当前位置: 仪器信息网 > 行业主题 > >

锂电池绝缘脉冲测试仪

仪器信息网锂电池绝缘脉冲测试仪专题为您提供2024年最新锂电池绝缘脉冲测试仪价格报价、厂家品牌的相关信息, 包括锂电池绝缘脉冲测试仪参数、型号等,不管是国产,还是进口品牌的锂电池绝缘脉冲测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂电池绝缘脉冲测试仪相关的耗材配件、试剂标物,还有锂电池绝缘脉冲测试仪相关的最新资讯、资料,以及锂电池绝缘脉冲测试仪相关的解决方案。

锂电池绝缘脉冲测试仪相关的资讯

  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 锂电池老客户再次购买禾工两套AKF-BT2015C锂电池专用水分仪
    近期,江西一位老客户再次购买上海禾工AKF-BT2015C锂电池专用水分测定仪,该公司主要研发、生产、销售锂电池正负极材料、电解液、隔膜纸等;是一家大型新能源汽车电池、模块及系统开发的高科技企业。 2016年的2月禾工与江西这位锂电池客户结缘,他们当时购买了一套禾工AKF-BT2015C锂电池专用水分测定仪用于公司锂电池原料的生产线上,在使用5个月的时间,仪器运行状态良好,检测精度高,稳定可靠,故障低,操作极为简便等优势得到了用户的肯定。 因公司业务发展需要,在2016年上半年首次购买我们AKF-BT2015C锂电池专用水分测定仪之后至今年3月份总共购买仪器五台,老客户是我公司及其重要的经营资源,能够吸引到老客户的只能是高性价比的产品质量和及时到位的售后服务。 AKF-BT2015C作为一台国内第一台带有卡式加热炉的卡尔费休水分测定仪,至2016年8月低,短短两年内,AKF-BT2015C锂电池水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡销售业绩。完全可替代进口仪器设备。 AKF-BT2015C水分仪能够广泛的应用在锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 相信在今后,禾工AKF-BT2015C水分仪会应用到更多的锂电池研发、生产单位。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 岛津原子力显微镜-锂电池隔膜观测
    岛津原子力显微镜锂离子电池锂电池的结构由正极、负极、隔膜材料构成。 对于隔膜而言,其作用是分隔正极和负极,避免内部短路;同时,隔膜具有孔隙,可以吸附电解液使锂离子在充放电过程中可以双向通过。 目前常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜非常合适的观察工具。 以上三张图片是用原子力显微镜对不同制作工艺的隔膜材料进行成像的图,范围为5μm×5μm。因为原子力显微镜获得的形貌图像为三维图像,因此隔膜多孔结构可被很显著的表现出来。 对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,希望隔膜可以在快速产热温度(120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。 岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状,范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。 本文内容非商业广告,仅供专业人士参考。
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 利用原位CT观察锂电池在充放电中的变化
    近几年中国锂电池的出货量持续增长,对电池的各种研究也在不断深入。锂离子电池充电后,其中的活性物质会发生体积膨胀,原位表征技术成为分析工作中的重要手段。这种变化有时并不显著,利用原位CT可以捕获微小变化的差异,让分析工作更加简单,品质管理更科学可靠。 小型锂电池外观电池整体的断面图像图中可见,间隙部分的增大。 放、充电后电池各层电极将放、充电后电池各层电极的图像进行对比,可见电极厚度上有微小膨胀,最终导致整体厚度的增加。 岛津微焦点X射线CT系统 inspeXio SMX-225CT FPD HR Plus——一款支持锂电池充放电试验的微焦点CTinspeXioSMX-225CTFPDHRPlus(可搭载充放电系统) • 人性化操作的理念贯穿整个设计。即使CT试验的步骤简化到三步,依然能拍摄出高质量的数据。• 维护保养简便易行,让设备的使用无后顾之忧。 本文内容非商业广告,仅供专业人士参考。
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 北斗仪器出席2023锂电池用胶粘材料技术与应用创新论坛
    2023(第一届)锂电池用胶粘材料技术与应用创新论坛,我们在现场等您 顺应中国锂电池产业迅猛高速发展的形势,为助推中国锂电池用胶产业快速高质发展, 粘接资讯、新材料产业联盟、深圳市电池行业协会等单位特携手于在深圳联合举办 “2023(第四届)中国新兴用胶市场技术创新与发展论坛“暨 “2023(第一届)锂电池用胶粘材料技术与应用创新论坛”。2023(第一届)锂电池用胶粘材料技术与应用创新论坛,我们在现场等您造成电池出故障的原因有以下几个方面 新能源汽车,是解决能源、环境、城市交通等问题的一个主流趋势,也是未来汽车产业发展的一个主要方向。作为新能源汽车的动力之源,动力电池出故障是引起安全性的主要原因,新能源汽车约80%故障来源于动力电池。调查发现,造成电池出故障的原因有以下几个方面:电池漏液、局部短路、绝缘受损。当电池受到外力撞击、过度充放电热量堆积时都可能产生上述问题,最造成起火爆炸事故。为提高动力电池的安全性,对胶黏剂的选择也提出了更高要求。北斗仪器-我们在现场等您广东北斗精密仪器有限公司作为此次参展商,给大家携带了一款我们的明星产品-CA200视频接触角测量仪,该产品适用于固体表面处理评价、等离子清洗效果分析、表面清洁度分析、固液体之间或固体黏驸特性研究、液体配方设计、表面印刷性能的表征、分析表面改性、玻璃(包括塑料或金属等固体)表面润湿性研究等。在手机制造、玻璃制造、表面处理、材料研究、化学化工、半导体制造、涂料油墨、电子电路、纺织纤维、医疗生物等领域,接触角测量已经成为了一项评估表面性能的重要仪器。
  • 岛津原子力显微镜在锂电池行业应用集英
    锂离子电池广泛用于手机、相机、玩具等小型电子设备以及混合动力汽车和电动汽车中。锂离子电池由阴极、阳极、隔膜和电解质组成,其中构成阴极和阳极的粉末状材料往往通过粘合剂保持聚集状态。无论是现有锂电池的各部分材料、工作性能,还是新型锂电池的开发,原子力显微镜均深入应用其中。01隔膜材料的工作状态下的孔隙变化目前最常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜是非常合适的观察工具。对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,隔膜需要实现在快速产热(温度120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状。范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。02锂电池正极材料工作状态观察为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。另一方面,正极中的三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图1至图3示出了EPMA数据,图4至图6示出了SPM数据。在EPMA结果中,图1是成分图像(COMPO),图2是C和F分析的叠加图像,图3是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图2中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图3中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图4是SPM获得的表面形貌图像,图5是低偏压激励下小电流分布图像,图6是高偏压激励下大电流分布图像。