当前位置: 仪器信息网 > 行业主题 > >

血清肿瘤相关物质检测

仪器信息网血清肿瘤相关物质检测专题为您提供2024年最新血清肿瘤相关物质检测价格报价、厂家品牌的相关信息, 包括血清肿瘤相关物质检测参数、型号等,不管是国产,还是进口品牌的血清肿瘤相关物质检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合血清肿瘤相关物质检测相关的耗材配件、试剂标物,还有血清肿瘤相关物质检测相关的最新资讯、资料,以及血清肿瘤相关物质检测相关的解决方案。

血清肿瘤相关物质检测相关的资讯

  • 肿瘤免疫微环境中的金属蛋白酶|附相关会议
    金属蛋白酶(MP)是一个在其活性中心具有金属离子的大型蛋白酶家族。根据结构域的不同,金属蛋白酶可分为多种亚型,主要包括基质金属蛋白酶(MMPs)、解整合素金属蛋白酶(ADAMs)以及具有血栓反应蛋白基序的ADAMs(ADAMTS)。它们具有蛋白质水解、细胞粘附和细胞外基质重塑等多种功能。相关会议推荐点击可免费报名金属蛋白酶在多种类型的癌症中表达,并通过调节信号转导和肿瘤微环境参与涉及肿瘤发生、发展、侵袭和转移的许多病理过程。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。MP的结构和表达基质金属蛋白酶(MMP)在脊椎动物中,MMP家族由28个成员组成,至少23个在人体组织中表达,其中14个在脉管系统中表达。基质金属蛋白酶通常根据其底物和其结构域的组织结构分为胶原酶(MMP1、MMP8、MMP13)、明胶酶(MMP2、MMP9)、溶血素(MMP3、MMP10、MMP11)、基质溶素(MMP7、MMP26)、膜型MMPs(MT MMPs)或其他MMPs。MMP家族有一个共同的核心结构。典型的MMPs由大约80个氨基酸的前肽、170个氨基酸的金属蛋白酶催化结构域、可变长度的连接肽或铰链区和约200个氨基酸的血红素蛋白结构域组成。不同类型的MMP具有不同于典型MMP的特定结构特征。例如,MT MMPs缺乏前结构域,而MMP7、MMP26和MMP23缺乏Hpx结构域和连接肽。此外,MMP2和MMP9包含纤连蛋白的三个重复。MMPs中的这些不同结构域、模块和基序参与与其他分子的相互作用,从而影响或决定MMP活性、底物特异性、细胞和组织定位。MMPs已在多种人类癌症中检测到,MMPs的高表达通常与大多数癌症的生存率降低有关,包括结直肠癌、肺癌、乳腺癌、卵巢癌和胃癌。其中MMP2和MMP9,能够降解基底膜中的IV型胶原,是研究最广泛的金属蛋白酶,与各种癌症患者的疾病进展和生存率降低相关。解整合素金属蛋白酶(ADAM)ADAMs是锚定在细胞表面膜上的I型跨膜蛋白,迄今已发现30多种。与MMPs类似,ADAMs包括前结构域和锌结合金属蛋白酶结构域。ADAM还包括一个在细胞表面蛋白中独特的去整合素结构域。ADAM的金属蛋白酶结构域高度保守,大多数ADAM都有一个富含半胱氨酸的结构域和跨膜区域相邻的EGF样结构域,然后是一个长度和序列在不同ADAM家族成员之间变化很大的胞内区。由于这些结构域的存在,ADAM可以结合底物并影响细胞粘附和迁移的变化,以及细胞表面分子的蛋白水解释放。它们的主要底物是完整的跨膜蛋白,如生长因子、粘附分子和细胞因子的前体形式。癌细胞通常表达高水平的ADAM,ADAM17是所有ADAM蛋白中研究最广泛的。一项评估ADAM17作为卵巢癌潜在血液生物标志物的研究表明,与对照组相比,培养的卵巢癌细胞系的培养基上清液以及卵巢癌患者的血清和腹水中的ADAM17水平明显更高。具有血栓反应蛋白基序的ADAM(ADAMTS)ADAM不同,ADAMTS是一种分泌型金属蛋白酶,其特征在于辅助结构域包含血栓反应蛋白1型重复序列(TSR)和间隔区,并且缺少跨膜区、胞内域和(EGF)样结构域,人ADAMTS家族包括19种蛋白。ADAMTS蛋白酶参与前胶原和von Willebrand因子的成熟,以及与形态发生、血管生成和癌症相关的ECM蛋白水解。研究表明,不同的ADAMTS具有不同的生物学功能,并且个体ADAMTS可以在不同的癌症中或根据临床环境发挥不同的作用。与MMPs和ADAMs相比,ADAMTS在TME中的参与研究较少,因此迫切需要系统地研究其在癌症中的功能。涉及癌细胞免疫相关MP的信号通路信号转导途径由多个分子组成,它们相互识别和相互作用,并传递信号以调节许多重要的生物学过程,如肿瘤细胞增殖、转移和免疫调节。三种信号通路尤其与免疫调节中的MP密切相关。肿瘤坏死因子信号肿瘤坏死因子-α(TNF-α)是一种重要的促炎细胞因子,参与免疫系统的维持和稳态,以及炎症和宿主防御。可溶性TNF-α通过蛋白水解酶ADAM17,也称为TNF-a转换酶(TACE),从跨膜TNF-α(tmTNF-α)裂解,该酶可通过激活TNF-α来协调免疫和炎症反应。鉴于ADAM17对TNF信号通路的受体和配体的作用,ADAM17被认为以多种方式影响TNF-α信号传导。例如,可溶性TNF-α产生的减少将导致tmTNF-α的积累,其将与TNFR2结合并导致不同的生物学结果。转化生长因子–β转化生长因子-β(TGF-β)作为肿瘤行为的关键调节因子,在肿瘤侵袭和转移、免疫调节和治疗抵抗中发挥重要作用。TGF-β也是TME免疫抑制的核心,根据具体情况对免疫系统具有多效性功能。MMP9和MMP2是已知的两种金属蛋白酶,可切割未激活的TGF-β前体并产生不同的TGF-β蛋白水解切割产物,从而导致TGF-β活化。此外,与CD44结合的MMP9降解纤连蛋白导致活性TGF-β的释放。癌细胞中MMP9的水平不仅可能影响TGF-β的蛋白水解,还可能影响TGFβ和TGF信号通路下游物质的表达。对乳腺癌中MMP9与TGF信号通路之间关系的研究表明,乳腺癌细胞中MMP9的过表达不仅显著上调了SMAD2、SMAD3和SMAD4的表达,还增强了SMAD2的磷酸化。Notch信号通路Notch信号涉及肿瘤生物学的多个方面,其在免疫应答的发展和调节中的作用比较复杂,包括塑造免疫系统和TME的组成部分,例如抗原呈递细胞、T细胞亚群和癌细胞之间的复杂串扰。特别是,Notch在不同免疫细胞的发育和维持中发挥着关键作用。配体与Notch受体结合后,下游信号由包括ADAM家族成员在内的一些蛋白酶介导。首先,受体/配体相互作用暴露了蛋白水解切割位点S2,其被ADAM金属蛋白酶切割。γ-分泌酶介导的S3处的后续裂解发生在跨膜区,导致Notch胞内结构域(NICD)的释放,该结构域转移到细胞核中,并将MAML与RBPJ结合,触发靶基因如Myc、P21和HES1的转录。已知ADAM10和ADAM17参与裂解S2,而ADAM17导致配体非依赖性Notch激活,ADAM10导致配体依赖性激活。MP对肿瘤微环境的调节TME是指肿瘤细胞周围的微环境,包括血管、免疫细胞、成纤维细胞、骨髓源性抑制细胞、各种信号分子和ECM。TME在调节癌症的免疫反应中起着关键作用。MP对ECM的影响ECM是TME基质的非细胞成分,ECM的重塑在癌症的发展和体内稳态以及免疫细胞募集和组织转移中起着重要作用。癌症进展过程中ECM的广泛重塑导致其密度和组成发生变化,具体而言,蛋白酶诱导的ECM成分的分解对于肿瘤细胞跨越组织屏障至关重要。MMPs和ADAMs是参与ECM降解的主要酶,参与ECM降解的MMPs可大致分为膜锚定MMPs和可溶性MMPs。ECM降解主要通过MT1 MMP激活的可溶性MMP(如MMP2、MMP9和MMP13)实现。ECM有三个主要成分:纤维、蛋白聚糖和多糖。MMPs通过与这些基质结合以促进各种ECM蛋白的周转,在组织重塑中发挥重要作用。MMPs降解ECM的具体机制尚不清楚,需要进一步研究。MP与免疫细胞之间的关系MP在促进免疫细胞活性和调节免疫细胞迁移方面发挥重要作用。MP和免疫细胞之间的关系如下图所示。ADAM10和ADAM17在静止的CD4+Th细胞表面表达,对调节CD4+Th的发育和功能很重要。ADAM10/17在T细胞共刺激受体以及共抑制受体的脱落中发挥关键作用。例如,CD154(CD40L)是一种II型膜共刺激受体,在T细胞和APC之间的相互作用后,CD154表达在几个小时内迅速上调,随后在ADAM10和ADAM17裂解后从T细胞表面释放。此外,ADAM10和ADAM17还作用于共刺激受体CD137,以及抑制性受体LAG-3、TIM-3,sLAG-3和sTIM-3的可溶性形式都是在ADAM10和ADAM17蛋白水解裂解后形成的。B细胞是体液免疫的关键细胞成分,位于脾脏中边缘区B细胞(MZB)表达高水平的CD80/86共刺激分子,导致T细胞活化。Notch2信号传导是MZB细胞发育所必需的,在MZB的发育过程中,Notch2异二聚体与基质细胞和APC上的DLL1等配体结合,这启动了一种未知的金属蛋白酶水解受体,导致Notch胞内结构域的释放,该结构域转移到细胞核并触发下游靶基因的表达。这种未知的金属蛋白酶可能是ADAM10。NK细胞表达IgG Fc受体FcγRIII(CD16),CD16分子可被ADAM17从活化的NK细胞表面裂解,ADAM17的抑制会削弱CD16和CD62L的胞外脱落,从而显著增加细胞内TNF-α和IFN-γ的水平。此外,MMPs和ADAMS可以从肿瘤细胞表面切割活化受体NKG2D的配体。这些裂解蛋白的可溶性形式与NKG2D结合,并诱导该受体的内吞和降解,导致肿瘤逃避监控。总的来说,ADAM17裂解的多种底物与NK细胞的不同作用有关。肿瘤相关巨噬细胞(TAM)有助于癌症的发生和恶性进展,高水平的TAM与预后不良和总体生存率降低有关。在多种癌症中,发现TAM通过分泌MMPs促进肿瘤血管生成和侵袭,并调节免疫反应。MMP的调节与TAM分泌的趋化因子密切相关。与MPs相关的免疫调节细胞因子多种来源于肿瘤细胞的细胞因子,包括TGF-β、EGF、HGF和TNF-α,介导许多MP的表达。其中最重要的是MMP9,其在血清和与肿瘤相关的组织中升高,并参与ECM的降解,以促进癌症中免疫细胞的迁移。此外,这些细胞因子必须被MP切割以参与肿瘤免疫过程。例如,被ADAM17切割的TmTNF-α产生活性sTNF-α。IL-12在T细胞发育和扩增中也起着关键作用,未激活的IL-12前体需要在被MMP14切割之后在TME中转变为活性状态。金属蛋白酶和血管生成迄今为止,已经报道了几种类型的肿瘤血管生成,包括萌芽血管生成和血管生成拟态(VM)。萌芽血管生成是通过血管基底膜中各种水解酶(如MP和组织纤溶酶)的上调实现的,这导致基底膜和ECM的降解和重塑。例如,在胰腺神经内分泌肿瘤中,MMP9分泌增加会从基质中释放出隔离的VEGF,从而将血管静止转变为活跃的血管生成。在肺癌细胞中,MMP2活性的抑制减少了其与整合素AVB3的相互作用,并抑制了下游PI3K/AKT信号介导的VEGF的表达,导致血管生成减少。VM是侵袭性肿瘤形成新血管的新模型,为肿瘤生长提供血液供应。研究表明,实体瘤的初始缺氧环境与VM密不可分,缺氧与MMPs的表达和活性密切相关。低氧诱导因子-1α(HIF-1α)已被证明直接调节MMP14、MMP9和MMP2的表达。靶向MP的免疫治疗鉴于MP在癌症免疫调节中的作用,人们开始探索靶向MP的免疫治疗,临床试验中出现了多种广谱MP抑制剂。然而,由于药物的非特异性靶向和MP在免疫调节中的复杂作用,MP抑制剂迄今未能改善癌症患者的生存和预后。最近,有报道称MP抑制剂可用于联合治疗,以提高免疫治疗的疗效。SB-3CT作为一种MMP2/9抑制剂,被认为可以提高抗PD-1和抗CTLA-4治疗黑色素瘤和肺癌小鼠模型的疗效。SB-3CT治疗不仅通过减少多种致癌途径导致PD-L1表达减少,而且与抗PD-1治疗相结合,显著改善了免疫细胞浸润和T细胞的细胞毒性。此外,SB-3CT与抗CTLA-4的组合增强了PD-L1表达的下调,并增加了肿瘤中活化的肿瘤浸润CD8+T细胞的丰度。Andecaliximab(GS-5745)是一种选择性抑制MMP9的单克隆抗体,GS-5745通过与MMP9前体结合并阻止MMP9活化来抑制MMP9,而与活性MMP9的结合则抑制其活性。Fab 3369作用于MMP14,阻断细胞表面表达的内源性MMP14,并抑制三阴性乳腺癌(TNBC)中ECM的降解。此外,有多种抗体可有效抑制ADAM17,包括A12、A9和MED13622。还有一些小分子抑制剂在临床开发中,在临床试验中显示出积极的效果。小结MP在TME中的免疫调节中发挥重要作用,包括ECM重塑、信号通路转导、细胞因子脱落和释放以及促进血管生成。与MP相关的新兴技术和药物在癌症诊断和治疗中得到了越来越多的探索。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。基于MP的探索和新技术具有巨大潜力,它们可能会为未来的癌症诊断和治疗提供有效的策略。参考文献:1.Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol.2022 13: 1064033.
  • 肿瘤标志物联合检测法应用指南
    肿瘤标志物联合检测法在早期发现、病程监控、机制研究、肿瘤转移及预后监测中应用 据统计,我国每年新患癌症的病人约160万人,每年因癌症死亡的人数约130万人。我国大、中城市居民的许多死亡原因中,癌症是第一位死因。 世界卫生组织作出最新权威性结论,癌症患者如能早期发现,治愈率可达80%以上。肿瘤标志物可以比影像学更早的发现肿瘤,因而对于治疗癌症意义深远。肿瘤标志物的分泌来源于肿瘤微环境的基质细胞以及肿瘤细胞,存在于细胞、组织或体液中,能用化学或免疫方法定量证实肿瘤存在,监测肿瘤治疗和预后的物质。 图1:常见肿瘤标志物联合检测方案 目前为止,还没有找到灵敏度、特异性100%的肿瘤标志物。单一指标、单一因子的检测很难准确的实现肿瘤早期检测、病程监控及预后治疗效果的评估等。如传统的Elisa方法,仅能进行单一蛋白因子的检测。若要提高检测的准确性和特异性,需要进行多个Elisa实验检测不同的蛋白因子。以10个蛋白因子检测为例,需要10个Elisa试剂盒,至少1ml的样本,一周时间才能得到结果。无论从人力、财力还是时间和样本量来说,都不是很好的选择。而且10个因子不是同时检测也可能造成结果的误差。图2 检测对象越丰富疾病区分度越好(class代表指标分类,marker代表具体指标) 目前,实现肿瘤标志物联合检测的最便捷最高效的技术手段之一就是xMAP技术。xMAP技术基于不同荧光编码的微珠。每一种编码微珠标记一种可捕获相应目标分子的抗体,根据检测靶标的数量,选择1-100种标记的微珠,混合后与样品中待测的靶标分子作用,然后在液流驱动下逐个通过检测窗口,两束不同波长激光对每个微球进行检测,635nm激光检测微球的色标编码从而确定检测的靶标,532nm激光检测相应靶标上的荧光标记进行定量,通过计算机分析和标准曲线拟合,直接对每一种目标分子进行定量。该技术利用Luminex多功能液相芯片平台实现了对蛋白、核酸等靶标分子的多重检测,是唯一被纳入美国临床实验室质控的高通量技术,被誉为真正的临床型生物芯片。 图3 xMAP技术原理图 视频1:xMAP技术原理及Milliplex技术平台介绍基于xMAP技术的多重检测平台的优势:- 多重检测:实现1-500重因子同时检测,为微量样本的精确检测提供技术保障;- 高灵敏度:精密的光学设计提升检测灵敏度,可低至0.04pg/ml;- 快速/高通量:96/384孔板自动化高通量检测,每小时数据量可达9,600个结果;- 微量样本:仅需10-50ul的样本量使得跟踪动物模型的阶段性变化成为可能,避免个体差异带来的实验误差。 目前,已有几千篇文献报道利用xMAP技术进行肿瘤标志物联合检测以提高肿瘤检查准确性和特异性。例如,Irene等人采用非侵入性方法(血清)对卵巢癌6个标志物进行检测,发现6个标志物联合诊断比原来的单个CA-125检测准确率明显提升(95.3% vs 72%),从而能够展开卵巢癌的早期治疗(图2)。 图4:Irene等人卵巢癌早期检测研究已发表于Clinic Cancer Research(IF: 8.19) 作为Luminex 最早的全球合作伙伴,Merck提供包括Luminex仪器、Milliplex高通量多因子检测试剂盒、Milliplex Analyst 软件和Biomarker service在内的一整套高通量多因子检测平台。Merck始终致力于生物标志物多重检测技术与研发,拥有三十多年的研发和服务经验。目前可以提供8个种属超过1200个蛋白因子的检测,涉及免疫、代谢、肿瘤、神经、信号通路、干细胞等多个热门研究领域,能够满足多数肿瘤标志物开发与诊断需求。此外,Merck已与全国各地肿瘤医院与研究所合作,提供检测平台和服务,积累了二十年检测与分析的经验,因此开设肿瘤标志物联合检测法应用专题,分享成功经验给广大临床及诊断研究工作者。 本专题将分成多期探讨肿瘤的早期发现、病程监控、机制研究、肿瘤转移及预后监测等方面的标志物多重检测应用。欢迎订阅Merck生物标志物期刊,掌握最新研究进展。 点击此处订阅 若以上链接无法点击,请扫描二维码。专题下一期预告:肿瘤早期诊断之多重生物标志物检测法默克生命科学Tel: 021-38529074Email: china.marketing.online@merckgroup.comweibo: 默克生命科学新浪微博wechat: 公众号默克生命科学
  • 血清中抗癌药物定量检测的表面增强拉曼光谱新方法
    近日,中国科学院合肥物质科学研究院健康与医学技术研究所研究员杨良保团队、王宏志团队,与中科院合肥肿瘤医院药学中心合作,在抗肿瘤药物血药浓度的定量检测方面取得进展。科研团队利用收缩组装的液态3D热点矩阵作为微反应器,建立了高稳定、高灵敏的表面增强拉曼光谱(SERS)定量检测血药浓度新方法。相关研究成果发表在Analytical Chemistry上。  表面增强拉曼光谱(SERS)是一种分子光谱,具有快速、高灵敏和指纹识别的特性。杨良保团队致力于SERS方法原理与检测应用方面的研究工作,并取得了一系列成果。定量检测是SERS方法的终极目标之一,但在控制热点的均匀性和使目标分子进入热点区域等方面存在难题。该研究利用液体三相平衡原理控制液滴的收缩,不仅形成高密度、高稳定的液态3D热点矩阵(图1),而且使抗肿瘤药物能够自主进入热点区域。结合该团队自主研发的手持式拉曼光谱仪,能够实现对肿瘤病人血清中抗癌药物在线定量检测(图2)。  该方法对抗癌药物5-氟尿嘧啶表现出50 ppb灵敏度和50-1000 ppb的定量检测范围(图2)。与传统的固体纳米阵列和胶体聚集SERS方法相比,收缩组装的液态3D热点矩阵可以增强分析物在等离子体热点空间的富集能力,实现高灵敏度和高稳定的SERS定量检测。这种收缩组装的3D热点矩阵在定量检测复杂样品(如血清、生物体液)中的分析物、动态监测抗癌药物代谢过程和生化反应动力学方面颇具潜力。  研究工作得到中科院科研仪器设备研制项目、国家自然科学基金、安徽省重点研究与开发计划等的支持。图1.3D热点矩阵形成原理图图2.手持式拉曼光谱仪检测血清中的5-氟尿嘧啶
  • 千亿级基因检测市场在招手:肿瘤检测将成下一个临床爆点
    p  很多人知道基因检测,是因为家有孕妈,要做无创产前基因检测(NIPT)来预知胎儿的健康。这个产品使得各大基因测序企业率先试水临床医疗,并走通监管,进入商业化通道。从2011年至今,国内有超过两百万孕妇使用了这项基因检测产品。/pp  当然,基因检测在临床上的应用还有很多,比如新生儿遗传病检测、耳聋基因检测,肿瘤、癌症等个体化治疗基因检测等。只是这些应用如果都想进入临床医疗市场,还需要一定时间来突破。/pp  业内人士认为,基因检测的出现将引领个体医疗革命,基因检测的医疗市场是一块千亿级规模的蛋糕。但基因检测公司需要走通监管,检测成本需要进一步降低,产品能够进入各家医疗机构,普通人对基因检测的认知更深入,满足这些条件,基因产业才能看到光明。/pp strong 无创产前基因检测发展史/strong/pp  NIPT即在孕妇特定孕周期间抽取其5毫升的外周静脉血,利用新一代DNA测序技术对血浆中的胎儿游离DNA片段进行测序,判断腹中胎儿染色体非整倍体疾病(21-三体综合征、18-三体综合征和13-三体综合征)的风险率,目前准确率达99.9%,价格在855元(深圳为全国最低价)--2500元之间。无创产前基因检测的出现让高龄产妇避免了做羊水穿刺带来的0.5%的流产风险。/pp  在NIPT出现之前,国内产前筛查和诊断的方式相对落后,最早通过在孕妇11、13孕周时进行B超筛查,然后进行孕早期和孕中期唐氏筛查,对于唐氏筛查高风险的孕妇则要进行羊水穿刺和产前诊断,随后进行B超排查。这套方式起到积极作用但有其弊端。/pp  华大股份副总赵立见曾在一次分享中指出,血清学筛查大概检出率是66%到83%,同时伴随5%以上的假阳性率,而且有创伤性的产前诊断会带来一定的流产、窒息的风险。/pp  市场似乎一直在等待一种无创的检测方式出现。有研究者设想,能否通过检测孕妇外周血来诊断胎儿的唐氏风险呢?1997年,香港中文大学教授卢煜明证实了孕妇的外周血内存在胎儿的游离DNA,使得通过抽妈妈的血来检测胎儿的患病风险的技术成为可能。/pp  华大基因是国内无创产前基因检测的龙头企业。赵立见介绍说,从2009年到2011年,华大基因在深圳市人民医院、深圳市妇幼保健院和珠海市妇幼保健院共完成了3177例的临床标本的实验。结果显示,这项检测技术的准确率能够达到99%以上,所以华大认为这项检测技术可以逐步应用到临床。/pp  2010年9月9日,华大基因与北京妇产医院签定协议,成为全球第一个将无创产前基因检测技术进行临床应用的医院。/pp  在无创产前基因检测这项产品上,可以说中国企业和世界保持了同步。到今年3月,华大基因的无创产前基因检测样本量突破100万例。国内基因检测公司如贝瑞和康、达安基因(27.180, -0.17, -0.62%)、安诺优达等公司在国内无创产前基因检测市场也占有一定份额。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201608/insimg/7573a22b-bcca-4196-80fa-5354d338b1bd.jpg" title="1.png"//pp  strong肿瘤是基因检测市场中最大的一块/strong/pp  如果说普通人通过无创产前基因检测认识了基因检测,但基因检测在临床上的应用绝不限于此,生命的语言正在通过基因检测被逐步破译。/pp  一些基因检测公司以孕前、产前、新生儿、儿童、青少年等完整生命周期的各阶段来进行产品开发和应用。/pp  比如,怀孕前可以做夫妇双方的遗传病基因检测,针对一些有经常性流产史的人也可以对流产组织进行基因检测辅助诊断,新生儿出生后可以做遗传代谢病、遗传性耳聋等儿童期高发遗传病检测,做到防患未然。针对肿瘤基因检测,可以通过抽取8ml外周血检测跟肿瘤相关的508个基因,可以指导个体化用药,以及预测家族遗传性肿瘤的风险,在一些癌症治疗中,基因检测也可起到常规用药指导的作用。/pp  “只是这些检测产品需要经过监管部门审批,和医疗机构合作,才会进入临床使用,而这些检测才刚刚起步。”一位基因检测业内人士说,这也是为什么公众感觉到基因检测离生活有点远的原因之一。/pp  按照现行监管体制,基因检测产品在临床上应用,需要国家食品药品监督管理总局(CFDA)批准,提供基因检测诊断的医疗机构则需要国家卫生计生委批准。目前,只有无创产前基因检测这一个产品具备了这两个要素。/pp  无创产前基因检测曾被监管部门叫停半年。2013年前后,看到无创市场红利,大量检测机构开始设立并和医疗机构合作进行无创产前基因检测,导致检测质量参差不齐,泥沙俱下。2014年2月,国家卫计委和国家食药总局联合发文,叫停了无创产前基因检测技术,要求检测仪器和试剂进行审批,提供基因检测的医疗机构需要批准。/pp  经过企业和监管部门的沟通,2014年6月30日,华大基因的无创产前检测产品率先获得批复,随后,达安基因、博奥生物、贝瑞和康、华因康等公司的高通量测序产品都获得批准。首批109家测序临床应用试点单位也获得批准。/pp  无创产前基因检测只是拉开了基因测序在医疗市场应用的序幕,受出生率下降的限制,市场容量是一定的。所以,各家基因检测公司都在开拓新的临床应用产品。/pp  “临床检测方面,肿瘤被认为是市场中最大的一块,肿瘤风险评估、早筛、复发监控等都可用到基因检测。肿瘤领域有很多创业公司,在试点医院开展服务。”微基因CTO陈钢对第一财经记者说。/pp  中国工程院院士、抗癌协会副理事长程书钧表示,我国肿瘤治疗的病人中晚期患者居多,早期病人比例少,治疗效果当然差,美国肿瘤5年生存率大约在60%到70%,我国肿瘤患者5年生存率大约在30%左右。/pp  如果基因检测在临床医疗上的路径走通,企业面对的将是一个千亿级的市场。以肿瘤相关的基因检测为例,中国每年有300万肿瘤患者,如果每个患者都做一次基因检测用以个性化用药指导,以单价1000元(远高于这个价格)计,每年将有30亿的市场容量,更不用说心脑血管疾病等高发病。/pp  如果上文提到的贯穿整个生命周期的基因检测产品,即从婚姻前遗传病的筛查到怀孕期间无创产前基因检测,到新生儿代谢病的筛查、遗传性耳聋基因筛查,以及到老年病、肿瘤以及感染性疾病的筛查都能获得临床市场认可,走通商业化路径,基因检测公司的发展前景将非常可观。/pp  但现在的问题是,市场上的企业要跨越黎明前的重重黑暗,才能看到光明。/p
  • PCR技术肿瘤检测市场又添重磅产品
