下来的多肽。最后,它还可以测定多肽的氨基酸顺序,即多肽测序4。现有三条途径,一是肽链质量图谱,二是串联质谱途径,三是联合途径7。其中一种较理想的技术平台是表面增强激光解吸离子化飞行时间质谱(SEL-DI)技术,可分析疏水性蛋白质、pI过高或过低蛋白质、低分子量蛋白质( 25 000)和未经处理的样品中许多被掩盖的低浓度蛋白质,短时间内即可获得蛋白质的分子量、PI、特殊修饰位点等参数8。/pp  第三,能将MS数据与数据库中特异的蛋白质顺序匹配的软件。它是快速、特异地将第一和第二工具联系在一起的分析方式。/pp  第四,蛋白分析分离方法。通过蛋白分析分离方法可以简化蛋白复合物,同时产生不同蛋白质差异比较方法。普通的蛋白质分析分离方法包括1D-SDS-PAGE、高效液相色谱法(HPLC)、毛细管电泳(CE)、等点聚焦电泳(IEF)等。其中二维凝胶电泳如2D-SDS-PAGE是目前蛋白质组学中分离单一蛋白质的广泛应用方法。当然,多维分析分离方法是最理想的分离蛋白质和多肽的方法,譬如,离子交换液相色谱与反相高效液相色谱串联形成的分离系统是分离多肽混合物的有力方法4。/pp  5、白质组学的应用/pp  蛋白质组学原则性应用包括四个方面4:组成性应用、蛋白质表达模型、蛋白质网络图谱、蛋白质修饰图谱。组成性应用是指运用质谱及其相关技术将目的蛋白质按相关标准定性或定量地纳入蛋白质数据库,在此过程中研发相应技术的应用。蛋白质表达模型是指研究在生理或病理状态目的蛋白质在细胞内定位并表达情况,同时研究细胞在暴露物理、化学、药物等因素下蛋白质表达状况。蛋白质网络图谱是研究两种或两种以上蛋白质在生物体内组成结构、表达功能、调节控制间作用情况。蛋白质修饰图谱是探明蛋白质的修饰定位及修饰后功能表现。/pp  当然,蛋白质组学在生活中无处不在,疾病、食品、植物、药品等等。/pp  蛋白质组学在疾病中应用方向主要是发现新的疾病标志物,以探明疾病发生机制、发展变化,为治疗途径提供思路。Brea等利用双向电泳串联质谱技术,差异比较心源性脑栓塞患者和粥样硬化血栓性梗死患者各12例的血清蛋白,发现触珠蛋白相关蛋白和淀粉样蛋白A等蛋白质在粥样硬化血栓性梗死患者血清中显著升高9。/pp  蛋白质组学在食品中应用方向主要是检测食品中过敏源检测、鉴定食品成分等,也给食品科学研究提供了新的研究思路和技术3。李明云等优化了相应的试验条件,并将蛋白质组双向电泳相关技术引入大黄鱼肝脏蛋白质分析中,得到了较清晰的大黄鱼肝脏蛋白双向电泳图谱。/pp  蛋白质组学在植物中应用方向主要是植物群体遗传、环境信号应答与适应机制、植物组织器官、植物亚细胞等7。其中,如果研究的植物是农作物如棉花、马铃薯、水稻等,就可以简单地视作蛋白质组学在农业中的运用了。Chang等对玉米强制缺氧和低氧研究,发现低氧处理的效应不仅是氧气含量过低诱导增加糖酵解酶,通过质谱鉴定了46个相关蛋白质10。/pp  蛋白质组学在药品中应用方向主要是药物研发、药物作用机制、耐药机制、药物毒理学等。在对紫杉醇类药物抗癌作用研究中,Bauer等对乳腺癌复发患者进行紫杉醇类药物治疗后进行蛋白质组学分析,发现a-防卫素可作为预测该类药物治疗乳腺癌治疗作用的生物标记物11。/pp  6、展望/pp  蛋白质组学在短短30年间发展迅猛,渗入到生活的许多方面,也对保证人类生存质量和良性繁衍有重大作用。但其思路不开阔,技术高效性、灵敏性、特异性仍有待提高,应用普及度低,蛋白质分离、纯化技术研发,基因组学丰富度低是制约蛋白质组学及其相关技术发展的瓶颈。不过,相信随着物理技术和化学方法的不断发展,研究水平的深入,蛋白质组学会随着基因组学的发展得到更进一步地丰富。/pp  参考文献:/pp  1.诗,吕建新主编《分子生物学检验技术》第2版/pp  2.Pandey A, Mann M. Proteomics to study genes and genomics [J] Nature,2000,405(6788):837-846./pp  3.尹稳、伏旭、李平《蛋白质组学的应用研究进展》 [J]. 生物技术通报 2014年第1期/pp  4.aniel C. Liebler《Introduction to Proteomics》:1-13/pp  5.英超,党源,李晓艳,等. 蛋白质组学及其技术发展 [J]. 生物技术通讯,2010,21(1):139-144./pp  6.鑫《比较蛋白质组学研究与应用进展》[J]. 国际免疫学杂志 2006年5月第29卷第3期:156-159/pp  7.宇,荆玉祥,沈世华《植物蛋白质组学研究进展》 [J] 植物生态学报,2004,28(1):114-125/pp  8.ore LE,Pfeiffer R,Warner M,et al. Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology . Biochem Mol Toxicol , 2005,19(3):176./pp  9.rea D,Sobrino T,Blanco M, et al. Usefulness of haptog lob in and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation [J]. Atherosclerosis,2009,205:561-567./pp  10.ng,W.W.,L.Huang,M.Shen,C.Webster,A.L.Burlingame& J.K.Roberts.2000.Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low oxygen environment,and identification of proteins by mass spectrometry.Plant Physiology,122:295~318./pp  11.er JA,Chakravanhy AB,Rosenbluth JM,et al.Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neo-adjuvant paclitaxel and radiation[J].Clin Cancer Res,2010,16(2):681-690./ppbr//p
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 安捷伦科技将生物信息学系统扩展为综合生物学套装
    安捷伦科技将生物信息学系统扩展为综合生物学套装 2010年 11 月 15 日,北京 &mdash 安捷伦科技公司(纽约证交所:A)今日发布了GeneSpring GX 11.5,这是广泛使用的生物信息学软件的扩展版,能够对多种类型的生物学数据进行可视化和分析。目前 GeneSpring GX 11.5 是首款可同时对外显子芯片、蛋白组学和代谢组学实验进行解读的软件,该工具的界面与以前的版本类似。 这些新功能与现有的 GeneSpring GX 应用相结合,用于基因表达分析、基因组拷贝数分析、全基因组关联分析以及转录组学数据分析。 安捷伦副总裁兼生物系统部总经理 Gustavo Salem 说:&ldquo 安捷伦致力于提供精密的新型仪器和软件工具,以帮助研究人员实现系统生物学的美好前景。这个多组学生物信息学软件只是我们致力于推动未来生物医学研究突破的一部分。&rdquo Agilent GeneSpring GX 11.5 是与 Strand Scientific Intelligence 公司联合研发的,基于 Strand的 Avadis技术平台之上,该平台专门为科学家简化和应对复杂的生命科学挑战而设计。 GeneSpring GX 11.5 增加了用于选择性剪接、代谢组学和蛋白组学分析的新功能,还改进了现有的分析和可视化工具。 在基因组学方面,GeneSpring GX 11.5 的剪接分析得到了极大的扩展与改进,可支持新推出的安捷伦外显子芯片平台。借助 Agilent SurePrint G3 外显子芯片,研究人员可在一次实验同时鉴别出基因水平和外显子水平的表达差异,从而捕获到微小但至关重要的生物变化。使用安捷伦 GeneSpring GX 11.5 生物信息学系统,研究人员可同时分析基因水平和外显子剪接水平的数据,在生物学环境中理解复杂的基因表达行为,从而提高效率,加速研究进程。 GeneSpring GX 11.5 集成了 Agilent Mass Profiler Professional,从而增加了全新的代谢组学和蛋白组学分析功能,并能在 GeneSpring 平台上实现安捷伦质谱分析的所有功能。现在研究者可以在同一窗口中加载多种分别代表了转录组学、基因组学、代谢组学和蛋白组学的实验类型。这样用户就可以在多个实验间切换自如,不再需要单独加载各个实验。 这种组织方式还使得研究者进行生物学研究时,可以便捷地将多类数据结合到一个逻辑单元中,并同时比较不同实验类型的结果。 GeneSpring 的一个重要特点是用户可方便地比较异构数据,并且能深入地进行生物学处境化。不同芯片平台和有机体间的探针自动翻译使得研究者可以通过简单的拖放功能,进行结果比较。这项无缝翻译技术使研究者可以快速鉴别具有统计学显著重复内容的实体列表。 GeneSpring 11.5 版本为客户增加了先进的数据管理功能,如综合备份工具和改进的数据迁移工具。它还整合了 GeneGo 的MetaCore 路径分析工具,使 GeneSpring 的统计分析与 MetaCore 的路径分析优势得以强强联合。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18,500 名员工在 100 多个国家为客户服务。在 2010 财政年度,安捷伦的业务净收入为 54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn
  • 质谱组学云课堂 | 代谢组学、蛋白质组学双重盛宴来袭
    质谱组学云课堂 | 代谢组学、蛋白质组学双重盛宴来袭 蛋白质作为生命活动的功能执行者,使得质谱表征的蛋白质组学能够为生命活动提供更加贴近表型的解释,它为疾病致病机理发现、癌症的早期诊断及新型标志物研发、预后预测、精准分型、指导用药、临床样本数字化等均提供了准确全面的信息,是人类对抗疾病的一大利器。 代谢组学作为蛋白质组学的下游组学,同时也是环境暴露、治疗干预、生活习惯以及上游组学这一系列事件在人体的最终直观放大反应,也是更能直观反应生物体系的状态的组学,因此代谢组学的研究是精准医疗的重要一环。近几年,在学术前沿领域有众多的学者意识到代谢组学的重要性。赛默飞 × 华大基因赛默飞携手华大基因紧跟学术前沿,结合组学研究需求,推出基于Orbitrap在组学中的研究方案,助力组学技术的进展,紧跟热点,分享单细胞/微量样品、精准医学等相关应用。 代谢组学系列讲座 基于Orbitrap平台的代谢组学和脂质组学方案时间: 10月28日 15:00~16:30内容简介: 1. Orbitrap仪器原理、用于小分子组学的硬件优势 2. 用于小分子组学的主要软件Compound Discoverer和Lipidsearch介绍 3. 相关应用案例介绍吴珊湖,赛默飞世尔科技(中国)有限公司液质联用小分子领域应用工程师,主要支持LC-MS、LC-MSMS系列平台的应用开发,在小分子组学、杂质分析、中药定性等方面具有丰富的经验。肠道菌群与代谢组学关联分析时间: 10月28日 16:30~17:30内容简介: 1. 宏基因组/16S与代谢组关联分析方法 2. 宏基因组/16S与代谢组关联分析案例梅占龙,哥本哈根大学生物信息学博士,任华大基因质谱平台信息分析负责人。擅长代谢组学技术研究及生物信息分析,参与开发多款华大基因代谢组学分析流程。在代谢组学的应用上有丰富经验,与客户合作发表文章多篇。 扫码报名 医学蛋白质组学系列讲座 蛋白质组学在精准医学研究中的应用时间: 11月5日 15:00~16:00内容简介: 1. Orbitrap超高分辨质谱的发展及其在蛋白质组学领域的全面解决方案 2. 蛋白质组学技术在精准医疗领域的应用及进展齐英姿,赛默飞世尔科技大分子方向应用工程师,毕业于军事医学科学院国家蛋白质科学中心北京,一直从事蛋白质组学相关技术支持工作;2021年加入赛默飞世尔科技,具有丰富的蛋白质组学研究以及质谱数据分析相关经验。单细胞/微量样本的蛋白质组学技术时间: 11月5日 16:00~17:00内容简介: 1. 单细胞蛋白质组学技术的发展和现状 2. 单细胞和微量蛋白质组学技术的应用案例李思奇,哥本哈根大学生物化学博士,深圳华大基因质谱平台资深研发工程师。擅长蛋白质组学和质谱技术的开发与应用,负责多项实验技术的设计、搭建和优化,参与发表多篇SCI文章。 扫码报名扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • Xevo G2-S QTof和TransOmics:用于蛋白质组学、 代谢组学和脂质组学的LC/MS差异组学分析系统
