当前位置: 仪器信息网 > 行业主题 > >

电流型集成温度传感器

仪器信息网电流型集成温度传感器专题为您提供2024年最新电流型集成温度传感器价格报价、厂家品牌的相关信息, 包括电流型集成温度传感器参数、型号等,不管是国产,还是进口品牌的电流型集成温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电流型集成温度传感器相关的耗材配件、试剂标物,还有电流型集成温度传感器相关的最新资讯、资料,以及电流型集成温度传感器相关的解决方案。

电流型集成温度传感器相关的论坛

  • 电流传感器原理_如何选择电流传感器

    电流传感器原理_如何选择电流传感器

    [align=center][/align]电流传感器具体的工作原理是:当主电路有大电流Ip流动时,导体周围会产生强磁场。该磁场由多磁环收集并作用于电流传感器器件以使其具有信号输出。该信号由放大器A放大并输入到功率放大器。此时,功率管的相应电压降变化以获得补偿电流Is。由于Is电流流过太多,绕组产生磁场Hs。 Hs与由主电流Ip产生的磁场Hp相反,由此补偿原始磁场,逐渐减小从霍尔器件输出的信号,最后乘以Is和匝数以产生磁场和磁场由Ip生成的字段。当它相等时,Is不再增加。此时,电流传感器达到零磁通量检测。如何选择当前电流传感器:霍尔电流传感器基于磁平衡霍尔原理。根据霍尔效应原理,从霍尔元件的控制电流端施加电流Ic,并且在霍尔元件平面的法线方向上施加具有B的磁场强度的磁场。然后,在垂直于电流和磁场的方向上(即,在霍尔输出端子之间),将产生电势VH,其被称为霍尔电势,其与控制电流I成比例。产品。即,其中K是霍尔系数,其由霍尔元件的材料确定 一,控制电流 B是磁场强度 VH是霍尔的潜力。电流传感器应用:电流传感器在许多领域都有应用,如电池监测,汽车,工业,铁路,机车,车载电力测试,能源和自动化等。电流传感器的主要特性参数:1、线性线性决定了电流传感器输出信号(次级电流IS)和输入信号(初级电流IP)与测量范围成正比的程度。2、温度漂移偏移电流ISO在25°C时计算。当霍尔电极周围的环境温度变化时,ISO会改变。因此,考虑偏移电流ISO的最大变化很重要,其中IOT指的是当前电流传感器性能表中的温度漂移值。3,偏移电流ISO偏移电流也被称为剩余电流或剩余电流。这主要是由霍尔元件或电子电路中的运算放大器不稳定造成的。当电流传感器在25°C和IP = 0下制造时,偏移电流会最小化,但传感器在离开生产线时会产生一定量的偏移电流。4、标准额定值IPN和额定输出电流ISNIPN是指电流传感器可以测试的标准额定值。它由有效值(A.r.m.s)表示。 IPN的大小与传感器产品的型号有关。 ISN是指电流传感器的额定输出电流,一般为10〜 400mA。当然,这可能会因型号而异。5、准确性霍尔效应电流传感器的精度取决于标准额定电流IPN。在+ 25°C时,传感器的测量精度对初级电流有一定的影响。同时,在评估电流传感器精度时,还必须考虑偏移电流,线性度和温度漂移的影响。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 关于集成化与数字化传感器的应用

    关于集成化与数字化传感器的应用集成传感器概述 集成传感器(integrated sensor)是在半导体集成技术、分子合成技术、微电子技术及计算机技术等基础上发展起来的。集成传感器的种类很多,可大致归为以下两种类型‘传感器本身的集成化和传感器与后续电路的集成化。 1.传感器本身的集成化 传感器本身的集成化可分为两种情况: 一种是具有同样功能的传感器的集成化。如电荷藕合器件(CCD)就是在一块半导体芯片上集成了许多光电传感器的集成化器件,又如将多个相同的光敏二极管“集成”在同一芯片上成为摄像仪中的光敏器件。这种集成化的特点是把对一个点的测量扩展成对一条线、一个平面或对空间的测量。 另一种是不同功能传感器的集成化,使一个传感器具有多种功能。如把温度变送器和湿度传感器集成在一起,可同时枪测温度和湿度。2.传感器与后续电路的集成化 此类集成化也可分为两种情况· ·一种是传感器和输出电路的集成化。如光电传感器和其放大电路集成在一起,可减少干扰.提高灵敏度;在硅片上制造薄膜传感器及放大器而构成的加速度传感器等。 另一种是将传感器和后续数据处理电路集成在一起.如微机化的传感器,既具备传感器的功能,又具有记忆及运算的功能、信息处理及非线性滤波的功能、多重翰人系统的构成一与同一数据的周期重复处理功能,以及系统的调节与控制的功能等。因此,这种传感器是一种多功能化的传感器. 总的来说,集成传感器具有如下特点: (”成本低.由于集成电路工艺已十分完善,利用这种技术可降低产品的成本。 (2)小型化.以硅技术为基础,将多个相同或不同的器件集成在一起,使许多引线变为芯片的内部连线,可使体积大大缩小. (3)性能改善。集成传感器可以把温度补偿、信号放大及处理电路做在同一块芯片上,这样就使环境沮度变化和电源波动等外界因素对输出信号的影响减至最小。 (4》可靠性提高.由于集成化的结果,使外引线变为内引线,器件的焊点大大减少,可靠性得以提高。 (5)接11灵活性增加。可在传感器芯片上设计阻抗变换电路、电平变换电路等,以适应不同的要求,便于与外电路连接。来源:中国仪器仪表网