    p style="text-align: justify " 目前,国内除了燃石医学和诺禾致源分别获批了NGS肿瘤检测试剂盒外,其余公司的肿瘤检测试剂盒均基于PCR技术和基因芯片,只要是由于PCR技术壁垒相对较低,国产化程度高。并且随着ddPCR技术的不断成熟,是PCR肿瘤检测试剂盒的应用更为广泛。/pp style="text-align: justify "1.重磅产品/pp style="text-align: justify " 2018年8月24日,国家药品监督管理局批准厦门艾德生物医药科技股份有限公司的新一代多基因联合检测试剂盒(商品名:艾惠健)上市。该试剂盒可检测肺癌EGFR、ALK、ROS1、KRAS、BRAF、HER-2、RET、MET、NRAS、PIK3CA等核心驱动基因。这是我国第5个检测多基因突变的联合检测试剂盒,下表为在此次批准前的4种多基因联合检测试剂盒,均为厦门艾德生物医药科技股份公司研发上市。/pp style="text-align: center "表1:目前使用PCR技术的多基因联合检测试剂盒/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/f9660984-0e6c-4c5f-a859-c019f6107984.jpg" title="1.jpg"//pp/pp style="text-align: center "数据来源:公开数据/pp style="text-align: justify " 艾德生物此次获批的人类肺癌多基因突变检测试剂盒“艾惠健”是基于其自主知识产权的ADx-ARMS® 核心技术平台的创新产品,将基因突变和基因融合检测完美整合到同一个产品之中,操作简便、结果准确,可当天出报告,实现了不同基因变异类型的同步快速检测,满足患者得到及时诊治的紧迫需求。/pp style="text-align: justify "2.艾德生物/pp style="text-align: justify " 艾德生物公司产品主要用于肿瘤患者相关基因状态检测,为靶向药物的选择和个体化治疗方案的制定提供科学依据。针对目前肿瘤精准医疗最重要 EGFR、KRAS、BRAF、EML4-ALK、PIK3CA、ROS1、NRAS、Her-2等基因位点,截止2018年2月艾德生物公司陆续研发了19种独立或联合检测试剂(表2),均为我国首批取得家药监局医疗器械注证书和通过欧盟认证的产品。优势主要体现在肿瘤精准医疗分子诊断技术的领先,其特有的ADx-ARMS® 技术为公司自主研发,国际领先。通过特异引物对突变靶序列进行高精准PCR扩增放大,并基于实时荧光定量PCR平台利用新型探针实现样品DNA突变的检测,可准确检测出含量低至1%突变DNA,灵敏度高,特异性强,且检测效率较高,适合组织、胸水、血清和血浆等样本基因检测。/pp style="text-align: center "表2:艾德生物体外诊断产品(截止2018年2月)/pp/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/bd771c3e-9a00-4b60-af70-b4cabbe7735a.jpg" title="2.jpg"//pp style="text-align: center "数据来源:公开数据/pp style="text-align: justify " 从市场潜力来看,我国每年新增肿瘤患者持续走高,2015年新增病例已经突破400万。每一个肿瘤患者从肿瘤早期筛查、到个体化用药、再到伴随诊断和补充诊断。总体来讲,市场需求巨大。从技术的发展趋势来看,NGS是由于本身的技术优势,必将成为未来肿瘤检测的主流方向。但是由于目前NGS技术尚不成熟,且技术壁垒过高,近期在国内较难完全开拓应用市场。/pp/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/insimg/21408b3b-c827-4f16-87b4-8a967d7ef861.jpg" title="3.jpg"//pp style="text-align: center "图1:中国肿瘤新增病例变化(万例)/pp style="text-align: center "数据来源:全国肿瘤登记中心/pp style="text-align: justify " 但是,由于PCR技术检测成本相对低、检测效率高、检测准确度和灵敏度有一定保障,并且PCR检测上游试剂技术壁垒相对不高,国内上游仪器公司也开始纷纷布局,如泛生子、科维斯、诺禾致源均开始自主研发ddPCR检测仪,总体来讲,PCR技术在国内相对成熟。因此,近期基于PCR技术的肿瘤检测试剂依旧会在国内占据大壁江山。多基因联合检测试剂盒也会紧随着艾德生物的这一重磅产品,不断地出现在消费者面前。/ppbr//p
  • 国家纳米中心在肿瘤外泌体microRNA高灵敏检测方面取得进展
    p  近日,国家纳米科学中心孙佳姝课题组在肿瘤外泌体microRNA高灵敏检测方面取得新进展。相关研究成果“Thermophoretic Detection of Exosomal microRNAs by Nanoflares”于 2020年3月在线发表于《美国化学会志》(J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.9b13960)。/pp  外泌体是由细胞分泌的含有蛋白质与核酸等生物大分子的纳米尺度(30-150 nm)脂质囊泡,通过运输活性分子参与细胞通讯,是肿瘤液体活检的靶标之一。microRNA是一种长度约为22核苷酸的非编码单链RNA。肿瘤细胞中高表达的microRNA会被包载在外泌体中,参与肿瘤增殖与转移,是新型肿瘤诊断标志物。现有的外泌体microRNA检测方法面临外泌体microRNA含量低、样本消耗量高以及需要RNA提取等挑战。因此,发展微量样品中外泌体microRNA的高灵敏检测新方法对癌症早期诊断具有重大意义。/pp  在前期工作中,孙佳姝课题组利用热泳富集与核酸适体标记,实现了细胞外囊泡表面蛋白组测量和癌症分类(Nat. Biomed. Eng. 2019, 3, 183-193, J. Am. Chem. Soc. 2019, 141, 9, 3817-3821, Adv. Mater. 2019, 31, 1804788)。在此基础上进一步开发了结合纳米耀斑(nanoflare)与热泳的检测新方法,实现了0.5 μL血清样本中外泌体microRNA的高灵敏检测,检出限低至0.36 fM,接近qRT-PCR。纳米耀斑通过被动输运进入外泌体后,可以特异性识别靶标microRNA并产生荧光信号。外泌体在热泳作用下快速汇聚,有效放大其中纳米耀斑产生的荧光信号,提高外泌体microRNA的检测灵敏度。临床血清样本中,外泌体肿瘤相关microRNA表达信息可以用于ER+乳腺癌的早期诊断。与常规检测手段相比,该方法灵敏度高,样本消耗量小,排除了非外泌体microRNA的干扰,为外泌体microRNA检测与癌症早期检测提供了新思路,新工具。/ppbr//p
  • 肿瘤标志物 7 种检测方法学大比拼
    p style="text-align: justify "  肿瘤具有高死亡率、高转移率和高复发率,是危害人类健康的重大疾病。诊断肿瘤的传统方法有病理组织活检、核磁共振成像(magnetic resonance imaging,MRI)、电子计算机断层扫描(computed tomography,CT)、B超、X线胸片、内镜检查等。这些检查对于肿瘤早期的检测效果十分有限,部分检测方法不仅价格昂贵,且会给患者带来痛苦。因此,在肿瘤早期阶段开展快速、有效的检测十分必要,不仅可以达到早发现、早治疗的目的,还可以改善患者就医体验。肿瘤标志物的筛检对于肿瘤早期检测具有重要意义[1]。/pp style="text-align: justify "  肿瘤标志物是指由肿瘤组织或宿主与肿瘤相互作用所产生的一类活性物质,能够提示肿瘤存在与生长变化。肿瘤标志物常常存在于血清、细胞、尿液、体液或组织中,常见的有癌胚蛋白、肿瘤抗原、酶类标志物、激素、糖类抗原等。肿瘤标志物检测具有操作便捷、标本易获取、非侵入性、价格低廉、易于动态监测疾病等优点。肿瘤标志物的检测对于肿瘤的预防、早期诊断与鉴别诊断、辅助肿瘤分类、疾病监测、指导治疗和预后判断有重要作用,可有效弥补其他医学技术对肿瘤诊断、治疗及预后判断的不足[2]。肿瘤标志物种类繁多,检测方法也各异,本文将几种常见肿瘤标志物检测方法的研究进展作一综述。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong1、放射免疫分析/strong/span/pp style="text-align: justify "  放射免疫分析是一种传统的检测肿瘤标志物的方法,是将放射性核素检测技术与抗原抗体结合特异性的特点相结合,以定量微量物质。放射免疫分析多使用放射性核素125I,因其具有放射性高、易标记、衰变过程中释放的射线易于被检测等优势,逐渐替代了3H和14C而被广泛使用。放射性核素标记具有高灵敏度、易于商品化等优势,曾被广泛应用,但与其他方法[3]相比,存在试剂盒使用寿命短、有放射性污染风险等缺点,目前已逐渐被其他检测方法取代。/pp style="text-align: justify " span style="color: rgb(0, 32, 96) "strong 2、化学发光免疫分析/strong/span/pp style="text-align: justify "  化学发光免疫分析是目前常用和较为成熟的肿瘤标志物检测技术,其利用化学发光物质作为标记物,根据发光信号的强度来判断待测物质的量。自1928年德国化学家Albrecht发现鲁米诺的化学发光特性后,该检测技术由于灵敏度高、快速、线性范围广、仪器结构简单、适合小型化、无放射性危害等优点得到不断发展[4,5]。化学发光免疫分析为化学发光法,使用直接发光物质(如吖啶酯)标记抗体,或使用酶类催化剂(如辣根过氧化物酶)[6]标记抗原抗体。将化学发光技术与微芯片电泳化学发光(microchip-electrophoresis chemiluminescence,MCE-CL)等技术联合使用,具有效率高、分析快、自动化程度高、需要更少样品和试剂的优点[7,8]。/pp style="text-align: justify "  传统化学免疫分析采用酶标技术,用辣根过氧化物酶催化鲁米诺的免疫测定技术曾被广泛使用,目前的免疫测定系统通常使用信号探针标记抗体并进一步测量目标分析物浓度。但这类天然酶具有稳定性差、来源有限、对环境变化敏感、易受环境影响而变性等缺点,且标记过程通常会损害抗体分子的生物活性,因而基于金属及金属复合物[9,10]、磁性纳米颗粒[11]、量子点[12]等催化发光底物的无酶免疫系统[13]不断发展,将电化学技术和化学发光相结合检测肿瘤标志物,兼具了化学发光的高灵敏度和电化学的时间、空间可控性[14,15]的优点。有研究人员以CuS纳米粒子作为过氧化物酶模拟物,设计了一种新型的无标记化学发光(chemiluminescence,CL)免疫方法测定甲胎蛋白,与基于酶标的CL免疫测定法相比,提出的无标记测定模式更简单、价廉、快速。采用无标记的CL免疫测定法测定甲胎蛋白的线性范围为0.1~60ng/mL,检出限为0.07 ng/mL,且此CL免疫测定系统显示出良好的特异性、可接受的重复性和良好的准确性[16]。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong3、酶联免疫吸附试验/strong/span/pp style="text-align: justify "  酶联免疫吸附试验是一项临床上已普及的检测技术,这一技术将抗原或抗体包被于固相支持物上,将酶标抗原或抗体加入抗原抗体复合物中,通过底物使酶显色来达到检测目的。不同的研究人员会采用不同的酶联免疫吸附试验策略,如使用单克隆多克隆抗体[17]及嵌合抗体[18]来开发肿瘤标志物检测试剂盒。酶联免疫吸附试验被开发后其检测系统得到不同的优化,如凝集素及生物素-亲和素系统[19]在酶联免疫吸附试验中的应用大大增强了其检测的敏感性,荧光素酶夹心酶联免疫吸附试验系统[20]也使检测的敏感性不断增强。酶联免疫吸附试验不仅适用于对单一分析物的测定,在多个分析物同时存在时,同样具有良好的适用性[21]。/pp style="text-align: justify "  除酶联免疫吸附试验外,越来越多的研究集中于开发具有酶样活性的模拟酶[22]。ZHANG等[23]以Cu2+作为助催化剂,利用Cu2+/Ag-AgI复合物作为催化剂具有在可见光下使3,3´ ,5,5´ -四甲基联苯胺(3,3´ ,5,5´ -tetramethylbenzidine,TMB)颜色产生变化的特性,构建了夹心型比色法,通过监测TMB溶液的颜色变化以定量癌胚抗原的水平,其开发的比色免疫测定在血清样品分析中表现出良好的选择性、重复性和稳定性。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong4、免疫传感器/strong/span/pp style="text-align: justify "  免疫传感器一直备受肿瘤研究者关注和青睐。将特异性免疫反应与生物传感技术相结合形成的生物传感器,其生物识别部分来自抗原与抗体的特异性识别和结合作用,通过理化换能器和信号放大装置将生物信号转变为电信号用于检测。与其他几种检测方法相比,免疫传感器具有灵敏度高、操作方便、设备简单、成本低、可实现实时动态检测等优势。目前,免疫传感器大部分处于试验阶段,正向高通量、商品化发展,以满足临床大样本检测的要求,随着技术的不断成熟,有望成为肿瘤标志物的新型检测手段。检验医学网/pp style="text-align: justify "  金属纳米材料由于拥有独特的光学、电子和催化特性常被用于构建免疫传感器[24,25]。LIU等[26]使用多孔铂纳米颗粒和PdPt纳米笼同时测定肿瘤标志物癌胚抗原和甲胎蛋白,利用多孔铂纳米颗粒较大的表面积和较强的导电性,PdPt纳米笼优异的催化性能及高负载能力,增强和放大响应信号,实现了对双重分析物的灵敏测定。另外,使用纳米合金材料制作的传感器,与使用单一金属材料相比具有更好的生物相容性,金属之间良好的协同作用使传感器催化性能进一步被放大。ZHANG等[27]使用PdPt纳米颗粒,以石墨烯片和多壁碳纳米管作为传感平台,组成纳米复合物修饰电极,来测定肿瘤标志物潜伏膜蛋白-1,比单独使用Pd纳米粒子具有更高的过氧化物酶活性,PdPt凹面不仅可以提供较大的表面积,还可以提供更丰富的催化反应活性位点。/pp style="text-align: justify "  碳纳米材料,包括单壁碳纳米管、多壁碳纳米管、石墨烯、碳纳米纤维、碳球等,由于其良好的力学性能、较高的化学稳定性、特殊的电学性质、优异的机械性能和良好的导热性被广泛用于免疫传感器的制造,制造的传感器具有响应速度快、电子传递速率高、负载量大、吸附性好、催化活性等优点。LIANG等[28]研制了以双层酶修饰碳纳米管作为标记的夹心型免疫传感器,利用层层自组装技术将辣根过氧化物酶装配到多壁碳纳米管上,实现了信号放大,为临床分析的超灵敏检测提供了有力的支持。/pp style="text-align: justify "  聚合物复合材料由于良好的氧化还原性能,被作为免疫传感器信号指示剂[29,30]。TANG等[31]用聚多巴胺-PB2+(PDA-Pb2+)纳米复合材料作为氧化还原体系,用壳聚糖-金纳米复合材料涂覆电极,对癌胚抗原进行敏感性的电流分析。利用聚合物复合材料制作的免疫传感器,因聚合物复合材料掺杂带来的半导体或导体性质,其活性可被调节,掺杂/去掺杂的可逆过程使其可检测不同的分析对象,扩大了检测范围。/pp style="text-align: justify "  免疫传感器的制备除上述几种材料外,还常引入其他具有不同功能的材料来提高性能。如利用量子点高表面活性、小尺寸及对光、电、温度等敏感的特性,构建的传感器灵敏度较高[32,33] 利用磁性纳米粒子的磁效应构建的传感器抗干扰性好[34] 利用介孔材料良好的孔隙结构和界面结构构建的传感器,能够保持酶良好的活性和功能性 利用水凝胶构建的传感器稳定性好,水溶性高,能够对外界刺激产生响应并产生相应变化[35]。此外,利用羟基磷灰石(hydroxyapatite,HAP)纳米颗粒,利用HAP-NPs与钼酸盐的反应检测甲胎蛋白,构建的传感器选择性好、灵敏度高,且成本低[36]。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong5、蛋白组学/strong/span/pp style="text-align: justify "  蛋白组学是近年来兴起的肿瘤研究领域热点之一,以蛋白质为核心,对蛋白质的表达模式和功能模式进行研究。蛋白组学技术具有高通量、微型化、自动化的优势,目前被广泛用于临床肿瘤学研究,为肿瘤标志物的研究提供了良好的平台,但同时具有检测成本昂贵、对技术人员操作要求高等缺点。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "①双向电泳/span/pp style="text-align: justify "  双向电泳是蛋白组学的经典技术,是利用蛋白质的等电点和不同相对分子质量来分离蛋白质的一门技术。双向电泳是蛋白组学的核心技术之一,能够通过染色强度得到蛋白质翻译后修饰的信息,能够同时分离数千种蛋白质。但其有不能分辨低拷贝数蛋白、检测蛋白比估计总蛋白数少、耗时长、操作过程繁琐等缺点,不能实现完全自动化,研究者常将其与质谱技术联用以分离、鉴定蛋白质[37],即将蛋白质用双向电泳分离后,运用质谱技术进行逐一鉴定,这也成为蛋白组学研究的核心技术。相差凝胶电泳在双向电泳的基础上利用不同的染色对2个样本进行标记,通量更高,提高了凝胶间的可比性,工作效率得到提升。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "②质谱技术/span/pp style="text-align: justify "  质谱技术是将物质离子化,根据不同质荷比进行时间和空间的分离,进而获得样品的相对分子质量、分子结构等多种信息的分析方法。由于其具有高分辨力、高精度等特点被广泛用于多个领域。近年来,常用色谱-质谱技术,因其兼具了色谱的分离能力和质谱的鉴定能力,能够对蛋白质进行准确、快速的分析和定量[39,40]。基质辅助激光解吸飞行时间质谱和电喷雾电离质谱是经过改进的质谱技术,前者利用基质吸收激光的能量,得到肽质量指纹谱,通过检索数据库以鉴定蛋白质 后者利用电喷雾法,液相化多肽以鉴定蛋白质。这2种方法能保证电离时样品分子的完整性,不会使离子碎片化。检验医学网/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "③蛋白质芯片/span/pp style="text-align: justify "  蛋白质芯片是近十年来新兴的分析技术,即在支持物表面排列蛋白质探针以捕获目标蛋白,再通过检测器进行定性或定量分析。根据载体性质不同,可分为固相蛋白质芯片和液相蛋白质芯片,临床上常用来筛选和寻找肿瘤标志物。反相蛋白质芯片也是蛋白组学高通量方法[41]。蛋白质芯片不仅可用来研究蛋白质与蛋白质之间的相互作用,还可研究蛋白质与核苷酸间的相互作用,具有通量高、速度快、灵敏度高的优点。DUAN等[42]设计了一种蛋白质芯片,使用胶体纳米金标记葡萄球菌属蛋白A作为指标,应用免疫金银染色增强技术扩增检测信号,此蛋白质芯片可在不存在交叉反应的情况下检测乙型肝炎病毒抗体和丙型肝炎病毒抗体,并可在40min内提供结果,速度相对酶联免疫吸附试验等方法更快。YANG等[43]开发了一种微阵列芯片,首次使用硅和水凝胶作为微阵列的载体,构成的芯片具有二氧化硅和水凝胶两者的优点。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "④表面增强激光解析及电离飞行时间质谱/span/pp style="text-align: justify "  表面增强激光解析及电离飞行时间质谱是将质谱与蛋白质分离技术相结合的技术,能够检测到其他传统方法检测不到的蛋白质,只需少量样品,检测时间短且重复性高,可分析复杂样品。该技术基于特殊芯片的表明增强吸附作用,将样品蛋白质吸附到芯片上后,将结合蛋白质解离成核电离子以绘制质谱图。将健康人与肿瘤患者的蛋白图谱进行比较,能够发现差异表达的蛋白质。JIN等[44]开发了一种对糖类抗原19-9正常的胰腺癌患者与健康或良性个体进行诊断和鉴别诊断的方法,使用与CM10芯片联合的表面增强激光解吸及电离飞行时间质谱分析相关样品,生成了具有不同蛋白质的诊断模型。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong6、分子生物学方法/strong/span/pp style="text-align: justify "  检测肿瘤标志物的分子生物学方法包括聚合酶链反应(polymerasechain reaction,PCR)、荧光原位杂交技术(fluorescencein situ hybridization, FISH)、逆转录PCR、单链构象多态性(single-strand conformationpolymorphism,SSCP)、多种测序技术等。分子生物学技术具有高通量,特异性强、敏感性高等优势,但也存在价格昂贵、检测周期长等缺点。/pp style="text-align: justify "  PCR是目前被广泛使用的一种简单、敏感、高效、特异和快速的,能在体外扩增DNA的技术。由经典PCR衍生出的技术被广泛应用于肿瘤标志物的检测,如逆转录PCR被用于口咽癌[45]、结直肠癌[46]、前列腺癌[47]、肺癌[48]等多种肿瘤的检测。甲基化特异性PCR是一种检测特异位点甲基化的技术[49],检测DNA甲基化敏感性极高,KOIKE等[50]发现甲基化特异性PCR对于胃癌标志物的检出率高于逆转录PCR。此外,多种PCR衍生技术如扩增融合PCR、实时荧光定量PCR等也被运用于肿瘤标志物的检测。/pp style="text-align: justify "  FISH以标记的特异寡聚核苷酸片段作为探针,根据核酸碱基配对原理,将标记的探针与单链核酸片段配对,在荧光显微镜下观察目标序列的分布。FISH虽属于低通量检测,但目前已被用于检测肿瘤细胞[51]、突变染色体[52]、染色体重排[53],在肿瘤生物标志物检测和个体化医疗方面具有重要意义。/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong7、液体活检/strong/span/pp style="text-align: justify "  液体活检是一种从血液等非实性样本中取样,用于诊断和检测肿瘤的方法。液体活检技术主要包括循环肿瘤细胞(circulating tumor cell, CTC)检测、循环肿瘤DNA(circulating tumor DNA, ctDNA)检测、外泌体检测等。与组织活检相比,液体活检能够早期筛查、检测肿瘤标志物,克服了肿瘤的时空异质性,具有无创、易反复取样、操作简便、可实时监控等优点,但同时也有价格昂贵、检测标准不统一等缺点。CTC检测目前主要使用的是免疫细胞化学方法,但CTC极低的丰度及其异质性使其面临着技术挑战。ctDNA检测主要采用分子生物学方法,但ct DNA具有易降解、含量低等缺点,为精准检测带来困难。外泌体检测在肿瘤诊断方面显示出良好的应用前景,是具有发展潜力的诊断方法,但其提取及操作尚无统一流程,检测系统有待进一步完善,以满足临床大规模样本检测的需要。检验医学网/pp style="text-align: justify "  strong总结/strong/pp style="text-align: justify "  肿瘤标志物作为临床上肿瘤辅助诊断、治疗参考以及预后判断的重要指标,目前在应用上愈发广泛,临床对检测技术的要求也不断发展。不仅有大量灵敏度或特异性更高的标志物被发现,而且在检测方法上也紧跟临床工作需求而不断发展。不同检测方法均有其优势与不足,如何对不同方法进行整合,提高肿瘤标志物的检出能力,是研究者们需关注和探索的问题。能够在肿瘤早期检出低含量肿瘤标志物,永远是临床肿瘤诊断的主要需求。不管使用何种材料,使用何种方法,提高检测的敏感性和特异性及稳定性永远是肿瘤标志物研发所追求的目标。/pp style="text-align: justify text-indent: 2em "strong参考文献/strong/pp  [1]GERDTSSON A S, WINGREN C, PERSSON H, et al. Plasma protein profiling in a stage defined pancreatic cancer cohort-implications for early diagnosis[J]. Mol Oncol, 2016, 10(8): 1305-1316./pp  [2]COLEMAN R L, HERZOG T J, CHAN D W, et al. Validation of a second-generation multivariate index assay for malignancy risk of adnexal masses[J]. Am J Obstet Gynecol, 2016, 215(1): 82e1-82. e11./pp  [3]MURATA T, TSUZAKI K, NIRENGI S, et al. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: comparison between radioimmunoassay and enzyme-linked immunosorbent assay[J]. J Diabetes Investig, 2017, 8(4): 475-479./pp  [4]CHANG Y, XU J, ZHANG Q. Microplate magnetic chemiluminescence immunoassay for detecting urinary survivin in bladder cancer[J]. Oncol Lett, 2017, 14(4): 4043-4052./pp  [5]NAKAGAWA M, KARASHIMA T, KAMADA M, et al. Development of a fully automated chemiluminescence immunoassay for urine monomeric laminin-γ2 as a promising diagnostic tool of non-muscle invasive bladder cancer[J]. Biomark Res, 2017, 5: 29./pp  [6]ZHAO L, DAN W, SHI G, et al. Dual-labeled chemiluminescence enzyme immunoassay for simultaneous measurement of total prostate specific antigen (TPSA) and free prostate specific antigen (FPSA)[J].Luminescence, 2017, 32(8): 1547-1553./pp  [7]LIU J, ZHAO J, LI S, et al. A novel microchip electrophoresis-based chemiluminescence immunoassay for the detection of alpha-fetoprotein in human serum[J]. Talanta, 2017, 165: 107-111./pp  [8]LI S, YANG T, ZHAO J, et al. Chemiluminescence noncompetitive immunoassay based on microchip electrophoresis for the determination of β-subunit of human chorionic gonadotropin[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1053: 42-47./pp  [9]ZHANG Q, DAI H, WANG T, et al. Ratiometric electrochemiluminescent immunoassay for tumor marker regulated by mesocrystals and biomimetic catalyst[J]. Electrochimica Acta, 2016, 196: 565-571./pp  [10]LI S, SHI M, ZHAO J, et al. A highly sensitive capillary electrophoresis immunoassay strategy based on dual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen[J]. Electrophoresis, 2017, 38(13-14): 1780-1787./pp  [11]HUANG Z J, HAN W D, WU Y H, et al. Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein[J]. J Electroanal Chem, 2017, 785: 8-13./pp  [12]GUO Z, HAO T, DU S, et al. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge[J]. Biosens Bioelectron, 2013,44: 101-107./pp  [13]SHIM C, CHONG R, LEE J H. Enzyme-free chemiluminescence immunoassay for the determination of thyroid stimulating hormone[J]. Talanta, 2017, 171: 229-235./pp  [14]ZHANG M, GE S, LI W, et al. Ultrasensitive electrochemiluminescence immunoassay for tumor marker detection using functionalized Ru-silica@nanoporous gold composite as labels[J]. Analyst, 2012, 137(3):680-685./pp  [15]BABAMIRI B, HALLAJ R, SALIMI A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite[J]. Biosens Bioelectron, 2018, 99: 353-360./pp  [16]YANG Z, CAO Y, LI J, et al. Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay[J]. ACS Appl Mater Interfaces, 2016, 8(19): 12031-12038./pp  [17]CHEN S L, LI Y L, TANG Y, et al. Development and evaluation of a double antibody sand wich ELISA for the detection of human sDC-SIGN[J]. J Immunological Methods, 2016, 436: 16-21./pp  [18]YAMASHITA J, KOBAYASHI I, TATEMATSU K, et al. Sand wich ELISA using a mouse/human chimeric CSLEX-1 antibody[J]. Clin Chem, 2016, 62(11): 1516-1523./pp  [19]OUJI-SAGESHIMA N, GERAGHTY D E, ISHITANI A, et al. Establishment of optimized ELISA system specific for HLA-G in body fluids[J]. HLA, 2016, 88(6): 293-299./pp  [20]LI Y, LI Y, ZHAO J, et al. Development of a sensitive luciferase-based sand wich ELISA system for the detection of human extracellular matrix 1 protein[J]. Monoclon Antib Immunodiagn Immunother, 2016,35(6): 273-279./pp  [21]LAKSHMIPRIYA T, GOPINATH S C B, HASHIM U, et al. Multi-analyte validation in heterogeneous solution by ELISA[J]. Int J Biol Macromol, 2017, 105(Pt 1): 796-800./pp  [22]WANG J, CAO Y, XU Y, et al. Colorimetric multiplexed immunoassay for sequential detection of tumor markers[J]. Biosens Bioelectron, 2009, 25(2): 532-536./pp  [23]ZHANG B, WANG X, ZHAO Y, et al. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu2+ doped Ag-AgI nanocomposite[J]. Talanta, 2017, 167: 111-117./pp  [24]LAI G, WANG L, WU J, et al. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers[J]. Anal Chim Acta, 2012, 721: 1-6./pp  [25]LIANG Y H, CHANG C C, CHEN C C, et al. Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva[J]. Clin Biochem, 2012, 45(18): 1689-1693./pp  [26]LIU N, FENG F, LIU Z, et al. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP[J]. Microchim Acta, 2015, 182(5-6): 1143-1151./pp  [27]ZHANG X, ZHOU D, SHENG S, et al. Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs[J]. Microchim Acta, 2016,183(6): 1-8./pp  [28]LIANG M, YUAN R, CHAI Y, et al. Double layer enzyme modified carbon nanotubes as label for sand wich-type immunoassay of tumor markers[J]. Microchim Acta, 2011, 172(3-4): 373-378./pp  [29]LIU Z, RONG Q, MA Z, et al. One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers[J]. Biosens Bioelectron, 2015, 65: 307-313./pp  [30]CAI X, WENG S, GUO R, et al. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker[J]. Biosens Bioelectron, 2016, 81: 173-180./pp  [31]TANG Z, MA Z. Ultrasensitive amperometric immunoassay for carcinoembryonic antigens by using a glassy carbon electrode coated with a polydopamine-Pb(Ⅱ) redox system and a chitosan-gold nanocomposite[J]. Microchim Acta, 2017: 1-8./pp  [32]LIU W, ZHANG A, XU G, et al. Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73[J]. J Pharm Biomed Anal, 2015, 117: 18-25./pp  [33]TIAN J, ZHOU L, ZHAO Y, et al. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay[J]. Talanta, 2012, 92: 72-77./pp  [34]SUN X C, LEI C, GUO L, et al. Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen[J]. Microchim Acta, 2016, 183(3): 1107-1114./pp  [35]WANG H, MA Z. A cascade reaction signal-amplified amperometric immunosensor platform for ultrasensitive detection of tumor marker[J]. Sensors Actuators B Chemical, 2017, 2017: 254./pp  [36]HUANG Y, TANG C, LIU J, et al. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles[J]. Microchim Acta, 2017, 184(3): 1-7./pp  [37]HODGKINSON V C, AGARWAL V, ELFADL D, et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer[J]. J Proteomics, 2012, 75(9): 2745-2752./pp  [38]CHEN Y T, CHEN H W, DOMANSKI D, et al. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers[J]. J Proteomics, 2012, 75(12): 3529-3545./pp  [39]SINCLAIR J, TIMMS J F. Ovarian cancer[M]. Clifton: Humana Press, 2013: 271./pp  [40]WANG F, XIE B, WANG B, et al. LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers[J]. Glycobiology, 2015, 25(12): 1362-1374./pp  [41]SONNTAG J, BENDER C, SOONS Z, et al. Reverse phase protein array based tumor profiling identifies a biomarker signature for risk classification of hormone receptor-positive breast cancer[J]. Translational Proteomics, 2014, 2(1): 52-59./pp  [42]DUAN L, WANG Y, LI S S, et al. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method[J]. BMC Infect Dis, 2005, 5: 53./pp  [43]YANG Z X, CHEN B A, WANG H, et al. Hand y, rapid and multiplex detection of tumor markers based on encoded silica-hydrogel hybrid beads array chip[J]. Biosens Bioelectron, 2013, 48: 153-157./pp  [44]JIN X L, XU B, WU Y L. Detection of pancreatic cancer with normal carbohydrate antigen 19-9 using protein chip technology[J]. World J Gastroenterol, 2014, 20(40): 14958-14964./pp  [45]GAO G, CHERNOCK R D, GAY H A, et al. A novel RT-PCR method for quantification of human papillomavirus transcripts in archived tissues and its application in oropharyngeal cancer prognosis[J]. Int J Cancer,2013, 132(4): 882-890./pp  [46]YADEGARAZARI R, HASSANZADEH T, MAJLESI A, et al. Improved real-time rt-PCR assays of two colorectal cancer peripheral blood mRNA biomarkers: a pilot study[J]. Iran Biomed J, 2013, 17(1): 15-21./pp  [47]VAN NESTE L, BIGLEY J, TOLL A, et al. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection[J]. BMC Urol, 2012, 12: 16./pp  [48]LIN Q, MAO W, SHU Y, et al. A cluster of specified microRNAs in peripheral blood as biomarkers for metastatic non-small-cell lung cancer by stem-loop RT-PCR[J]. J Cancer Res Clin Oncol, 2012, 138(1): 85-93./pp  [49]GONZALGO M L, NAKAYAMA M, LEE S M, et al. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis[J]. Urology, 2004, 63(2): 414-418./pp  [50]KOIKE H, ICHIKAWA D, IKOMA H, et al. Comparison of methylation-specific polymerase chain reaction (MSP) with reverse transcriptase-polymerase chain reaction (RT-PCR) in peripheral blood of gastric cancer patients[J]. J Surg Oncol, 2004, 87(4): 182-186./pp  [51]LV Y, MU N, MA C, et al. Detection value of tumor cells in cerebrospinal fluid in the diagnosis of meningeal metastasis from lung cancer by immuno-FISH technology[J]. Oncol Lett, 2016, 12(6): 5080-5084./pp  [52]TINAWI-ALJUNDI R, KNUTH S T, GILDEA M, et al. Minimally invasive prostate cancer detection test using FISH probes[J]. Res Rep Urol, 2016, 8: 105-111./pp  [53]FERNÁ NDEZ-SERRA A, RUBIO L, CALATRAVA A, et al. Molecular characterization and clinical impact of TMPRSS2-ERG rearrangement on prostate cancer: comparison between FISH and RT-PCR[J]. Biomed Res Int, 2013, 2013(3): 465179./ppbr//p
  • 首台(套)用于血清多肽及蛋白指纹图谱检测的飞行时间质谱仪ClinMS-Plat® I获得NMPA二类
    质谱技术在体外诊断中发挥着重要的作用,其中基于LC-MS/MS的三重四级杆质谱主要用于药物、维生素D、新生儿遗传代谢物、氨基酸等小分子的定量生化检测,国内外多款型号的LC-MS/MS获得了医疗器械注册证。另一方面,用于大分子检测的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)也逐渐应用于临床,多款用于微生物蛋白指纹图谱检测的MALDI-TOF质谱获医疗器械注册证,并在临床微生物鉴定中发挥着重要的作用。此外,用于核酸分析的MALDI-TOF系统也逐渐进入体外诊断领域。人体血清多肽和蛋白指纹图谱与疾病的发生和发展密切相关,国际上大量的研究机构一直在致力于该领域的研究和临床应用。近日,汇健科技首台(套)用于血清多肽和蛋白指纹图谱检测的ClinMS-Plat I飞行时间质谱仪正式获得NMPA医疗器械注册证(浙械注准20242221307)。此次获批的ClinMS-Plat I飞行时间质谱仪由质谱仪主机(离子源模块、检测器模块、飞行管、机架模块、外壳、真空泵)和软件组成,产品基于MALDI-TOF方法,结合配套试剂可用于人体血清样本中多肽或蛋白指纹图谱的采集,是国内首台(套)用于血清多肽或蛋白指纹图谱分析的临床质谱仪。仪器针对性地根据血清多肽分子量进行了检测区域内(m/z680~18600Da) 信噪比、分辨率、出峰谱型的调校,严格控制仪器台间变异系数。该质谱仪在注册审评前经过了严格的临床研究。临床试验采用随机、盲法、配对的临床试验设计。收集受试者促凝全血分离的血清样本并进行编盲,受试者血清样本经配套试剂预处理后用ClinMS-Plat I飞行时间质谱仪进行多肽及蛋白指纹图谱检测,输出分析结果。三家临床试验机构对受试者样本在待考核仪器上的检测结果与金标准相比,统计分析结果显示灵敏度为91.94%(P=0.95,置信区间87.48%-94.91%),特异度91.14%(P=0.95, 置信区间 86.83%~94.13%),诊断符合率91.52%(P=0.95, 置信区间 88.57%~93.76%);Kappa值为0.8300。由于多肽与蛋白组学信息在疾病诊断中具有重要的价值,因此,ClinMS-Plat I的获批在体外诊断领域具有重要的意义。ClinMS-Plat I质谱仪与配套试剂盒(Bio-pSi系列)使用,单次检测可获得包含数百个血清多肽分子的指纹图谱。汇健科技结合人工智能算法构建了包含数万例肿瘤人群队列样本、数十万例次检测数据的人工智能判别模型(汇健智云)。未来,该款型号的质谱仪将与诊断试剂、AI分析软件三者共同组成一整套体外诊断分析系统(下图),可用于各种肿瘤、泌尿系统疾病,神经系统疾病等多种疾病筛查、辅助诊断和复发转移评估等领域。ClinMS-Plat I 是一款具有卓越性能和创新功能的高端医用质谱,具有如下优势:快速:独特的多肽富集技术,自动化批量检测,96个样本全流程仅需2小时;精准:多肽及蛋白指纹谱检测多个标志物,相比单一或少量标志物组合,结果更可靠;稳定:通过质控技术有效控制多肽及蛋白质谱峰强度变异系数,结果稳定性、重复性高;灵敏:相关多肽检测限可达fmol/μL级别。ClinMS-Plat I曾入选工信部人工智能医疗器械(智能辅助诊断产品方向)创新任务榜单,是2022年质谱领域唯一进入榜单的项目;同年入选了浙江省首台(套)产品工程化攻关重点项目的高端医疗装备;2023 年入选“浙江省制造业首台(套)重点领域(高端医疗器械)关键技术指标清单”。汇健科技也与省内多家知名临床医院合作研究多肽组学技术在临床诊断中的应用,获得了多项浙江省重点研发计划和浙江省“尖兵领雁”计划的支持。我们相信,ClinMS-Plat I的推出将推动多肽和蛋白组学在体外诊断领域的应用。我们将竭诚为临床机构、研究机构和IVD企业提供优质的创新质谱产品和服务,并期待与行业友商携手合作,在ClinMS-Plat I平台上开发具有重要临床价值的诊断试剂,共同开创组学技术在精准医学中的应用,为人类健康做出贡献!延伸阅读1. 血液循环多肽(BCP)是目前液体活检最理想的标志物之一多肽是分子量为0.2~20KD的蛋白,主要由RNA上短的开放阅读框(Open Reading Frame, ORF)翻译或者组织蛋白在蛋白酶的作用下切割产生,处于基因调控网络和蛋白作用网络下游。其种类以及包含的生物学信息更加丰富,能迅速反应生物体内“正在发生的变化”。大量研究表明:在肿瘤发生发展过程及肿瘤细胞的迁移过程中,肿瘤微环境的多肽会发生片段长度、片段种类、糖基化修饰、磷酸化修饰等变化,通过质谱仪的检测可敏感地指示多肽指纹图谱的变化。此外,肿瘤组织高压和血管的高通透性,促使产生的低分子量肿瘤相关特异性多肽可快速、高效进入血液循环系统,使得血液循环多肽(Blood circulating peptides, BCP)包含了组织癌变信息,通过检测分析BCP指纹图谱可早期发现癌症的发生和发展。此外,BCP检测技术在阿兹海默症、呼吸道感染、泌尿系统疾病、内分泌系统疾病中也将发挥重要的应用。血液样本中,多肽含量极其微量,在质谱检测中容易受到高丰度蛋白的干扰,此前SELDI芯片,ClinProt磁珠等产品也曾用于血液多肽的提取和捕获。汇健科技创始团队从2012年开始发明了Bio-pSi微纳颗粒,实现了血清多肽的高效捕获,并在MALDI-TOF上呈现高稳定高灵敏的血清多肽指纹谱信号。2.飞行时间质谱工作原理飞行时间质谱(TOFMS)是一种高分辨率的质谱技术,广泛应用于物质分析领域。TOFMS工作原理可以分为离子化、加速和飞行三个步骤。具体来说,它基于不同化合物的质量-电荷比(m/z)的差异,通过高电压脉冲使其形成离子,然后引入到一个带有电场的追加管道中。在追加管道内,各种离子被加速并飞行到检测器处,到达时间取决于其质量和速度。检测器收集到的信号产生一个质谱图,其中离子信号的强度与m/z值呈正比。此外TOFMS还需要配合数据处理软件来分析和解读得到的质谱图。这些软件将质谱图转化为离子的m/z值和相对强度,从而识别不同的化合物。质谱图中每一个峰都对应着一个化合物的离子,通过比较不同样品之间的质谱图,可以确定它们之间的差异和相似性。参考文献Julia Tait, Lathrop,Douglas A, Jeffery,Yvonne R, Shea et al. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.[J] .Clin Chem, 2016, 62: 141-147.