结合图4和图2,对比可知道活性材料的分布与形貌;结合图2,可认为图5中电流区域为导电剂;同时对比图5和图6,从图5中扣除图6的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图5和图3,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解各个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。03新型负极材料的开发最常用的负极材料是石墨,但近年来硅(Si) 因其理论容量高于石墨而被视为下一代负极材料。但是由于Si负极材料在充放电过程中随着Li离子的进出而显着膨胀和收缩,因此Si材料的短板是容易破裂且寿命短。为了弥补这个问题,需要选择合适的硬粘合剂以牢固地粘合Si材料。我们设置了两种环境观察Si负极材料的不同,一种是现实中锂电池使用的电解液,另一种是N2气体环境。样品由附着在玻璃基板上的三种聚丙烯酸粘合剂(1)、(2)和(3)组成。在电解液环境为(A),N2气环境为(B)中进行观察。(A)将样品在含有1mol/LLiPF6的碳酸二甲酯(DMC)和碳酸亚乙酯(EC)的混合溶液中浸泡24小时。24小时后进行观察,同时样品仍浸入电解液中。(B)将上述样品置于密闭环境控制室中,用N2置换室内气氛后,在N2气体中进行观察。实验结果如上图所示。(A)在电解液中的样品(1)上观察到约10nm的突起,而样品(2)和(3)都是平坦的。该结果表明样品(粘合剂)(2)和(3)均匀分布在电解液中。(B)在N2气体中观察时,样品(1)和(2)是平坦的,但在样品(3)上观察到20nm的突起。该结果不同于在电解质中观察到的结果,并证明了在实际用例环境中进行测量的重要性。04固态锂电池开发研究目前的锂离子电池内部使用有机溶剂电解液,在制作、运输、使用过程中电解液可能泄漏,从而造成燃爆事故。而固态电池是采用固态电解质的锂离子电池,不含有任何液体。相比传统的液态锂离子电池,固态电池首先安全性能高,固体电解质取代可燃的液体电解质,有望克服锂枝晶的产生;其次能量密度高,负极可采用锂金属负极,极大提高能量密度;再次循环寿命长,可避免液体电解质再充放电过程中持续形成和生长固体电解质界面膜,理论上循环寿命可提高10倍以上;此外,固态电池电化学窗口宽达5V,高于液态锂离子电池的4.25V,适用于高电压正极材料;最后,固态电池无废液,处理相对简单,回收更加方便。当然,固态电池技术也存在一些很棘手的问题。粉体颗粒在电池充放电循环中会发生体积膨胀与收缩,由于不含有液体,因此颗粒与颗粒之间、层与层之间容易产生缝隙,带来接触不良,影响离子和电子的传输,电池内阻就会增加,在充放电过程中就会发生极化问题,导致倍率性能下降。因此,对固态电池的测试,除了要观察其形貌外,更重要的是获得表面形貌与其导电性之间的联系,分析不同形态与聚集状态对其工作状态的影响。为此,设定实验对两种固态电池材料进行分析,分别是钴酸锂(LiCoO2:以下称为LCO)和钛酸(Li4Ti5O12:以下称为LTO)。为了模拟固态电池内部工作环境,使用环境控制舱调节气氛,氧气0.7ppm或更少,水蒸气0.75ppm或更少。30微米范围内LCO形貌图像与电流分布图像30微米范围内LTO形貌图像与电流分布图像30微米LCO形貌图像和30微米LTO形貌图像均显示出2μm左右的高度差,并且表面粗糙度(Sa)分析显示,二者分别为341.5nm和333.6nm,非常相近。在LCO中还发现了几个缺口。相比之下,在LTO中没有发现间隙,表面较为完整。在30微米LCO电流分布图像中,表面电流分布不均匀,在41.7%的面积上检测到电流(使用颗粒分析软件分析)。在30微米LTO电流分布图像中,没有检测到电流,可能的原因是在未充电状态下LTO具备高电阻特性。5微米范围内LCO形貌图像、电流分布图像、粘性力分布图像5微米范围内LTO形貌图像、电流分布图像、粘性力分布图像5微米LCO形貌图像显示该电极材料中的晶粒尺寸约为2-5微米左右,并且它们之间存在间隙。同时也存在几百纳米大小的颗粒,如箭头所示。LTO形貌图像显示电极材料为板状晶体结构,箭头所示。在5微米LCO电流分布图像中,可发现电流在黄色虚线的左右两侧明显不同。对比5微米LCO形貌图像,可推测黄色虚线是裂缝的边界。此外,很明显箭头所指的几个几百纳米大小的晶粒处没有电流。推测其原因是这些颗粒因破碎脱落隔离于其他材料,未能形成电流通路。在5微米LTO电流分布图像中依然没有检测到电流。对比以上图像发现,5微米LCO粘性力图像与5微米LCO高度图像(e)和5微米LCO电流图像中的分布相关。同时5微米LTO粘性力图像与5微米LTO高度图像中的板状晶体(箭头所示)分布相关。通常,粘性力被认为是由毛细力、范德华力或样品表面水膜导致的电荷聚集引起的。然而,在本次测量中,水蒸气浓度为75ppm或更低,因此毛细力的影响很小。所以,粘性力图像可能代表范德华力或电荷力,这两种力可被用于展示电极材料的组成分布。根据上述信息,很可能LCO电流分布反映了材料的成分分布,并且电流的路径受晶粒之间的裂纹或间隙影响。LTO在这种情况下无法获得电流图像,可尝试充电以降低其内阻,然后进行测量。由以上案例可知,原子力显微镜可以广泛适用于现行的锂电池材料测试,同时在各类新型电池的研发中,也具备非常重要的作用。本文内容非商业广告,仅供专业人士参考。
  • 上海禾工锂电池行业用卡尔费休水分测定系统受客户称赞
    近日,上海禾工科学仪器公司锂电池行业卡尔费休水分测定系统升级型号AKF-BT2015C在国内某知名能源企业实验室完成样品的数据测试工作,样品结果平行性非常好,得到用户的认可和称赞。长期以来锂电池行业水分含量的测试仪器一直被某些进口品牌垄断,虽然国外知名厂家的产品可以满足多种样品测试要求,但是价格却一直居高不下,近年来人民币虽然一直在升值,但进口仪器的售价和后续维护成本却不降反升,众多用户对这种现状一直心有不满,目前,我国正大力推广新能源,锂电池企业发展很快,购置进口仪器逼迫一些企业增加了大量的经营成本。而一直以来,用户总是认为国内企业生产的卡尔费休水分测定仪不能满足于锂电行业电解液、磷酸铁锂材料、电极膜片等材料的水分检测。作为国产全自动卡尔费休水分测定仪最主要的生产企业之一的上海禾工科学仪器有限公司,近年以来,产品市场占有率占据国产品牌主流市场地位,在制药,质检,石油化工,食品,涂料等行业大部分用户中具有极好的市场口碑,但是对于能源行业的锂电池行业水分测试仪器基本为国外公司垄断,为了生产出价格比较低,功能可以代替进口仪器的卡尔费休水分测定仪,让那些不得不购买国外产品的锂电池生产企业从而多一份选择,禾工科学仪器多年来一直从事各种杂难样品的检测方案开发。锂电池水分含量测试的包括易溶液体的电解液的测量,也包括不溶性固体含水量的检测。卡尔费休水分仪虽然是国际公认的最精度的水分测定方法。但是面对磷酸铁锂电和电池极片等固体样品并不适合常规直接测量方法。上海禾工科学仪器有限公司的技术人员在经过大量测试实验,开发出了独有的进样装置卡氏加热顶空进样器,通过样品中水分加热后完全导入滴定利用卡尔费休方法的高精度,通过密闭系统,有效的精确的测量出固体样品中的水分,经过大量试验数据证明,本套专用卡尔费休水分测定系统测定水份含量数据准确,重复性极好,满足包括锂电池等多种行业的特殊样品水份检测需求。仪器研发成功之后,上海禾工科学仪器有限公司经过长时间的试验完善,在数个能源材料实验室客户的试用反馈改进过程中得到进一步提升,使用过程中故障率甚至低于同类进口产品。该产品经过国内多年知名电池企业采购使用后,已经成功成为可以完全替代进口同类产品的国产仪器精品。上海禾工科学仪器有限公司的AKF系列卡尔费休水分测定系统除了在电池行业的应用外,对于电子行业中的塑料粒子检测,医疗行业中的支架器械类水分检测,纺织化工中的尼龙切片测试都制定了完善的应用方案,并针对性的配置了相关辅助检测设备。上海禾工同等功能的卡尔费休水分测定仪产品价格较同等功能产品低30%,更是不到进口品牌产品的四分之一,目前已经被多年知名企业指定为替代进口同类产品的国产仪器品牌。禾工科学仪器产品线数年来持续改进完善,适应在各种行业中应用的产品型也变得更丰富,为了感谢广大用户对上海禾工的支持和信任,感谢广大客户支持国产仪器,禾工向广大客户庄严承诺:禾工品牌产品售后30日内可无理由退货。