    Ian Edwards、JayneKirk和Joanne Williams沃特世公司(英国曼彻斯特)应用优势■ 简化了工作流程、验证和数据解析 ■ 设计用于大规模代谢组学和蛋白质组学数据集■ 集成式组学平台可用于各种各样的全面定性和定量分析沃特世解决方案包括TransOmics信息学软件的组学研究平台解决方案ACQUITY UPLC I-Class 系统nanoACQUITY UPLC 系统Xevo G2-S QTofTransOmics 信息学软件MassPREP 蛋白质酶解标准品 关键词组学,代谢组学,脂类组学,蛋白质组学,MSE,主成分分析,无标记LC/MS 简介近年来,包括基于LC-MS的代谢组学、脂质组学和蛋白质组学仪器等组学技术的进步实现了以高通量的方式对多种生物分子的丰度进行定量监测,从而测定它们在不同生物状态下的变化。我们的最终目标是增进对生物过程的理解,从而改善对于疾病的疗效,更有效地开发药物或维持作物生长的最佳农业环境,同时最大程度地减少传染和其它副作用。就此而言,不同分析学科的研究结果可提供正交的观点,通常可以互相作为补充。开发和应用能够将多个研究领域的结果进行整合的灵活信息学解决方案具有重大意义。本研究介绍了一种多组学解决方案,可用于对代谢组学和蛋白质组学数据集中的MS数据进行大规模分析。其中采用了包括TransOmics信息学软件的沃特世(Waters?)组学研究平台解决方案,并结合Xevo G2-S QTof系统进行技术和生物学重复分析。 结果与讨论执行的代谢组学实验包括相对于对照/质控样品,鉴定低剂量和高剂量样品。根据实验设计,样品应当划分为3个不同的组,并使用标记离子进行不同组的识别。用于代谢组学和脂类组学的TransOmics(TOIML)流程包括以下步骤: 1. 导入原始的MSE连续数据集(六个技术重复样/组)2. 峰对齐,纠正不同分析运行间的保留时间偏移3. 色谱峰归一化,以便在不同样品运行间进行比较4. 色谱峰检测(峰选择)5. 离子去卷积,按化合物将离子分组6. 利用已有的定制数据库进行化合物鉴定7. 执行数据分析,找出用以将化合物分为QC(质控)、空白(基质)和分析物(高剂量)的离子(特征) 基质背景包括系统评估基质,其中加入了不同的镇痛标准品混合物A,从而得到低剂量(QC和高剂量(空白)样品。质控样品(QC)通过混合等量的低剂量和高剂量样品而制成。 采用ACQUITY UPLC I-Class系统结合Xevo G2-S QTof,在正电喷雾模式下以大于30k FWHM的质量分辨率,分离和分析代谢物。在UPLC/MSE模式下采集数据,该模式是一种无监督的采集方法,其中当进行交替扫描时质谱仪在低能量和高能量之间切换。使用TOIML和专业化合物数据库进行处理、搜索和定量。 其中TOIML流程的步骤1,2和3在别处有详细描述(TransOmics信息学软件由Nonlinear Dynamics提供技术支持)。鉴定前,通过主成分分析对所检测离子进行分组,如图1所示,显示了综合得分图和载荷图。从中可知,离子主要聚集在技术重复水平,并且样品实现了清晰分离。 图1. 分析物(镇痛标准品混合物A高剂量;紫色),空白(系统评估基质;浅蓝色)和QC(质控样品;深蓝色)的主成分分析接着,采用集成式搜索工具进行化合物鉴定,以正确鉴定四种镇痛标准品混合物中可在正离子电喷雾模式下检测到的标准品。图2展示了TOIML化合物搜索结果页面的概览,其中突出显示了基于精确质量数、保留时间(可选)和理论同位素模式分布对咖啡因的鉴定。除了先前描述的PCA之外,TOIML中还整合了其它多变量统计工具,包括相关性和趋势分析。图3为一个示例,示出了四个加标标准品的归一化趋势图,表明每个标准品的六个技术重复样之间有着良好的一致性,并且相对丰度与实验设计一致。此外,TOIML还便于科学家将分析结果与其它组学数据关联,或为诸如EZinfo的独立统计软件包提供输入数据。下游生物信息学(即Umetrics软件)的结果可重新导入分析实验中,以将所有化合物数据合并为单个表格以供审查或分享。图2. TOIML化合物鉴定页面。图3.镇痛标准品的归一化丰度分析。在蛋白质组学实验中,分析了两个10ng大肠杆菌样品的三个重复样,分别加入了牛血清白蛋白(BSA)、乙醇脱氢酶(ADH),烯醇酶和糖原磷酸化酶B。第一个样品(混合物1)中的加标蛋白质的柱上进样量均为1飞摩尔,而第二个样品(混合物2)中的加标蛋白质柱上进样量分别为8、1、2和0.5飞摩尔。因此,额定预期比值(混合物2:混合物1)应为8:1、1:1、2:1和0.5:1。在本研究中,使用nanoAC-QUITY UPLC系统结合Xevo G2-S QTof,在LC/MSE采集模式下对肽进行分离和分析。采用用于蛋白组学的TransOmics(TOIP)以及含有加标蛋白质序列信息的种属特异性数据库进行处理、搜索和定量。 TOIP流程包括以下步骤:1. 导入原始的MSE连续数据集(每个样品有三个技术重复样)2. 峰对齐,纠正不同分析运行间的保留时间偏移3. 色谱峰归一化,以便在不同样品运行间进行比较4. 色谱峰检测(峰选择)5. 利用集成数据库搜索算法鉴定蛋白质和肽6. 多变量统计分析7. 绝对和相对定量 TOIP提供了与TOIML相同的多变量分析工具。图4显示了所检测特征的PCA示例,即电荷态组。可明显看出,特征主要聚集在技术重复水平。其中一种加标蛋白质消化物的肽定性鉴定结果示于图5中,该蛋白质中鉴定出的所有肽的归一化表达谱如图6所示。对后者的定量精确度类型进行了确证,此类型可通过无标记MS研究及基于LC/MSE的采集策略获得。 图4.大肠杆菌中加入的混合物1(深蓝色)和混合物2(浅蓝色)的特征(电荷态组)PCA图。图5显示了差异加标样品中一个分析物的LC/MSE采集的定性结果概览。在本例中,BAS的柱上进样量为8 fmol,而大肠杆菌消化物的量为10 ng。结果如图6所示,展示了相关的相对定量结果。图5.大肠杆菌中加入的不同浓度牛血清白蛋白肽的定性LC/MSE鉴定结果。顺时针显示的依次是鉴定相关指标(得分和误差)、具体的轮廓线图以及标注的产物离子谱图。图6.牛血清白蛋白中鉴定出的肽的定量分析。结论■TransOmics信息学软件为多组学研究提供了一个简单易用、可扩展的系统■UPLC/MSE(LC结合数据独立型采集MS)可在单次实验中提供全面的定性和定量数据集■通过代谢物、脂质和蛋白质分析可快速获取补充信息并进行关联
  • 中国人类蛋白质组计划:精准解密中国人的健康密码
    凤凰中心 中国科学院院士贺福初有一个比喻:基因组和蛋白质组的关系就像词典与文章、元素表与化工厂。基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大。因此,要真正阐释生命,必须从蛋白质组中寻找答案。 北京市昌平区中关村生命科学园的主入口处,一栋由南北双楼组成的银白色建筑呈一字型展开。这里是国家蛋白质科学中心—北京(凤凰中心)的总部大楼,也是“中国人类蛋白质组计划”(以下简称CNHPP)的主要研究基地,从2014年6月至今,有关人类蛋白质组的庞大数据在这栋建筑中陆续被测量和解读。 偶尔从门口经过的人也许无法想象,这些数据有一天会完全改变眼前的生活。基于人类基因组这部“天书”而发展起来的精准医疗,将因为人类蛋白质组信息的清晰而变得更加精细和普适。 不久前,凤凰中心主任、北京蛋白质组研究中心主任、蛋白质组学国家重点实验室副主任秦钧在第一届生命组学与精准医学大会上对CNHPP作了介绍,《中国科学报》记者就该计划对其进行了专访。 只有蛋白质组才能从根本上阐释生命 《中国科学报》:人类基因组计划完成了对人类23对染色体上全部DNA携带的遗传信息的总和——30亿个碱基对的测序工作,人体“天书”已完整地呈现在了人类面前。现在对人类蛋白质组展开研究,其意义是什么? 秦钧:科学界曾经认为,只要绘制出人类基因组序列图,就能了解疾病的根源,但事实并非如此。 基因是人类遗传信息的载体,是生命奥秘最原始、最根本的物质基础。蛋白质是基因表达的产物,是构成有机体的主要成分,是所有生命活动的载体和功能执行者,是细胞执行生长、发育、衰老和死亡等各种生命活动的基本单位。蛋白质与基因密切相关,但是在此基础上又产生很多变化,造就了生物体不同的形态、形状,或者执行不同的功能。 一个有机体只有一个基因组,但是同一个有机体的不同细胞中的蛋白质的组成和数量却随细胞种类和功能状态的不同各有差异。比如,人体不同组织器官的基因组是一样的,但是各个组织器官的蛋白质组不完全一样。人和鼠的基因组的差别仅为1%,但是其形态、性状差别非常大,这就是蛋白质组不一样的体现。 中国科学院院士贺福初有一个比喻:基因组和蛋白质组的关系就像词典与文章、元素表与化工厂。确实如此,基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大。因此,要真正阐释生命,必须从蛋白质组中寻找答案。 《中国科学报》:在CNHPP开展之前,中国科学家已经主导执行过“人类肝脏蛋白质组计划”(HLPP)。和HLPP相比,CNHPP对研究方法和技术提出哪些新的要求? 秦钧:与前期的HLPP相比,无论从研究思路、技术方法,还是平台和团队,CNHPP都有较大的改进和完善,研究范围也显著扩大。特别是对数据质量、数据产出的速度等要求也越来越高。比如,蛋白质组的分析速度、精度以及在定量、可视化等方面要求不断提升。在CNHPP中,我们将对象扩展到心脏、肝脏、胃、肺脏、肾脏等人体器官,获得的实验数据不仅可以在器官内比较,更可以在器官间分析,获得全面的认识。 样本检测效率可提升6倍 《中国科学报》:为了绘制人类蛋白质组的精细图谱,CNHPP都将展开哪些研究?秦钧:主要开展的研究包括:建立样本采集方法标准、样本预处理和生物质谱分析策略;进行含有定量信息的正常组织和疾病、疾病旁组织蛋白质表达谱、磷酸化谱、转录因子谱构建;建立临床蛋白质组大数据平台;通过数据分析、知识挖掘,发现若干疾病人群特征性信号通路变化的线索以及它们和病人手术后存活的关系。 这其中包含了很多难题。首先需要攻克的是蛋白质分离鉴定的速度、样本通量,除此之外,还有微量或痕量蛋白质的分析、蛋白质组大数据构建和多维度组学对接、蛋白质组数据的深入分析和知识挖掘的方法策略等。 《中国科学报》:CNHPP从2014年6月启动,迄今取得了哪些进展? 秦钧:主要包括五个方面的进展。 首先,建立了样本采集方法标准,并推广至全体项目团队,各临床团队已完成100组以上的样本,包括正常组织、疾病组织、疾病旁组织的收集。第二,建立了样本预处理和生物质谱分析策略,包括表达谱、磷酸化谱、转录因子谱方法标准。第三,建立了一种新蛋白质组分析策略,可在接近和达到样本蛋白表达数量的水平上,将检测时间缩短至传统蛋白质组技术的1/7左右。该分析策略已作为本项目的技术规范应用在所有样本的检测分析中。第四,通过测定和分析个体的蛋白质组数据,进行含有定量信息的正常组织和疾病、疾病旁组织蛋白质表达谱、磷酸化谱、转录因子谱构建。