  • 上海大学张源课题组《Nano Research》:纳米生物传感技术助力血清炎症因子联合检测
    炎症因子是炎症反应及其介导的疾病中参与免疫调控的一类重要细胞因子,包括肿瘤坏死因子(TNF)、白介素(IL)、转化生长因子(TGF)等。目前已经证实炎症因子与多种临床疾病的发展密切相关,包括细菌感染、新生儿败血症、心血管疾病、类风湿性关节炎等各种急性和慢性炎症疾病,甚至在肿瘤的发生发展中也起到了重要作用。因此,血清炎症因子是监控疾病进程的核心指标,通过对炎症因子的检测可以更好的评估患者免疫状态,为临床管理提供重要参考。然而,这些炎症因子在血清中的含量极低,现有的一些常规技术由于受到灵敏度的限制无法达到检测需求,难以及时预测疾病的转归。 图1 基于ZIF-8@Ag NWs 复合纳米材料的电化学传感芯片结构图以及免疫传感策略验证结果近期,上海大学的张源课题组提出了一种合理有效的电化学免疫传感器件设计策略。该团队以ZIF-8@Ag NWs为电极材料,结合3D 打印(NanoArch S140,摩方精密)和丝网印刷技术,开发了一种多通道的电化学免疫传感芯片,用于血清中炎症因子IL-6和IL-8的联合检测。该传感芯片可同时检测pg/mL至ng/mL浓度范围内的IL-6和IL-8,即使在复杂的BSA环境中也可达到10 pg/mL的检测限。临床血清样本分析表明该传感检测方法对18例炎症疾病患者组和18例对照组表现出良好的区分结果。相关成果以In-situ formation of “electron conductive wires” threaded ZIF-8 membrane for multiplexed immunoassay of human interleukins为题发表在《Nano Research》期刊上。图2 临床血清样本的检测分析结果。(a) 固定有Anti-IL-6的工作电极对血清的检测结果 (b) 固定有Anti-IL-8的工作电极对血清的检测结果 蓝色柱为健康对照组,橙色柱为患者 (c) 基于IL-6、IL-8检测结果的主成分分析数据。
  • 汇健科技:构建完善的质谱平台,为肿瘤早筛及精准诊断提供解决方案
    质谱技术作为重要的生命科学分析工具,在灵敏性、特异性、准确度、检测速度、检测通量等方面独具优势。目前基于LC-MS平台的靶向质谱方法已在临床检验中得到应用,基于非靶向质谱技术的创新应用也已初露锋芒。汇健科技基于激光解吸离子化质谱平台,融合了纳米材料、质谱技术、人工智能等多种技术,形成了仪器+试剂+软件+算法模型的完整非靶向质谱检测系统。所构筑的高技术壁垒质谱平台,以其高通量、高稳定性、高准确性、易操作及低成本的优势,为肿瘤早筛及精准诊断提供新的解决方案。本文摘录了汇健科技创始人邬建敏的采访内容,深入了解汇健科技提供的肿瘤早筛创新的解决方案。  “3T”构建肿瘤早筛创新技术平台,让“一平台,多组学联检”成为可能  质谱技术可输出丰富的分子定性及定量信息,因而在临床检测领域正扮演着越来越重要的角色。近年来,临床质谱检测已经逐渐成为一颗极富潜力的新星,有望成为IVD领域的下一个爆发点。  基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)是近年来发展起来的一种新型的软电离生物质谱,该质谱技术能对生物样本中的蛋白、多肽、核酸、代谢小分子等的进行分析。由于其分析速度快、通量高,操作简便等特点,MALDI-TOF质谱是现阶段最有希望大规模走进医院检验科开展临床诊断和筛查的质谱技术。  自21世纪以来,国际学术界及科技创新公司一直在探索MALDI-TOF质谱技术在临床诊断领域的应用潜能。例如,美国Bruker公司率先在MALDI-TOF质谱平台建立了微生物质谱数据库,并获得了FDA医疗器械注册证。随后全球多家IVD公司涉足了微生物质谱领域,极大地推动了质谱技术的临床应用。  Agena(原Sequenom Bioscience)公司建立了核酸质谱分析平台,开展SNP分型检测业务,但更多地在LDT服务领域应用。在肿瘤诊断领域,国际上也有少数公司曾基于MALDI-TOF质谱平台开展肿瘤诊断产品的开发。比如,澳大利亚的HealthLinx公司曾利用该质谱平台开发卵巢癌诊断试剂和诊断方法。美国Biodesix公司曾开发了一款基于蛋白谱分析的诊断产品,用于非小细胞肺癌患者的用药指导和预后判断的产品。  我国近年来加大了质谱在精准医疗应用的政策支持力度。国家科技部2017年设立了“精准医学临床质谱专项”,大力推动质谱在精准医疗领域的应用。一些大型第三方医学检验实验室利用相对成熟的LC-MS靶向质谱平台开展临床检验服务,如新生儿遗传代谢物,药物浓度,激素浓度,维生素浓度等检测。基于MALDI-TOF平台,国内一些成熟的上市公司获得或正在报批微生物及核酸质谱的NMPA医疗器械注册证,如安图生物、华大基因等。难能可贵的是,最近几年国内涌现了一批致力于质谱仪器、临床质谱新技术及新产品研发的创新型公司。上述公司在质谱产业链中各有侧重,自主研发质谱仪器、质谱方法学、质谱试剂及耗材、质谱数据分析及诊断解读软件等。  汇健科技采用了国际领先的颗粒原位MALDI-TOF MS分析技术(On-particle Detection-MS,简称OPD-MS)及芯片原位检测技术(On-chip Detection-MS,简称OCD-MS),大大简化了临床样本预处理和检测过程,为多肽、代谢、基因等多组学标志物的发现和检测提供高效的技术手段。    基于“3T” 技术的全新一代肿瘤精准诊断及筛查平台  汇健科技的质谱技术平台由“3T”组成——BT(Biotechnology 生物学技术)、MT(Materials Technology 材料学技术)、IT(Information Technology信息学技术),邬建敏详细讲述了采用“3T”技术搭建肿瘤早筛平台的过程。  汇健科技研发人员前期做了大量的文献检索及生物信息学相关的基础研究(比如组学代谢通路及信号通路的研究等),并参考了大量中外文献,发现血清中的内源性多肽、尿液以及唾液中的多肽及代谢物与疾病,尤其是与肿瘤具有极强的相关性。这为探索肽谱及代谢谱在肿瘤等疾病筛查、诊断、分型等的临床应用奠定了生物学基础。  然而血清中的内源性多肽在血清中丰度低、易降解、受高丰度蛋白干扰大,因而血清内源性多肽质谱检测的稳定性和重现性难以实现,限制了肿瘤肽谱的临床应用。为满足体外诊断的检测质量要求,实现肿瘤肽谱在临床诊断中真正应用,汇健科技运用半导体材料原理,开发了Bio-pSi纳米材料显著提升了捕获、富集、保护内源性多肽的效果,使得多批次大量样本检测的重现性和准确度有了质的飞跃。目前,汇健科技对血清多肽质谱检测的CV控制水准达到领先水平。  此外,汇健科技针对代谢物在MALDI-TOF平台检测易受传统有机基质背景干扰、信号强度低、代谢物种类覆盖率低等问题,开发了一些列纳米质谱芯片和耗材,实现了血清、唾液、尿液、细胞、组织等多元样本中的小分子代谢物及脂质代谢物高通量检测,极大地扩展了激光解析离子化质谱技术的应用领域。同时,汇健科技还开发了微生物质谱芯片和核酸质谱芯片,性能达到国际对标产品的水准。上述质谱芯片系列产品让“一平台,多联检”成为可能,并有望扩展MALDI-TOF质谱的临床应用场景。上述材料技术(MT)的创新使汇健科技具备了核心差异化优势。  由于非靶向质谱技术数据量庞大,标志物的发现、寻找、确认及诊断模型的建立均需经过大数据分析及AI算法建立模型。因此,汇健科技的生信研发团队在质谱信息的数据挖掘方面具有深厚的积累,建立了一批用于质谱数据评价、分析、数据库构建、建模和判别等软件,获得了一批临床质谱软件著作权,并构建了云数据库。汇健IT技术的赋能使得MALDI-TOF质谱具备了数据学习和智能诊断的能力。 ClinMS-Plat I 肿瘤肽谱检测应用系统,筑起技术高壁垒  基于先进的半导体纳米技术和人工智能算法,汇健科技的科学家团队建立了高通量临床质谱及人工嗅觉传感系统两大技术平台,依托上述平台型技术获取多元样本、多组学、多维质谱数据库,解决临床质谱产业化瓶颈,开发了国内首套ClinMS-Plat I 肿瘤肽谱检测应用系统。这套应用系统集ClinMS-Plat I 全自动多肽分析质谱仪、Bio-pSi血清肽谱检测试剂盒和 HJ Cloud™ 分析软件为一体,形成“试剂+仪器+软件(AI算法)+数据+服务”的闭环产业模式,拥有专利、软著、商标等自主知识产权四十余项,构成技术与商业模式双壁垒。    汇健科技聚焦高通量多肽组和代谢组学,通过对多元样本的双组学分析,构筑肿瘤质谱数据库,并通过AI算法建立和优化诊断模型,实现对多种肿瘤的高敏感性和高特异性的辅助诊断,可以广泛应用于疾病筛查及监测、精准诊断、预后判断、用药指导和疗效监测等多个临床环节,有望成为下一代无创诊断的液体活检平台。  邬建敏说,汇健科技ClinMS-Plat I 肿瘤肽谱检测系统仅需微升级别血清样本,操作简便、每批血清样本通常可在半个工作日内即可出检验报告,同时,产品稳定性及重复性好,诊断正确率远高于现有的肿瘤标志物,检测价格显著低于同类液体活检产品。血清样本更容易被医院的检验科接受,而且患者的依从性比较好。另外,汇健科技这套ClinMS-Plat I 肿瘤肽谱检测系统还可拓展至肺癌、胃癌、肝癌和乳腺癌等多癌种的筛查。初步数据显示多种瘤种的诊断准确性超过或接近90%。目前,公司研发人员正在开展大规模临床样本测试,已经证明了基于肿瘤肽谱的液体活检技术兼顾了敏感性和特异性,优势明显,是比较理想的全新一代液体活检技术。  启动常津采-LungScr项目, 推动肿瘤筛查  为推动肺癌肿瘤早筛,2021年3月,汇健科技旗下的杭州汇健智谱医学检验实验室有限公司发起了常津采-LungScr真实世界研究项目,国内多家知名三甲医院共同参与进行回顾性及前瞻性临床研究。该项目致力于利用唾液无创诊断技术提供院外肺癌筛查和肺结节管理,辅助医生进行患者管理、减少诊疗压力。公司利用OCD-MS平台,仅需少量唾液就能采集到丰富的人体代谢组信息,并通过机器学习等算法挖掘与疾病关联的代谢标志物。    常津采-LungScr项目招募10000名志愿者,涵盖了健康人群、肺结节等肺部良性疾病患者、肺癌患者。通过线上与线下收样模式对志愿者唾液进行代谢组检测,构建基于唾液代谢组的肺结节管理模型,可在完全无创的情况下快速区分早期肺癌患者与健康志愿者,进而实现肺部健康评估。  邬建敏说,汇健科技目前组建了超过8家多中心的临床研究团队,常津采-LungScr™ 项目分为四个阶段开展工作,包括流程验证、检测模型的稳定性验证、准确性验证、规模化服务等环节。研究团队利用汇健科技自主研发的唾液代谢组高通量质谱平台,已经检测数百例临床唾液样本,在唾液中发现了多种与肺癌相关的特异性标志物,对早期肺癌的检测敏感性达90%以上。同时,公司也正在进行前期的市场教育、宣传的工作,让基于硬科技的健康管理模式被更多的医疗机构、社区、个人所接受。  邬建敏表示,常津采项目是系列项目,除了目前正在进行的常津采-LungScr项目,之后也会开展更多的子项目,包括常津采胃癌项目等。  肿瘤肽谱与多组学联检相结合,建立肿瘤全流程管理系统  肿瘤到癌变是非常复杂的生物学过程,从系统生物学来看,肿瘤的发生可能会在基因组、转录组、蛋白质组和代谢组等多个组学层面发生一系列的变化,用单一指标可能很难真正判断出肿瘤的状态,多标志物及多组学联检可以进一步提升筛查及诊断的敏感性和特异性。汇健科技聚焦在多肽组学及代谢组学开展多元样本(血液、尿液、唾液、细胞、组织等)的多指标肿瘤联合检测。未来,汇健科技也将与更多不同组学的公司展开合作,为医生及患者提供更丰富的多组学疾病信息,推动癌症早筛技术的发展。  多组学诊断技术除了可用于肿瘤筛查与诊断之外,还可以对同一种肿瘤进行分型。许多恶性肿瘤有多个不同的亚型,不同的肿瘤亚型的用药方案、治疗方案都不一样。另外,还可以通过多组学技术监测肿瘤的复发、转移等。邬建敏说:“多组学联检的应用场景更加广泛,肯定是未来早筛及精准医学的一个方向。”  基于多组学技术的肿瘤早筛仍处于萌芽阶段,其发展有很大的空间。邬建敏表示,组学诊断技术的发展并不会阻碍现有的血清肿瘤标志物在临床检验中的应用。我们在对肠癌诊断的数据表明,血清多肽组学与传统的血清肿瘤标志物相结合,可以进一步提高诊断的准确性、敏感性、特异性。  未来,汇健科技将通过两方面推动质谱技术在肿瘤早筛及精准诊断中的应用,一是把组学标志物与传统肿瘤标志物进行联检。目前,汇健科技拟与大型IVD企业合作,推动组学技术与传统肿标技术的联合运用 二是通过组学技术的数据挖掘开发肿瘤全流程管理的联合应用场景,覆盖筛查、诊断、分型、愈后、疗效监测、复发转移监测等。邬建敏说,目前大型医院的肿瘤内科和肿瘤外科都希望建立一整套肿瘤全流程管理系统,汇健科技将以肿瘤肽谱和代谢谱作为新一代液体活检产品的发力点,可以满足这样的临床需求。  汇健科技将纳米材料技术、质谱技术和人工智能技术相结合,构筑具备临床价值和产业化价值的体外诊断产品和服务管线。未来,汇健科技将基于自主研发的组学诊断产品和服务,撬动临床质谱在肿瘤早筛的应用市场。  关于汇健科技  杭州汇健科技有限公司是一家由科学家和企业家联合创建的高科技公司,企业的宗旨是服务于人类健康、生活质量和生命安全。公司坚持以技术创新为核心,以感知-汇知-智慧为理念,服务全球医疗健康产业。基于自主研发的新型纳米芯片和微纳颗粒可实现体液和组织样本的高通量高灵敏质谱数据采集,结合深度学习和机器学习等AI技术以及即将推出的ClinMS-Plat I 临床质谱系统,将构成新一代的液体和组织活检平台。相比于传统的体外诊断和组织活检工具,该平台将提供更为丰富和准确的诊断信息,未来将应用于疾病筛查、精准诊断、用药指导、药物反应监测和手术指导等医学领域。
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-MS/MS测量程序( 表4 )。  (四)类固醇激素LC-MS/MS测量程序的质量保证  1. 量值溯源:量值溯源是通过一条具有明确不确定度的不间断传递链,使测量结果的量值能够与规定的参考标准(国家或国际计量标准)联系起来 [ 28 ] 。类固醇激素量值的可溯源性是实现实验室间测量结果一致的基础,即同一标本在不同时间和地点采用不同测量程序得到准确测量结果。实验室应参考国际标准化组织(International Organization for Standardization,ISO)17511文件及中国合格评定国家认可委员会关于测量结果的计量溯源性文件要求建立计量溯源链,核心要素包括被测物、参考物质、校准及赋值程序、测量结果验证 [ 28 ] 。  实验室应参考国际临床化学和检验医学联合会/国际纯粹与应用化学联合会文件明确被测物属性,包括分析物特性(如化学形式)、测量基质、单位等 可通过检验医学溯源联合委员会网站或国家标准物质资源共享平台查询参考物质信息,并优先选择具有明确溯源信息的参考物质(如有证参考物质)作为校准品。对无有证参考物质的类固醇激素,实验室应参考CLSI EP30评估校准品的特性、纯度、均一性、稳定性及互通性并制定相关评估程序 [ 29 ] 。  需明确的是,计量溯源链本身并不直接保证测量结果的准确性和一致性,溯源链中每次量值传递都会新增测量不确定度,测量的准确度和不确定度也可能在使用新校准品或仪器大修后改变,实验室应通过检测校准品、参加能力验证计划或实验室间比对,明确测量程序的正确度和精密度。  建议8 实验室应优先选择具有明确溯源信息的类固醇激素参考物质作为校准品,建立计量溯源链。  2. 校准:校准是确定或校正质谱仪检测信号强度与待测物浓度之间的相关性。通常将校准物质加入到经活性炭处理、不含待测类固醇激素的单一来源或混合血清(浆)基质中以制备一系列稀释校准品。类固醇激素LC-MS/MS测量程序性能验证、更换试剂或校准物批号后,需确定每个分析批校准曲线的斜率、截距和相关系数的可接受标准。每个分析批都需进行校准,如果一个分析批包含的样品很多,校准品可在分析批不同位置进样,并监测每个校准品检测值与理论值的偏倚,以明确在大样本量分析中的校准漂移情况。  校准确认是采用与检测临床标本相同的测量程序,分析在报告范围内已知待测物浓度的标本或商品化室间质量评价(external quality assessment,EQA)质控物以确认仪器或检测系统的校准,验证正在使用的校准曲线在检测患者标本时依然有效。建议在变更标准品批次后、确认不同分析批之间的校准有效性时,开展校准确认。校准确认品应与实际患者标本相同或具有相似的性质,并与患者标本进行相同的前处理。与患者标本基质不同的质控品和校准品不可作为校准确认品。  建议9 实验室应对每个分析批进行校准,并监测每个校准品浓度检测值与理论值的偏倚。  3. 室内质量控制:血清(浆)类固醇激素LC-MS/MS测量程序室内质控的难点是获取与患者标本基质相近且稳定性好的质控品。对于多组分分析的血清(浆)类固醇激素LC-MS/MS测量程序,应优先选择生产质控严格、稳定性明确,并同时包含多个待测组分的商品化质控品。使用经处理的血清(浆)、冻干或合成基质质控品的一个明显缺点是,因与患者标本基质不完全相同而产生不同的质谱响应。而未添加分析物的患者血清(浆)质控品可能在评估测量程序性能时比经过处理的质控品更可靠。如通过将类固醇纯溶液标准品添加入基质制备质控品,用于制备质控品的类固醇标准品批号及基质应有别于制备校准品的类固醇标准品及基质。另外,实验室可使用低、中、高浓度的单个或混合患者样本作为质控品。为了保证质控结果解读的一致性,质控样品应大批量制备,分装储存,并明确质控品的储存稳定性及与患者标本基质的一致性。  实验室应自行确定质控物靶值及最大允许不精密度( 表4 ),将质控物放置在每一分析批内和分析批间的不同位置检测,以监测测量程序的批内、批间漂移情况。可参考《临床检验定量测定室内质量控制 WS/T641-2018》 [ 30 ] 建立测量程序的质控方案和失控规则(如1 3 s 、3 2 s 等),以及失控后处理措施,如分析批内质控不合格,应复测标本。  建议10 实验室应优先选择质量可靠、与患者标本基质一致的质控物,确定质控物靶值及最大允许不精密度,建立质控方案、失控规则和处理措施。  4. 分析批设置:血清(浆)类固醇激素LC-MS/MS测量一般分批进行,分析批的长度取决于系统校准稳定性和成本效益。一个典型的分析批应包含校准品、质控品、患者样本、空白样品、校准确认品(用于验证校准曲线的有效性,非必需)。实验室通过校准曲线、质控和校准确认监测每个分析批的有效性。当检测量大于2×96个时,建议每检测批次(96个/批次)都包含校准品、质控品和空白样本。实验室应确定并文件化血清(浆)类固醇激素LC-MS/MS测量程序的分析批长度 [ 31 ] 。  建议11 实验室应根据血清(浆)类固醇激素LC-MS/MS测量系统的稳定性和成本效益确定分析批的长度,并通过校准曲线、质控和校准确认监测每个分析批的有效性。  5. 能力验证/室间质量评价:由于血清(浆)类固醇激素LC-MS/MS检测程序标准化不足,基于分组数据进行测量结果一致性评估的EQA计划价值有限。正确度验证计划可同时监测测量程序的正确度和一致性,实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心正确度验证计划,如卫生健康委临床检验中心组织的类固醇激素正确度验证。