  • 电流氧传感器_电流氧传感器详细概述

    电流氧传感器一般都是比较稳定的,一般是通过气体扩散控制供给阴极的氧而得到期限电流,OFweek Mall针对电流氧传感器做了详细的概述,包括电流氧传感器工作原理、参数等。一、极限电流氧传感器SO-D0-020-A100C描述:SO-D0-020-A100C是极限电流氧传感器,量程为0.01%~2%,线长1米,最低可以检测100ppm的氧气,微量氧传感器SO-D0-020-A100C广泛用于金属激光烧结3D打印机、制氮、发酵等领域。二、极限电流电流氧传感器SO-D0-020-A100C工作原理:因为在氧化锆电解质中电流的载体是氧离子,所以当电压施加到氧化锆电解槽时,氧气通过氧化锆盘被抽到阳极。如果给电解槽阴极加上一个带孔的盖子,氧气流向阴极的速率就会受到限制。受到这个速率的限制,随着所施加的电压逐渐增加,电解槽内的电流会达到饱和。这个饱和电流被称为极限电流,它与周边环境中的氧气浓度成正比。三、极限电流氧传感器SO-D0-020-A100C应用:医疗:氧气浓缩器、恒温箱实验室:惰性气体处理柜(手套式操作箱)、细菌培养箱食品产业:包装、食品检验、监控水果成熟过程(储存/运输)家庭/烹饪:自动化烘焙/烘烤(高温100℃)测量技术:固定式/便携式氧气测量仪、在控制氧含量的情况下进行测量、空气调节和流通安全技术/监控:防火(氮气增加,例如服务器机房)、温室,酒窖、气体贮藏,精炼厂、潜水、发酵单元电气工业:惰性气体处理器和柜、惰性气体焊接监控、在氮气增加的情况下进行储存(防氧化)、干燥设备、氮气浓缩器、废气测量四、极限电流氧传感器SO-D0-020-A100C特点:可以测试100~20000ppm的氧气浓度高精度多款型号呈线性特征传感器信号对温度的依赖性小交叉灵敏度低使用寿命长在多数情况下只需进行一次“单点校准”五、电流氧传感器SO-D0-020-A100C特性数据:测量气体氧气测量介质气体测量原理极限电流氧传感器测量范围0,01~2,0%响应时间(t90)2~25秒(取决于电流氧传感器类型,气流量,测量室)传感器电压0,7~1,6伏特加热电压3.6~4.4伏特功耗1.3~1.8瓦特(取决于应用和封装)冷电阻R(25°C)=3.25Ω±0.20Ω预热时间至少30s最高工作温度350℃取决于电缆和过滤器总成允许流量100~500(250最佳)寿命(MTTF)20.000小时(*)电流氧传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨[url=http://mall.ofweek.com/1787.html]电流氧传感器[/url][/color]

  • 波高采集系统中集成式智能传感器工作原理介绍

    波高采集系统有32个传感器通道,可以连接不通型号的传感器。主要应用于水工河工物理模型波浪、港池、水槽等试验,能同时对多种试验仪器进行数据采集分析。那么波高采集系统的集成式智能传感器工作原理有哪些呢?  集成式智能传感器是指将多个功能相同或不同的敏感器件制作在同一个芯片上构成传感器阵列,主要有三个方面的含义:一是将多个功能完全相同的敏感单元集成制造在同一个芯片上,用来测量被测量的空间分布信息,例如压力传感器阵列或我们熟知的CCD器件。  二是指对不同类型的传感器进行集成,例如集成有压力、温度、湿度、流量、加速度、化学等敏感单元的传感器,能同时测到环境中的物理特性或化学参量,用来对环境进行监测。  集成化的第三层含义是指对多个结构相同、功能相近的敏感单元进行集成,例如将不同气敏传感元集成在一起组成“电子鼻”,利用各种敏感元对不同气体的交叉敏感效应,采用神经网络模式识别等先进数据处理技术,可以对混合气体的各种组分同时监测,得到混合气体的组成信息,同时提高气敏传感器的测量精度;这层含义上的集成还有一种情况是将不同量程的传感元集成在一起,可以根据待测量的大小在各个传感元之间切换,在保证测量精度的同时,扩大传感器的测量范围。

  • 电流传感器对电流的测试方法是怎样的

    [align=left]电流传感器的作用是什么?电流传感器是一种检测装置,可以检测被测电流的信息,并可以将检测到的信息转换成某个信号,以满足某种标准或其他所需信息形式的要求,以满足信息的需要。传输、处理、存储、显示、记录和控制要求。电流传感器也叫磁传感器,可用于家用电器、智能电网、电动车、风力发电等,我们在生活中使用了很多磁传感器,如电脑硬盘、指南针,家用电器等。这些设备都是我们常用的常用设备,那么我们如何使用电流传感器呢?[/align]电流传感器其实也是有很多的分类的,事实上,不同的分类在使用中也是不同的。我们首先需要根据使用要求选择合适的电流传感器,然后根据产品说明使用。但是在使用电流传感器时需要也要注意一些事项的:传统的电流传感器有一个正(+)、负( - )、测量端(M)和接地(0)四个引脚,但线电流传感器没有这四个引脚,但有红色、黑色、黄色、绿色三个引脚,对应于正、负、测量端和地。同时,大多数传感器都有一个内孔,测量初级电流时,导线穿过内孔。光圈尺寸与产品型号、密不可分。无论电流传感器的类型如何,安装时引脚的接线应根据使用说明书中规定的条件进行接线。1、测量交流电源时,必须强制使用双极电源。也就是说,电流传感器的正极(+)连接到电源的“+ VA”端子,负极端子连接到电源的“-VA”端子。该连接称为双极电源。同时,测量端子(M)通过电阻器(单指零磁性公式)连接到电源的“0V”端子。2、测量直流电流时,请使用单极或单相电源,即将“0V”端子的正极或负极短路,以便只连接一个电极。此外,必须充分考虑安装产品、型号、范围、安装环境的目的。例如,应尽可能安装电流传感器以进行散热。除安装接线、即时校准校准、注意电流传感器的工作环境,还应注意以下几点,以确保测试精度:1)初级侧导体应放置在电流传感器内孔的中心,不应尽可能偏置 2)初级侧线尽可能完全填充电流传感器内孔,不留间隙 3)待测电流应接近传感器的标准额定值IPN,不要太大。如果条件有限,则只有一个电流传感器具有高额定值,并且要测量的电流值远低于额定值。为了提高测量精度,初级侧线可以缠绕几次,使其接近额定值。 电流传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压阻式压力变送器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨风速传感器丨硫化氢传感器丨光离子传感器丨ph3传感器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]光纤传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨氧气传感器丨超声波风速传感器丨气压传感器丨电流传感器https://mall.ofweek.com/category_63.html丨voc传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]光纤应变传感器丨流量传感器[/color][color=#333333]丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨位置传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨超声波传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨压电薄膜传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 电流传感器怎么用_电流传感器优势