最后,通过初步数据分析,发现若干疾病人群特征性信号通路变化的线索。 蛋白质是最终解决精准医学问题的出路 《中国科学报》:你刚才提到了对蛋白质组数据的分析,其实将所得到的海量数据转换成有意义的海量信息才是研究的主要目的,现有的信息分析技术能够达到这一目标吗? 秦钧:我们通过联合相关生物学家、临床学家以及生物分析学家分析海量实验数据,一是通过各种生物信息学分析方法,努力从数据中挖掘有用的信息;二是依靠生物学家、临床学家,从生物学问题,临床问题、临床需求等方面研读数据。 现有的生物信息技术还不能完全按照我们的要求和期望分析蛋白组学数据。从规模和深度来看,CNHPP产生的数据对当前生物信息学是个挑战。因此,我们还在不断开发和整合新的生物信息技术,希望构建一个整合、快速、功能强大、完善的生物信息分析平台,以满足不断产生的海量数据的分析,这其实也是CNHPP的一个主要发展方向。 《中国科学报》:CNHPP的科学价值如何切实造福人类? 秦钧:从现阶段看,至少在以下几个方面可造福人类。 一是通过对重大疾病发生发展过程中的重要调控通路和重要调控蛋白质进行研究,揭示重大疾病的发生发展机制,同时获得一批重要疾病诊断标志物、药物靶标,从而提高重大疾病的防诊治水平。比如,通过筛选更多更具有诊断和判别意义的生物标志物,提高重大疾病的早期诊断能力或者为疾病早期预警、健康体检监测等提供重要依据,通过对疾病发生发展密切相关的蛋白质及其信号通路等的研究,为精准医疗提供判别依据和相应的手段。二是可以通过新的诊断试剂、创新药物以及相关科学仪器、诊疗设备等多种产品的市场化推动生物医药经济的发展。 《中国科学报》:CNHPP如何促进精准医疗的发展? 秦钧:我要特别强调CNHPP对目前正在筹划、即将启动的中国精准医疗计划的启示。美国的精准医疗计划没有包含蛋白组学的内容,是个很大的缺陷。中国的精准医疗计划在蛋白组学上有考虑和布局,是一个显著的进步。 蛋白质最终会是精准医学的出路。现在蛋白组学刚刚起步,相当于基因组学10~15年前的水平,但其发展势头已展现出蓬勃生机。中国的蛋白组学起步早,进步快,在世界的蛋白质组学领域占有一席阵地。最近建成、投入试运行的国家蛋白质组学大科学设施——凤凰中心已在CNHPP的实施中发挥了作用。其强大的蛋白质组解析能力,正在发展的蛋白质组生物信息学技术和方法,统一的样本准备流程,均一的质量控制方法和与临床医生的紧密合作、无缝连接,已对CNHPP高质量数据的产出和分析提供了坚实的基础和保障。
  • 五洲东方将参加“第七届中国蛋白质组学大会暨第三届国际蛋白质组学论坛”
    2011 年4 月15 日&mdash 18 日五洲东方公司将专程组织人员参加在浙江省杭州市举办的&ldquo 第七届中国蛋白质组学大会暨第三届国际蛋白质组学论坛&rdquo 。本届会议由中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)和国际蛋白质组学论坛(IFP)主办,北京蛋白质组研究中心、国际蛋白质组学论坛及浙江大学共同承办。  本届会议设有大会报告、分会(专题)报告和墙报三种形式。大会将邀请蛋白质组学及相关领域的国际著名专家和教授作大会报告或专题报告,会议规模约1000 人左右。会议主要讨论蛋白质组学研究的现状及其进展,内容包括:疾病蛋白质组学,功能蛋白质组学,药物蛋白质组学,结构蛋白质组学,蛋白质修饰和相互作用,生物信息学,抗体相关技术,蛋白质组微分析以及蛋白质组新技术新方法等研究领域。  本届会议在4 月15-17 日进行学术大会,在新技术推广会上五洲东方公司安排一个技术讲座,技术讲座详细信息如下:  时间:2011-4-15  12::45-13:50  主讲人:Mrs Wendy  职位 :CTO(Chief Technology Officer )of prospect Biosystem Inc.  题目 :The Biomarker discovery sulution  本届会议的展位号为:A5  五洲东方诚邀您的参与。
  • 全球基因组学和蛋白组学分析仪器市场预测
    全球权威调研机构Technavio最新报告显示,预计在2013到2018年全球基因组学和蛋白组学分析仪器市场将保持7.83%的复合年增长率。  基因组学研究的是基因及其功能,蛋白质组学研究的是蛋白质组或组蛋白的结构和功能,两者均使用分子生物学和生物信息学的工具和技术。基因组学通过绘制基因和DNA序列来了解基因组的结构和功能。一个蛋白质组是一个基因组在特定时间内表达的一整套蛋白质。蛋白质组学主要涉及的是使用分子生物学、生物化学和遗传学来分析蛋白质,这些蛋白质是通过基因编码而来。蛋白质是所有细胞的主要组分,而且控制细胞的不同功能特性。基因组和蛋白质组结构或功能的缺陷可能导致疾病,因此基因组学和蛋白组学技术在科研、新药研发、疾病诊断中发挥着重要作用。这些应用都需要基因和蛋白缺陷的识别和研究,而基因组和蛋白质组的蛋白质分离、净化、识别、量化和分析都需要仪器、试剂和软件。基因组学和蛋白质组学用到多种分析仪器,但应用最广泛的是色谱系统、质谱系统、PCR系统和下一代测序系统。  目前,基因组学和蛋白组学领域的主要供应商有安捷伦、Bio-Rad、罗氏集团、Illumina、PE和赛默飞,其他比较优秀的供应商还有BD、布鲁克、GE医疗、JASCO、日本电子、Luminex、Qiagen NV、Rigaku Corp.、岛津、西格玛、Spectrolab Systems、Waters等。  这个市场发展的主要推动力为基因组学和蛋白组学技术的完善,主要挑战在于基因组学和蛋白组学知识的缺乏,主要趋势为聚焦于药物研发和疾病诊断。
  • 赛默飞世尔推出Proteome Discoverer蛋白质组学软件
    2008年5月30日,圣何塞,服务科学,世界领先的赛默飞世尔科技公司,今天宣布将在ASMS 2008(第56届美国质谱大会)上,推出Proteome Discoverer,一款新的蛋白质组学分析软件平台,提供最全面的蛋白质组学定性定量数据查看。Proteome Discoverer使研究者可以在比以往更大的规模上,在一个程序里合并和比较从多个搜索引擎、公共数据库和裂解方法中获得的数据,并且易于使用、灵活。Proteome Discoverer强大的定量分析能力包括:工业标准级的最好实践,新的赛默飞世尔科技的解决方案,同位素标记技术,如iTRAQ&trade 和TMT&trade 。 科学家们已经花费了十年的时间来完善蛋白测序,但发现目前的软件产出的,仅是比一个定性数据列表多不了几个的结果。取代了赛默飞世尔科技BioWorks&trade 的Proteome Discoverer,是第一个商用的蛋白质组学数据分析平台,使研究者们可以在一个程序中,合并、比较和分析从多个来源来的数据。 &ldquo 今天的科学家们想要的,是比从他们的分析程序中的一个搜索引擎和一个蛋白序列多得多的结果,但是他们不想雇用一个完整的生物信息学团队去获得这些结果。&rdquo Andreas Huhmer,赛默飞世尔科技蛋白质组学市场总监说,&ldquo Proteome Discoverer是一套完全的流程解决方案,提供了功能性的一个层次,而迄今为止,达到这种层次要求一套复杂且昂贵的、客户自建的解决方案。我们的软件是一流的并且易于定制,因此研究者可以集中精力开展研究,而不用编程&mdash &mdash 科学不应该被软件所局限。&rdquo Proteome Discoverer可分析从所有的赛默飞世尔科技的质谱仪上获得的数据,并兼容所有的标准蛋白质组学流程。它向上兼容使用BioWorks产生的数据,对现在的BioWorks用户,提供无缝的升级途径。Proteome Discoverer包括了SEQUEST检索算法的许可(license),而SEQUEST是确定性的蛋白鉴定的工业标准。 Proteome Discoverer是一个开放和灵活的平台,集成了新的工具,数据源和分析方法。 Proteome Discoverer一个主要的优点是从多种裂解方法中分析信息的能力,从而去发现更多的翻译后修饰(PTMs),并提高多肽和蛋白鉴定的准确度。比如,在单次操作中,CID(碰撞诱导解离)和ETD(电子转移解离)数据能被同时分析,提供结果的序列、翻译后修饰和交叉确认信息。并且,从赛默飞世尔科技专有的、Z-Core算法(该算法分析由ETD产生的C-离子和Z-离子谱图)中获得的信息,能和CID谱图数据合并检索,在一个简单易读的格式中提高蛋白的覆盖率(protein coverage)。 相似的,使用Proteome Discoverer的工作流程引擎,Proteome Discoverer使研究者可合并搜索引擎结果和公共数据库信息,提供交叉确认的多种方法。例如,从Mascot&trade 和SEQUEST等不同的搜索引擎中获得的数据,可被合并入单个的报告中。其它的软件特征包括:错误发现速率的自动化计算,可允许比较数据库搜索引擎的结果。 Proteome Discoverer是一个开放的平台,和常用的生物信息学工具兼容,比如InforSense KDE环境;同时也支持人类蛋白质组学组织(HUPO)开发的所有数据标准,如ProtXML和mzML文件格式。一个新的开发包,会在今年晚些的时候发布,将使研究者可定制平台。 赛默飞世尔科技的Proteome Discoverer支持客户服务器端应用的版本已开始销售,具有灵活的授权模式和价格。关于Proteome Discoverer和赛默飞世尔科技产品的更多信息,请访问赛默飞世尔科技在第56届美国质谱大会(ASMS,丹佛, 6月1日至5日)的展台,展位号:booth 41。或者访问:www.thermo.com/proteomics SEQUEST是美国华盛顿大学(University of Washington)的注册商标, Mascot是Matrix科技公司的商标关于Thermo Fisher Scientific(赛默飞世尔科技,原热电公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 药典蛋白质组学分析标准二次公示!增加QC评价标准
    随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布第一版公示稿并征求意见。为确保标准的科学性、合理性和适用性,现将拟增订的蛋白质组学分析方法及应用指导原则(第二次)公示征求社会各界意见(详见附件)。公示期自发布之日起一个月。蛋白质组学分析方法及应用指导原则公示稿(第二次).pdf蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。在分离和富集中采用凝胶电泳和色谱技术,分析与鉴定中采用质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术。蛋白质组学分析方法及应用指导原则第二次公示稿修改说明 根据 2024 年 2 月蛋白质组学分析方法及应用指导原则第一次公示稿的反馈意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基础上修订了部分内容,主要为:一、适用范围1. 将文中“蛋白”修改为“蛋白质”。二、蛋白质组学的分析策略 1. 将“通过质谱分析技术检测到肽指纹图谱进行多肽的鉴定和定量分析”修改为“通过质谱分析技术检测肽段一级与二级谱图进行多肽的鉴定和定量分析”。2. 将文中“图谱”修改为“谱图”。三、蛋白质组学分析方法 1.“2.1 质谱技术”增加其他质谱碎裂技术,修订为:“蛋白质组样品经过提取、分离富集或者进一步变性还原、酶切、多肽分离富集处理后,选择适宜的分离系统导入离子源离子化,电离生成带电荷离子,离子通过碰撞诱导解离(Collision induced dissociation, CID)、高能碰撞诱导解离 High energy collision dissociation, HCD)、电子活化解离(Electron activated dissociation,EAD)或其它适宜的解离技术进行碎片化,后在加速电场的作用下形成离子束进入质量分析器,通过质量分析器分离和过滤不同质核比的离子,过滤后的离子最终经检测系统转换为可测量的信号,从而得到质谱图,以获得蛋白质的相关信息”。 