正确度验证计划使用经最少程序处理的临床样本,通过参考方法对类固醇激素定值后,用于评估参评实验室LC-MS/MS测量程序的正确度和量值溯源性。对无正确度验证和室间质量评价计划的类固醇激素LC-MS/MS检测项目,实验室需定期(如2次/年)进行实验室间比对,并应优先选择通过ISO15189认可的实验室,以保证实验室间结果的一致性。  建议12 实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心组织的类固醇激素检测能力验证计划,无能力验证计划的项目需定期(2次/年)进行实验室间比对。  (五)数据收集及分析  实验室应建立患者样品、空白样品、校准品和质控品的数据处理、峰积分的标准操作程序,并在每一次临床检测中保持一致。数据处理软件应带有审核追踪功能可查询每个样品的数据处理方法。  1. 校准曲线接受原则:以校准品/内标物浓度比值为 X轴、分析物/内标物响应比值为 Y轴,构建校准曲线,将每个患者样品、质控品和空白样品的分析物/内标物响应比值代入校准曲线方程计算被测物浓度。分析患者标本时使用的校准曲线回归方法应与进行测量程序性能验证时使用的方法保持一致,大多数情况采用线性回归。如果校准曲线数据方差不同质(不同浓度点差异不同),推荐使用1/ x或1/ x 2权重回归分析以使低浓度校准点的偏倚在可接受范围。实验室应通过观察每个校准浓度点的相对偏差或总相对偏差选择合适的权重分析方法。  血清(浆)类固醇激素LC-MS/MS测量程序性能验证应明确校准曲线可接受标准:使用校准曲线计算出的校准品浓度与理论浓度之间偏倚可接受范围为85%~115%(LOQ浓度点:80%~120%)。确定校准曲线斜率和截距的可接受标准,计算相关系数、确定其接受范围(通常需0.99),并应用于常规分析的评估。校准曲线的可接受标准应与测量程序性能(如准确度)匹配。  建议13 血清(浆)类固醇激素LC-MS/MS测量校准曲线计算的校准品浓度与理论浓度之间偏倚的可接受范围推荐设置为85%~115%(LOQ浓度点:80%~120%)。  2. 色谱峰积分:应在类固醇激素LC-MS/MS常规检测中通过优化积分参数完成色谱峰的自动积分,以尽量避免操作人员手动积分导致的不一致性。通常使用3倍LOQ浓度类固醇激素样品的色谱峰优化自动积分参数。对色谱峰进行平滑处理可提升积分准确性,仪器背景杂质信号过高或色谱峰采集数据点不足可导致色谱峰不够平滑。但色谱峰过度平滑会导致峰形变宽和丢失细节,如将肩峰平滑进待测物的色谱峰,将影响待测物定量结果准确性。对于采样率较慢的系统,可使用成组平滑方法减小背景杂质信号的影响。经验性色谱峰平滑参数应在所有样品分析中保持一致。  建议14 应尽量通过优化积分参数完成每个待测类固醇激素的色谱峰自动积分,避免手动积分,实际标本检测需统一峰积分、平滑参数。  3. 色谱峰核查:在类固醇激素LC-MS/MS测量程序性能验证时,应建立色谱峰保留时间、背景杂质信号强度、峰形和峰分辨率的核查规则。理想的色谱峰是对称的且基线分离完整。如果一个分析批内有样品色谱峰基线分离不完整、峰形变宽或裂分,排除管路连接不正确的原因,应考虑更换色谱柱。实验室必须核查色谱峰的保留时间以确保待测物分析峰的正确积分,并在标准操作流程中明确保留时间的最大允许漂移范围,分析批间的变化应不超过±2.5%。样品中分析物色谱峰的保留时间应与校准品的保留时间一致。实验室可采用人工核查色谱峰,也可通过在仪器控制软件中设置色谱峰核查参数自动完成。如果使用自动色谱峰核查,实验室需验证自动核查参数及流程的有效性,同时明确需人工介入核查的情况。  建议15 实验室应建立每个待测类固醇激素的色谱峰保留时间、背景杂质信号强度、峰形、峰分辨率的核查规则和允许范围。  4. 内标峰面积核查:通过计算每个类固醇激素LC-MS/MS检测样品内标峰面积与校准品平均峰面积的比值确定每个样品的内标峰面积回收率。内标回收率用于校正分析物提取回收率,每个样品内标峰面积不同是可接受的,但在性能验证时应建立样品之间内标峰面积变动的最大可接受范围。样品内标峰面积回收率出现明显降低提示前处理效率低或存在其他可导致离子抑制的干扰物或存在干扰内标定量离子对的杂质峰。对于内标峰面积比前后样品少2/3或50%的样品,应复检。明显升高的回收率提示内标峰包含干扰峰,也需复检。可通过内标峰面积随进样量变化作图,识别过低或过高的回收率。  建议16 实验室应日常监测每个待测类固醇激素的内标峰面积在标准品、质控物及标本间的波动,建立内标峰面积波动的最大可接受范围。  5. 定性离子对监测:类固醇激素LC-MS/MS常规检测中,一个离子对用于定量分析(定量离子对),另一个离子对用于定性分析(定性离子对)。定性离子对用于分析物定性,在识别样品干扰物中发挥重要作用。定量离子对峰面积与定性离子对峰面积的比值在不同样品间应保持一致,如果发生变化则提示存在干扰物质。如果无法检出定量或定性离子对则提示样品中不存在该分析物或存在干扰物,应进一步分析原因。应同时评估分析物和内标物的定量离子对/定性离子对比值。定性离子对应在整个测量区间有稳定的响应,避免使用脱水分子、脱乙酰基、脱甲基或加合物的子离子设置定性离子对。测量程序性能验证时应建立定量/定性离子对比值差异的可接受范围(如±30%),并在每一个样品检测中予以监测。  建议17 实验室应日常监测每个待测类固醇激素的定量/定性离子对峰面积比值在标准品、质控物及标本间的波动,并设置最大可接受范围。  03 血清(浆)类固醇激素LC-MS/MS检验后质量保证  1.数据存储:实验室应保存血清(浆)类固醇激素LC-MS/MS分析产生的完整原始数据和处理数据,包括测量程序使用的色谱和质谱参数设置、每个离子对的色谱和质谱数据等,必要时使用独立系统备份数据。  2.参考范围:由于抗原抗体非特异性反应及与LC-MS/MS测量结果的偏差,采用免疫法建立的类固醇激素参考范围一般不适用于LC-MS/MS测量程序,然而我国目前尚未建立公认统一的类固醇激素LC-MS/MS检测参考范围,实验室可参考CLSI EP28针对目标检测人群验证国外权威机构建立的参考范围 [ 32 ] ,不同类固醇激素需按性别、年龄和/或月经周期分组,例如绝经前妇女的雌二醇、雌酮和雌三醇的浓度因月经周期或妊娠阶段的不同而有较大差异。  建议18 实验室可针对目标检测人群验证国外权威机构建立的类固醇激素LC-MS/MS参考范围,推荐建立中国人群的参考范围。  3.结果解读及报告:肾上腺皮质激素代谢终产物醛固酮和皮质醇浓度增高分别和醛固酮增多症和皮质醇增多症(库欣综合征)密切相关 17α-羟孕烯醇酮、17α-羟孕酮及其雄激素代谢产物(如脱氢表雄酮、雄烯二酮)水平的异常往往与女性PCOS、高雄激素血症及性发育异常等内分泌疾病相关 绝经后女性雌二醇检测是乳腺癌发病风险评估的关键 对女性和青春期前儿童体内睾酮的检测是鉴别儿童性早熟、女性高雄激素血症和PCOS的关键 对峰谷游离皮质醇的准确检测可有效辅助诊断库欣综合征 对17α-羟孕酮、雄烯二酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮的准确检测是确定CAH亚型的重要依据。此外,血清(浆)类固醇激素检测结果的解读应基于目标患者或人群的基本信息,如性别、年龄、生理期、昼夜节律及立卧位等,对结果解读具有重要参考意义。因此,实验室应为类固醇激素质谱检测的目标人群建立个性化的结果解读规则。为了报告的准确性,类固醇激素结果的解读还应结合类固醇代谢通路和临床初步诊断。  建议19 实验室应结合患者临床信息、方法性能、临床预期用途、类固醇代谢通路解读和报告血清(浆)类固醇激素LC-MS/MS检测结果。  血清(浆)类固醇激素LC-MS/MS检测在精确评估类固醇激素水平、诊断类固醇激素失衡相关疾病(如CAH、肾上腺功能不全、高雄激素血症等)、监测治疗效果中发挥着越来越重要的作用。本共识对血清(浆)类固醇激素LC-MS/MS检测全流程进行了详细说明,包括标本采集、保存、运输及前处理的检验前过程,LC-MS/MS定量分析方法、分析性能指标、质量保证、数据收集及分析的检验中过程,以及数据存储、参考范围、结果解读及报告的检验后过程,并提出19项针对性建议供实验室参考。本共识旨在规范我国血清(浆)类固醇激素LC-MS/MS检测程序,提升其检测质量和结果一致性,推动其临床应用。  执笔人:李霖(四川省医学科学院 四川省人民医院临床医学检验中心),蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),郭玮(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科)  专家组成员(以姓氏拼音排序):曹正(首都医科大学附属北京妇产医院检验科),戴锦娜(中国医科大学附属第一医院检验科),俸家富(绵阳市中心医院检验科),郭启雷(山东英盛生物技术有限公司),郭玮(复旦大学附属中山医院检验科),郭晓兰(川北医学院附属医院检验科),黄庆[陆军军医大学附属大坪医院(陆军特色医学中心)检验科],蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),蒋廷旺(常熟市第二人民医院转化医学科),柯江维(江西省儿童医院医学检验科),李霖(四川省医学科学院 四川省人民医院临床医学检验中心),李卿(上海市临床检验中心参考测量实验室),李水军(上海市徐汇区中心医院中心实验室),李艳妍(吉林大学第一医院检验科),廖璞(重庆市人民医院检验科),刘华芬(杭州凯莱谱精准医疗检测技术有限公司),刘靳波(西南医科大学附属医院医学检验科),卢丽萍(中国医科大学附属盛京医院检验科),闵迅(遵义医科大学附属医院医学检验科),倪君君(和合诊断集团研究院),聂滨(宜宾市第二人民医院检验科),潘柏申(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科),王成彬(解放军总医院检验科),王书奎(南京医科大学附属南京医院医学检验科),夏勇(广州医科大学附属第三医院检验科),徐元宏(安徽医科大学第一附属医院检验科),张传宝(国家卫生健康委临床检验中心生化室),张华(贵州省人民医院检验科),赵蓓蓓(金域医学临床质谱检测中心)
  • 表面增强拉曼光谱监测肿瘤的光动力治疗
    导读 细胞中的氧化还原平衡,是指氧化性物种和还原性物种之间的动态平衡,在大多数生理过程中发挥着至关重要的作用,尤其是细胞凋亡(名词解释)过程。通过提高肿瘤微环境 (名词解释)中活性氧(ROS)的浓度,打破氧化还原稳态,是介导癌细胞死亡,进而达到肿瘤治疗目的的有效手段。目前,基于纳米酶(名词解释)催化的一些新型化学动力治疗、光动力治疗方法被用于肿瘤治疗领域,旨在达到肿瘤细胞中原位催化产生ROS的效果。但是,大多数对于上述治疗的机理研究仍然只停留于纳米酶级联催化反应的结果,无法做到对整个治疗过程的监测。表面增强拉曼光谱(SERS)(名词解释)作为一种快速、无损的测试技术,其灵敏度甚至可以达到单分子级,在监测细胞内相关生化反应方面具有巨大潜力。将SERS技术应用于上述肿瘤的光动力治疗过程的监测,不仅能帮助进一步理解纳米酶催化过程的具体机制,更能得到肿瘤微环境中氧化还原状态的具体信息。研究亮点 近日,吉林大学宋薇教授、刘卓副教授和赵冰教授团队将一种金/碳量子点(Au@CDs)复合材料级联纳米酶用于对肿瘤细胞的光动力治疗,并且采用SERS技术监测了整个光动力治疗过程中肿瘤微环境内氧化还原平衡的打破与再修复过程。该成果以“SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy”为题发表在Light: Science & Applications,吉林大学博士研究生李林甲为第一作者,宋薇教授、刘卓副教授和赵冰教授为论文共同通讯作者。该研究工作得到了国家自然科学基金,吉林省教育厅科技研究计划等项目的支持。研究人员首先以CDs作为模板剂和封端剂设计构筑了一种具有级联模拟酶活性的核壳结构Au@CDs材料,相比于单独的金纳米粒子,CDs外壳避免了Au核的聚集,并提供了致密且均匀的SERS热点。在808 nm近红外光激发下,Au@CDs表现出近红外光致增强的类过氧化物(POD)酶和近红外光诱导的类谷胱甘肽氧化酶(GSHOx)活性:即在近红外光照射下,表面等离子体共振(SPR)激发的大量热载流子可以有效地参与反应,金纳米粒子典型的等离子体光热效应可以增强POD活性;另外Au@CDs介导谷胱甘肽(GSH)参与反应,加速ROS的生成,呈现出光热增强的光动力治疗效果。这种级联纳米酶催化过程将迅速打破肿瘤细胞内的氧化还原稳态,产生大量ROS,最终导致癌细胞凋亡。图1 Au@CDs的级联纳米酶催化机制及其光热增强的光动力治疗肿瘤过程。为了监控这一催化过程,研究人员利用SERS技术,通过对四甲基联苯胺(TMB)底物分子的氧化产物的识别,实现了对光动力治疗肿瘤过程中,肿瘤微环境内活性氧动态变化过程的监控。即在近红外激光的辐照下,肿瘤细胞内活性氧水平会随着Au@CDs催化反应的开始而迅速上升,在很短的时间内(3min)即达到拉曼信号的峰值,实现氧化应激损伤效果;而激光辐照结束后,肿瘤微环境则会在一个相对较长的时间(33 min)进行自修复,即过表达的GSH等还原性物质消耗过量ROS的抗氧化过程,最终肿瘤微环境回到氧化还原平衡态。图2 (a-c)光动力治疗肿瘤过程中拉曼信号的变化及(d-e)对应的肿瘤微环境内氧化还原平衡的打破和再修复过程。总结与展望 Au@CDs级联纳米酶与传统的纳米药物和免疫治疗剂相比,具有通过级联反应中的光热性质促进光动力治疗效果的优点,能快速提高肿瘤内ROS的浓度,打破氧化还原稳态,进而达到肿瘤治疗目的,由于过表达的GSH等还原性物质消耗过量ROS,抑制了ROS向细胞外扩散。通过SERS策略,获得了光动力治疗过程中完整的氧化应激过程,对基于肿瘤微环境氧化应激损伤的光疗机制进行了深入的研究,为肿瘤光动力治疗的实时监测提供了最有价值的机制和数据支持。论文信息 Li, L., Yang, J., Wei, J. et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl 11, 286 (2022).https://doi.org/10.1038/s41377-022-00968-5
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 中国企业掌握血清检测关键技术 自主研发产品造福中外患者
    侵袭性真菌感染高发于器官移植、血液系统肿瘤、艾滋病等人群,死亡率极高,其诊断和治疗已成为世界性难题。  中国工程院院士、海军军医大学第二附属医院(上海长征医院)廖万清4日接受采访时直言:“在血清学检测技术方面,中国的生物科技企业已经掌握了关键技术,全国各大医院用的基本都是中国自主开发的产品,产品销售到全球各个国家。近年来,中国企业还开发了真菌血清学化学发光法检测等新平台;曲霉菌抗体等新靶标也逐步在临床应用,帮助慢性曲霉病以及曲霉过敏症精准诊断。”  据全球抗真菌病行动基金会(GAFFI)统计,曲霉菌、隐球菌、念珠菌、肺孢子菌等常见真菌病原体每年导致1490万人感染,170万人死亡,已成为全球重大公共卫生的挑战之一。专家呼吁要加强真菌病的早期精准诊断,以提高临床救治率。  廖万清院士介绍,精准的检测是遏制抗生素滥用的关键,可以为患者带来获益。快速、精准、低成本的临床诊断技术,对于启动早期精准治疗、遏制病原传播有着重要的意义。“以往真菌感染难以诊断。很多不明原因感染而病死的患者,经过尸检才确诊真菌感染。”廖万清院士指出,“随着真菌病诊断技术的进步,这一情况已大为改善,大部分患者入院第二天,甚至当天就用上了对症的抗真菌药。”  如今,真菌病分子诊断技术速度快、精度高,是真菌诊断未来发展方向。今年三月,中国药监局批复了真菌多联检荧光PCR三类注册证。上海长征医院皮肤病科专门从事真菌病分子诊断研究的方文捷医生告诉记者:“这标志着中国临床真菌病诊断进入了‘分子时代’”。  上海长征医院皮肤病科主任潘炜华教授认为,要积极开发真菌识别的AI模型。真菌菌种在显微镜下及培养基中有较为鲜明的特征,通过大量图形进行AI训练,可形成很好的识别模型,辅助基层医院医生进行诊断。据悉,他所在的上海长征医院皮肤科团队正在攻克这一方向的技术难题。  记者当日了解到,廖万清院士、潘炜华教授团队从传统诊断技术、分子诊断技术以及AI技术在真菌诊断上的进展等方面,系统性阐述了国内外真菌感染诊断领域的重要研究成果。相关研究成果发表在国际生物医药领域权威期刊《生物医药科学杂志》上。在采访中,记者了解到,抗击真菌感染,需要临床学科协同防控。《侵袭性肺部真菌病诊断路径中国专家共识》在上海启动撰写。该共识由廖万清院士发起,邀请国内医学真菌学、血液科、感染科、重症医学科领域逾30位知名专家共同撰写,将以临床思维串联最新的检验技术进展,拟形成针对侵袭性肺真菌病临床诊断路径的中文和国际共识。廖万清表示,这一成果将有力地促进侵袭性肺部真菌病的规范化诊治。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U / mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 这不是手机!这是检测炸药或肿瘤的新仪器
    科幻迷们请注意,电影《星际迷航》中的那款能够即时检测一系列医学疾病的神奇设备已经研发成功了。科学家们经过努力,终于将电影情节变成了现实,这款最新的设备被命名为 tricorder。就先进程度而言,科学家们开发的这款 tricorder 设备仍然无法跟电影里那款手持设备相比,但是它能达到的程度已经是相当了不起了。发表在《应用物理快报》期刊上的研究结果表明,这款设备使用微波和超声波来检测隐藏的对象,不管是埋在地底下的炸药还是人体内的癌变肿瘤。  这一研究项目最早由美国国防部先进研究项目局(DARPA)发起,紧接着,来自斯坦福大学的助理教授 Amin Arbabian 和研究教授 Pierre Khuri-Yakub 带着一群电气工程师进行了相关的研究,并着手打造这种新的设备。  一开始,研究人员的目的是为了研发一项能够找到埋藏在地下的简易爆炸装置的新型技术。一般来说,为了避免发生爆炸,金属探测器是无法使用的,因为它不能接触到物体。  据了解,这种新型设备能够产生一种聚焦微波,使得各种材料内的分子发生振动,并进行加热。当然,加热的温度仅为千分之一度,不会造成任何损害。除此之外,不同材料之间的振动频率是不同的。例如,塑料振动和加热的速度非常慢,而湿土则要快一些。同样的原理也适用于不同类型的金属,我们可以根据特定的频率来识别金属。  正是这种振动效应所产生的超声波被反射到周围的环境中。这些超声波在人类的听觉范围之外,但是可以通过接收仪器检测出来。当接收器检测出超声波之后,波源的具体位置可以通过速度和时间计算出来,并最终用来生成一个隐藏对象的虚拟图像。  当超声波穿过物体发射到空气中,它的速度会减慢下来,并变得更加难以被检测到。而 tricorder 上所拥有的一系列超灵敏的超声波探测器能够解决这个问题,因此它能够有效地在安全距离内探测到隐藏的爆炸装置。Amin Arbabian 在一份声明中说道:“这款科学分析检测仪最大的优点在于它不需要接触到物体就能够进行检测。”  不过,这还不是 tricorder 的全部功能。研究人员表示,这款设备还可以应用于医疗方面。他们在一个由海藻制成的凝胶块中植入了一块塑料聚合物,以此来模拟人体组织中的肿瘤。在 30 厘米的距离,这款设备能够精确地找出隐藏目标的位置。  从理论上说,使用 tricorder 识别人体器官中的恶性肿瘤是完全有可能的。Khuri-Yakub 在声明中说:“我们已经为此准备了两年多。虽然目前仍然处于早期研发阶段,不过我们有信心在 5 到 10 年内将它变成可以广泛使用的产品。”