  • 核磁共振技术揭秘锂电池生产中使用的可再生能源
    简介锂离子电池可提供高性能的储能,让能量得以高效储存并按需输送,因而被广泛用作手机等便携式电子设备的充电电池1。此外,锂离子电池作为有效的储能装置所表现出的可靠功效,使其成为电动汽车的首选电池类型2。为实现全球减排目标并保护环境,电动汽车的产量显著增长,对锂电池的需求也随之激增。锂离子电池包括一个负极——石墨电极和一个正极——锂插层电极,两电极之间以合适的电解液隔开。在提供能量时,锂离子从负极通过电解液移动到正极,充电时则相反。为支持电动汽车的大规模投放,锂电池的产量大幅增长,对相应化学成分的需求随之激增。由于电池产量的扩大旨在降低交通运输领域的碳足迹,因此,锂离子电池生产过程中使用的原材料也需要以可持续的方式获得2。为此,下述最新研究探索了如何从生物质和农业废弃物中获得适用于生产锂离子电池的电解质,从而减少自然资源消耗。商用锂电池商用锂离子电池中的电解质通常是溶解于有机碳酸盐基溶剂中的六氟磷酸锂(LiPF6)。这些溶剂具有挥发性和易燃性,因而在恶劣条件下可能造成严重的化学危害,并可能引发火灾3。此外,LiPF6具有热不稳定性,约343K温度下,会在有机溶剂基电解液中分解,产生有毒和腐蚀性的氟化氢。因此,氟化氢可能与电池组件发生反应,从正极释放过渡金属,并腐蚀集电器。此过程产生的热量可能引发热失控,不仅对电池性能造成不利影响,还会对水和土壤造成污染,在回收过程中还可能危害人类健康4。鉴于目前,大量锂离子电池正在进入日常充放电循环,因此,有必要更换锂离子电池中存在的大量氟和易燃有机溶剂,以提高新一代电池的安全性和性能。为此,科研人员对许多新型锂盐进行了电池组件测试,但其中大多数在热应用和电化学应用中的表现非常不稳定5。然而,一些引入了芳基的锂盐表现出较高的热稳定性,并且易溶于有机溶剂或离子液体,因而在电池应用中具有很大潜力6。因此,离子液体正在成为锂离子电池电解液的潜在替代材料。离子液体电解质离子液体是指室温条件下的熔盐,其不易燃,并且具有较高的热稳定性和良好的离子导电性。因此,它们有望成为锂离子电池目前使用的挥发性有机溶剂基电解质的更安全替代材料7。经确定,在将用于锂离子电池的离子液体中,最有效的阳离子是四烷基铵、环状脂肪族季铵和咪唑啉7。近期,相关科研人员正在开展研究,试图使用可再生资源来制备这些无氟电解质8。例如,在最近的一项研究中,科研人员利用从大规模产生的生物质和农业废弃物中获得的阴离子,制得无氟电解质——使用木质纤维素生物质制得2-糠酸。人们希望,此工艺将有助于开发可再生的电池电解质。科研人员使用布鲁克Ascend Aeon WB 400波谱仪并通过核磁共振(NMR)波谱分析,获得了所制得的锂盐和电解质的结构表征,并使用布鲁克Avance III波谱仪,通过脉冲梯度场自旋回波核磁共振分析,获得NMR扩散和弛豫数值;然后,使用配有氘代硫酸三甘氨酸(DTGS)检测器和金刚石ATR附件的布鲁克IFS 80v波谱仪,获得样本的傅里叶变换衰减全反射红外光谱(ATR-FTIR)。科研人员发现,该电解质的分解温度高于568K,并且在较宽的温度范围内表现出可接受的离子电导率。脉冲梯度场核磁共振分析证实,锂离子与该电解质中的羧酸盐官能团发生强烈的相互作用,并且在整个研究温度范围内,扩散速度低于其他离子。此外,核磁共振波谱和傅立叶变换红外光谱也证实了锂离子与羧酸基团的相互作用。锂离子的迁移数量随锂盐浓度的增加而增加。线性扫描伏安法表明,在超过313K的温度条件下,锂离子会发生欠电位沉积和体积还原。这些数据证明,通过具有较高成本效益、良好环保性和可持续性的工艺来开发具有热稳定性和电化学稳定性的无氟电解质是可行的。我们希望,这项研究将帮助行业开始克服锂离子电池的安全性、可回收性、可获得性、可负担性和使用寿命方面的挑战。布鲁克独特的技术组合覆盖锂离子电池供应链和价值链中的各个环节,其中包括用于对本文所述的新型电解质配方进行分析的核磁共振波谱仪和傅立叶变换红外光谱仪。同时,布鲁克的技术还覆盖对锂金属在阳极材料上的沉积现象(称为锂镀层)的研究——该研究利用的关键技术是电子顺磁共振(EPR)2。此外,固体魔角旋转(MAS)核磁共振波谱仪被用于了解电池充放电过程中的离子迁移率。最后,灵敏度增强的低温冷却CP-MAS探头被用于识别和测量电池回收过程中产生的黑色物质中有价值的微量元素。在将循环经济概念应用于电池行业的过程中,磁共振分析辅助下的新型回收工艺也发挥了至关重要的作用。参考文献:1. Scrosati B, Garche J. Lithium Batteries: Status, Prospects and Future. J. Power Sources 2010, 195, 2419&minus 2430.2. Loftus PJ, Cohen AM, Long JCS, Jenkins JDA. Critical Review of Global Decarbonization Scenarios: What Do They Tell Us About Feasibility? Wiley Interdiscip. Rev. Clim. Change 2015, 6,93&minus 112.3. Wang Q, Ping P, Zhao X, et al. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210&minus 224.4. Contestabile M, Panero S, Scrosati BA. Laboratory-Scale Lithium-Ion Battery Recycling Process. J. Power Sources 2001, 92, 65&minus 69.5. Barbarich TJ, Driscoll PF, Izquierdo S, et al. New Family of Lithium Salts for Highly Conductive Nonaqueous Electrolytes. Inorg. Chem. 2004, 43,7764&minus 7773.6. Armand M, Johansson P, Bukowska M, et al. Review-Development of Hü ckel Type Anions: From Molecular Modeling to Industrial Commercialization. A Success Story. J. Electrochem. Soc. 2020, 167,No. 070562.7. Appetecchi GB, Montanino M, Passerini S. Ionic Liquid-Based Electrolytes for High-Energy Lithium Batteries. In Ionic Liquids:Science and Applications Visser, A. E. Bridges, N. J. Rogers, R. D.,Eds. ACS Symposium Series 1117 Oxford University Press, Inc.,American Chemical Society: Washington DC, 2013 pp 67&minus 128.8. Khan IA, Gnezdilov OL, Filippov A, et al. Ion Transport and Electrochemical Properties of Fluorine-Free Lithium-Ion Battery Electrolytes Derived from Biomass. ACS Sustainable Chem. Eng. 2021. https://doi.org/10.1021/acssuschemeng.1c00939
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 防患于未“燃”,电动自行车锂电池强制性国家标准即将出台!