2. 将文中“质核比”修改为“质荷比”。 3. 将“数据库检索对肽段碎裂质谱谱图和数据库中的理论序列谱图进行匹配,实现肽段鉴定”修改为“质谱数据文件的数据库检索对肽段碎裂质谱谱图和数据库中的蛋白质计算机模拟消化肽段碎裂模式进行匹配,以进行肽段鉴定”。4. 将“肽谱图匹配(peptide spectrum matching,PSM)”,“肽谱图匹配(peptide-spectrum matches,PSM)”,统一为“肽段谱图匹配 (peptide-spectrum matches, PSMs)”。 5. 将“统计学分析(如 p 值)”修改为“统计学指标(如 p 值)”。 2024 年 6 月 与第一次公示稿比较,修改处加橙色标记 四、蛋白质组学分析的质量控制 1. 在表 1 中增加样品处理中酶解漏切率、酶解位点特异性等 QC 评价指标及描述;增加色谱分析中峰宽和半峰宽等 QC 评价指标及描述;增加质谱分析中TIC 图等 QC 指标及描述。2. 调整仪器性能参数的描述顺序。将“建议结合仪器的性能进行设置,例如可将两个参数均设置为 20ppm,也可以将母离子质量误差设置为 10ppm,子离子质量误差设置为 0.02Da”修改为“建议结合仪器的性能设置质量误差,如将母离子质量误差设置为 10 ppm,子离子质量误差设置为 0.02 Da,也可将两个参数均设置为 20 ppm”。3. 将“鉴定的蛋白质应具有至少 70%的覆盖率,即被鉴定的多肽的氨基酸序列覆盖蛋白质氨基酸序列的百分比,70%的蛋白覆盖率可提高鉴定结果的可信度和全面性”修改为“蛋白质覆盖率是指被鉴定的多肽的氨基酸序列覆盖蛋白质氨基酸序列的百分比,70%及以上的蛋白质覆盖率可提高鉴定结果的可信度和全面性”。
  • SCIEX和Illumina 共同研发整合蛋白质组学和基因组学的新方法
    最近,美国的三个研发机构发布了分析和比较蛋白质组学和基因组学数据的最新应用,这些应用方法是OneOmics项目的一部分。OneOmics是Illumina和SCIEX(原AB SCIEX)的独家合作项目。  为了消除不同组学之间的信息壁垒,OneOmics项目将SCIEX基于新一代蛋白质组学(NGP) 的SWATH 采集系统和Illumina公司基于BaseSpace云计算的新一代测序(NGS)数据相结合。Advaita Bioinformatics公司、系统生物学研究所(ISB)和耶鲁大学的研究人员也在采用SWATH蛋白质组学数据开发云技术的应用程序和数据库。  系统生物学研究所(ISB)副教授Rob Moritz带领团队开发了SWATHAtlas Ion Library Generator应用程序,它提供了快捷进入ISB数据库的方法,为具有SWATH采集系统的NGP服务。目前,ISB数据库已经包括了人、酵母和结核杆菌蛋白质组数据库。&ldquo 我们很高兴成为SCIEX和Illumina合作项目的一部分,&rdquo Moritz说,&ldquo ISB和整个学术界开发的这些应用程序提供了一个强大的解决方案,这不仅给蛋白质组学研究道路带来很大影响,而且将会建成系统生物学数据系统。&rdquo   Advaita公司为BaseSpace平台研发了iPathwayGuide分析包。该应用分析包可以用作生化途径分析、GO分析、miRNA预测、药物和疾病分析。它简化了从整合蛋白质组学、转录组学数据库寻找生物数据的过程,并将有助于推进生物标志物的发现和疾病研究。  耶鲁大学的Chris Colangelo和Rob Kitchen共同为BaseSpace平台开发了RNASeq应用程序。这个应用程序能将一个Illumina的RNASeq实验数据转换为一种蛋白质数据组,得到的数据可以为建立SCIEX SWATHTM采集系统数据库。因此,它是一个更有针对性的蛋白质组学分析方法,这对某特殊疾病的遗传学研究者来说非常有用。这一系列工作流程是系统生物学研究的普通需求,但直到现在只有少数专业的实验室能满足这些复杂的生物信息学条款。  &ldquo SWATHTM采集系统使研究人员能够准确、多次的从成百的样品中定量数以千计的蛋白质,从而得到在不同环境刺激下蛋白质组的变化等非常有意义的结论。&rdquo SCIEX公司的理论与临床研究业务高级总监 Aaron Hudson说,&ldquo 下一步是将得到的这些蛋白质组学的结论与基因组学和转录组学等其他组学的结论整合在一起。此项目的三家合作机构ISB、耶鲁大学和Advaita Bioinformatics公司都推出了免费的应用程序,这些应用程序对此工作方法的深入实验室很有帮助,同时也铺设了通向横跨生命科学中两大领域的标准化数据分析的道路。&rdquo   编译:郭浩楠
  • 见微知著|睿科液体处理工作站助力蛋白质组学前处理自动化
    随着高通量、高灵敏度、高分辨率生物质谱技术的出现,蛋白质组学技术取得飞速发展,蛋白质组学(Proteomics)是蛋白质(protein)与 基因组学(genomics)两个词的组合体,表示“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。蛋白质组学研究,就是要把一个基因组表达的绝大多数蛋白质或一个复杂的混合体系中绝大多数蛋白质进行精确的定量和鉴定。蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。蛋白质组学研究主要包括蛋白质分离、鉴定与生物信息学分析,其中样品中蛋白质的分离至关重要,会直接影响后续的分析结果。对比传统的柱层析分离方式,磁珠法提取蛋白质能轻松实现高通量和多样品平行处理。磁珠法提取蛋白质与提取核酸原理类似,都需经过“结合-洗涤-洗脱”等过程,蛋白纯化后,还需经过裂解、二硫键还原、酶解等多步预处理才能将蛋白样品裂解为可检测的肽段,这些过程同样涉及多次移液、加热、震荡等步骤。Vitae 100全自动液体处理工作站● 睿科Vitae 100全自动液体处理工作站整合移液、磁吸、震荡、加热功能于一体,可全自动完成磁珠法蛋白纯化,可替代蛋白酶解实验过程中大部分手工操作,实现高通量、高效率、高一致性的蛋白纯化。Vitae 100配置了可选4或8通道的空气注射泵移液器,机械定位准确至0.05mm,高通量提取时准确性、均一性均优于手工操作。另外Vitae 100创新性的整合了“磁吸-加热-震荡”三合一模块,节省盘面空间,减少移液步骤,利用自动化操作来减少人为实验操作带来的误差,提升实验结果的稳定性,减少污染的可能性,同时利用自动化精准的时间控制和操作,来优化实验流程,提高实验室运行效率。▲蛋白质组学自动化前处理解决方案睿科生化科技公司睿科生化科技公司是睿科集团旗下专注研发生产生命科学领域样品前处理设备的高科技企业。公司提供自动化的生物样品前处理设备,服务于生物/药物分析、分子诊断、临床检测、蛋白组学、代谢组学等领域。公司核心团队拥有10多年丰富的行业经验,掌握自主核心技术,系统化架构和集成式开发,可提供灵活的定制化服务,为客户提供个性化的产品和服务。
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。  蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:  报告题目: 蛋白质组数据分析软件pFind系统新进展  报告人:中国科学院计算技术研究所贺思敏研究员贺思敏研究员  pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。  贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。  报告题目:构建心血管蛋白质组生物医学数据库及分析平台  报告人:浙江大学生物医学工程与仪器科学学院段会龙教授段会龙教授  心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。  该课题组目前已完成了如下工作:  (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。  (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。  (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。  报告题目:大规模蛋白质组研究中的质谱数据定量分析方法  报告人:国防科技大学机电工程与自动化学院谢红卫教授谢红卫教授  谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:  (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。  (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。  (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。  (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。  (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。  (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。  (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。  报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究  报告人:中国科学院大连化学物理研究所叶明亮研究员叶明亮研究员  叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。  在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。  在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。  在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • 科学家发展蛋白质组学分析新方法
    近日,中国科学院大连化学物理研究所研究员叶明亮、研究员秦洪强团队开发了表征蛋白质中组氨酸残基反应活性的蛋白质组学分析新方法。该工作筛选并获得了具有组氨酸优异反应效率的α, β-不饱和醛探针,发展了基于烯醛探针的组氨酸标记技术和可逆酰肼化学富集方法,通过蛋白质组定量技术实现了人类蛋白质组中的组氨酸反应活性的高效表征。相关成果发表在《美国化学会志》上。  氨基酸亲核反应活性的表征推动了共价药物靶点和候选药物分子的发现。组氨酸占据超过1/5人源酶活性中心,在生理环境中既是质子的供体又是质子的受体,受到蛋白质空间微环境的精细调控。然而,由于缺乏可以在生理条件下标记组氨酸的化学探针,在此之前难以实现组氨酸活性的全局性表征。  本工作发现α, β-不饱和醛在生理状态下可与组氨酸残基发生迈克尔加成反应,且引入的醛基可作为富集标签用于后续的可逆酰肼富集。与基于点击化学的经典活性蛋白质组分析方法(ABPP)相比,该策略引入活性最高的烯醛探针——丙烯醛作为反应基团和富集标签,是目前报道的最小尺寸的ABPP多功能探针。  同时,该方法样品处理流程简便,引入标签质量小,并通过可逆富集过程引入稳定同位素标记试剂,有效避免了传统工作中制备同位素连接臂的繁琐流程和高成本。该方法共定量了超过8200个组氨酸残基的标记效率,筛选到317个高亲核反应性组氨酸残基,并且发现组氨酸的反应活性和其磷酸化呈负相关。  该方法为后续基于组氨酸的共价靶向偶联药物的开发提供了数据支持,且丙烯醛衍生物也可作为新型反应基团用于共价抑制剂的研制。