  • 【视频回放】肿瘤诊断进入全新时代
    p  2019年8月1日-2日,由仪器信息网与中国分析测试协会标记免疫分析专业委员会联合举办的“strong第二届体外诊断技术发展及应用网络会议(iConferenceonIVD,iCIVD2019/strong)”圆满召开。/pp  会议为期2天,共有17位资深临床检验科主任和3位优秀的仪器企业技术人员,针对strong肿瘤诊断、分子诊断、质谱及新技术、临床POCT/strong 四个热门研究领域作了精彩报告。/pp  本篇为【肿瘤诊断】会场专家视频回放。/pp style="text-indent: 2em "报告专家:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 407px " src="https://img1.17img.cn/17img/images/201908/uepic/31dc80aa-b4f4-4e40-a5b2-bdfdc471e234.jpg" title="zhongliuzhenduan.jpg" alt="zhongliuzhenduan.jpg" width="600" height="407" border="0" vspace="0"//pp style="text-indent: 2em "strong style="text-indent: 2em "/strong/pp style="text-indent: 2em "strong style="text-indent: 2em "script src="https://p.bokecc.com/player?vid=554FBAD41460FBC19C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/script徐国宾/strongspan style="text-indent: 2em ":传统肿瘤标志物包括CEA、细胞角蛋白、SCC、Ca125、Ca153、Ca242、Ca199、AFP和激素类物质 新型肿瘤标志物包括ctDNA、CTC和自身抗体等。在选择肿瘤标志物时,应该注意以下特性:灵敏度、特异性(良性、器官)、与肿瘤负荷、治疗决策、能进行疗效评价和复发监测、具有可靠的预测价值。徐国宾分别以胃癌和结直肠癌为例进行了说明,手术前后肿瘤标志物对于胃癌复发具有重要价值,作用与标志物相关也与胃癌分期相关。最后得出结论是,传统的多项血清蛋白类肿瘤标志物联合CTC、自身抗体在肿瘤无创诊断上具有价值。血清肿瘤标志物联合对于可手术病人术前、术后水平对于复发或生存预测具有意义。术后或术后辅助治疗后,ctDNA检测联合血清肿瘤标志物、CTC对于残留、筛选出预后不良患者的决策辅助治疗具有意义。血清肿瘤标志物结合影像学评效,可以解释更多的肿瘤生物学行为。CTC监测对晚期肿瘤治疗效果的评价和生存评估具有价值。/span/pp  /pp style="text-indent: 2em "script src="https://p.bokecc.com/player?vid=062FB1901724F6569C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptstrong王斌/strong:NGS技术在肿瘤领域的应用日益成熟,从靶向用药基因检测到肿瘤耐药机制探索及预测疗效,NGS技术正在发挥越来越重要的作用。肿瘤的发展经历了从临床肿瘤到病理肿瘤再到分子肿瘤。分子肿瘤时代的一大特点是发现了各类部位肿瘤(无论是肠癌、肺癌还是其他实体瘤)的Pan-cancer预测指标。目前已经有临床证据很多的公认的Pan-cancer指标——MSI和NTRK,还有一些新兴的、逐渐展现潜力的指标——TMB和OTHERS。多基因平行检测大PANEL在临床中主要用于帮助临床提供更多可干预的变异信息。基于NGS的大PANEL,可全面分析各类靶向用药基因以及免疫药物疗效预测因子,如SNV、Indel、TMB及MSI等。Illumina NGS 大PANEL- TruSight Oncology 500 可全面分析523 肿瘤基因,同时对DNA和RNA的检测,全面覆盖癌症重要变异,并经过严格的实验评估验证,保证其优异的变异检测性能。/pp  /pp style="text-indent: 2em "script src="https://p.bokecc.com/player?vid=0612D07F32A9B2D29C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptstrong宗金宝/strong:以免疫检查点抑制剂为基础的肿瘤免疫治疗引领肿瘤的治疗进入全新时代,然而,肿瘤的药物治疗虽然延长了肿瘤患者的无进展生存时间(progression-freesurvival,PFS),但因为肿瘤异质性和肿瘤竞争性播散,患者的整体生存时间(overall survival,OS)似乎并不能改变。因此,寻找免疫检查点抑制剂的疗效预测因子是提高肿瘤免疫治疗效果和推进肿瘤精准免疫治疗的重要方法。本文介绍了程序性死亡受体配体1(PD-L1)、肿瘤突变负荷(TMB)、微卫星不稳定性(MSI)、肿瘤微环境中的肿瘤浸润免疫细胞。宗金宝对肿瘤患者的免疫相关标志物、Treg细胞亚群及细胞因子等疗效预测因子进行了介绍,以期对肿瘤免疫治疗疗效进行指导。/pp  /pp style="text-indent: 2em "script src="https://p.bokecc.com/player?vid=B7E1515EE02EA0CF9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptstrong武多娇/strong:几十年的研究告诉我们,癌症治疗普遍适用的原则很少,但有一些概念获得主流认可:第一,恶性转变与细胞代谢的显著变化齐头并进;第二,免疫系统对肿瘤的控制和清除至关重要。因此,我们对肿瘤、免疫细胞功能和代谢的理解可能是开发更有效的癌症疗法的关键。武多娇重点探讨肿瘤微环境中的营养供应如何塑造免疫反应,并基于目前最新免疫代谢调控机制的研究进展提出在肿瘤免疫中可能的应用。/pp  /pp style="text-indent: 2em "script src="https://p.bokecc.com/player?vid=751AC7F6F682354E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptstrong崔丽艳/strong:肿瘤标志物在临床上广泛使用,但是如何合理选择项目以及做好分析前中后的质量控制对临床的诊疗至关重要。对于首次就诊患者建议多项联合检测,不作为常规筛查项目,主要用于疗效监测、复发判断以及预后判断的指标。肿瘤标志物应该观察动态变化结果,来判断患者病情,其检测可能会受到患者既往疾病以及全身状态的影响。肿瘤标志物特异性相对比较差,影响因素较多,结果解释一定是综合多方面因素。/p
  • 徐健团队新成果 基于拉曼组的肿瘤单细胞药敏检测新方法
    肿瘤药敏性检测方法学是抗癌药物评价和筛选的前提,也是临床化疗方案设计的基础。中国科学院青岛生物能源与过程研究所单细胞研究中心开发了基于拉曼组的肿瘤单细胞药敏检测新方法D2O-CANST-R,具有快速、低成本、单细胞器精度、识别耐药细胞、体现抗癌机制、可对接单细胞分选和测序等特色,为癌细胞-药物互作研究、抗癌药物筛选等提供了新手段。  化疗在恶性肿瘤的治疗手段中占重要地位,如使用得当,单纯或辅助化疗即可根治部分肿瘤;对于一些晚期肿瘤,化疗也可用于姑息性治疗。然而,各种肿瘤类型间或不同患者个体间,其药物应激反应均存在显著差异,且化疗过程中耐药细胞的产生会削弱抗癌药物疗效。因此,快速、低成本、可识别耐药细胞、揭示药物应激机制的肿瘤药敏检测方法,对抗癌药物研发和临床精准用药十分重要。  目前,主流的肿瘤药敏检测方法,如比色法、生物发光法、荧光分析法等,通常依赖于终点检测,即区分细胞死活,难以定量、特异性地测量药物对癌细胞的“代谢抑制”程度。同时,基于细胞群体反应的检测手段,难以检测癌细胞群体中极个别的耐药细胞;这些“害群之马”在正常环境下没有生长优势,却耐受高浓度药物,因此可能造成肿瘤死灰复燃,导致临床化疗失败。  针对这一问题,单细胞研究中心科研人员Maryam Hekmatara等以人乳腺癌细胞株(MCF-7)和雷帕霉素的互作为例,开发了重水饲喂单细胞拉曼光谱肿瘤药敏快检技术(D2O-probed CANcer Susceptibility Test Ramanometry;D2O-CANST-R)。结合肿瘤细胞拉曼组采集和多元曲线分辨-交替最小二乘法分析算法(MCR-ALS),研究发现,在1-3天的药物处理后,D2O-CANST-R能特异性地基于“代谢抑制”检测肿瘤药敏性,并能在细胞核、细胞胞质、脂质体等单个细胞器的分辨精度,追踪和区分其中蛋白质与脂质的合成速率和代谢变化,从而揭示药物作用机制。脂质和蛋白质代谢的高度活跃,是肿瘤细胞快速增殖的重要原因,因此,上述能力对于抗癌药物的机制研究和筛选具有重要价值。重水饲喂单细胞拉曼光谱肿瘤药敏快检技术D2O-CANST-R  基于前期单细胞研究中心提出的“拉曼组”(ramanome)和“药物应激拉曼条形码”(Raman Barcode of Cellular response to stresses;RBCS)等概念,科研人员还揭示了真核生物(人乳腺癌细胞和酵母细胞)之间、细胞器之间、药物浓度之间、药物处理时长之间、生物大分子代谢途径之间等,在单细胞精度代谢应激机制上的异同。因此,D2O-CANST-R还具有高时空分辨率、信息量丰富、揭示代谢层面机制等特点。此外,在高剂量雷帕霉素(500或5000×IC50)处理后,仍存在保持较高代谢活性的癌细胞,即耐药细胞。D2O-CANST-R识别肿瘤耐药细胞和测定耐药异质性的能力,对于药物机制研究、抗癌药物评价和筛选等具有重要意义,并具备辅助精准化疗方案设计的潜在能力。  单细胞研究中心前期针对临床抗感染用药,提出了“重水饲喂单细胞拉曼药敏快检”原理,引入了“最小代谢活性抑制浓度”(MIC-MA)这一衡量药敏性的新概念,发明了“单细胞光镊微液滴拉曼分选”(RAGE)和“单细胞微液滴流式拉曼分选”(RADS)等核心器件,研制出“临床单细胞拉曼药敏快检仪”(CAST-R)和单细胞拉曼分选-测序耦合系统(RACS-Seq)等;针对临床样品,证明了单个细菌细胞精度同时测定抗生素药敏表型和高覆盖度基因组的可行性(Xu T, et al, Small, 2020)。该研究是上述单细胞技术体系针对人体细胞与药物互作的拓展,不仅将服务于肿瘤药物研发、肿瘤精准用药等,而且为肿瘤单细胞分选和多组学研究提供了新的技术路线。  相关研究成果发表在《分析化学》(Analytical Chemistry)上。研究工作由青岛能源所研究员徐健主持完成,得到国家重大科学仪器研制项目(国家自然科学基金委员会)和中科院前沿局人才项目等的资助。  论文链接相关介绍:徐健 中国科学院青岛生物能源与过程所研究员、单细胞中心主任 山东省能源生物遗传资源重点实验室主任。2003年华盛顿大学计算机科学硕士和生物化学博士,2003-2004年华盛顿大学基因组科学和系统生物学中心博士后。2004-08年于华盛顿大学基因组研究院任基因组拼装和分析团队负责人。2008年入选中科院“百人计划”并全职加入中科院青岛生物能源与过程所。研究方向为单细胞分析仪器和大数据,及其在微生物组、合成生物学和生物安全等领域的应用。论文发表于Science, Cell Host Microbe, Sci Adv., Nature Commu.等130余篇,被引用10000余次(H-index 43)。获青年拔尖、创新领军人才、国家杰青基金、中国青年科技奖等支持。中国科学院青岛生物能源与过程研究所单细胞中心简介:中国科学院青岛生物能源与过程研究所是由中国科学院、山东省人民政府、青岛市人民政府于2006年7月启动筹建,2009年11月30日通过共建三方验收并纳入中国科学院“知识创新工程”管理序列的国立科研机构。单细胞中心的核心使命是以基因组工程、工具酶开发、先进成像、微流控器件、大数据等为主要方法学支撑,围绕细胞工厂构建、微生物组快检及机制等领域的关键科学和技术瓶颈,开发单细胞分析、分选、测序与培养技术,研制与产业化单细胞分析仪器系列,从国产装备的角度支撑单细胞大数据网络和微生物组天网等原创大数据系统,服务于工业生物技术、大健康、海洋资源挖掘、环境保护与修复、生物安全等应用领域。
  • ctDNA检测让肿瘤无处遁形
    p  基因突变是肿瘤产生和发展的重要原因。随着细胞分离技术和基因测序技术的发展,液体活检在肿瘤精准医疗中的价值日益凸显。通过采集患者血液、尿液等体液标本中的肿瘤相关产物,包括血液中游离的循环肿瘤细胞(CTC)、循环肿瘤DNA(ctDNA)和外泌体等,液体活检可以实现对肿瘤基因图谱的非侵袭性检测,从而对肿瘤疾病进行诊断和辅助治疗。相较于通过手术、组织活检获取肿瘤标本的传统方式,液体活检技术能很好地克服肿瘤时空异质性,重复检测方便,可用来发现及追踪分子水平的变化,具有广阔的临床应用前景。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/insimg/ab7e1034-1437-4b25-a403-af518c3d4925.jpg" title="00.jpg"//pp style="text-align: center "中山大学附属肿瘤医院肿瘤内科副主任医师蔡修宇博士/pp  日前,在第四届全国检验医学技术与应用学术会议暨‘一带一路’检验高峰论坛期间,中山大学附属肿瘤医院肿瘤内科副主任医师蔡修宇博士在“2018 智.创未来——中欧医学检验论坛”上,分享了液体活检特别是ctDNA检测在肿瘤临床诊疗上的应用现状及前景,为肿瘤治疗方案的制定提供了很多新思路。/pp  蔡修宇博士表示:“ctDNA检测作为液体活检主流方向,凭一管液体就可以进行肿瘤诊断、疗效评估、实时监控、个体化用药、预测复发等,在精准医疗大趋势下,既具有极高的科研价值,又具备推进精准医疗临床实践的巨大潜能,为实现肿瘤临床治疗的全流程管理提供强有力的支持。”/ppspan style="color: rgb(255, 0, 0) "strong  NGS+ctDNA精准跟踪抗性突变,优化治疗策略/strong/span/pp  ctDNA是体液中全部游离循环DNA(cfDNA)的一种,是仅有肿瘤细胞释放的携带有肿瘤特异性遗传学改变的自由基因组片段[1],能够揭示肿瘤综合性的遗传信息,更准确反映肿瘤组织的异质性及肿瘤负荷[2],并可在同一患者身上反复进行,具有潜在的纵向监测能力。/pp  随着科学发展,ctDNA检测已成为当前肿瘤领域的诊疗新热点。其主要检测方法包括微滴式数字 PCR(ddPCR),扩增阻滞突变PCR(ARMS PCR) 和二代测序(NGS)等。其中,NGS可实现对多基因核酸片段进行高通量平行深度测序,能够同步检测多个基因、不同形式及未知突变,在预后和疗效判断的时候,多基因的参与可能对预后效果产生非常大的影响。/pp  蔡修宇博士指出:“以肺癌为例,检测难点就是检验组织的获取,NGS用测序多个位点代替单个位点检测,不需要通过手术获取大量组织送往不同实验室进行检测。因此,NGS在诊断、分期、治疗和预后等方面,对于肿瘤个体化治疗和全程管理具有巨大优势。”/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/insimg/4758138b-3e4a-439b-8348-0f308091a664.jpg" title="1.jpg"//pp style="text-align: center "strong图 1:NGS+液体活检扩大总体优势[3]/strong/pp  癌症患者在接受靶向治疗受益一段时间后,往往会因为基因的二次突变出现耐药机制。间变性淋巴瘤激酶(ALK)重排是非小细胞肺癌(NSCLC)中较为少见的一类分型,ALK阳性患者在经过ALK抑制剂(TKI)治疗后反应良好,患者生存期和生存质量都得到了很大提高,但获得性耐药问题依旧不可避免。研究发现,不同ALK TKI耐药机制不同,对获得性耐药突变敏感性差异很大[4],这就说明了对于ALK TKI获益的患者耐药后再次活检的重要性。/pp  一项纳入 49 例既往接受过克唑替尼(crizotinib)治疗的局限进展或转移性NSCLC 患者的 II 期研究中,采用 AVENIO ctDNA检测经阿雷替尼(alectinib)治疗前后的 cfDNA 样本。结果显示,26/49例患者中检测到ALK基因融合。Alectinib治疗后,耐药性突变显著增加,而敏感性突变减少。“通过对ctDNA检测可以鉴定药物治疗过程中产生的耐药突变,追踪药物响应,指导临床及时采取进一步措施。AVENIO ctDNA检测可应用于监测治疗中ALK TKI耐药突变出现的可能性,从而有助于局部转移或晚期NSCLC患者治疗策略的制定。”蔡修宇博士指出。/pp style="text-align: center"img style="width: 450px height: 437px " src="https://img1.17img.cn/17img/images/201808/insimg/34fa0674-3826-4588-a912-2c5e75aa7876.jpg" title="2.jpg" height="437" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong图 2:肺癌中 NGS+ctDNA 目前和未来的应用领域[5]/strong/pp  span style="color: rgb(255, 0, 0) "strong有效评估疗效及预测复发,指导临床个性化诊疗/strong/span/pp  ctDNA用于肿瘤疗效评估和预后监测的优势也在很多临床实验中得到了证实。在癌症疗效评估时,ctDNA基线水平较低和ctDNA水平持续应答者可获更好预后[6],诱导前后肿瘤异质性(以MATH计)升高预示较差临床结局[7]。/pp  一项采用AVENIO ctDNA监测试剂盒对145例II/III期R0切除术后结直肠癌(CRC)患者的微小残留病灶(MRD)进行定性检测,根据术后血浆中ctDNA检测结果将患者分为ctDNA阳性和ctDNA阴性。研究发现,术后ctDNA阳性患者在复发时间、无复发生存期及总生存率上均显著短于ctDNA阴性患者(如图3),证明MRD检测可识别II/III期CRC高复发风险人群。[8]对于高复发风险的患者可考虑更为积极的辅助治疗,并增加随访,以期改善预后。