    2月23日凌晨,南京市一居民楼发生火灾致15人死44伤,伤亡惨重。据通报,经初步分析,火灾是由6栋建筑地面架空层停放电动自行车处起火引发。这次事故再次引起公众对电动自行车停放和充电安全的强烈关注。据国家消防救援局统计,2023年全国共接报电动自行车火灾2.1万起,锂电池是主要的燃烧源或爆炸源。由于我国缺少电动自行车锂电池强制性标准,导致锂电池质量参差不齐,电动自行车安全事故频发。为从源头防范电动自行车质量安全事故的发生,强制性国家标准体系的完善刻不容缓。据央视财经《经济信息联播》栏目报道,2022年由工业和信息化部组织起草的强制性国家标准《电动自行车用锂离子蓄电池安全技术规范》已经完成了起草和征求意见阶段,目前正处于审查阶段。中国电子技术标准化研究院安全技术研究中心副主任何鹏林是工信部锂离子电池及类似产品标准工作组组长,同时也是这项国家标准的主要起草人之一。他介绍道:按照项目计划,这项强制性国家标准将于今年发布。本标准将填补国家层面对电动自行车用锂离子电池安全质量监管的技术依据空白。标准发布以后,按照《中华人民共和国标准化法》的规定,不符合强制性标准的产品、服务,不得生产、销售、进口或者提供。据《电动自行车用锂离子蓄电池安全技术规范》征求意见稿编制说明,该标准规定了电动自行车用锂离子蓄电池单体和电池组的安全要求和试验方法,适用于符合GB17761规定的电动自行车用锂离子蓄电池单体和电池组。主要检验项目包括:电池安全项目:过充电、过放电、外部短路、热滥用、针刺;电池组机械安全项目:挤压、机械冲击、振动、自由跌落、提手强度、模制壳体应力等;电池组电气安全项目:强制放电、过充电保护、过流放电保护、短路保护、温度保护、绝缘电阻、静电放电等;电池组环境安全项目:低气压、高低温冲击、浸水、盐雾、湿热、阻燃性等;人身安全项目:热扩散。其中,首次在电动自行车用锂离子蓄电池标准中引入人身安全相关项目。热扩散项目参考GB 38031-2020《电动汽车用动力蓄电池安全要求》标准。电池单体发生热失控时热量会通过不同方式传递到相邻电池单体,单个电池热失控可能传播到周围的电池单体,引起连锁反应,热扩散时形成的烟雾、火灾和爆炸直接威胁电动自行车驾乘和使用人员安全。该项要求旨在考核电池热扩散控制能力,为预警和驾乘人员安全提供保障。标准要求电池组发出报警后5min内不能起火爆炸。
  • 梅特勒托利多 | 热分析在锂电池隔膜测试中的应用
    锂电系列 | 热分析在锂电池隔膜测试中的应用近期《经济参考报》发表了《新基建提速带动锂电池产业逆势上扬》的报道。文章称,进入2020年,在促进汽车消费和“新基建”等政策的推动下,国内动力锂电池产业显示出逆势上扬的态势。近日,工信部也召开专题会,研究部署加快5G网络等新型基础设施建设,对锂电池产业发展起到了重要推动作用。由于5G使用更大规模的阵列天线、更高的带宽,能量密度更高的锂电池就成为新基建的必然选择。锂电池市场需求巨大,但行业竞争日趋激烈,行业整合正在持续进行中,已经进入快速洗牌阶段。拥有核心技术和提高产品质量是生产厂家在激烈的竞争中生存的关键。热分析技术可以帮助企业更好地了解电池材料的受热稳定性,提高研发效率和质量控制,下面小梅就以热分析技术对电池隔膜的热力学分析为例进行详细解析。锂离子电池主要由正极、负极、电解液、隔膜以及集流体、外壳和安全元件等组成。其中电池隔膜起着隔离阴阳极、吸收电解液、同时具备微孔结构并允许某些导电离子和气体顺利通过的作用。锂电池隔膜的质量直接影响到电池的充放电性能、容量和使用寿命。目前,市场上主流的隔膜生产工艺有两种,一种是熔融拉伸法(干法),另外一种是热致相分离法(湿法),且目前主要的隔膜材料都是高分子材料,而电池由于不当使用而导致内部温度剧烈上升会使隔膜孔隙率和收缩率等重要指标发生剧烈改变,因此,在使用过程中,隔膜的热稳定性就显得尤为重要。热分析技术可以检测隔膜的熔融行为、玻璃化转变、热稳定性、失效温度、热收缩率等参数,帮助我们更好的了解隔膜的受热稳定性。用DSC测试隔膜的熔融行为DSC主要是用来测试样品在升降温过程中的热量变化情况,因此用DSC可以很好地测定高分子隔膜的熔融过程,下图是PP隔膜的测试图谱,测试结果显示,一次升温时,由于薄膜状的样品在熔融时易发生卷曲,所以往往在第一次升温曲线上容易出现假象,这对熔融温度的测定可能有一定影响。为了消除热历史对熔融温度测定的影响,我们可以采用二次升温的方式消除热历史,此时测定的熔融温度为样品本身的熔融温度。目前市面上的高分子隔膜大都是PP/PE的复合隔膜,因此,在隔膜的DSC测试中,往往会出现两个熔融峰,下图是PP/PE隔膜的测试图谱,PE和PP的熔融峰分别出现在130℃和166℃。用TGA测试隔膜的热稳定性TGA测试结果可以分析样品在升温过程中的质量变化情况,以此来反映样品的热稳定性,下图是PP隔膜的TGA测试图谱,结果显示,该PP隔膜的热分解温度是437℃,且隔膜的成分较为单一。用TMA测试隔膜的膨胀系数及收缩率高分子隔膜材料在受热时会发生一定量的收缩,这对隔膜的孔隙率会有较大的影响,进而影响锂电池的性能。例如,PE隔膜在90℃条件下等温60min收缩率应小于5%。目前,常见的隔膜收缩率的测试方法为悬挂法,即将一定长度的隔膜悬挂于特定温度的烘箱中,一段时间后拿尺子测量隔膜的尺寸,比较烘烤前后隔膜的尺寸来计算收缩率,这种方法的优点是快速,可大批量测试,但缺点也很明显,测试精度较低,且若收缩率处于临界值时难以判断,因此,使用TMA可很好地测定隔膜的收缩率。下图是PP隔膜在升温过程中的收缩率和膨胀系数的测试图谱,结果显示,PP在加热至175℃时的收缩率达到了60%。同理,也可测试不同类型的隔膜材料在恒定温度下特定时间的收缩率。用DMA测试隔膜的实际失效温度为了提升隔膜材料的耐高温性能和力学性能,目前市面上一般都都采用陶瓷粉末增强PE/PP的方法制备陶瓷隔膜或使用PI增强PE/PP隔膜,若对陶瓷隔膜进行DSC测试,其熔融温度往往与纯 PE/PP隔膜一致,但其实这时陶瓷隔膜往往还能保证一定的形貌及力学强度,并没有失效。此时,采用DSC表征隔膜的失效温度往往是不准确的,而通过DMA可较好地表征隔膜实际失效温度。下图是PE隔膜的DMA测试图谱,结果显示,其失效温度为135℃。★了/解/更/多/应/用 ★想了解梅特勒托利多其它产品在锂电行业的应用信息?您可以点击“阅读原文”查看梅特勒托利多全价值链解决方案。欢迎大家在评论区留言,告诉我们你还想学习哪方面的知识~
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 锂电池隔膜市场生变:行业“老大”欲20亿吞并“老二”
    p style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"近日,云南恩捷新材料股份有限公司(以下简称“恩捷股份”)发布公告称,公司已与苏州胜利精密制造科技股份有限公司(以下简称“胜利精密”)签订《股权转让框架协议》(以下简称《框架协议》),拟以20.20亿元收购其全资子公司——苏州捷力新能源材料有限公司(以下简称“苏州捷力”)100%股权,包括以9.50亿元对价受让股权和苏州捷力拖欠胜利精密的不超过10.7亿元其他应付款。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"此次《框架协议》的签订,被业界人士称为“湿法隔膜领域‘老大’对‘老二’的收购”,这意味着恩捷股份将进一步巩固其行业寡头地位。该人士分析指出,目前,湿法隔膜行业正处于“一超多强”的格局之下,企业间的竞争正愈演愈烈,随着行业集中度的不断提升,行业整体盈利水平将得到提升。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"恩捷股份并购苏州捷力是锂电池隔膜行业的头等“大戏”,必将令隔膜市场迎来新的一轮变局。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong“老大”20亿元收购“老二”/strongstrong/strong/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"根据《框架协议》,本次交易总额为20.20亿元,包括以9.50亿元对价受让标的股权和苏州捷力拖欠胜利精密的不超过10.70亿其他应付款总额。交易款将分四次付清,资金来源为公司自有资金及自筹资金,最后一笔尾款4.00亿元作为本协议业绩对赌条款约定的押金。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"公告显示,苏州捷力成立于2009年9月,注册资本为4.22亿元,经营范围包括锂离子电池隔膜、塑料软包装新型多功能膜(太阳能电池用EVA塑料多功能软包装热封膜)、PI光伏电池绝缘材料的生产等。