  • 首届中国计算蛋白质组学研讨会在京召开
    蛋白质组学的兴起带动了质谱技术的快速发展,而质谱技术的进步则拓宽了蛋白质组学研究问题的广度。随着蛋白质组学的兴起,特别是质谱技术的快速发展,蛋白质组学研究中产生的数据规模越来越大。依靠简单的手工处理已经远远不能满足问题的需求,通过先进的计算机算法与软件工具来自动处理大批量的蛋白质组数据已经成为蛋白质组学研究的重要分支,这就是“计算蛋白质组学”(Computational Proteomics)。  仪器信息网讯 为了总结交流近年来我国计算蛋白质组学领域的基础研究与前沿动向,推动计算技术在蛋白质组研究中发挥更加切实的作用,2010年11月10-11日,由中国科学院计算技术研究所主办的“首届中国计算蛋白质组学研讨会”在北京中国科学院计算技术研究所召开。来自全国高等院校、科研机构、企事业单位的150余位从事计算蛋白质组学及其相关研究的专家学者参加了此次会议。会议现场  会议主办方代表贺思敏研究员在会上表示:一般来说,计算蛋白质组学以计算技术为主要手段,是基于质谱技术的规模化蛋白质表达分析,也包括结构与功能的高通量分析。近年来,随着“精密蛋白质组学”概念和LTQ Orbitrap等技术的诞生,计算蛋白质组学的的研究发展迅速。  从2005年开始美国相继举办了3次蛋白质组学研讨会,欧洲也陆续开展了3次蛋白质组学研讨会,其他国家会议也相继设立蛋白质组学的专题会议。同时,国际上专业的学术期刊也相继刊载了蛋白质组学的综述文章,这标志着计算蛋白质组学已经取得了学术界的普遍重视,首届中国计算蛋白质组学研讨会也正是应运而生。  在我国,一些从事生化领域研究的专家几乎从不“上岸”,而部分毕业于信息领域的专家又从不“下水”,当然也存在着一批学者教授属于“两栖”作战,这样的研究现状不利于计算蛋白质研究的快速发展,因此,本次研讨会也是为了促进计算技术与生化领域的专家交流沟通。中国科学院计算技术研究所贺思敏研究员  同时,大会还邀请了20多位计算蛋白质领域的著名专家学者做了精彩的学术报告,报告内容涉及质谱数据分析、蛋白质鉴定、翻译后修饰、蛋白质定量、蛋白质相互作用、蛋白质定位、蛋白质结构、蛋白基因组学等。上海复旦大学杨芃原教授报告题目:糖蛋白结构的质谱数据库  目前,通过各种技术构建专业性强、针对性明显的糖链结构数据库已经引起了关注。杨芃原教授的研究基于生物质谱的数据分析,建立了蛋白质糖基化位点以及糖链结构数据库。并开发了一套糖蛋白鉴定和糖链结构确立的理论算法,并将理论算法在我们创建的软件GRIP(Glycopeptide Reveal & Interpretation Platform)中全部实现。分析表明,该方法可有效进行通量化的糖蛋白结构质谱分析,展现了比较好的应用前景。加拿大西安大略大学张凯中教授报告题目:利用串联质谱技术解析多糖结构  张凯中教授主要介绍了生命科学中蛋白糖结构及其和串联质谱与计算机科学的关系。张凯中教授表示,蛋白质中糖结构的变化是一种重要的蛋白质转录后修饰;蛋白质被酶处理后,经色谱分离,可用串联质谱解析其多糖结构。基于糖肽序列从头测序算法,张教授通过分析花生类蛋白质中的多糖结构得到了一种多项式时间算法简单模型,实践表明,该方法更具启发性。美国加州大学旧金山分校关慎恒教授报告题目:利用稳定同位素代谢标记研究哺乳动物动态蛋白质组的数据处理平台  据关慎恒教授介绍,放射性同位素标记与稳定同位素标记是目前用于研究蛋白周转的主要工具。关慎恒教授利用稳定同位素代谢标记,通过测量小数组织中的1000多个蛋白的代谢常数,建立了复杂生物体系蛋白代谢周转组动力学的试验和信息处理平台。通过此平台,可以处理无标定量、SILAC。氢氘交换的实验数据。华大基因张勇先生报告题目:从新一代测序技术的组学到基于质谱仪的蛋白质组学--华大基因的生物信息学  张勇先生介绍到,对于海量数据的信息分析和挖掘成为华大基因立足世界基因组领域的根本。除了测序仪,质谱仪无疑成为蛋白质组领域的高通量仪器。目前,华大基因通过利用海量数据的信息学分析从而识别关键要素,发挥了高通量、低成本的仪器特性。华大基因也逐步从 DNA、RNA水平,向蛋白质水平研究发展。。加拿大滑铁卢大学马斌教授报告题目:利用质谱和同源数据库进行全蛋白测序  马斌教授首先谈到了,蛋白质数据库搜索和传统同源查找时遇到的问题,并分别给出了“分两步走”和“兼听则明”的两个解决办法。另外,串联质谱(MS/MS)的在该领域的应用仍然是一个非常具有挑战性的问题。马斌教授提出了一种新算法和自动化软件(CHAMPS),实验表明,该方法具有大于99%的序列覆盖率和100%的蛋白质序列准确性。中科院计算所孙瑞祥副研究员报告题目:电子转运裂解质谱特征及其在蛋白质鉴定中的应用  孙瑞祥研究员指出,近10年内,肽段或完整蛋白质在质谱仪中的裂解技术-电子捕获裂解(ECD)与电子转运裂解(ETD)逐渐发展起来。其中,目前市场上ETD主流仪器的供应商主要有赛默飞世尔、布鲁克、安捷伦、ABI、日立等公司。ECD和ETD在蛋白质组学中的应用,特别是在蛋白质的翻译后修饰鉴定和“自顶而下”的完整蛋白质裂解研究中已经展示出了诱人的前景。中科院大连化学物理研究所叶明亮研究员报告题目:基于质谱的蛋白质组学数据处理新方法和平台发展  叶明亮研究员介绍到,在蛋白质组学数据处理方法和平台方面分别发展了针对非修饰肽段和磷酸化肽段鉴定的数据筛选方法。此外,还发展了一种结合二级质谱(MS2)和三级质谱(MS3)图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的高灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。参会者合影留念  另外,为了使参会人员能够获得有关蛋白质组质谱数据分析的基本技能,同时了解到本学科发展的最新动态,本次会议还安排了质谱技术与蛋白质组学基础培训,共有72人注册参加了此次培训课程,培训现场提问的听众络绎不绝,气氛十分活跃。培训人员与专家交流探讨
  • 第六届中国蛋白质组学大会第一轮通知
    为了积极促进我国蛋白质组学的研究与发展,由中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)主办,北京蛋白质组研究中心和复旦大学共同承办的第六届中国蛋白质组学大会定于2009年7月28日—31日在江苏省泰州市召开。  一、会议安排  本届学术会议设有大会报告、分会(专题)报告和墙报三种形式。大会将邀请蛋白质组学及相关领域的国内外著名专家和教授作大会报告或专题报告,会议规模约600人左右。  会议同时举办与生物化学与分子生物学、蛋白质组学等研究领域相关的仪器、设备、试剂和新技术的展览、展示会。  大会安排于2009年7月28日举办蛋白质组学新技术培训,届时将邀请蛋白质组领域的国内、外知名专家授课。  二、会议议题  会议主要讨论蛋白质组学研究的现状及其进展,内容包括:疾病蛋白质组学,功能蛋白质组学,药物蛋白质组学,结构蛋白质组学,蛋白质化学,生物信息学,蛋白质修饰和相互作用,抗体相关技术,蛋白质组微分析、蛋白质芯片以及蛋白质组新技术新方法等研究领域。  三、会议语言  中文和英文  四、会议组织  组织单位  主办单位:中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)  承办单位:北京蛋白质组研究中心 复旦大学  主 席:贺福初院士  顾问委员会:(按姓氏汉语拼音顺序排列)  陈志南院士 强伯勤院士 饶子和院士 施蕴渝院士 汪尔康院士 王红阳院士  张玉奎院士  执行主席:钱小红 杨芃原  组织委员会  主 任:贺福初院士  副 主 任:杨芃原 杨晓明 钱小红  委 员:(按姓氏汉语拼音顺序排列)  陈志南院士 丁建平 高友鹤 何大澄 贺福初院士 李 明 梁宋平 刘斯奇 陆满晴 潘全威 钱小红  饶子和院士 施 前 王东根 杨芃原 杨晓明 杨秀荣 张先恩 张玉奎院士 甄 蓓  秘 书 长: 王东根  副秘书长:甄 蓓 施 前  学术委员会  主 任:饶子和院士  副 主 任:王红阳院士 张玉奎院士  委 员:(按姓氏汉语拼音顺序排列)  陈正军 陈志南院士 丁建平 高友鹤 何大澄 贺福初院士 李亦学 梁宋平 刘斯奇 刘银坤 钱小红  强伯勤院士 饶子和院士 施 前 施蕴渝院士 汪尔康院士 王红阳院士 杨芃原 杨晓明 张学敏   张玉奎院士 赵晓航 曾 嵘  甄 蓓  秘 书 长:钱小红  副秘书长:甄 蓓 施 前  秘书处  北京昌平区科学园路33号北京蛋白质组研究中心  电话:010-80705188 传 真:010-80705155  E-mail: cnhupo6@163.com  五、征文范围及要求(参照模版)  投稿论文收录入会议论文集,大会将组织优秀论文评选。参加会议代表将授予继续教育学分10分。  凡未在国内外公开刊物发表过的研究成果,均可投稿,具体要求如下:  征文范围:有关蛋白质组学及相关领域近年来研究的学术成果,以英文论文摘要形式投稿。  稿件要求:每篇论文摘要按正式发表论文要求撰写,限A4纸1页,使用Word软件撰写。文责自负。(参照模版)  字体要求:标题—Times New Roman四号加粗  作者—Times New Roman五号居中,拟作报告者请在其姓名下方划一横线。  注:大会报告幻灯片一律要求英文准备,  单位、地址、邮编、E-mail—Times New Roman小五号居中  摘要—Times New Roman五号  参考文献(Times New Roman五号)。  投稿方式:论文摘要请用E-mail附件传递,并在E-mail信中“主题”栏内写明“蛋白质组学会议” 若无上网条件请邮寄论文摘要一式两份,同时提交光盘(未提交者会议将不予录用)。  E-mail: cnhupo6@163.com  投稿地址:北京昌平区科学园路33号北京蛋白质组研究中心第六届中国蛋白质组学大会收  邮编:102206  截至日期:论文摘要投稿截至日期为2009年5月31日,以当地邮戳为准。  六、报到时间  2009年7月27日(参加培训的人员报到时间)、28-29日  七、会议注册费(国内代表)  2009年6月20日前注册:800元(人民币)/位(在读学生:500元/位)  2009年6月20日后注册:900元(人民币)/位(在读学生:600元/位)  技术培训费(与注册费一并交纳):100元(人民币)/位  八、重要时间提示  回执截止日期:2009年5月31日前(以当地邮戳为凭)  征稿截止日期:2009年5月31日前(以当地邮戳为凭)  会前注册时间:2009年6月20日前(以当地邮戳为凭)  九、交通指南  由于参会人员较多,大会组委会不安排车辆接送。请代表自行乘车抵达报到地点,望参会代表谅解。  十、注册须知  1.请与会代表携带本人身份证,学生代表需携带学生证。已交费代表请带好汇款凭证,以备核对。  2.注册代表权益:  正式代表和学生代表,可以参加会议组织的所有活动、注册费包括会务费、资料礼品费、会议安排旅游及7月29日—31日早餐、午餐和晚餐费用。  十一、会议地址和住宿宾馆   会议地址:江苏省泰州市扬子江药业集团海燕大酒店(江苏省泰州扬子江南路1号)   邮编:225300   住宿安排:海燕大酒店——标准间280元/天,单人间280元/天,  扬子江大酒店——标准间160元/天(距会场5分钟车程,会议期间班车接送)  十二、学术发言及证书登记  大会和分会发言及壁报交流的参会代表,请在注册当日(2009年7月27、28日)将报告材料或壁报资料(国际标准大小1.0m×1.2m)交至大会学术组,报告材料须为Powerpoint文件,一律要求英文准备,存储于移动硬盘、USB闪盘或光盘之中,大会提供笔记本电脑和幻灯放映设备,不接受个人电脑接入。如有特殊需求,请提前与大会学术组联系。大会发言鼓励使用英文,如有不便可使用中文。  