    [align=center]电流传感器是一种检测装置,可以检测待测电流的信息,并可以将检测到的信息按照一定的规律转换成符合某些标准的电信号或其他所需形式的信息输出。满足信息传输,处理,存储,显示,记录和控制的要求。[/align]电流传感器也被称为磁性传感器,可用于家用电器,智能电网,电动汽车,风力发电等,我们的生活中使用许多磁性传感器,例如计算机硬盘,罗盘和家用电器。电流传感器是一个有源模块,如霍尔器件,运算放大器和最终功率管,所有这些都需要工作电源,并且还具有功耗。1、电流传感器参数详情:输出地集中在大电解降噪,电容位uF,二极管1N4004,变压器取决于传感器的功耗,直接检测类型(无放大)功耗:最大5mA 直视式放大功耗:最大±20毫安 磁补偿式功耗:20个输出电流 最大消耗工作电流20次,输出电流2次。功耗可以根据消耗的工作电流来计算。 2、霍尔电流传感器有哪些特性呢?霍尔电流传感器无论是开环还是闭环原理,基本性能差别不大,基本优点是:响应时间短,温漂低,精度高,体积小,频带宽,抗干扰能力强,过载能力强。怎样选择合适的电流传感器?①选择电流传感器时,注意穿孔尺寸是否能确保导线能够通过传感器 ②选用电流传感器时,应注意现场使用环境中是否存在高温,低温,高湿,强烈地震等特殊环境 ③选择电流传感器时,注意空间结构是否满足 使用电流传感器的过程中应该注意什么?①接线时,请注意接线端子裸露的导电部分,并尽量防止ESD影响。需要具有专业施工经验的工程师对本产品进行接线操作。电源,输入和输出的连接线必须正确连接。他们绝不能错位或颠倒。否则,产品可能会损坏。②产品安装环境应防尘,不腐蚀③严重的振动或高温也可能导致产品损坏。使用时必须小心。电流传感器有什么优势呢?①测量范围宽:可测量直流,交流,脉冲,三角波等任意波形的电流和电压,即使瞬态峰值电流和电压信号也能如实反映 ②快速响应:最快的响应时间只有1us。③高测量精度:测量精度优于1%,适用于任何波形测量。普通变压器是电感性组件,它们会在访问后影响测量的信号波形。一般精度为3%〜 5%,仅适用于50Hz正弦波形。④良好的线性度:优于0.2%⑤动态性能好:响应时间快,可小于1us 普通变压器的响应时间为10〜 20ms。⑥工作频带宽度:可测量0〜 100KHz频率范围内的信号。⑦高可靠性,平均无故障工作时间长:平均无故障障碍时间 5 10小时。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333][url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 热电传感器(常用传感器之一)

    热电传感器是常用传感器之一 热电传感器是一种将温度转换成电量的装置,包括电阻式温度传感器、热电偶传感器、集成温度传感器等。 电阻式温度传感器是利用导体或半导体的电阻值随温度变化的原理进行测温的。电阻式温度传感器分为金属热电阻和半导体热电阻两大类,一般把金属热电阻称为热电阻,而把半导体热电阻称为热敏电阻。目前最常用的热电阻有铂热电阻和铜热电阻,铂热电阻的特点是梢度高,性能稳定,工业上广泛应用铂热电阻进行一200^-+850℃范围的温度侧量,还作为复现国际温标的标准仪器;铜热电阻的电阻沮度系数高.线性度好,且价格便宜,应用于一些侧量精度要求不高且温度较低的场合,其侧温范围为一50-+1501C,但由于铜易氧化,热惯性大,不适宜在腐蚀性介质中或高温下工作.热敏电阻的电阻温度系数大,灵敏度高,尺寸小,响应速度快,电阻值范围大((0. 1^-100kS1),使用方便,但温度特性为非线性.互换性差,测温范围小(一般在一50-200). 热电偶传感器是工程上应用最广泛的温度传感器。它构造简单.使用方便,具有较高的准确度、稳定性及复现性,温度测量范围宽(-200^-+3500'C ),动态性能好,在温度测最中占有重要的地位。 集成温度传感器是利用晶体管PN结的电流电压特性与温度的关系.把感温PN结及有关电子线路集成在一个小硅片上.构成一个专用集成电路芯片。它具有体积小、反应快、线性好、价格低等优点,但受耐热性能和特性范围的限制,只能用来测150℃以下的温度。如AD590是应用最广泛的一种集成温度传感器.它具有内部放大电路,再配上相应的外电路,可方便地构成各种应用电路.来源——中国仪器仪表网