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/insimg/324491dc-2307-470f-acf3-2b42a5f49da3.jpg" title="3.jpg.png"//pp style="text-align: center "strong  图3:MRD检测可识别II/III期CRC高复发风险人群/strong/pp  在另一项共入组40例Ib-III期局限性肺癌患者的复发预测研究中,治疗结束后4个月内首次(MRD 界标点)进行血浆ctDNA分析,之后每3-6个月动态监测ctDNA水平。研究结果显示,ctDNA检测可早于72%的影像学诊断的肿瘤复发,中位提前时间为5.2个月[9]。证明ctDNA检测的灵敏度及特异性较高,且显著早于影像学可诊断的微小复发灶,可用于MRD的早期诊断,并以此指导这部分患者的早期干预和个体化的辅助治疗。/pp  在对大b细胞淋巴瘤(DLBCL)患者进行预测复发管理中,平行使用癌症个体化深度测序分析方法(CAPP-Seq)与IgHTS检测ctDNA水平监测肿瘤负荷。在112天与224天时,ctDNA水平已超出IgHTS检测下限,因此出现假阴性 首次检测到ctDNA阳性到复发平均为188天,73%患者在疾病进展前检测到ctDNA阳性。[10]研究证实治疗后ctDNA阳性的患者在随访周期内的复发率远远高于ctDNA阴性的患者,ctDNA 检测MRD可预测DLBCL进展风险。/pp  蔡修宇博士表示:“基因测序作为精准医疗的重要一环,是未来癌症个体化诊疗的主要发展方向。ctDNA检测在微小残留病灶和复发预警中具有潜在临床应用价值,能够帮助我们更好地管理癌症,让更多患者从中获益。”/pp  罗氏诊断AVENIO ctDNA 检测技术在不同临床研究中已有应用。该技术能帮助解决许多液体活检研究中遇到的挑战,在不同实验室间均能保持良好的稳定性和可重复性。AVENIO ctDNA分析试剂盒包含所有NGS实验室进行ctDNA检测时所需的试剂及生物信息学分析软件。AVENIO ctDNA靶向试剂盒包含17个全癌基因检测位点,用于鉴定美国国立综合癌症网络(NCCN)指南相关生物标志物 扩展试剂盒包含77个全癌基因检测位点,包含NCCN指南相关及临床研究中常用突变位点的生物标记 监测试剂盒包含197个基因检测位点,纵向监测肺癌及结直肠癌等多种肿瘤负荷,检测微小残留灶,评估并监测复发、进展风险。/pp  [1] Nature.2014 Jul 31 511(7511):524-6/pp  [2] Jianjun Zhang et al. Science 346, 256 (2014) Intratumor heterogeneity in localized lung adenocarcinomas elineated by multiregion sequencing. Siravegna et al., Nature Reviews Clinical Oncology 2017/pp  [3] Zhang YC, et al. J Hematol Oncol. 2017./pp  [4] Justin F. Gainor, et al. Cancer Discovery. 2016/pp  [5] Zhang YC, et al. J Hematol Oncol. 2017./pp  [6] 2018 ASCO Abstract 12077 & 12088/pp  [7] 2018 ASCO Abstract 3545/pp  [8] 2017 ASCO Abstract 3591/pp  [9] Chaudhuri A A, , et al.. Cancer discovery, 2017/pp  [10] Scherer F, et al. Science translational medicine, 2016/ppbr//p
  • Science|发现肿瘤免疫治疗新潜在靶点
    8月4日,中国科学技术大学生命科学与医学部周荣斌、江维教授团队与转化医学与创新药物国家重点实验室唐任宏团队合作,在Science以“First Release”的形式在线发表题为“Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression”的“Research Article”研究论文,报道了下丘脑-垂体轴及其产生的激素α-MSH在介导肿瘤诱导的髓系造血和免疫抑制中的关键作用。肿瘤诱导的免疫抑制是其逃避免疫监视和攻击的重要原因。靶向PD-1和CTLA-4等靶点的免疫检查点治疗(ICT)策略在一定程度上能够逆转肿瘤免疫抑制并取得了较好的治疗效果,但临床响应性还比较低,需要进一步揭示肿瘤免疫抑制机制并寻找新的免疫治疗靶点和策略。肿瘤患者经常遭受抑郁、恐惧、焦虑等精神或情感应激,且流行病学研究发现长期抑郁、压力会加速肿瘤的发展并削弱肿瘤免疫治疗的效果,表明神经系统及其介导的应激反应在肿瘤生长和免疫调控中发挥重要作用。下丘脑-垂体(HP)轴是神经内分泌系统的重要组成部分,也是机体感应应激反应的重要调节中枢。过去的研究发现HP可通过产生激素如促肾上腺皮质激素、促甲状腺激素和催乳素调节免疫反应。此外,在肿瘤患者中HP产生的雌激素、孕激素和糖皮质激素等一些下游激素或效应物显著升高,提示神经内分泌系统和HP轴可能调节肿瘤免疫,但是HP轴在肿瘤免疫中的作用及免疫系统感应肿瘤诱导的神经应激的机制尚不清楚。在该项研究中,研究人员通过构建不同的肿瘤模型(ICT抵抗的LLC和B16F10-GMCSF肿瘤以及敏感的MC38和MCA205肿瘤)来研究下丘脑-垂体轴在肿瘤免疫中的作用,发现荷瘤小鼠血清中α-MSH浓度显著升高,但垂体产生的其他激素如内啡肽、促甲状腺激素、催乳素、卵泡刺激素、黄体生成素等无显著差异。与此同时,研究人员发现荷瘤小鼠下丘脑室旁核(PVH)神经元被激活,并且垂体中叶负责编码α-MSH合成的蛋白POMC的表达也显著增强,表明肿瘤可促进下丘脑活化和垂体α-MSH产生。为了进一步研究POMC及其产物α-MSH在肿瘤免疫中的作用,研究人员利用立体定位注射腺病毒载体的的方式敲低垂体Pomc基因的表达,随后进行荷瘤实验。结果显示敲低垂体Pomc的表达能够显著抑制不同皮下肿瘤的生长。同时,在B16F10肺转移模型和LLC原位肿瘤模型中,敲低垂体Pomc的表达也能够显著抑制肺部转移灶数目和肺部结节数量。进一步研究人员发现敲低垂体Pomc表达能够增强抗肿瘤免疫能力,同时抑制髓系造血和肿瘤相关髓系细胞(MDSCs和TAMs等)的聚集。这些结果表明垂体来源的α-MSH通过诱导髓系造血和免疫抑制促进肿瘤生长。为了探究α-MSH通过何种受体参与调控肿瘤诱导的髓系造血和免疫抑制,研究人员检测了α-MSH的受体的表达情况,发现MC5R在骨髓造血前体细胞高表达。通过构建Mc5r全身或条件型缺陷小鼠进行荷瘤实验,研究人员发现Mc5r缺陷可以显著地增强抗肿瘤免疫并抑制不同类型肿瘤的发生发展。此外,Mc5r缺陷可以抑制肿瘤诱导的髓系造血。更为重要的是,不管是ICT敏感还是抵抗的肿瘤模型中,利用多肽抑制剂阻断MC5R均可抑制肿瘤生长,且MC5R多肽抑制剂与抗PD-1抗体联合使用可提高ICT的效率。最后,研究人员探讨了上述研究的临床相关性,发现非小细胞肺癌(NSCLC)和恶性头颈癌(HNC)患者血清中α-MSH浓度显著升高并与外周血中的MDSCs比例呈正相关。论文链接:10.1126/science.abj2674
  • 环境监测的常规水质检测方法与标准物质应用
    环境监测的常规水质检测方法与标准物质应用随着现代工业技术的快速发展,污染问题越来越突出,环境保护问题受到了全社会的高度关注。水作为重要资源,污染问题逐渐严重,常规水质检测方法逐渐兴起并得到了广泛的应用。常规水质检测一般是使用在现场水质检测设备,并对检测设备要求检测数据现场以及反映速度,使用简单、方便携带等。目前,水质检测是水资源保护以及污染控制的主要手段之一。水质检测多用于工业用水、水处理以及饮用水等方面的检测。常规水质检测不仅为我们提供用水安全,还为环境保护、生产质量提供科学依据和指导。常规水质检测方法如下所示:1、颜色与透明度水体根据污染物成分不同显示出各种颜色。常规水质检测主要根据水质颜色来推测出水中杂质的种类与数量。比如硫化氢氧化析出的硫可以使水呈蓝色,各种水藻分别呈现出黄绿色以及褐色等。而水质的透明度表明水中杂质对透明光线的阻碍程度。如果透过水层腐蚀一方面白色或者黑色相间的圆盘,并调节圆盘深度直到能看到为止,这个时候圆盘所在的深度与位置标明其透明度。因此,可以通过标明的透明度来判断水质的状况。2、微量成分水质的微量成分主要以水质检测仪器来分析。其中主要包括原子吸收光谱法,气、液相色普法等离子发射光谱法。系统了解各种水质指标的含义具有非常关键性意义。对于任何水生生态系统环境都是通过严格选择的指标进行检测分析结果的。总之,水质的微量成分必须通过这些仪器进行检测。3、氧化还原与电化学法常规水质检测方法中最典型的就是氧化还原与电化学方法。有水的电导率,氧化与还原电位以及包括PH在内的离子选择电极的各种指标,比如许多金属离子等。多为溶解量以及氯离子含量为指标。4、加热与氧化剂分解方法该方法主要将含有生物体在内的有机化合物以及分解时候产生的二氧化碳的含量或者分解时候消耗氧气的含量等作为水质检测的指标。5、温度与中和方法其中温度是最常用的水质检测方法之一。因为水的许多物理特征以及水中进行的化学过程中与温度都息息相关。水源不同,其温度也不同,但是地表的温度与当地气候条件有关,其变化范围在1—30℃,而海水的温度变化范围在2—30℃;中和方法主要包括水体的酸度或者碱度进行水质检测。6、固体含量天然水中所含物质大部分属于固体物质,经常有必要测定器含量作为直接的水质检测标准,各种固体含量标准可以分为三类:其一,悬浮性固体。将水样过滤之后残留物烘干之后残存的固体物质量,也就是悬浮物质的含量。其二,总固体。水样在一定温度下可以蒸发干燥残存的固体物质总量,这可以作为常规水质检测标准之一。其三,统计性固体。溶解性固体主要包括荣誉水的有机物质以及无机盐,总固体含量是悬浮固体与溶解性固体之和。另外,各种固体含量的测定都是以重量进行的,测定的之后蒸干温度对结果的影响非常大。因此,在一般情况下,不能得到满意水质检测结果,该水质检测方法的结果不够精确。常规水质检测方法有可靠的理论依据,但是还不够精确,如果想得到准确的数据还需要取样进行实验室的化验与分析。现代水质检测仪器以传统检测方法为基础,融合多种检测手段不断技术革新,设计操作更简单、结果更精确的水质检测仪器,对环境监测和水处理提供强有力保证。为了保证水质检测的准确性,就必须对仪器设备进行精确检定,这个时候就离不开标准物质产品的应用,标准物质在日常生活中,人们会接触到空气、水、土壤、粮食、食品、服装、燃料等物质,它们的质量好坏直接影响着我们的生活水平,所以要对这些物质进行质量检验检测与评价。因具有均匀性、稳定性和准确性,标准物质在检验检测与评价的复杂过程中,起到了重要作用。所以在选择相关产品的时候,要选择有保障的产品,鸿蒙拥有八百余种国家标准物质,可以提供丰富的产品进行相关使用。鸿蒙标准物质对于保证检验结果准确度、提升测量仪器精准度、提高检验人员的技术水平有很高的应用价值。在使用标准物质前,应认真阅读标准物质证书,确保标准物质的保存、使用和处理符合证书规定的条件和要求。作为一名合格的技术人员,必须认识到标准物质合理、有效应用的重要性,在日常工作中做好对标准物质的检验与保管工作,从而充分发挥标准物质在检验检测中应有的功效。
  • 拉曼生物传感器检测脑瘤只需一滴血
    加拿大研究人员在美国化学会《ACS纳米》上发表论文称,他们开发出一种生物传感器,可帮助医生从微小的血液样本中精确诊断出脑癌。图片来源:ACS纳米根据美国国家癌症研究所的数据,脑肿瘤的死亡率很高,5年生存率仅为36%。更准确的诊断或会改善这种情况,但组织活检具有侵入性,且可能会错过有关肿瘤组成的重要信息;而基于成像的方法又无法提供足够的灵敏度和分辨率。为了有效治疗脑癌,医生不仅需要确认恶性肿瘤的存在,还需要确定它是起源于此(原发性肿瘤)还是从其他器官转移到大脑(继发性肿瘤)。医生还需要知道肿瘤位于器官的哪个位置。由于现在没有诊断技术可在无手术或痛苦的脊椎穿刺的情况下完成这一任务,研究人员希望开发一种使用少量血清的无创测试方法。研究人员使用高强度激光束在镍芯片上产生3D镍—镍氧化物纳米层。通过这个过程形成的超敏生物传感器能检测出微量的肿瘤衍生物质,如核酸、蛋白质和脂质,这些物质通过血脑屏障进入循环。传感器使用表面增强拉曼光谱法检测这些组分,该方法为每个样品生成分子谱或指纹。然后,研究人员使用深度神经网络分析这些特征,以找到脑肿瘤的证据并确定其类型,并预测其在大脑中的位置。使用液体活检平台,研究人员可从5微升血清中检测出脑癌,还可将其与乳腺癌、肺癌和结肠直肠癌区分开来,具有100%的特异性和敏感性。他们在区分原发性脑肿瘤和从肺或乳腺转移到大脑的继发性肿瘤方面取得了类似的成功。新技术使研究人员能以96%的准确率确定肿瘤位于9个脑区室中的哪一个。研究人员说,该测试的非侵入性允许随着时间的推移监测癌症的发展,以便医生作出更好的治疗决策。
  • 基因检测商业化 从产前筛查到肿瘤检测
    p style="TEXT-ALIGN: center"img style="WIDTH: 500px HEIGHT: 313px" title="201509221050132014.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201509/noimg/a3dccd34-842d-4698-a962-0eb8bd13c202.jpg" width="500" height="313"//pp  “目前无创产前筛查的市场渗透只有百分之二到三,而正常情况下,一款成熟产品的市场渗透率应当在20%~30%,这也就是说,它还有十倍的市场空间,从这个角度看,无创检测才刚刚起步。”专注于医疗健康产业投资的高特佳投资集团董事长蔡达建日前在接受《第一财经日报》记者专访时表示。/pp  strong中国版“精准医疗”正在加速兑现落地/strong/pp  从刚结束的夏季达沃斯论坛到正在酝酿编制完成的医疗服务行业“十三五”规划,肿瘤个体化治疗、基因检测等各类精准医学项目再次被提上议程,业内人士预计,在未来的两个月时间里,中国版的“精准医学”有望再次迎来“政策红包雨”。/pp  strong新技术来了 不代表老的技术就得走/strong/pp  但在业界,基因检测相关企业的突然爆发却让市场产生了怀疑:在很多公司,仿佛只要买台机器,就可以进行基因检测的业务,成本、进入门槛似乎都很低,而且,正在面临恶性竞争。/pp  “检测行业相关的市场规模现在仍在动态变化,从第三方来看,独立于医院以外的检测业务,市场还没有特别大,大约100多个亿的市场规模,主要是承接一些医院做不了的特检项目。”蔡达建告知记者,目前全国检测市场的规模大约在千亿元人民币,其中,来自三甲医院的业务占据了绝大部分。/pp  “对于我们产业投资而言,与检测相关的上下游企业现在都会关注。有一些前沿的企业,我们需要关注,这可能是未来的趋势,但是一些传统的检测项目,我们也会投,因为它的市场覆盖率会很大。”蔡达建补充。/pp  牛市的时候,投资者爱好“风口上的高大上项目”,有概念支撑,二级市场变现会很快 但当股市暴跌,投资者会发现,还是赚钱的项目实在。/pp  “这个新兴市场有些被夸大,目前市场上用得最多的还是免疫手段和生化手段,分子基因诊断还是未来的东西,产业还有一个推高的过程,有了新的技术不代表老的就会被淘汰,这里有一个成本的问题。”蔡达建对记者说。/pp  strong下一个爆发点/strong/pp  作为首个基因检测放开的具体项目,无创产前筛查从几千个基因检测项目中脱颖而出,最先实现了商业化。/pp  无创DNA产前筛查,即在孕妇特定孕周期间抽取其3至5毫升的外周静脉血,利用新一代DNA测序技术对血浆中的游离DNA片段进行测序,判断出胎儿发生相关染色体疾病的风险。在今年1月,国家卫计委公布了第一批109家可以进行无创产前筛查的临床试点机构名单,由于可以提前预知胎儿状况,这一试点放开后立即被市场点燃。/pp  在目前,市场承接量最大的检测企业是华大基因、贝瑞和康以及安诺优达,获得了卫计委“牌照”的医院在抽取孕妇血液后会送到这些检验机构进行基因检测,检验机构出报告,之后与医院进行利润分成,在市场上,做一次这样的无创产前检测,费用约在2500元。/pp  “越来越多的企业在进入无创产前筛查的行列,低成本促进了行业的发展,如果只有一家做,是不能成为市场的。”安诺优达首席运营官梁峻彬对《第一财经日报》记者表示。/pp  “但是市场的格局还远远未定,其实还有很多获得国家牌照的医院的力量还没有爆发出来,所以尽管很多企业在做,也有巨头企业,但是市场格局还远远未定。”梁峻彬对记者表示。/pp  对于检测企业来说,最有诱惑的还远不是无创产前筛查。记者注意到,在去年的全国肿瘤大会上,精准医疗还鲜被提及,但在今年,同样的大会,精准医疗的相关议题几乎占据了半壁江山。/pp  “肿瘤的基因检测市场是无创的5到10倍。”梁峻彬告知记者,“尤其是在药物这一块,靶向药物要想发挥作用在使用前就必须进行基因检测,而目前我们看到的是,国际上生产的靶向药物正变得越来越多。”/p
  • 苏州医工所在肿瘤标志物miRNA电化学检测研究中取得进展
    p  恶性肿瘤严重威胁人类的生命健康,其发病率和死亡率非常高。因此,肿瘤的早期诊断对于癌症的预防和治疗是至关重要的。肿瘤标志物是由肿瘤组织自身产生,可以反映肿瘤存在和生长的一类生化物质,主要包括胚胎抗原、天然自身抗原、肿瘤相关的酶、激素以及癌基因等。miRNA是一类长度为18~25个核苷酸的非编码单链RNA,不仅在基因表达调控中起到非常重要的作用,同时还在细胞增殖、分化、凋亡、造血等多个生物学过程中发挥着至关重要的作用。研究表明,miRNA的表达水平与多种肿瘤的发生、发展有着密切的关系。对于miRNA表达水平的监控,在疾病的早期诊断和预后观察等方面具有十分重要的意义。/pp  近期,中国科学院苏州生物医学工程技术研究所研究员缪鹏课题组开发了多种针对miRNA的超灵敏电化学分析方法。利用核酸分子的组装,制备了多种功能纳米材料,如聚集态金纳米颗粒、双链核酸模版-铜纳米颗粒、核酸-多孔氧化铁纳米复合物等,并利用不同的信号放大技术,如级联链置换聚合反应、酶催化分子循环反应(T7核酸外切酶、双链特异性核酸酶)等,极大地提高了信号强度,最终通过电化学测量,实现了aM级的检测灵敏度。这些新型的分析方法还具有稳定性高、特异性好、易改造等优点,有望为miRNA的超灵敏检测提供有力的工具。/pp  相应工作已发表(Anal. Chem., 2018, 90, 2395-2400 Anal. Chem., 2018, 90, 11154-11160 Chem. Commun., 2018, 54, 7366-7369 ACS Appl. Mater. Interfaces, 2018, 10, 36796-36804)。/pp/pp style="text-align: center "img title="asdasdasdasd.jpg" alt="asdasdasdasd.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/b01b1693-bd34-4e0d-80e5-be7f7d0fafb2.jpg"//pp style="text-align: center "  miRNA超灵敏电化学检测示意图/pp /p