论文被录用的参会代表可登记领取会议论文证书,所有参会代表可登记领取学分证书。  十三、旅游及定票须知  大会组委会设有旅游票务组专门负责参会代表的旅游及定票事宜。  组委会指定旅行社负责组织本次会议的会后(7月31日)旅游,会议期间请参会代表尽量不要安排旅游活动。旅游费用现场交纳并开具发票。军人和学生代表请携带相关证件,可享受门票优惠。  请参会代表至少提前两周提交返程票务预定单(附件二),否则组委会无法保证其预定。费用现场交纳,预订火车票须加收手续费,预订飞机票需向秘书组告知姓名及身份证号,不加收任何费用。  参会代表在注册报到时,须在旅游票务组登记确认自己的旅游和返程票务事宜,并交纳费用。会议期间如有问题,请随时与旅游票务组或大会秘书处联系。  十四、退费说明:  已交费的参会代表因个人原因不能参会或其他原因需要退款,请提前与会务组联系。退费原则:7月1日前退还所交款项的80%,7月1日~26日退还所交款项的50%,7月27日及以后恕不退款。(已预订火车票者扣除票价退票费和手续费后进行退费)  十五、联系方式  会议回执和论文发送或邮寄至:  第六届中国蛋白质组学大会会务组  电话:010-80705188 80705116 80705166  传真:010-80705155  E-mail:cnhupo6@163.com  地址:北京昌平区科学园路33号北京蛋白质组研究中心  邮编:102206  *请注明:“蛋白质组学大会”  注册费汇至:  帐 户:中国人民解放军62032部队  开户行:北京工商行永定路支行  帐 号: 0200004909008520585  * 务必注明:蛋白质组学大会*(汇款前请先打电话联系,汇款后将汇款凭据传真至我处,以确保汇款安全到帐)  十六 、附件  附件1:第一轮通知回执   附件2:返程票务预订单  附件3:论文摘要模板。  第六届中国蛋白质组学大会秘书处  二OO八年十二月一日  附件1  第六届中国蛋白质组学大会  第一轮通知 回 执  姓名: 性别: 职称: 联系电话:  工作单位: 传真:  通讯地址: 邮编:  E-mail: 参加会议: 是 □ 否 □  论文摘要题目:  所属专业:系统生物学□ 疾病蛋白质组学□ 功能蛋白质组学□  药物蛋白质组学□ 结构蛋白质组学□ 蛋白质化学□ 生物信息学□  蛋白质修饰和相互作用□抗体相关技术□ 蛋白质组微分析□ 蛋白质芯片□  蛋白质组新技术新方法□ 其他□  拟作报告形式: 大会报告 □ 分会报告 □ 墙报 □ 参加技术培训: 是 □ 否 □  住宿标准:  海燕大酒店  (四星)标准间单人间  280元/天280元/天  扬子江大酒店  (三星)标准间  160元/天  选择房间类型:  海燕大酒店 标准间□ 单人间□  扬子江大酒店 标准间□  入住时间: 月 日~ 月 日  参加会议者请将回执于2009年5月31日之前发送或邮寄至:  E-mail: cnhupo6@163.com  投稿地址:北京昌平区科学园路33号北京蛋白质组研究中心第六届中国蛋白质组学大会收  邮编:102206  附件2  返程票务预订单  返程日期航班号  (车次)目的地代表签字  备注  附件3  Identified the nonspecific binding proteins in depletion of Albumin and IgG from Human plasma  Wang Yundan1, Ning Yunshan1,3, Jiang Yin2, Deng Xinyu2, Fang Qinmei2, Hong Yanhua3,  Li Ming1,3  1 College of Biotechnology, Southern Medical University, Guangzhou, P. R. China, 510515  2 Beijing Institute of radiation Medicine, Beijing, P. R. China, 100850  3 Boang Antibody Company, Shanghai, P. R. China, 200233  tommy604@fimmu.com  Depletion of high abundant proteins in plasma samples was necessary for the further study of new biomarkers mining in HPPP. We used the high specific mouse mAb against human albumin and Protein G to remove Albumin and IgG respectively from human plasma in denatured condition and native condition. We observed the different capacity of depletion in the presence of chaos reagents, non-ionic detergent and high concentration of salts. In native condition, the elution proteins were separated by 2DE and 104 spots in the gel were excised and trypsin digested for tandem mass spectrum (MS/MS) analysis. The binding proteins including Albumin, IgG, Fibrinogen, Vitamin D binding protein, Alpha-1 antitrypsin, transferrin, Transthyretin, Proapolipoprotein, Keratin, Complement component 3. The remained spots are albumin and IgG fragments. In denatured condition, the capacity of depletion for albumin become lower but IgG not affected. The concentration of nonspecific binding proteins including the fragments of Albumin in elution sample was lower. The results may explain the relation between low non-specific binding and presence of albumin fragments in condensed plasma samples processed by MARC or MARS system using commercial buffer.  Keywords:  High abundant protein / Depletion / 2-DE / MS / Nonspecific / Human plasma protein / Monoclonal antibody / Denature  References  1. Huang, H. L., Stasyk T., Morandell, S., Mogg, M., et al., Electrophoresis 2005, 26, 2843-2849  2. Anderson, N. L., Polanski M., Pieper, R., Gatlin, T., et al., Molecular & Cellular Proteomics 2004 Apr 3(4):311-26.  3. Shen, Y. F., Kim, J. K., Strittmatter, E. F., Jacobs, J.M., et al., Proteomics 2005, 5,4034-4045  4. Omenn, G. S., States D. J., Adamski M., Blackwell T. W., et al., Proteomics 2005, 13, 3226-3245
  • 黄超兰团队利用整合“新连接肽段”鉴定策略的蛋白质基因组学发现人源蛋白的新异形体
    基因转录产生的mRNA前体可以通过可变剪接产生不同的mRNA剪接异构体,这些mRNA可以翻译成序列不同的蛋白质,即蛋白质异形体。蛋白质异形体与许多疾病的病理机制密切相关,如癌症、多发性硬化症、心肌肥大、自身免疫病、糖尿病等,蛋白质异形体还被用作生物标志物和疾病治疗的靶标1,因此,开展针对蛋白质异形体的研究有着重要意义。蛋白质异形体的发现、注释与验证是其功能研究的基础,得益于高通量转录组深度测序技术以及可变剪接分析技术的迅速发展,人类基因组编码的蛋白质异形体已经得到了较充分的注释,但由于大多数基因都有一个主要的编码产物,而与疾病发生和蛋白功能调节密切相关蛋白质异形体往往表达量较低,所以,一部分低丰度的蛋白质异形体仍然可能没有被注释。  近日,北京大学医学部精准医疗多组学研究中心黄超兰团队针对蛋白质新异形体的鉴定开发了整合新连接肽段鉴定策略的蛋白质基因组学分析流程,并应用于深度覆盖的人蛋白质组质谱数据集的分析,成功发现并验证了分别来自2个功能重要的基因NHSL1(编码NHS样蛋白1)和EEF1B2(编码真核翻译延伸因子eEF1B的亚基eEF1β)的3个新蛋白质异形体。该研究以“Proteogenomics integrating novel junction peptide identification strategy discovers three novel protein isoformsof human NHSL1 and EEF1B2”为题于2021年8月21日线上发表在Journal of Proteome Research期刊上。  本研究首先聚焦了“新连接肽段”这一概念,即被内含子分隔开的新外显子和已注释外显子共同编码的肽段,新连接肽段可提供关于新可变剪接位点的信息,对于鉴定新蛋白质异形体至关重要。目前从质谱数据中挖掘新蛋白质异形体,主要是通过搜索转录组数据的三框翻译库。由于漏注释的蛋白质异形体往往缺少已知转录本和同源蛋白,传统的基于全基因组六框翻译库的蛋白质基因组学策略不能鉴定到新连接肽段,无法获知新可变剪接位点。因此,研究者首先提出了一种鉴定新连接肽段的策略,基本思路为:①假设一个基因可以编码一个新的蛋白质异形体,那么就意味着该基因中存在一个新的蛋白质编码区(CDS),这个CDS的具体位置是未知的,它可能出现在任意一个已注释CDS的5’端或3’端 ②通过理论酶切的方式枚举所有可能的由新CDS与已注释CDS共同编码的新连接肽段,对于枚举出来的新连接肽段,由新CDS编码的氨基酸序列是未知的,用“X”表示 ③对所有的人类已注释基因都做同样的处理,从而构建一个理论新连接肽段数据库 ④对质谱数据集,采用多参数下的从头测序获取每张二级谱图的所有候选肽段,用以与理论新连接肽段数据库进行匹配,如果候选肽段在理论新连接肽段数据库中存在,那么它就被认为是该谱图对应的可能的连接肽段 ⑤通过这种方式,可以将质谱数据中存在的所有可能的连接肽段枚举出来,然后可加入到已注释蛋白质组数据库中进行搜库,以进一步排除假阳性结果,鉴定高可信新连接肽段 ⑥新连接肽段的来源分析,溯源新可变剪接位点。作者已将上述策略写成自动化软件CJunction,并上传至GitHub (https://github.com/CProteomics/CJunction),供广大读者直接使用。   图1. CJunction枚举质谱数据中可能存在的新连接肽段的原理图随后,研究者建立了针对新蛋白质异形体发现的整合新连接肽段鉴定策略的人蛋白质基因组学分析流程,并应用于一组深度覆盖的HeLa质谱数据集的分析,成功鉴定并验证了1个新连接肽段和2个由外显子单独表达的新肽段。通过生物信息学分析,最终发现并验证了分别来自2个基因NHSL1和EEF1B2的3个新的蛋白质异形体,依次命名为:NHS-like protein 1 isoform X15、NHS-like protein 1 isoform X16和elongation factor 1-beta isoform X2。值得注意的是,上述2个基因的新蛋白质异形体相较经典的编码产物分别有一个96个氨基酸和60个氨基酸长的新N端,这种序列差异暗示它们可能发挥着重要的不同功能,值得进一步探究。本文所提出的策略可应用于更多深度覆盖的蛋白质组质谱数据集中,未来有助于发现更多新的蛋白质异形体。  图2.基因NHSL1表达的新蛋白质异形体的鉴定  北京大学医学部精准医疗多组学研究中心、北大-清华生命科学联合中心黄超兰教授为本文的通讯作者,北大-清华生命科学联合中心博士研究生何崔同为本文的第一作者。  原文链接:https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00373