  • 【资料】光纤电流传感器概述及应用

    光纤电流传感器概述  光纤电流传感器是一种新型的电流传感器,与电磁式电流互感器相比,基于光学、微电子、微机技术的光纤式电流传感器(OFCT),具有无铁心、绝缘结构简单可靠,体积小、重量轻、线性度好、动态范围大、无饱和现象,输出信号可直接与微机化计量及保护设备接口等优点。这些优点既满足、推动了电力系统的发展,而且应用前景十分广阔。  当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度ψ与磁感应强度B和光穿越介质的长度l的乘积成正比,即ψ=VBl,比例系数V称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。上述现象称为法拉第效应。1845年由M.法拉第发现。  由于光在光纤中,一边反射,一边行进,偏振波相应于曲线的形状会出现旋转。针对此现象,在光纤的一端设置一块镜面导致光纤中光线的往返,借助光的来回往返,成功补偿和解决了偏振波的旋转问题。将铅玻璃光纤用于传感器元件,并结合利用镜面的方法,只需把光纤卷绕在载流导体上,用于电流计测的反射型传感器就基本完成。其次,开发了调制程度的平均处理与信号处理方式,这有利于特性的稳定及噪音的抑制。此外,对光源、受光元件、信号传输光纤等种类与传感器特性的关系进行了研究,而且,慎重选择了旨在降低成本和实现小型化的传感器制作技术。目前,光纤传感器技术正朝实用化的方向进展,以适应电力系统的广泛需求。  光纤电流传感器的结构  光纤电流传感器主要由传感头、输送与接收光纤、电子回路等三部分组成,如图1所示。传感头包含载流导体,绕于载流导体上的传感光纤,以及起偏镜、检偏镜等光学部件。电子回路则有光源、受光元件、信号处理电路等。从传感头有无电源的角度,可分为无源式和有源式两类。光纤电流传感器工作原理   光纤电流传感器是以法拉第磁光效应为基础,以光纤为介质的新兴电力计量装置,它通过测量光波在通过磁光材料时其偏振面由于电流产生的磁场的作用而发生旋转的角度来确定被测电流的大小。传感头是光纤电流传感器最为重要和关键的部件。分析了全光纤型和混合型光纤电流传感器传感头的结构和工作原理,对改进光纤电流传感器的设计,提高光纤电流传感器的性能具有重要的指导作用。  光纤回转仪是MOCT(光纤电流互感器)的核心部件,它由光源,探测器,调节器,以及缠绕电流导线的光电探头组成。其中调节器是光纤电流传感器的核心部件,通过这套系统可以对电流进行精确测量,此项技术受20多项国际专利保护。光纤回转仪最早由波音公司和霍尼韦尔公司共同研制。    光纤电流传感器的优点  与传统的电磁式CT 比较,光纤电流传感器除具有前述的优点以外还具备:  (1)容易安装,不用断开导线,仅将细长、柔软的绝缘光纤卷绕在导体上就可检测电流,能实现整个传感装置的小利轻量化;  (2)无电磁噪音的干扰。近年的计测控制系统中,一般将传感器的输出连接于半导体的电子回路,传感装置本身全部由光学器件构成,故具有抗电磁干扰(EMI)特性;  (3)计测范围广,没有铁心磁饱和的制约,同时,法拉第效应的响应速度快,具有从低频到高频、到大电流的广阔测量范闱;  (4)因为信号通过光纤传输。波形畸变小。传输损耗小,故可实现长距离的信号传输。  光纤电流传感器在电力系统中的应用  国外在六十年代就已开始对光纤电流传感器进行研究。美国、日本及西欧的一些国家的研究机构和一些电气仪器公司都在此领域作了大量的工作,如美国国家标准与技术研究所、贝尔实验室、日本的中央研究所、NEC公司及东芝、松下等公司、瑞典皇家技术学院等,到八十年代初期,光纤电流传感器开始进入工业试用阶段。  1986 年美国的田纳西州流域电力管理局(TVA)在其所属的Chkamauga水坝电力编组站安装了第一台单相高电压光学计量用的电流互感器,可靠地运行两年多后拆除。电站的常规电压互感器为OCT 提供电压。在一年的千瓦小时的计量中,与参照系统比仅变化0.08%。按照各种预定的条件如负载、温度、湿度以及电磁干拢等条件下完成了其应负的任务。在变电站的环境中,展现出稳定、准确的性能。  国内应用法拉第效应的光学电流传感器处于探索阶段,在“六五”期间,以1982 年9月在上海召开的“激光工业应用座谈会”为起步,先后有多家单位进行这方面的研究,中电八所、上海硅酸盐所、上海冶金所、华北电力局、北京化工学院、清华大学、华中理工大学等都取得一定成果。  据第15 届国际光纤传感器会议统计在FOS市场份额中,“应力”占23%,“温度”占17.2%,“气压声学”占15.2%,“电流电压”占12.2%,“化学汽体”占11.3%。就传感器类型来说,“光纤光栅”占44.2%,“分光计”占11.1%,“散钟反射”占10%,“Fraday旋光效应”占6.9%,“荧为黑体”占6.6%。  光纤电流传感器不仅能用于电力系统中电流的测量,而且与电机制造厂、测量仪器仪表厂结合,还可研制开发线路事故点的标定装置及事故区间的判定装置等一系列电力系统的测量、诊断装置。