2018年度,公司实现营收4.28亿元,期末净资产为2.76亿元。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者查阅资料发现,以湿法隔膜出货收入计算,2018年恩捷股份锂电池隔膜收入13.28亿元,苏州捷力2018年锂电池隔膜收入4.12亿元。根据GGII(高工产研锂电研究所)数据显示,在纯湿法隔膜企业排名中,2018年恩捷股份与苏州捷力的出货量分别位列行业前两位。/span/ppspan style="FONT-FAMILY: times new roman"  国盛证券某分析师认为,恩捷股份目前是国内湿法隔膜行业绝对龙头,国内市场占有率已经超过40%,苏州捷力在行业排名第二,两者合计市场占有率近60%,收购完成后,恩捷股份的行业寡头地位将得到进一步巩固。此外,通过兼并可避免重资产模式下耗尽现金流的恶性价格竞争,行业格局将进一步优化,后续价格降幅将有望大幅收窄。/span/ppspan style="FONT-FAMILY: times new roman"  对此,恩捷股份某高管回应称:“若本次交易顺利完成,将有利于公司进一步扩大锂电池隔离膜业务的产能,促进行业整合,也能够对公司在锂电池隔离膜领域的战略布局起到支撑作用。”/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong优势互补抢占3C新市场/strongstrong/strong/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  胜利精密2018年报显示,苏州捷力为锂电池行业龙头客户提供湿法基膜和涂覆膜,已达产的湿法基膜产线共有8条,产能规模每年可达4亿平米左右,月均出货量超3000万平米,产品良品率稳定在90%以上。湿法隔膜被广泛运用于三元电池,在下游3C和新能源汽车领域得到了广泛应用。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  同时,苏州捷力不仅为动力电池行业龙头客户,如CATL(宁德时代新能源科技有限公司)等,提供9-12μm 湿法膜(月供应量超千万平方米),还为国际客户,如日本、韩国等客户批量生产5-7μm的用于消费类电池的高端超薄隔膜。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  就收购苏州捷力一事,恩捷股份相关负责人在接受《证券日报》记者采访时表示:“目前, 恩捷股份的产品以动力电池为主,而苏州捷力在3C方面具有显著优势,目前客户包括ATL(宁德新能源科技有限公司)、LG、村田等,其4-5μm超薄膜产品也已实现批量化生产。收购完成后将对公司的产品种类形成有益的补充”。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"“此外,对苏州捷力而言,由于其产品以基膜为主,涂布优势不明显,恩捷股份将会在涂布方面为其提供协同 另一方面,恩捷股份对成本把控能力强,有利于降低苏州捷力成本,二者强强联合,优势互补,协同效应显著,公司龙头地位将得到进一步稳固。”上述负责人说。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  前述国盛证券分析师认为,恩捷股份客户主要集中于动力电池领域,目前以9u隔膜产品为主,在消费电池领域积累相对薄弱。而苏州捷力则在动力电池、消费领域并举,已成为苹果电池供应商ATL的核心供应商之一,其提供的5u产品,超薄产品全球领先。据介绍,进入ATL供应体系需要长认证周期,从0到实现大批量供应将至少耗费1-2年时间,收购完成后,恩捷股份将把全球最大的消费电池龙头客户ATL收入囊中。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong行业整合加速谋变/strongstrong/strong/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者查阅资料了解到,2018年全球新能源汽车产业发展迅猛,全球新能源乘用车年销量已突破180万辆,国内首次突破100万辆,锂电池行业正迎来快速增长期,对应的隔膜市场需求旺盛。而国内多起隔膜企业间的整合预示着隔膜产能集中度的进一步提升,企业间竞争正进一步加剧。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"相关统计数据显示,现阶段国内真正有出货量的隔膜企业已不到40家,与2017年底统计的近60家(含干法、湿法)相比,数量大幅锐减,未来这一数量还将进一步减少。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"GGII认为,从2019年的趋势来看,隔膜行业的整合正在加快,隔膜龙头企业正在扩大产能、提升内部管理、增加功能隔膜开发投入,以进一步降低成本并拉开与三四线企业的差距。隔膜属于重资产行业,在企业间分化加剧的情况下,中小规模企业将面临更大的经营压力,预计到2019年底将有更多的隔膜企业倒闭或者停产。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者了解到,除此次恩捷股份收购江苏捷力外,2018年中材科技与湖南中锂两者的兼并整合也有望在产能规模、技术联动、资源整合方面提升一定市场竞争力。/span/ppspan style="FONT-FAMILY: times new roman"  恩捷股份相关负责人还透露:“本次交易若能顺利完成,将对公司在锂电池隔离膜领域的战略布局起到支撑作用,这也意味着公司与其他湿法隔膜企业在市场份额及产能规模上的距离将进一步拉大。”(见习记者 顾贞全)/span/pp style="TEXT-ALIGN: right TEXT-INDENT: 0em"span style="FONT-FAMILY: times new roman" span style="FONT-FAMILY: times new roman FONT-SIZE: 14px"原标题:湿法隔膜市场生变:行业“老大”欲20亿元吞并“老二”/span/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"/span /pp /p
  • 大会报告(下)-第三届全国锂电池失效分析与测试技术研讨会圆满闭幕
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 12月3日,第三届全国锂电池失效分析与测试技术研讨会第二天日程继续进行,继大会/spanstrongspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/news/20201203/566537.shtml" target="_blank" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "首天四个专题的15个精彩大会报告/span/a/span/strongspan style="text-indent: 2em "后,今天的后四个专题的18个精彩报告继续上演,并颁发最佳墙报奖,为期两天的会议于下午圆满落幕。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/4e95c4dd-d723-406a-9be2-839e2e1073b8.jpg" title="IMG_8171.jpg" alt="IMG_8171.jpg"//pp style="text-indent: 0em text-align: center "span style="text-align: center text-indent: 0em color: rgb(0, 176, 240) "大会现场/span/pp style="text-indent: 2em "会议次日依次展开了分析技术、电池热失效、电解液失效、电池模拟仿真等后四个专题的18个大会报告及对应专题讨论。