  • 肿瘤基因检测 抽血行不行
    p  有不少肿瘤患者和家属咨询抽血做基因检测的准确度,是否靠谱等。由于很多患者晚期多处转移,病灶不是很好取,再就是穿刺取组织样本具有一定的创伤性,会引起气胸等并发症。所以抽一管静脉血做基因检测,这不管是从体验上,还是其他方面都引起了患者和家属兴趣。/pp  但是故事刚刚开了个头,随着很多患者交上了那么一大叠钞票,翘首期盼地盼了十几天,得了一个全阴性的报告,也就是推荐的靶向药物是零。那熊熊燃烧的热火顿时被浇了个透心凉。于是一片怀疑声音开始出现,外周血做靶向药物基因检测是否准确,灵敏度如何?是否靠谱?/pp  strong这里首先需要解释的是外周血做肿瘤基因检测的原理/strong/pp  原理就是癌细胞在人体内不断地分裂,但是又受到药物、免疫系统的攻击,以及癌细胞之间的竞争等因素,很多癌细胞裂解了,其内容物DNA片段释放到血液里,这个叫循环肿瘤DNA(也叫ctDNA),当然正常的人体细胞也会裂解释放DNA,所以外周血里的DNA碎片一部分是肿瘤细胞裂解的,一部分是正常细胞裂解的,其中肿瘤细胞裂解的DNA占的比例在1%,这个比例是很低的,所以抽外周血做基因检测,如果测序深度在300乘,就不要做了,根本没有什么意义,至少的测序深度要在1000乘。/pp  至于准确率问题,因为采集的一管静脉血,测的是血浆里面的游离DNA(测序深度至少在1000乘),同时会对离心得到的白细胞进行同样的测序(一般测序深度为300乘),白细胞的测序数据会把血浆里正常细胞裂解的DNA片段信息给过滤掉,只去分析肿瘤细胞裂解和释放的DNA片段。所以一般大的基因测序公司抽血给出的基因突变都是靠谱的,确实是来源于肿瘤细胞的。但问题是很多时候,不是每一次都能检测到肿瘤细胞裂解释放的DNA,主要是浓度太低了。/pp  我们继续把故事说下去,外周血里的游离DNA并不是一直存在的,它们会被血液里的DNA酶给降解掉,研究认为4小时就有一半的DNA被降解了。所以血液里的DNA碎片是不断地被生产出来,又不断地被降解。是一个动态的循环过程。这样给出了一个抽血做基因检测的前提调节,患者的肿瘤病灶如果没有进展,比如刚做完手术,病情稳定期,那么血液里是没有肿瘤细胞裂解释放的DNA的,抽血检测也是检测不到的。/pp  strong患者在打化疗时,为何影响了抽血做基因检测?/strong/pp  化疗药物通过抑制DNA合成、复制等机制来杀灭癌细胞的,当然也杀灭正常细胞。当用过很多化疗时,人体内那些活跃代谢的癌细胞都被杀光了,留存的是那些处于休眠期的癌细胞,此时抽血做基因检测,当然也是检测不到好的结果的。/pp style="text-align: center "img title="sss_5698a65641efb.jpg" src="http://img1.17img.cn/17img/images/201601/noimg/c99e17f8-79a7-40af-8e25-e383af4f02a9.jpg"/  ??/pp  strong患者在使用靶向药物时,是否会影响抽血做基因检测/strong/pp  原则上是有影响,但不如化疗那么关键,而且靶向药物治疗时,血液里肿瘤的DNA,一部分是自己裂解释放的,另一部分是靶向药物攻击杀灭的癌细胞裂解释放的,所以这两部分癌细胞的DNA检测出来都是有意义的。而且患者也不可能完全空窗期,一个月什么治疗也不使用,就等着基因检测,这也是不现实的。/pp  鉴于以上的原因,抽血做靶向药物基因检测确实是不容易,不过如果注意了以上的一些问题,对于肺癌、乳腺癌、肠癌等患者,抽血做基因检测的准确率还是很高的。当然,如果患者有肿瘤组织手术样本或穿刺样本那最好不过了。/p
  • 激素与肿瘤标志物类产品质量评价用标准物质的量值标准化一致化技术进展研讨会召开
    p  2017年8月30日,在中检院大兴院区,中检院体外诊断试剂检定所(简称:诊断试剂所)主办,西门子医学诊断产品(上海)有限公司协办“激素与肿瘤标志物类产品质量评价用标准物质的量值标准化一致化技术进展研讨会”顺利召开。研讨会邀请了弗吉尼亚联邦大学病理部教授、临床化学及病理学信息系统主任Greg先生为特邀专家,西门子医学诊断产品有限公司(简称:西门子)全球试剂研发首席专家James先生及西门子相关技术负责人和专家,来自国家食药监总局医疗器械技术审评中心、部分省诊断试剂检验检测领域的专家代表,中检院标物中心和诊断试剂所负责人及相关工作人员40余人参加交流研讨。王佑春副院长出席并讲话。诊断试剂所主要负责人主持会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/24035d2d-fda9-4596-919f-e85921a4b362.jpg" title="1_副本.jpg"//pp  开幕式上,王佑春副院长首先欢迎各位专家的到来。他强调检验检测的标准化和一致化是实现检验结果的准确性和可比性的重要手段,标准物质是是保证量值有效传递的计量实物标准,也是实现体外诊断试剂结果准确一致的重要工具。近年来,协调不同测量程序间结果的一致性,是标准物质量值溯源研究的热点,实验室检测的协调一致需要包括国际组织、标准物质研制机构、诊断试剂生产企业、检验检测机构等在内的各方共同努力。中检院在激素与肿瘤标志物类产品质量评价用标准物质研制方面积累了较多的经验,希望通过本次会议,与国际临床化学与检验医学联合会(IFCC)互换性研究工作组,西门子和行业内专家、检验检测机构之间面对面交流,探讨合作。西门子医疗实验室诊断系统大中华区副总裁郭奕明女士表示通过标准物质建立体外诊断产品的标准化和一致化,实现临床检验结果的准确、可比及可溯源,不仅是中国关注的话题,也是全球检验行业同仁的共同呼声,西门子医疗作为全球医疗领域最大的供应商之一,也非常希望能够支持中国标准化的目标。/pp  交流会上,Greg Miller先生做了“实验室检测的协调一致:各方的共同努力”和“参考物质的使用及面临的困难:既往的经验”报告,标物中心肖新月主任和诊断试剂所白东亭所长分别介绍了中国国家药品标准物质生产和管理情况,中检院体外诊断试剂标准物质研制进展。黄杰报告了我院诊断试剂标准物质量值溯源研究案例,西门子技术专家们分享了西门子标准物质开发研制经验和标准化对体外诊断产品制造商的影响。/pp  参会代表表示,通过这些报告,让他们对检测标准化工作有了更为深入的了解。本次会议对中检院开展标准物质量值标准化一致化合作研究奠定了良好基础。/pp  利用会议中午休息时间,王佑春副院长与Greg先生、James先生及西门子相关技术负责人和专家举行了圆桌会议,就双方感兴趣的标准物质研制工作进行座谈,双方一致认为,中检院的诊断试剂标准物质研制工作应该与国际机构进一步合作并分享。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/504e2990-54c4-471e-9dac-5b4b77fb7547.jpg" title="2_副本.jpg"//ppbr//p
  • 人源血清学检测二抗怎么选?
    血清学检测是许多健康问题诊断过程中的关键检测方法,包括器官移植筛查,交叉匹配,疾病诊断,监测等。这些检测在临床决策中起着至关重要的作用,免疫分析是目前可用的最强大,最灵敏的血清学检测方法之一,它基于抗原抗体之间的高度特异性结合,即使在低浓度下也能进行定性和定量检测。有多种免疫测定方法,以下是其中最常见两种检测方法示意图,分别是夹心法(图1A)和直接法(图1B),当选择用于夹心法检测的抗人二抗时(图1A),需要考虑一抗的种属,并使用与该物种有最小交叉反应的二抗。图1:测定方式:A.夹心法,B.直接法免疫分析在多种疾病诊断起重要作用各类免疫测定技术各有优缺点,例如,快速测定法(如胶体金侧向流动法)可在数min 内提供定性结果,可进行即时检测,而ELISA可能需要花费数小时才能完成,但可提供定量数据。而当前严重急性呼吸系统综合症冠状病毒2(SARS-CoV-2)大流行更加凸显了侧向流动分析的优势,由于该疾病具有快速传播和较高的死亡率等特征,美国FDA已采取相关措施,允许各州未经FDA批准就可开展新的SARS-CoV-2检测。该修订允许使用快速检测试剂盒,该试剂盒定性检测患者针对SARS-CoV-2产生的IgG和IgM抗体,从而显著加大了SARS-CoV-2的检测能力,尽可能地减少病毒的传播。尽管侧向流动检测具有明显的优势,但这种分析方法无法提供定量的数据。表1.几种类型的免疫测定法的优缺点,检测过程,检测的Ig类型免疫测定方法检测过程可检测免疫球蛋白亚型快速测试/横向流动(胶体金)胶体金层析试纸条主要由4个部分组成:在样品区滴加样品后,借助毛细作用,样品泳动至玻璃纤维膜,金标复合物溶解,并与样品进行抗原抗体反应,形成复合物,继续泳动至硝酸纤维素膜的检测区,带有金标记的复合物被检测区抗原或抗体捕获,呈现条带。而质控线不管有无目的样本,都会与金标抗体进行结合并显色,相当于我们的阳性对照,证明金标抗体是正常的。IgG,IgM流式细胞将血清样品添加到带有抗原的细胞或磁珠中,样本中的人源抗体会捕获抗原,再加入荧光探针偶联的二抗(图1B),然后可以通过流式细胞仪分析荧光以给出定量数据。IgG,IgM,IgA流动注射分析(FIA)与流式细胞术相似,将样品注射到含有固定抗原的柱子中,样品中的人源抗体会与抗原结合(图1B),再加入荧光探针或酶偶联抗人的二抗进行检测,用比色或荧光法进行检测。IgG,IgM,IgAELISA法将一抗固定在固体介质表面上,通常是微孔板,随后会捕获抗原(图1A)或将抗原直接包被在板上(图1B),与来自血清的人源抗体结合,加入酶标记的抗人二抗,最后,添加酶底物,从而得到与分析物浓度成正比的比色读数。IgG,IgM,IgA聚合酶链反应(PCR)该过程类似于ELISA,但是第二抗体是与寡核苷酸缀合。然后通过实时PCR进行DNA扩增和检测。IgG,IgM,IgA抗人二抗是各类免疫分析中的关键试剂尽管免疫测定的功能和目的有所不同,但为了在临床上获得准确,可靠数据,开发血清学试剂盒时,高质量试剂至关重要。抗人二抗的质量是开发免疫测定试剂盒时的关键考虑因素,二抗需要谨慎选择,因为它们会结合一种一抗的多个表位上,从而增强了信号的灵敏度和选择性。表2总结了在进行免疫测定选择合适的二抗时需要考虑的多个方面。表2.在免疫分析中选择合适的二抗时的考虑因素以及我们抗体的特征考虑因素Jackson 二抗抗体来源人体样品的血清学检测应使用抗人二抗,以最大程度地减少非特异性结合,以最大程度降低背景信号和假阳性。我们可以提供多种来源的抗人二抗,包括羊驼,驴,山羊,小鼠和兔子。产品类别(完整的IgG还是片段)二抗可以是完整的免疫球蛋白(Ig)G,也可以是F(ab' )2和Fab片段,完整的IgG分子可适用于大多数检测,而F(ab' )2和Fab片段可用于避免与具有Fc受体的活细胞的非特异性结合。我们可以提供完整IgG形式的二抗以及F(ab' )2和Fab片段特异性根据所需免疫测定的特异性,可以制备针对整个Ig分子的二抗,以及针对于Fc或F(ab' )2结构域特异性的二抗。我们可以提供针对于对整个人源Ig分子的二抗,以及针对于Fc和F(ab' )2结构域特异性的二抗。亚型大多数免疫测定均只检测IgG型抗体,这种类型抗体占总血清Ig的?75%,是次级免疫反应的一部分。但是,血清中同时也存在IgM和IgA,而且二抗只对同亚型一抗的具有特异性。我们可以提供对IgG,IgM,IgA,IgG+IgM和IgG+IgM+IgA一种或几种亚型有特异性的二抗。亲和纯化和交叉吸附由于在Ig结构域具有高度的结构保守性,建议对抗体进行亲和纯化并进行交叉血清吸附的,以减少交叉反应的可能性。免疫亲和层析可用于分离亲和纯化的抗体。我们可以选择已进行物种交叉吸附的抗体,交叉吸附相关信息会在对应产品说明括号中提供,表示为“ min X”,“X”为相关物种的缩写。偶联标记二抗通常与分子偶联,例如酶,荧光探针或有色颗粒。免疫测定的检测系统将确定标记物的种类。抗人二抗可以与多种标记物偶联,包括生物素,AP,HRP,荧光基团和胶体金纳米颗粒。
  • 我国科学家在肿瘤外泌体检测研究中取得进展
    外泌体作为一种直径约30-150 nm的脂质双层膜囊泡,几乎所有的细胞均可分泌,广泛分布于人体体液中。外泌体携带着起源细胞的多种物质,如膜蛋白、核酸、脂质等,在肿瘤的发生、发展和转移中起着至关重要的作用,是早期癌症临床诊断中的一类重要标志物。电化学方法具有稳定性强、灵敏度高、易操作等特点,使其在临床诊断、生物传感、环境监测等方面得到了广泛的应用。采用电化学生物传感技术实现外泌体的高灵敏精准检测对于癌症的早期诊断、疗效评价及预后分析具有重要意义。  近期,中国科学院苏州生物医学工程技术研究所与中科院重庆绿色智能技术研究院研究人员开发了一种基于二维过渡金属碳/氮化物MXene材料的新型电化学传感器,用于外泌体的识别与检测。MXene作为一种新兴的二维材料,具备大的比表面积、高的导电性以及较强的催化能力,针对该材料的研究丰富了其在催化、电容器、生物传感和成像等领域中的应用。  在该研究中,研究人员通过真空辅助的方法制备二维MXene平面膜,并利用电化学外加电位作用在二维膜表面负载金(Au)纳米阵列,得到Au-MXene二维复合膜。一方面,该方法利用了MXene二维材料构筑成膜,能够负载大量的上皮细胞粘附分子蛋白适配体,特异性识别捕获外泌体;另一方面,通过超速离心分离纯化肺癌细胞(A549)分泌的外泌体,对其进行溶酶体相关膜蛋白适配体修饰,能够填充复合膜表面未结合的活性位点,进一步放大检测信号。结果表明,所构建的电化学传感器对外泌体的检出限可以达到每毫升58个,具有良好的重复性、宽的检测范围以及高的灵敏度。该研究为外泌体的精准检测提供了一种高灵敏的新平台,也拓宽了二维材料在生物传感领域的应用。  相关研究成果以Hierarchical Au nanoarrays functionalized 2D Ti2CTx MXene membranes for the detection of exosomes isolated from human lung carcinoma cells为题发表在Biosensors and Bioelectronics上。研究工作获得了国家重点研发计划、国家自然科学基金委、江苏省自然科学基金等的资助。  论文链接
  • 血清有机磷快速液-质谱检测方法被验证
    有机磷农药中毒的死亡率很高,其重要原因之一是诊断不及时。日本学者Inoue等人研究验证了一种简单快速的新方法——液相色谱法-大气压电离子化-质谱测定法(LC-APCI-MS法),结果证实此方法可以有效测定进入人体血清中的10种有机磷酸盐浓度(J Phar Biomedl Anal 2007, 44: 258)。  “液液提取”或“固体萃取”方法是目前临床最常用的有机磷酸盐提取方法,但是对某些特殊成分的化合物如乙酰甲胺磷则无效。  Inoue等人采用即液相色谱-质谱联用测定法(LC-MS)研究出一种简单快速的方法用来测定急性中毒患者血清中的10种有机磷农药浓度[乙酰甲胺磷、杀扑磷、敌敌畏、倍硫磷、苯硫磷、敌匹硫磷、甲基乙酯磷(稻丰散)、马拉硫磷、杀螟硫磷、杀螟腈]。这10种有机磷农药在日本使用广泛。  具体操作程序如下:使用乙腈脱蛋白后,将每种需检测的生物标本注入一个XTerra MS C18不锈钢试剂盒中,采用10 mmol/L的甲酸铵-甲醇组成的溶剂进行梯度洗脱。  结果显示,回收提取率令人满意,绝对回收率为血清标本的82.2%~107.2%,相对回收率为60.0%~108.1%。血清的测定范围(LODs)为0.125~1.000 μg/ml,检测上限为0.25~1.25 μg/ml。从这种检测上限浓度逐渐增加到8 μg/ml时,可以观察到很好的直线相关性。在所有实验标本中,均值在期望浓度的20%范围内,而且相关系数(r2)0.9838。  大部分有机磷农药的分析结果显示样本内部和批间分析的精确度、准确度都是令人满意的。从对温度的稳定性角度,对所有有机磷酸盐分析可以发现,敌敌畏和马拉硫磷在室温下就可以最快溶解。杀扑磷和敌匹硫磷在整个为期4周的测定期内对所有温度都相对稳定。  该研究证实,将沉淀蛋白法作为样本的提纯程序,这种LC-MS方法快速可行,可以测定人体血清中的有机磷农药,并且在测定血清标本中有机磷农药时具备较高的选择性、敏感性、精确度、准确度、直线性、回归性和稳定性。因此这种简单准确的检测方法,可以成功地应用于临床急性有机磷农药中毒事件中。   用于血清有机磷检测的液相色谱-质谱联用设备
  • 3.5亿肿瘤精准检测服务平台项目签约 肿瘤检测价格降40%
    centerimg alt="" src="http://caijingapp-test.oss-cn-shanghai.aliyuncs.com/Repository/img/b2e0ec52-4231-4d1c-bdd3-84d4f854bf2a.jpg" height="225" width="300"//centerp  22日,沙坪坝区举办第二十一届“渝洽会”沙坪坝区项目集中签约仪式,宝能集团项目、传化西南大区总部、易法通全国运营服务中心、重庆大学· 鼎晶生物检验检测中心、北威新材料产业园、三快小贷新增运营资金等16个项目将进行现场签约,预计签约金额240亿元。/pp  据了解,此次签约项目涵盖了生物科技、新材料、智慧物流、商业贸易和小贷金融等多个领域。值得一提的项目有,肿瘤精准检测服务平台项目。该项目总投资3.5 亿元,设立研发中心、第三方医学检验实验室和人工智能病理“云诊断”平台,研发团队150以上,达产年产值8.5亿元以上。/pp  据该公司负责人介绍,项目专注于肿瘤检测、风险评估及诊疗咨询。其循环肿瘤细胞检测、恶性肿瘤单细胞高通量基因测序等技术行业领先,可以做到正常人群的早期癌细胞筛查,也为肿瘤患者提供术后的病情监控和评价。/pp  “与国外的技术相比,我们的准确率也很高,但价格却比国外技术便宜。”该负责人介绍,目前市面上的检测费用打完折要4200元左右,使用他们的技术最初可能在3000元,后期有望降到2500元左右,比市场价低40%。/pp  据了解,昨日的集中签约仪式是沙坪坝区即将参加的“渝洽会”活动之一。据悉,本届“渝洽会”期间,沙坪坝区预计签约项目总数112个,投资总金额1009.65亿元(其中人民币989.43亿元、美元3.19亿元)。/pp  作为重庆市对外开放的重要窗口,沙坪坝区近年来狠抓招商引资,成绩不断显现。该区成立了招商引资工作领导小组,下设先进制造业组、现代服务业组、总部经济组等5个专业招商组,在全区抽调选聘优秀干部“添丁扩容”招商团队至70人以上,实行集中办公、统一管理。/pp  记者了解到,今年该区制定了1000亿元年度招商引资目标任务,突出重点特色产业,抓好强链补链。将重点聚焦新一代信息技术、下一代汽车、智能制造、新材料等为代表的先进制造业,以物流、贸易、金融、文旅等为重点的现代服务业,以总部经济为主体的楼宇经济。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制