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 霍尔电流传感器简绍

    在工业、电力、牵引等领域,电压、电流及功率的计量是非常至关重要的。对于电压的计量,低压可以用电压表直接测量,如果测量高压就需要有电压互感器变压后进行测量。那么对于电流的测量交流直流电流很小时,可以用万用表直接串入电路测量,稍大点的(0-7000A以下)电流可以用分流器测量,但是这种方法测量精度低,隔离程度低,电流超过7000A以上时分流器就无法使用了。这里介绍一下测量电流的一种设备电流传感器,电流传感器是电流的一种新型设备,该设备采用霍尔检测原理具有测量精确度高、线性好、隔离程度高、安装更换简便等优点。逐渐取代比较笨重的电流互感器。电流传感器主要有霍尔直测试和霍尔检零式两种原理其中霍尔楂零式精度高但是电路复杂有功耗成本高,霍尔直测式电路简便,成本低安装件结。在此着重介绍一下直测试电流传感器。 一、霍尔电流传感器原理 霍尔元件在聚集磁路中检测到与原边电流成比例关系的磁通量后输出霍尔电压信号,经放大电路放大后输送到仪表显示或计算机采集来直观反映电流的大小。 二、霍尔元件的电原理 当霍尔元件的垂直方向加上一个磁场B,在原件上加上控制电流I,那么霍尔元件就有一个霍尔电压Uh输出,它们的关系式为Uh=kh·I·B,其中kh为霍尔元件的灵敏度,B为磁场轻度。

  • 【转帖】线性温度传感器使用指南

    1.什么是线性NTC温度传感器?   线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通以工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。 2.线性NTC温度传感器的主要特点是什么?   这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。 3.线性NTC温度传感器的测温范围是如何规定的?   就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路的温度补偿之用。 4.延长线的选用应遵循什么原则?   一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。 5.基准电压的含义是什么?   基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。其计算公式为:V(T)=V(0)+S×T示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。这一点正是线性温度传感器优于其它温度传感器的可贵之处。 6.温度系数S的含义是什么?    温度系数S是指在规定的工作条件下,传感器的输出电压值的变化与温度变化的比值,即温度每变化1℃传感器的输出电压变化之值: S=△V/△T(mV/℃)。温度系数是线性温度传感器做为温度测量元件的物理基础,其作用与热敏电阻的B值相似,这个参数在整个工作温度范围内是同一值,即-2mV/℃,而且各种型号的传感器也是同一值,这一点传统的热敏电阻温度传感器是无可比拟的。 7.互换精度这一参数有什么意义?   互换精度是指在同一工作条件下(同一工作电流、同一温场)对于同一个确定的理想拟合直线,每一只传感器的电压V(T)—温度T曲线与该直线的最大偏差,这个偏差通常按传感器的温度—电压转换系数S折合成温度来表示。由于传感器的输出线性化及温度—电压转换系数相同,即在测温范围内全程互换,所以互换精度表示了基准电压值的离散程度,即用基准电压值的离散值折合成温度值的大小来描述整批传感器之间的互换程度。一般分为三级:I级的互换偏差不大于0.3℃;J级不大于0.5℃;K级不大于1.0℃。 8.线性度的意义是什么?   线性度是描述传感器的输出电压值随温度变化的线性程度,实际上也就是传感器输出电压在工作温度范围内相对于理想拟合直线的最大偏差。一般情况下,其线性度的典型值为±0.5%,很显然传感器的线性度越高(其值越小),对于仪表的设计就越简单,在仪表的输入级完全不必采用线性化处理。 9.为什么说线性温度传感器是规范化输出?   所谓规范化输出,就是在0℃温度点上传感器在规定的工作条件下,输出的电压值仅限于某一小范围内,即使不互换,其基准电压值仅限定在690-710mV之间,这样在电路设计时,易于在宏观上把握传感器的输出情况,不论在桥路设计还是温度补偿,只要在690-710mV之间考虑,在调试中稍加调整即可。而不象普通的热敏电阻由于型号不同,其阻值也不同,针对不同的型号,需进行不同的设计计算。所以线性温度传感器的规范化输出,可以使仪表电路实现规范化设计。 10.用户如何检验线性温度传感器?   用户在购买传感器后,可在恒流的条件下,依温区的大小,采用两点或三点测试,以检验互换精度、线性度和温度系数。一般情况下,最简单的检验方法只要检验基准电压值即可。而所有电气参数,在交货时均有随货参数表(合格证),以提供该批传感器的详细参数指标。对测试条件有如下要求:恒流源:100μA±0.5%;恒温温场:波动度:≤±0.05℃;测试仪表:41/2或51/2数字电压表。 11.实际使用温度传感器是否一定要采用恒流源供电?   一般情况下是不必要的,桥路恒压供电完全可以(参见图1、图2)。这是因为在100μA左右的电流条件下,传感器的温度—电压转换系数变化量很小,可以给一个实测数量级的概念:在100μA时 S=-2mV/℃在40μA 时 S=-2.1mV/℃在1000μA时S=-1.9mV/℃而在实际的桥路恒压供电时,其电流变化不会有如此大的幅度。恒压供电时,传感器负载电阻值如何确定?   恒压供电时,负载电阻接在电源与传感器正极之间,信号从传感器正极与负极之间输出,设计电阻值R时,以在0C时使传感器工作电流为100μA即可。如传感器的基准电压为V(0)(mV),恒压源为VDD(mV),则R=(VDD-V(0))(mV)/0.1(mA)。对于计算出的电阻值R,如果实际的电阻没有这种阻值,可就近阻值选用,对测温精度没有影响。 12.线性温度补偿元件做为电路温度补偿有什么优越性?   这主要考虑热敏元件的输出规范化及温度系数的一致性,便于设计。另外,由于温度系数与晶体管电路中的晶体管基、射极电压的温度系数相同,做为稳定晶体管电路的工作点的基极偏流元件是非常合适的。而将几只元件串联使用,可以通过并联电位器方式,通过电位器的调节出不同的温度系数,以实现精确的温度补偿作用(参见图3)。这种温度系数可调的补偿元件,无须繁杂设计,对元件的工作电流也无严格要求,这也是这种线性热敏元件用于温度补偿的一大优点。 13.稳定性的含义是什么?   稳定性是指传感器的基准电压值年漂移量,这个漂移量再按温度—电压转换系数折合成温度值,即稳定性=±△V/S/年。线性温度传感器的稳定性为±0.05℃/年。这一参数描述了传感器在各种使用条件下保持原有特性的能力。 14.长线传输对传感器信号是否有影响?   应当说影响不大,一般情况下传输距离可达1000米以上。如果距离再远,可以考虑将传感器输出的信号在当地转换成数字量,这样可以方便地实现更远距离的传输。