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong专题5:电池分析技术/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 393px " src="https://img1.17img.cn/17img/images/202012/uepic/6dd44bf4-5da8-4fb5-9e7e-c3df9202497f.jpg" title="专题1.png" alt="专题1.png" width="600" height="393" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "四位报告人分享电池测试分析技术/span/pp style="text-indent: 2em "本专题报告中,四位报告人分别分享了锂电不同测试分析技术手段。赛默飞世尔科技资深电镜应用专家吴伟为大家分享了FIB-SEM技术在锂电多尺度、多模式二维和三维分析中的应用,通过在锂电正极、负极材料表征中的应用案例,表明FIB-SEM有望成为学术、工业界电池开发不可或缺的技术。天津三英精密仪器股份有限公司市场总监张宗分享了X射线CT无损成像技术在锂电池中的应用,包括CT技术在电极材料、电芯、模组等检测案例及叠片电池快速自动化CT扫描解决方案。TIES测试分析工程师张硕介绍了TOF-SIMS和AES两类表面分析仪器的原理、主要技术能力和功能,及在锂电池领域的一系列应用案例。上海大学副教授黄秋安则分享了电化学阻抗谱快速测试技术的原理、优势与不足,并结合课题组研究进展介绍了该技术在锂电领域的潜在应用。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202012/uepic/86f1f6f9-7edd-4366-9dcc-a70047474c27.jpg" title="环节1.jpg" alt="环节1.jpg" width="500" height="334" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a842434e-ed68-4ca2-a45b-3ce4bc2626dd.jpg" title="答疑1.jpg" alt="答疑1.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "现场答疑集锦/span/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "专题6:电池热失效/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/30ef3f5b-e12c-4e26-9acd-0d35a44aecee.jpg" title="专题2.png" alt="专题2.png"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "四位报告人分享电池热失效难题及对应策略/span/pp style="text-indent: 2em "本专题报告中,四位报告人分别分享了电池热失效难题及对应策略。国联汽车动力电池研究院有限责任公司经理崔义分享了动力电池安全性定量化评价方法,包括多因素耦合动力电池安全边界评价方法、动力电池从材料到电池构效关系的安全失效分析方法等。清华大学助理教授冯旭宁讲解了突然死亡型电池热失效难题及应对策略,为电化学储能在电动汽车上的安全应用提供有价值的理论参考。郑州大学副教授金阳介绍了基于氢气探测的磷酸铁锂储能电站早期安全预警,基于真实储能舱电池模组的过充实验,进行了对比试验和理论计算,探究了请齐的产生机理。中国科学院物理研究所张杰男博士介绍了固态电池关键材料热稳定性相关研究,针对性地提出固态电解液与电极界面的改性方案,从而实现构筑具有高循环稳定性和高安全特性的固态电池。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202012/uepic/7bf737e4-f9c0-4b20-a345-65f6df075932.jpg" title="环节2.jpg" alt="环节2.jpg" width="500" height="334" border="0" vspace="0"//pp style="text-indent: 0em text-align: center " span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/21cfda45-acff-4619-8b1a-eed97f60178a.jpg" title="答疑2.jpg" alt="答疑2.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "现场答疑集锦/span/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "专题7:电解液失效/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/41dcdcc0-145f-4c43-a9b7-5ef4dc929364.jpg" title="专题3.jpg" alt="专题3.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "五位报告人分享电解质失效机理及测试方法/span/pp style="text-indent: 2em "本专题报告中,五位报告人分别从不同角度分享了电解质失效机理及测试方法。贝特瑞新材料集团股份有限公司高级研发工程师马朝晖介绍了贝特瑞公司固态电池及固态电解液开发进展,并介绍了固态电池电极材料及相关测试方法的布局开发。中国科学院物理研究所特聘研究员吴凡分享了硫化物固态电池及关键材料的失效机理研究,分别针对电化学失效、热失效、机械失效、界面失效等失效机理进行了探讨分析。北京卫蓝新能源科技有限公司前瞻中心负责人徐航宇介绍了锂离子电池电芯电解液体含量定量测试方法,重点介绍了公司与合作单位开发的固液含量测试方法,该方法已经在团标申报阶段,有望年底形成标准初稿进入公示。万向一二三股份公司电解液主任工程师周晓崇介绍了电解液对锂电产气及阻抗增长的影响,主要研究了常用溶剂、添加剂对存储产气及阻抗增长的影响,并分解到分别对正极负极的影响。深圳新宙邦科技股份有限公司研发副总监钱韫娴介绍了硅基电池失效机理分析和适配电解液的开发,基于相关失效机理研究,提升了电池综合性能,韦硅基商业化应用提供了解决方案。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202012/uepic/5e8b4931-cf29-4e23-977d-1f7d44216e71.jpg" title="环节3.jpg" alt="环节3.jpg" width="500" height="334" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3eb68546-53e3-4102-950a-a8a6dd97801b.jpg" title="答疑3.jpg" alt="答疑3.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "现场答疑集锦/span/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong专题8:电池模拟仿真/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/c9c1d08a-6961-4940-828f-47e052e668c2.jpg" title="专题4.jpg" alt="专题4.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "五位报告人分享电池模拟仿真与分析/span/pp style="text-indent: 2em text-align: left "本专题报告中,五位报告人依次针对对电池模拟仿真与分析进行了各自的分享。中国科学院电工研究所研究员廖承林较为全面地介绍了富锂锰基锂离子电池和锂空气电池的仿真方法,对两种电池设计和性能分析具有一定参考价值。天津市捷威动力工业有限公司韩兵兵介绍了数据驱动的智能算法在锂电池系统中的应用,表明数据驱动方法可以用在电池的设计、制造和后期维护等多方面,是一种先进的分析方法。北京理工大学教授陈人杰系统介绍了多电子高比能二次电池新体系及关键材料研究,重点分享了锂硫电池、固态电解质材料及其理论研究的研究进展,并对其未来发函与挑战进行了展望。鸿阳智能科技(常州)有限公司副总经理李剑介绍了先进材料计算技术及在锂电失效分析中的应用,及鸿阳基于材料计算云平台的最新进展。TIES智能制造仿真工程师介绍了工业4.0智能制造创新中心(溧阳)暨先进电池技术创新中心成立一年多来开展的一些关于电池电化学及热模拟仿真的内外部项目,以及规划的一些研究方向。