  • 蛋白质组学研究进展与趋势
    1.蛋白质组学研究的研究意义和背景 随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。 虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。 国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。2.蛋白质组学研究的策略和范围 蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。 早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。3.蛋白质组学研究技术 可以说,蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。不仅氨基酸残基种类远多于核苷酸残基(20/ 4), 而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。蛋白质组学的兴起对技术有了新的需求和挑战。蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面:3.1 蛋白质组研究中的样品制备 通常可采用细胞或组织中的全蛋白质组分进行蛋白质组分析。也可以进行样品预分级,即采用各种方法将细胞或组织中的全体蛋白质分成几部分,分别进行蛋白质组研究。样品预分级的主要方法包括根据蛋白质溶解性和蛋白质在细胞中不同的细胞器定位进行分级,如专门分离出细胞核、线粒体或高尔基体等细胞器的蛋白质成分。样品预分级不仅可以提高低丰度蛋白质的上样量和检测,还可以针对某一细胞器的蛋白质组进行研究。 对临床组织样本进行研究,寻找疾病标记,是蛋白质组研究的重要方向之一。但临床样本都是各种细胞或组织混杂,而且状态不一。如肿瘤组织中,发生癌变的往往是上皮类细胞,而这类细胞在肿瘤中总是与血管、基质细胞等混杂。所以,常规采用的癌和癌旁组织或肿瘤与正常组织进行差异比较,实际上是多种细胞甚至组织蛋白质组混合物的比较。而蛋白质组研究需要的通常是单一的细胞类型。最近在组织水平上的蛋白质组样品制备方面也有新的进展,如采用激光捕获微解剖(Laser Capture Microdissection, LCM) 方法分离癌变上皮类细胞。3.2 蛋白质组研究中的样品分离和分析 利用蛋白质的等电点和分子量通过双向凝胶电泳的方法将各种蛋白质区分开来是一种很有效的手段。它在蛋白质组分离技术中起到了关键作用。如何提高双向凝胶电泳的分离容量、灵敏度和分辨率以及对蛋白质差异表达的准确检测是目前双向凝胶电泳技术发展的关键问题。国外的主要趋势有第一维电泳采用窄pH梯度胶分离以及开发与双向凝胶电泳相结合的高灵敏度蛋白质染色技术,如新型的荧光染色技术。 质谱技术是目前蛋白质组研究中发展最快,也最具活力和潜力的技术。它通过测定蛋白质的质量来判别蛋白质的种类。当前蛋白质组研究的核心技术就是双向凝胶电泳-质谱技术,即通过双向凝胶电泳将蛋白质分离,然后利用质谱对蛋白质逐一进行鉴定。对于蛋白质鉴定而言,高通量、高灵敏度和高精度是三个关键指标。一般的质谱技术难以将三者合一,而最近发展的质谱技术可以同时达到以上三个要求,从而实现对蛋白质准确和大规模的鉴定。3.3 蛋白质组研究的新技术 做过双向凝胶电泳的人一定会抱怨它的繁琐、不稳定和低灵敏度等缺点。发展可替代或补充双向凝胶电泳的新方法已成为蛋白质组研究技术最主要的目标。目前,二维色谱 (2D-LC)、二维毛细管电泳 (2D-CE)、液相色谱-毛细管电泳 (LC-CE) 等新型分离技术都有补充和取代双向凝胶电泳之势。另一种策略则是以质谱技术为核心,开发质谱鸟枪法(Shot-gun)、毛细管电泳-质谱联用 (CE-MS)等新策略直接鉴定全蛋白质组混合酶解产物。随着对大规模蛋白质相互作用研究的重视,发展高通量和高精度的蛋白质相互作用检测技术也被科学家所关注。此外,蛋白质芯片的发展也十分迅速,并已经在临床诊断中得到应用。3.4 蛋白质组生物信息学 蛋白质组数据库是蛋白质组研究水平的标志和基础。瑞士的SWISS-PROT拥有目前世界上最大,种类最多的蛋白质组数据库。丹麦、英国、美国等也都建立了各具特色的蛋白质组数据库。生物信息学的发展已给蛋白质组研究提供了更方便有效的计算机分析软件;特别值得注意的是蛋白质质谱鉴定软件和算法发展迅速,如SWISS-PROT、Rockefeller大学、UCSF等都有自主的搜索软件和数据管理系统。最近发展的质谱数据直接搜寻基因组数据库使得质谱数据可直接进行基因注释、判断复杂的拼接方式。随着基因组学的迅速推进,会给蛋白质组研究提供更多更全的数据库。另外,对肽序列标记的从头测序软件也十分引人注目。4. 蛋白质组学发展趋势 在基础研究方面,近两年来蛋白质组研究技术已被应用到各种生命科学领域,如细胞生物学、神经生物学等。在研究对象上,覆盖了原核微生物、真核微生物、植物和动物等范围,涉及到各种重要的生物学现象,如信号转导、细胞分化、蛋白质折叠等等。在未来的发展中,蛋白质组学的研究领域将更加广泛。 在应用研究方面,蛋白质组学将成为寻找疾病分子标记和药物靶标最有效的方法之一。在对癌症、早老性痴呆等人类重大疾病的临床诊断和治疗方面蛋白质组技术也有十分诱人的前景,目前国际上许多大型药物公司正投入大量的人力和物力进行蛋白质组学方面的应用性研究。 在技术发展方面,蛋白质组学的研究方法将出现多种技术并存,各有优势和局限的特点,而难以象基因组研究一样形成比较一致的方法。除了发展新方法外,更强调各种方法间的整合和互补,以适应不同蛋白质的不同特征。另外,蛋白质组学与其它学科的交叉也将日益显著和重要,这种交叉是新技术新方法的活水之源,特别是,蛋白质组学与其它大规模科学如基因组学,生物信息学等领域的交叉,所呈现出的系统生物学(System Biology)研究模式,将成为未来生命科学最令人激动的新前沿。
  • SCIEX祝贺韩家淮院士实验室发表蛋白质组学顶级研究成果
    pspan style="COLOR: rgb(0,176,240)"strong厦门大学韩家淮院士实验室在Nature Methods上发表了基于SCIEX TripleTOF 5600+高分辨液质系统的新型SWATHTM蛋白质组定量技术数据处理方法。/strong/span/ppbr//pp style="TEXT-ALIGN: center" img style="WIDTH: 413px HEIGHT: 281px" title="1.png" src="http://img1.17img.cn/17img/images/201510/uepic/ee308b77-9492-4124-b435-cb773c50aca3.jpg"//pp左一是文章通讯作者钟传奇博士,左二是SCIEX公司组学应用支持经理郭立海博士,左三是实验室仪器管理员谢昌传博士,左四是分析测试中心副主任陈晋安高级实验师。/ppbr//ppbr//pp 中国科学家开展蛋白质组研究已走过十几年历程,在此领域取得了重多成就,然而在里程碑式的学术刊物Nature或Nature系列刊物上发表有关蛋白质组学的文章还是凤毛麟角,完成这个目标一直是从事蛋白质组学研究的中国学者心中的愿望。就在此时,我们得到喜讯,厦门大学韩家淮院士实验室5年磨一剑,高效的团队,在短短的时间内就取得了非常骄人的成果,令所有从事蛋白质组研究的工作者为之骄傲,利用SCIEX的TripleTOFspan style="FONT-SIZE: 13px" /span高分辨液质系统将其蛋白质组研究推到了世界顶级水平,并于2015年10月6日在Nature Methods(2014年影响因子32)上发表了他们的成果。成功的在他的实验室开发出新型蛋白质组定量技术SWATHsupTM/sup的数据处理软件。/ppbr//pp SCIEX公司得知用户的工作达到如此高的国际水准非常高兴,这也是对SCIEX公司产品和技术最大的肯定和鼓励。为了解更多韩院士实验室的工作, 我们专门采访了该文的通讯作者之一,韩家淮院士的博士后钟传奇博士,了解他们实验室的工作内容和该文章的核心思想,以便给我们广大的质谱工作者和SCIEX质谱仪器用户有所启发。/ppbr//ppspan style="COLOR: rgb(0,176,240)"1 韩院士实验室的主要研究内容是什么?有哪些方向?/span/pp答:韩老师实验室主要研究内容是在先天性免疫反应中细胞内信号的传导,具体有细胞程序性坏死的机制,p38信号通路在细胞应激反应中的调控机制等等。但是,蛋白质组并不是主要研究方向,只是其中一小部分,只有3-4个人在做这方面的研究,都是在我的带领下进行的。/ppbr//ppspan style="COLOR: rgb(0,176,240)"2 实验室开展蛋白质组研究的历史或历程?蛋白质组平台是怎样的构成?/span/pp答:我(钟传奇博士)在2010年来到韩老师实验室做博士后,韩老师觉得蛋白组是一个强有力的工具,所以要我来负责蛋白组学的研究。现在平台只有2台SCIEX公司的质谱仪,一台TripleTOFspan style="FONT-SIZE: 13px" /span5600和一台TripleTOFspan style="FONT-SIZE: 13px" /span5600+。/ppbr//ppspan style="COLOR: rgb(0,176,240)"3 为什么连续购买SCIEX的TripleTOF?怎样评价现在的平台?/span/pp答:主要是因为TripleTOFspan style="FONT-SIZE: 13px" /span5600是一个高分辨率高灵敏度的质谱,扫描速度快,而且5600可以实现新型的蛋白质组定量技术---SWATHsupTM/sup。购买之后用了差不多4年,一直运行很稳定,数据产出也很多,我们使用比较满意,所以考虑到生科院的使用情况就又买了一台。/ppbr//ppspan style="COLOR: rgb(0,176,240)"4 蛋白质组学平台取得了哪些科研成果?/span/pp答:蛋白组学平台还是取得了比较多的成绩,在纯蛋白组领域,我们在如下杂志Molecular Cell Proteomics (2012),Proteomics(2014)和Nature Methods (2015)发表了一系列文章. 在其他领域,我们利用蛋白组为工具推进了其他课题研究的进步,在如下期刊JBC (2013), Cell Host Microbe(2015)和Nature Cell Biology (2015)发表了一系列文章。/ppbr//ppspan style="COLOR: rgb(0,176,240)"5 怎么评价这种SWATHsupTM/sup全新的蛋白质组定量技术?和其他定量技术比较有什么好处?