  • 电流传感器使用最多的分类是哪些

    [align=left]电流传感器是一种能检测到电流信号并能按照一定规律变换成标准电信号的器件,电流传感器的应用历史可以追溯到一百多年以前,电流传感器根据不同的应用也发展了不同类型,本文费劲小编洪荒之力,总结出目前最常用的电流传感器类型供大家参考。[/align]一、电阻分流器是根据直流电流通过电阻时电阻两端产生电压的原理制作而成,分流器实际就是一个阻值很小的电阻,当有直流电流通过时,产生压降,供直流电流表显示,直流电流表实际为电压表,一般这个电压表量程为75mV、150mV、300mV,用电压表来测量这个电压,再将这个电压换算成电流,就完成了大电流的测量。分流器在低频率小幅值电流测量中,表现出高的精度和较快的响应速度。在工业领域中,在不涉及到测量回路与被测电流之间电隔离的场合,分流器是将电流信号转变成电压信号的首选的低成本方案。二、电流互感器原理是依据电磁感应原理的,电流互感器的作用是可以把数值较大的一次电流通过一定的变化转换成数值较小的二次电流,用来进行保护、测量等用途。三、霍尔电流传感器包括开环式和闭环式两种。高精度的霍尔电流传感器大多属于闭环式,闭环式霍尔电流传感器基于磁平衡式霍尔原理,即闭环原理,当原边电流IP产生的磁通通过高品质磁芯集中在磁路中,霍尔元件固定在气隙中检测磁通,通过绕在磁芯上的多匝线圈输出反向的补偿电流,用于抵消原边IP产生的磁通,使得磁路中磁通始终保持为零。经过特殊电路的处理,传感器的输出端能够输出精确反映原边电流的电流变化。开环式霍尔传感器的工作过程是原边电流(Ip)通过一根导线时,在导线四周将会产生一个磁场,这一磁场的大小与流过导线的电流成正比,它能通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,霍尔器件输出的信号准确反映了原边电流的输出情况。开环和闭环都可以监测交流电,一般开环的适用于大电流监测,闭环适用于小电流监测。优点:封装尺寸小 ,测量范围广 ,重量轻,低电源损耗,无插损。四、磁通门电流传感器磁通门电流传感器是利用被测磁场中高导磁铁芯在交变磁场的饱和激励下,其磁感应强度与磁场强度的非线性关系来测量弱磁场的一种传感器。磁通门电流传感器具有分辨力高、测量弱磁场范围宽、可靠、能够直接测量磁场的分量和适于在速运动系统中使用等特点。五、罗氏线圈罗氏线圈(Rogowski Coil),全称罗哥夫斯基线圈、或罗柯夫斯基线圈,由于罗氏线圈不含铁芯,也称空心线圈。罗氏线圈是一个均匀缠绕在非铁磁性材料上的环形线圈。输出信号是电流对时间的微分。通过一个对输出的电压信号进行积分的电路,就可以真实还原输入电流。该线圈具有电流可实时测量、响应速度快、不会饱和的特点,适用交流尤其是高频大电流测量。具有测量范围宽、精度高、绝缘性能好和无磁饱和现象等优点,但是它只能用来检测交流电流。六、巨磁阻电流传感器巨磁电阻传感器将四个巨磁电阻构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。七、光纤电流传感器光纤电流传感器以光纤为介质的新型电流传感器。这种传感器具有非常好的电磁兼容性能,特别是在复杂的电磁环境下,得到大力推广。SP变频功率传感器就是光钎传感器的一种,目前在变频测量环境下,得到广泛的应用。电流传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨流量传感器[/color][color=#333333]丨压电薄膜传感器丨微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color][color=#333333]电流传感器https://mall.ofweek.com/category_63.html丨[/color]微型传感器[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]超声波传感器丨光纤传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 哪些微波消解仪采用光纤温度传感器?

    荧光光纤温度传感器传感探头采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,而且测温探头尺寸小,柔韧性好,耐高温,可实现探头直径0.2mm~3mm,弯曲半径最小到5mm以下,使得荧光光纤测量技术可以应用在不同工作的情况下,尤其微小功能系统中和电磁干扰下的测量;测温探头可以互换,测温探头替换后不需要校正。 荧光光纤温度传感器既可以采用接触式的测量方式,也可以采用非接触式的测量方式,并可远距离传输,使传感器的光电器件脱离测温现场,避开了恶劣的环境。由于采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,荧光光纤温度传感器不仅限于物体表面的定向测量,其探头还可以插入固体物质中、浸入液体中或导入设备中,到达特定区域。 传感器温度探头被安放在光纤的顶端内部。使用时将光纤传感器探头直接永久安装在变压器需要测量温度的位置。传感器光纤具有高抗电流击穿和抗化学腐蚀的特性,还具有非常强的机械特性。 荧光光纤温度传感器传感探头&光纤定制考虑因素:1)测温范围;2)测温精度;3)距离(长短);4)芯径;5)光纤及探头类型