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202012/uepic/1c597c0b-2a3b-4aa4-9171-c55c676450e7.jpg" title="环节4.jpg" alt="环节4.jpg" width="500" height="334" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/e1901848-424b-4463-876a-5f105b90b00b.jpg" title="答疑4.jpg" alt="答疑4.jpg"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) text-indent: 2em "现场答疑集锦/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/2211223e-d7b6-4fac-8efd-b791a6f4b2c6.jpg" title="颁奖.png" alt="颁奖.png"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) text-indent: 2em "最佳墙报颁奖合影/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 432px " src="https://img1.17img.cn/17img/images/202012/uepic/31cff5ab-909f-44ed-99ab-2824da90f7c3.jpg" title="闭幕.png" alt="闭幕.png" width="500" height="432" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) text-indent: 2em "中国科学院物理研究所李泓研究员宣布大会圆满闭幕/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/374a089e-345a-4b2a-bdc3-9370551aef14.jpg" title="合影.jpg" alt="合影.jpg"//pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) text-indent: 2em "参会代表合影/span/p
  • 如何进行锂电池性能的高低温检测
    如何进行锂电池性能的高低温检测?锂电池是一种新型的、性能优良的电池,目前已被广泛使用。但是,由于环境因素的影响,锂离子电池的性能存在较大的差异。因此,有必要开展锂离子电池在高、低温环境中的适应性研究。高低温适应性试验是测试锂电池在高低温环境下的适应能力的一种标准化实验方法。试验项目包括高温(55℃)、低温(-20℃)和温度循环三个部分。该实验涉及到的参数包括静置时间、充放电时间、充放电电流和电压等。1.在高温试验中,锂电池需要在55℃的环境下连续静置24小时,以测试其在高温环境下的耐热性能。在完成静置后,需要对锂电池进行一定的充电时间和放电时间,以测试锂电池在高温环境下的充放电性能。在充放电时需要注意电流和电压的控制,以免过度放电导致电池性能下降。2.在低温测试中,需要将锂电池放置于-20摄氏度以下24小时。如此一来,就可以对锂电池的耐寒性进行测试了。与此类似,在完全静止之后,还需对锂电池进行充放电,以检测其在低温环境中的充放电特性。在这一过程中,为了防止对锂离子电池的性能造成负面的影响,还必须对放电电流、电压进行严格的控制。3.以高、低温度实验为基础,进行了温度循环实验。为了检测锂离子电池在不同温度下的耐受能力,对其进行了高、低温热循环试验。在对电池进行试验时,为了确保试验结果的准确,必须对试验环境温度进行严格的控制。因此,对锂离子电池进行高、低温适应实验是对其进行综合评价的一种手段。通过本项目的研究,可以有效地评价锂离子电池在特殊环境中的适应性,为其开发与应用提供理论依据。随着科学技术的发展和产业化进程的加快,高、低温环境下锂离子电池的性能测试将会得到越来越多的应用。
  • 锂电池材料试验解决方案
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。锂离子电池隔膜拉伸测试LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。锂离子电池隔膜穿刺试验LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用双杠升降,可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过脚踏开关(或手动开关)快速操作完成夹持,夹持完毕后,只需按手控盒的开始键即可开始试验,试验完毕后可快速安置好下一试验点,迅速完成5点或多点测试。锂离子电池涂层隔膜剥离试验以锂离子电池聚乙烯(PE)等隔膜为基体,在其表面均匀的涂覆厚度为1~2μm混有纳米氧化铝粉末及胶凝剂浆体,可以制成无机复合陶瓷涂层锂离子电池隔膜。陶瓷涂层隔膜可以有效的提高锂离子电池的热安全性,同时对电解液具有良好的润湿性及保液性能,可以有效的提高锂离子电池的容量保持性能。锂离子电池强制内短路测试从每年在世界各地发生的电池安全事故的失效初步分析来看,大部分是由于电池内部发生短路引起的。 自 2004 年日本某公司笔记本电池发生起火后,经详细调查,起火是由于电池在生产过程中内部混入了微小的金属颗粒,此颗粒在电池充放电、温度变化和外部撞击的过程中穿刺了正负极隔膜,从而导致内部发生了短路,进而引起热失控,以致发生起火。 但此类偶然混入无法完全避免, 所以我们对锂电池提出了新的测试要求,即: 电池即使有微小颗粒混入, 需要依然能够安全的使用, 而测试电池混入微小颗粒后表现的测试即为锂离子电池的强制内短路测试。
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 去芜存菁!锂电池、充电宝或将纳入强制性产品认证管理
    p  随着电子产品的日益普及,便携式电子产品用锂离子电池和电池组、便携式数字设备用移动电源(以下分别简称为锂电池、充电宝)源的应用日益广泛,但相关产品过热、起火、甚至爆炸的事故偶有发生。在近几年市场监管总局组织的监督抽查中,产品不合格发现率也较高。/pp  近期,陆续有相关政府部门、行业协会和消费者向市场监管总局建议将锂电池、充电宝纳入强制性产品认证管理范围。为确保工作决策科学、合理,国家认监委现向社会广泛征求意见。/pp  强制性产品认证,又称CCC认证,是中国政府为保护广大消费者的人身健康和安全,保护环境、保护国家安全,依照法律法规实施的一种产品评价制度,它要求产品必须符合国家标准和相关技术规范。强制性产品认证,通过制定强制性产品认证的产品目录和强制性产品认证实施规则,对列入《目录》中的产品实施强制性的检测和工厂检查。凡列入强制性产品认证目录内的产品,没有获得指定认证机构颁发的认证证书,没有按规定加施认证标志,一律不得出厂、销售、进口或者在其他经营活动中使用。/pp  调研问卷内容如下:/pp  一、受访者基本信息/pp  1、您是/pp  消费者/pp  生产企业/pp  销售者/pp  地方市场监管部门/pp  技术机构(如标准化/检测/认证/科研机构等)/pp  其他(请注明)/pp  二、锂电池相关问题/pp  2、您认为锂电池的质量安全风险/pp  高/pp  较高/pp  一般/pp  较低/pp  低/pp  其他(请注明)/pp  3、您对于将锂电池纳入强制性产品认证管理范围/pp  支持,原因如下 【多选题】/pp  加强产品质量监管,确保消费者人身安全/pp  促进产品质量提升,规范行业健康发展/pp  其他(请注明)/pp  不支持,原因如下 【多选题】/pp  产品风险低,行业发展较规范/pp  增加企业成本,影响产品快速上市/pp  其他(请注明)/pp  其他(请注明)/pp  4、如果将锂电池纳入强制性产品认证管理范围,您建议的评价方式*/pp  第三方认证/pp  自我声明/pp  其他(请注明)/pp  三、充电宝相关问题/pp  5、您认为充电宝的质量安全风险/pp  高/pp  较高/pp  一般/pp  较低/pp  低/pp  其他(请注明)/pp  6、您对于将充电宝纳入强制性产品认证管理范围/pp  支持,原因如下 【多选题】/pp  加强产品质量监管,确保消费者人身安全/pp  促进产品质量提升,规范行业健康发展/pp  其他(请注明)/pp  不支持,原因如下 【多选题】/pp  产品风险低,行业发展较规范/pp  增加企业成本,影响产品快速上市/pp  其他(请注明)/pp  其他(请注明)/pp  7、如果将充电宝纳入强制性产品认证管理范围,您建议的评价方式*/pp  第三方认证/pp  自我声明/pp  其他(请注明)/pp  四、其他问题/pp  8、您是否赞同:企业为确保产品质量安全而投入到检测、认证的费用和时间,是其应当付出的质量成本/pp  是/pp  否/pp  其他(请注明)/pp  9、如您有其他意见和建议,可填写/ppbr//p