未来期望哪些地方可以进一步提升?/span/pp答:SWATHsupTM/sup-MS 是一个全新的蛋白质组定量技术,是DIA技术的一种。虽然DIA很早之前就出现了,但是SWATHsupTM/sup-MS是第一个把灵敏度和可使用性结合的最好的技术。相比基于IDA的定量技术如SILAC、iTRAQ和label-free,其优点在于能在多个样品之间对肽段进行良好的一致性定量,即SWATHsupTM/sup的定量准确性、重现性和全面性是其他方法无法比拟的。我觉得,SWATHsupTM/sup-MS的灵敏度还可以再进一步地提高。/ppbr//ppspan style="COLOR: rgb(0,176,240)"6 为什么仅仅一个软件就可以发表在Nature Methods上?/span/pp答:SWATHsupTM/sup-MS是一个全新的,并且拥有很多优点的蛋白组定量技术,已经被该领域广泛接受和应用,其应用有非常好的前景。但是其后续的信息学处理软件却非常缺乏,尤其是SWATHsupTM/sup数据直接做蛋白质鉴定。所以这个软件开发解决了一个大家都比较关心的问题。/ppbr//ppspan style="COLOR: rgb(0,176,240)"7 文章里说的Group-DIA的设计思路是什么,比其他的处理软件有哪些优势?/span/pp答:SCIEX的SWATHsupTM/sup2.0商业化软件和Open-SWATHsupTM/sup在做定量时,需要构建Library,而Group-DIA想解决的主要问题是不需要建library就可以直接实现定量,即对SWATHsupTM/sup数据同时做蛋白鉴定和定量。其主要的思路是Group-DIA软件在发现母离子和其子离子对的时候,整合了多个样品的信息,故Group-DIA软件能在SWATHsupTM/sup-MS数据里鉴定和定量到比其他软件如DIA-Umpire更多的肽段。/ppbr//ppspan style="COLOR: rgb(0,176,240)"8 这个软件SCIEX的其他用户可以免费试用吗?到哪里可以下载?/span/pp答:当然可以,我们非常欢迎同行来使用这个软件,Group-DIA是开源软件。我们会对软件进行持续更新。我们的Nature Methods文章有提供下载地址。/ppbr//ppspan style="COLOR: rgb(0,176,240)"9 SCIEX自去年就已经将SWATHsupTM/sup升级到了2.0,定量数据质量的提升很大,您怎么看待SCIEX公司的商业化SWATHsupTM/sup2.0数据处理软件?咱们的Group-DIA软件和这个有比较吗?是一个互补吗?/span/pp答:我们也购买了SCIEX公司的商业化SWATHsupTM/sup2.0数据处理软件,用起来很方便。SCIEX公司的SWATHsupTM/sup2.0数据处理软件是基于库的SWATHsupTM/sup分析软件,Group-DIA是不依赖于库的SWATHsupTM/sup分析软件,不是很好比较。这两个软件是很好的互补。/ppbr//ppspan style="COLOR: rgb(0,176,240)"10 SCIEX公司已经推出了OneOmicsspan style="FONT-SIZE: 13px" /span云端多组学数据分析平台,可以在云端来做SWATHsupTM/sup数据分析,并可以进行后续的生物信息学分析,同时可以和基因组学数据进行整合分析,帮助科学家更方便的一站式挖掘深层次的生物学意义,您怎么看待OneOmicsspan style="FONT-SIZE: 13px" /span?/span/pp答:SWATHsupTM/sup的数据处理是一个较复杂的过程,OneOmicssup?/sup是一个很好的平台,可以将很多的复杂的过程简单化,处理速度要比本地快很多,利于科学家使用。而且可以在一个云环境里做好多生物信息学分析,非常方便,很容易找到一些有意义的信息。/ppbr//ppspan style="COLOR: rgb(0,176,240)"11 OneOmicsspan style="FONT-SIZE: 13px" /span是一个开放式的云端计算平台,科学家可以将自己开发的软件APP放上去,让更多的人使用,咱们有兴趣将Group-DIA代码放进OneOmicsspan style="FONT-SIZE: 13px" /span平台吗?/span/pp答:我当然希望能将Group-DIA整合到OneOmicsspan style="FONT-SIZE: 13px" /span平台,但是中间可能会有一些兼容问题,我们可以和SCIEX合作解决这些问题,将Group-DIA代码放到OneOmicsspan style="FONT-SIZE: 13px" /span平台,让更多的同行来应用。/ppbr//pp 韩院士实验室在钟博士的带领下,蛋白质组研究能取的这么好的成绩,就像钟博士讲的质谱平台是基础,对质谱和蛋白质组学的技术深入理解是关键,抓技术热点是捷径。所以,我们也希望广大的SCIEX用户能够充分发挥仪器的优势,做出更多更杰出的科研成果,让中国科学家在国际同行中产生更大的影响力。/ppbr//ppspan style="COLOR: rgb(0,176,240)"strong韩家淮教授/strong/span/pp /ppimg title="2.jpg" src="http://img1.17img.cn/17img/images/201510/uepic/3c3e81b6-c28c-4891-a225-03442b0d6d10.jpg"//ppbr//pul style="LIST-STYLE-TYPE: disc" class=" list-paddingleft-2"lip厦门大学生命科学学院教授/p/lilip“千人计划”特聘教授/p/lilip长江学者特聘教授/p/lilip中国科学院院士/p/li/ulpbr//pp 韩家淮教授是先天性免疫信号传导领域的世界知名学者,在世界上率先发现p38信号通路。细胞内存在多条信号通路以介导不同的生物学反应。p38信号通路是细胞内最重要的信号通路之一,它在许多生物学反应包括细胞周期调控、细胞增殖、发育、分化、衰老、凋亡、免疫反应及肿瘤发生中起重要作用。韩家淮教授领导的实验室在p38信号通路的研究领域一直保持世界领先地位。/ppbr//ppspan style="COLOR: rgb(0,176,240)"细胞应激生物学国家重点实验室/span/ppspan style="COLOR: rgb(0,176,240)"br//span/pp “细胞应激生物学”国家重点实验室(厦门大学)于2010年9月在原“细胞生物学与肿瘤细胞工程”教育部重点实验室和“福建省癌症生物学”重点实验室的基础上申请建设,于2011年10月获科技部批准建设。现任国重实验室主任为韩家淮教授,学术委员会主任为王志新院士。/pp 实验室以细胞应激反应为主线,重点围绕着细胞应对外界刺激的应激反应生物学、细胞应对自身癌变的应激反应生物学、细胞应对代谢状况变化的应激反应生物学这三个方向开展研究。实验室秉承“边建设边运行”的方针,以基础理论研究为根本,结合应用基础研究,从分子、细胞和个体水平上深入地研究炎症应激反应、肿瘤胁 迫应激反应和代谢应激反应等细胞应激生物学研究领域的关键科学问题。通过多方位、多学科、多层次的联合研究,力求全面提高实验室在细胞应激生物学研究领域的综合实力,为国家人口与健康领域的需求做出重大贡献,并以优秀的原创性成果和高水平人才队伍跻身国际知名研究中心和人才培养基地之列。/ppbr//p
  • 赛默飞为蛋白质组学用户量身打造的全新一站式工作流
    作为后基因组时代的重要组成部分,蛋白质组学经过二十几年的发展,已经逐渐走向成熟。蛋白质组学流程复杂,有较高的操作和实验技能的要求。其完整的实验步骤一般包括实验设计、样品前处理(蛋白提取、定量、酶解、脱盐等)、LC-MS/MS分析、数据库检索、生物信息学分析等多重步骤,而针对蛋白质组学步骤中繁琐耗时或者实验的稳定性、通量等用户的关注热点,赛默飞推出全新的为所有的蛋白质组学用户量身打造的一站式工作流,以满足用户对高通量定性定量蛋白质组学的全部需求。△图1:满足高通量定性定量蛋白质组学需求的一站式工作流(点击查看大图)赛默飞AccelerOme自动化样品前处理平台在蛋白质组学中,最为困扰大家的当属样品样品的前处理制备过程,样品制备过程繁琐、耗时,欠缺标准化的处理步骤使得蛋白质组学在不同的操作人员、不同的实验室之间重复性较差。针对这个痛点,赛默飞推出了全新的全自动的蛋白质组学样品制备平台AccelerOme(如图2)。△图2:全自动的蛋白质组学样品制备平台(点击查看大图)AccelerOme可完成蛋白样品的还原烷基化、酶解、TMT标记、脱盐、多肽定量等多步操作(如图3),其具有强大的鲁棒性的硬件,搭配现成的预配置的试剂以及直观的端到端软件,使标准化的蛋白质组学制备流程走进万千实验室,解放双手。 △图3:AccelerOme自动化样品前处理平台在蛋白质组学全流程中的作用(点击查看大图)△点击视频了解AccelerOme操作全流程其中,AccelerOme的强大的适配软件,支持使用者们从实验设计到数据分析的全流程。在蛋白质组学以及生物制药的HCP、药代动力学实验中,可帮助实验人员更加简便快速的获得高质量的、可重复的样品。全新的&mu PAC&trade Neo HPLC色谱柱在LC-MS/MS检测中,我们希望低流速的纳升液相能够提供更加稳健的表现和更高的日均检测通量。为此,赛默飞于去年发布了全新的低流速液相Vanquish Neo,与之相匹配的,这次我们推出了全新的50 cm &mu PAC&trade Neo HPLC色谱柱。全新色谱柱优势★与普通的填充柱不同,全新的50 cm &mu PAC&trade Neo HPLC色谱柱为微柱蚀刻技术,不同的色谱柱一致性强 ★同时低背压设计,50cm色谱柱,300nl/min流速下,背压仅110-150 bar;★还可灵活适配于不同的工作流程,其可适配15-120min色谱梯度及5-500ng大范围的上样量。全新的50 cm &mu PAC&trade Neo HPLC色谱柱,在具有极其出色的性能的同时,兼具高度的鲁棒性及更长的使用寿命(如图4)。 △图4:全新的50 cm &mu PAC&trade Neo HPLC色谱柱多针上样结果(从2月开始使用,间隔进行QC测试,共进行近500针QC测试)(点击查看大图)Proteome Discoverer&trade 3.0软件搭配CHIMERYS&trade 搜索引擎好马配好鞍,除了前述的全新的自动化样品前处理平台、全新的色谱柱以及性能及其出色的Vanquish Neo低流速色谱仪和Orbitrap系列质谱仪器,本次全新一站式蛋白质组学工作流,还将推出升级版软件Proteome Discoverer&trade 3.0以及全新的智能搜索引擎CHIMERYS&trade 。全新的CHIMERYS搜索算法是赛默飞与蛋白质组学人工智能领域的领导者MSAID&trade 合作的全新一代为解析混合谱而设计的人工智能算法,这种ge命性的算法可以大大提升DDA数据中被识别的PSMs数,从而实现在鉴定数目上的性能断层的巨大飞跃。 △图5:CHIMERYS搜索引擎可以在复杂的混合谱中识别出更多的PSMs(点击查看大图) △图6:与前代软件相比,CHIMERYS搜索引擎在鉴定量上带来性能断层的飞跃(点击查看大图)CHIMERYS搜索引擎目前可支持的工作流程包括肽段与蛋白的鉴定、非标记定量(LFQ)、TMT(包括TMT Pro)标记的定性与定量需求,未来也将支持翻译后修饰等需求。赛默飞全新一站式工作流,为蛋白质组学用户量身打造,可满足用户对高通量定性定量蛋白质组学的全部需求。赛默飞与各位科学工作者们一起,在蛋白质组学的领域里,扬帆起航,乘风破浪!结语✦如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制