  • 花制冰机的温度传感器的作用及温控原理

    制冰机是一种将水通过蒸发器由制冷系统冷却后生成冰的制冷机仪器。雪花制冰机的温度传感器有三个,分别设置在搅冰机构上、冷凝器上、冰桶上。 搅冰机构上的温度传感器是用来感受温度是否比较低,甚至是传动机构阻力太大,也就是说当温度比较低时,水流受阻,搅冰机构需要的扭矩变大,电机输入电流猛增,这时候需要冲冰,打开电磁阀,让压缩机的冷媒直接进入搅冰机构,而不是经过冷凝器后再进入搅冰机构,这样的一些列工作的完成是由温度传感器来检测和控制系统进行的。 在冷凝器上的温度传感器是这样工作的,当冷凝器上的温度过高时,风扇电机产生的冷却效果来不及冷却,这时候温度传感器感受到的温度过高,通过A/D转换,把模拟信号转换成数字信号,通过程序进行判断,发出指令,控制压缩机电机的继电器是否做出相应,最终控制着压缩机的工作状态。 冰桶上的温度传感器的作用是控制着冰块是否达到一定的高度,当冰块达到一定的高度后,感温传感器感受到,温度比较低时,一般设置的温度为7度,也是通过A/D模块进行模数转换,通过程序判断,作出相应的指令,指令发出,控制着整个系统的通断判断,最终控制着系统的运行与否。

  • 红外测温仪里的红外线温度传感器仪器对温度环境有影响吗?

    红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。  我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。  在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为:  ΔT=ΔL/L(α1-α2)  其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。  红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。  由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。  从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 新型温度传感器的研究与发展

    温度是一个基本的物理现象,它是生产过程中应用最普通、最重要的工艺参数,无论是工农业生产,还是科学研究和国防现代化,都离不开温度测量及温度传感器。它是现代测试和工业过程控制中应用频率最高的传感器之一。然而,温度的准确测量并非轻而易举,即使有了准确度很高的温度传感器,但是,如果测量方法选择不当或者测量的环境不能满足要求,则都难以得到预期的结果。  温度测量的最新进展  当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。  光纤温度传感器  光导纤维(简称光纤)自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明它具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视。光纤传感器是一种将被测量的状态转变为可测的光信号的装置。它是由光耦合器、传输光纤及光电转换器等三部分组成。目前已有用来测量压力、位移、应变、液面、角速度、线速度、温度、磁场、电流、电压等物理量的光纤传感器问世,解决了传统方式难以解决的测量技术问题。据统计,目前约有百余种不同形式的光纤传感器,用于不同领域进行检测。可以预料,在新技术革命的浪潮中,光纤传感器必将得到广泛的应用,并发挥出更多的作用。  特种测温热敏电缆  热电偶是传统的温度传感器,用途非常广泛。近年来,又发展出了一种新的测温技术,能在火灾事故预警中有独特的应用。这种新型温度传感器称为特种测温热敏电缆,又被称为连续热电偶ConTInuous Thermocouple)或寻热式热电偶(Heating Seeking Thermocouple)。  热敏电缆利用电偶热电效应,但测量的不是偶头部的温度,而是沿热电极长度上最高温度点的温度。由于这种独特功能,最初被发达国家作为高精技术设备铺设在航空母舰、驱逐舰的舰舱以及军用飞机等军事设备中。目前,已被广泛应用到各个领域来预防和减少因“过热”引起的事故和损失。  热敏电缆的主要性能  目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。  材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。  外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。  工作温度 FTLD为-40~200℃,CTTC为-40~899℃。 石英温度计  分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。  弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。   随着生产及科学技术的发展,各部门对温度测量与控制的要求越来越高,尤其对高精度、高分辨率温度传感器的需求越来越强烈,普通的传感器难以满足要求。  石英温度计的特性  高分辨率分辨率达0.001~0.0001℃。  高精度在-50℃~120℃范围内,精度为±0.05℃。普通温度计的精度为±0.1℃。  误差小热滞后误差小,响应时间为1s,可以忽略。  性能稳定它是频率输出型传感器,故不受放大器漂移和电源波动的影响,即使将传感器远距离(如1500m)设置也不受影响,但是抗强冲击性能较差。  石英温度计的应用  石英温度计既可用于高精度、高分辨率的温度测量,又可作为标准温度计进行量值传递,也可以在现场稳态温度场合下进行精密测温或用于恒温槽的精密控温,还可用作远距离多点温度测量等。[/

  • 电流式化学传感器

    [size=14px]【题名】:电流式化学传感器 [/size][size=14px]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-HXCH198904000.htm[/size][size=14px][/size]