  • 应用故事 | 热质联用研究废旧锂电池极片在热解过程中的产气情况
    从2010年开始,随着新能源、3C电子和电动工具等领域的快速发展,对锂电池的需求量与日俱增,越来越多的企业投身于锂电池的生产制造,据统计,2015年我国动力电池装机总量为16.5GWh,2022年提高到296GWh。随着时间的推移,使用过程中电池的性能会逐渐衰减,直至报废,目前动力锂电池的平均使用寿命约为4-8年,因此从2018年开始,前期使用的锂电池已开始陆续退役,废旧电池的处理和回收规模后续将越来越大,据估计,2019-2025年我国退役动力电池装机总量预计将由0.2GWh上升至52.0GWh。对于废旧锂电池,目前主要有两种处理方法,一是梯次利用,即将退役电池用在储能等其他领域,这主要针对磷酸铁锂电池;二是拆解回收,即将退役电池进行放电和拆解,提炼原料,从而进行循环利用,有效节约生产成本,三元电池目前以拆解回收为主。回收的主要方法有火法冶金、湿法冶金和生物浸出等,其中湿法冶金回收率较高,日益成为锂电池回收的主要工艺方法。商用锂电池通常由塑料或金属外壳、正极(Al箔上的锂金属氧化物)、负极(Cu箔上的石墨)、电解液(LiPF6、DMC、EC、EMC等)、粘接剂(如PVDF)和隔膜组成,回收的主要目标是正极上的有价金属,如锂、钴、镍。但是,电池废料中的有毒物质在回收预处理过程中排放的废气和导致的潜在危险是一个需要考虑的严重问题。了解电池材料在热解过程中产生的废气种类,有助于选择合适的废气处理措施,降低相关的风险,优化回收工艺。本文以废旧三元电池为例,介绍热质联用方法分析拆解电池极片在热解过程中产生的逸出气体。先将废旧电池进行放电处理,然后在手套箱中拆解,拆出正极片,晾干后进行真空包装。测试仪器为STA-QMS,测试前在空气下打开包装,快速称量样品,放入坩埚,然后放入炉腔内,通入Ar吹扫,将炉腔内的气氛置换为纯净的惰性气氛,以10K/min从35℃升温到700℃,Ar气氛,质谱采用扫描模式,从1amu扫描到120amu。下图为正极片的失重及质谱信号(质谱信息较多,所以分成4张图显示),样品的失重过程主要分为3个阶段,失重量分别为3.62%、2.13%和3.09%。根据质谱的检测结果,第一个阶段的气体产物比较复杂,跟NIST谱库对照后,判断逸出气体可能为H2(m2)、H2O(m18)、HF(m19)、CxHy(m14、m15、m16、m26、m27、m29、m30、m42)、C2HF(m31、m44)、C2H2F(m44、m45、m46)、C3H4O3(m29、m43、m88)、POF3(m69、85、104),第二阶段产物相对简单,逸出气体可能为H2O(m18)、C2H6O(m15、29、45、46)和CO2(m44),第三阶段的逸出气体可能为O2(m16、m32)、CH3F(m33、m34)、CO2(m22、m44)和C2H2F(m44、m45、m46)。通过以上分析可知,200℃以下产生的含氟气体主要来源于电解液,除此以外还有溶剂挥发产生的烃类、酯类物质、及水(游离水或结合水)和氢气,200℃-380℃之间,气体产物主要为水(反应水)、溶剂分解产生的醚类气体和CO2,380℃-700℃间主要为PVDF分解的产物,气体产物为CO2及一些含氟气体,O2可能来源于正极活性物质的分解。利用热质联用可以对极片样品在整个热解过程中的气态产物进行连续检测,从而可以分析极片热解的演变过程,了解气体释出过程和气体类型,为电池回收工艺提供理论基础和指导。热质联用测试正极片分解1热质联用测试正极片分解2热质联用测试正极片分解3热质联用测试正极片分解4作者王荣耐驰仪器公司应用实验室
  • 春风十“锂”不如你—锂电池行业比表面及孔结构技术研讨会圆满闭幕
    五月深圳,春暖花开。在2017年春天之际,秉着全球范围内锂电池发展强力牵引力,同时应国内用户的广泛要求,作为在锂电池领域比表面及孔结构分析的领导供应商:美国麦克仪器公司于今年5月19日在深圳隆重举办了锂电池行业比表面及孔结构技术研讨会。美国麦克仪器公司锂电池行业比表面及孔结构技术研讨会于5月19日在深圳龙岗珠江皇冠假日酒店圆满闭幕。此次会议共吸引了30余家国内知名企业及高校研究所的60余名技术专家、研发人员与美国麦克仪器公司技术专家一起,围绕大家所关心的话题,从市场及技术应用不同层面对产业发展动态与趋势进行了深入探讨,获得所有参会代表的一致好评。麦克默瑞提克(上海)仪器有限公司总经理许人良博士致欢迎辞参会代表认真聆听市场应用部经理钟华博士作主题发言销售部王新春经理作主题发言 锂电池行业比表面及孔结构技术研讨会作为专业学术会议,得到了众多知名业内企业和高校研究所的鼎力支持,业内人士踊跃参加,受到广泛认可和一致好评。通过让广大电池行业相关技术人员深入了解“气体吸附法测定比表面和孔结构技术”、“碳及碳复合材料等新型锂电池用负极材料的比表面及孔结构分析技术”等前沿技术的最新发展,同时搭建了一个美国麦克仪器公司与广大用户之间深入交流的理想平台,共同探讨应对最近分析技术,解决实际应用中的难题,为中国锂电池行业的蓬勃发展锦上添花! 美国麦克仪器公司美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。自1962年成立以来,美国麦克仪器公司因其在比表面积与孔隙度分析、压汞分析技术、沉降式粒度表征、各种密度测试,化学吸附分析与微型催化反应研究众多领域技术研究的前沿性及创新性,始终保持着细微颗粒分析仪器领域的世界领先地位。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州等地设有办公室,设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。 参会用户名单:
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 应用分享 | 锂电池安全分析
    锂电池是人类可再生清洁新能源发展的重要一环。我国已把“碳达峰“与”碳中和“纳入了政府重点工作计划。一方面,研究人员不断探索通过新材料、新技术增加锂离子电池的能量密度,构建新的能源存储和输出生态;另一方面,其安全性也需要在严格把控的基础上不断提高。 今年,锂电池爆炸起火的事件屡见不鲜,除了热量、穿刺等外部因素外,锂电池本身的构造也可能造成安全隐患,如负极析锂、隔膜瑕疵、极片变形等。 本文中,我们使用扫描电子显微镜(SEM)分别对电池材料的阴、阳极表面、粘合剂以及隔膜进行了观测。 01正负极 负极析锂也被认为是引发锂离子电池安全性的可能原因。在大倍率充电、低温充电,或者是电池制造中的涂布偏差等均可能导致负极中析出金属锂,由于金属锂反应活性强、容易反应产热,使得电池内化学反应发生的条件阈值降低,即电池安全性降低。 锂电池正、负极表面 02隔膜及粘合剂 隔膜瑕疵是过去被常常忽略的问题。隔膜微孔的均匀性是很难通过产品质量确认的,大部分均通过电池企业的电池成品率来确认。例如:一个微孔被堵是很难被检测出来的,但是局部隔膜孔被“堵”(也可以是局部阻抗增大)可能导致局部锂金属析出,引发安全事故。 锂电池粘合剂及隔膜 目前锂电池技术尚有不足之处,相信希望随着科学和技术的进步,未来的生活中一定会更加和谐、幸福与安宁。
  • 一图读懂HORIBA锂电池表征解决方案
    一直以来,锂电池广泛应用于电子设备及电动汽车等新兴领域,是当前二次电池的主流发展方向。锂电池性能的提升依赖各种材料性能的改进,那么在锂电池生产中,如何利用分析仪器对材料性能进行测试和改进?通过与无数客户的合作,HORIBA成功摸索出一套解决方案:如何对锂电池原材料进行元素分析、含量检测?如何对电芯关键材料进行分子结构、粒度分析?如何对锂电池劣化后的表征及异物分析?如何检测充放电过程中材料的结构变化?为帮助大家更直观地了解HORIBA锂电池表征解决方案,我们特制作一个简版解读:前 往 微 信 公 众 号 “ H O R I B A 科 学 仪 器 事 业 部 ” 查 看 历 史 文 章 ,即 可 下 载 解 决 方 案 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制