  • 车身电子应用的改变得益于光传感器进步

    三十年前,第一个硫化镉光电阻在客车上得到了应用,用于通过检测环境光自动打开及关闭车大灯。当今,用于检测光线的主流技术已变成硅光电二极管和光电晶体管,从而使车身电子应用得到了极大扩展。  在大多数情况下,汽车应用中采用光电二极管,因为在-40°C~+85°C的典型车身电子温度范围内,这些器件的光电流及波长敏感度呈线性。与光电二极管相比,光电晶体管的直流电流增益及暗电流具有更高的温度依赖性。光电晶体管与光电二极管相比的优势是,光线量相同时,前者的输出电流远高于后者,从而可能无需进行放大。  雨水检测  安装在挡风玻璃上并成为后视镜装置一部分的Valeo雨水传感器,该传感器由红外线发射二极管与光电二极管组成,光电二极管用于检测玻璃反射的已发射光线量。红外线通过该传感器装置以精确角度发射出去,在挡风玻璃内部进行反射,然后返回到光电二极管。当天开始下雨时,雨滴落在挡风玻璃上,一些光线将发生折射,从而使反射回光电二极管的光线量减少。当降雨量增加时,反射回检测器表面的光线量将减少。  最终,输出电流会降到定义的阈值以下,该传感器会指示“下雨”。通过这种到微控制器的输入,该传感器会打开刮水器,并调整刮水器的速度。  环境光检测  在车身电子应用中,环境光传感器用于调节仪表盘的背光强度,以及导航系统(GPS)、温度控制及DVD屏幕中的LCD背光强度。这对于像BMW的iDrive及 Prius的Multi-Info等显示屏而言尤其重要。例如,当日光变得昏暗并且漆黑一片时,仪表盘背光将进行不同程度地调节,以达到最佳可见度,并降低可能对驾驶者造成的强光。使用这些传感器可消除在白天打开车大灯时烦人的显示屏自动亮度调节等程序,环境光传感器的关键功能是利用 380nm~780nm的敏感度可见波长,复制了人眼的敏感度。  温度控制  通过确定日光的角度并连同热敏电阻调整风扇速度和温度,光电二极管在温度控制中发挥了重要作用。确定日光的角度是光电二极管上的照明功能,在光电二极管中,峰值照明可转变成处于最高点的日光。具有集成NTC热敏电阻的光电二极管最适合这种类型的应用。  隧道检测  隧道检测需要两个传感器的输入。第一个传感器具有“向上看”的较宽视野,以及相对较长的平均移动时间段,长时间段可防止车灯打开和关闭。第二个传感器具有“向前看”的较窄视野,以及相对较短的平均移动时间段。这可使隧道传感器对突然的日光变化做出快速反应,并打开车大灯,以及在进入隧道时可调节显示屏的背光亮度。前向传感器消除了在进入桥下或遮天蔽日的大树下时打开及关闭车灯。在这些情况下,该传感器仍将“看到”前方的光线。  当进入隧道时,隧道传感器信号将下降,而宽视野传感器的信号将仍保持高强度;车大灯将打开。当出了隧道时,隧道传感器信号将加强,而宽视野传感器信号将下降;车大灯将关闭。凭借不同的平均移动时间段,控制器可做出明确的区别。

  • 【分享】ES008高精度钳形电流传感器

    ES008高精度钳形电流传感器一、特性ES008钳形电流传感器是一种高精度交流电流变换器,采用夹钳形结构设计,使用时可快速、容易的自由取放,小巧的体积更易于携带、使用上更加方便。适用于交流电流、漏电流、高次谐波电流、相位、电能、功率、功率因数等检测。ES008它可配合多种测量仪器,如:电能表现场校验仪、多功能电能表、示波器、数字万用表、电缆识别仪、电缆故障检测仪、双钳式接地电阻测试仪、双钳式相位伏安表、三相数字相位伏安表等,可在不断电的状态下,对多种电参量进行测量和比对。广泛用于变电站﹑发电厂﹑工矿企业以及检测站﹑电工维修部门进行电流检测和野外电工作业等。二、技术规格特点便携式的CT夹钳形结构、使用安全、方便钳口尺寸Φ7.5mm量程AC 0~30A分辨率AC 0.01mA精度±0.2%FS(50Hz/60Hz;23℃±2℃)相位误差≤2°(50Hz/60Hz;23℃±2℃)匝比2500:1(选购2000:1;1000:1)参考负载RL:0~300mA≤100Ω;0~3A≤10Ω;0~30A≤5Ω外形尺寸长42mm×厚20mm×高137mm输出接口3.5mm音频插头输出线长2m质量180g输出方式电流感应输出外壳材料ABS 树脂,阻燃等级94V0线路电压在600Vac(绝缘导线)30Vac(裸露导线)测试工作温度-25o C to +55o C绝缘电阻100 MΩ @ 500Vdc介质强度AC3700V/rms (铁心与外壳之间)电流频率45Hz~65Hz(被测电流频率)频率特性10Hz~100kHz

  • voc传感器检测_voc传感器OFweek Mall 功能用法

    现在大家的生活水平相比以往都有所提高,大家对周边的环境关注度也是越来越高的,特别是空气成分,大气是人类赖以生存的必不可少的条件之一,如果空气中全部都是有害成分的话,那对我们人体也会造成非常大的伤害的,那么有什么方式可以做到对空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量进行监测呢?这里就要提到voc传感器了,voc是评判空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的一个非常重要的指标,中文意思就是挥发性有机物,这种物质会对人体皮肤及粘膜等造成一定程度伤害。因此人们对于VOC的认识越充分,就会越“紧张”于它的存在。可以预见,未来室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量评估中,对VOC监测的需求也会越来越多。这无疑会给VOC传感器带来更多的市场机会。不过和其他物联网应用相类似,室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]监测市场需求,也呈现出碎片化、多样化的特点。如何根据市场环境的需求和变化进化出有生存竞争力的产品,是VOC传感器厂商的必答题。一个VOC传感器产品要想在今天的市场上立足,有几个基本条件:性能好、身材小、功耗低。ams公司的经典产品CCS801就是这样一颗器件:它可感测广泛的VOC气体,提供PPB级的精度;采用2 x 3 mm的DFN封装,占板面积小;具有优化的低功耗模式,更省电,可用于便携设备;采用特殊工艺,使用寿命可达5年;提供测量CO2 和VOC的软件驱动/算法,包括相对湿度和温度的补偿,便于用户应用开发。这样的表现,使得CCS801可以满足市场上很多主流室内空气监测应用的需求,如楼宇、家庭,甚至是可穿戴设备。当然,正如前文所述,在物联网市场上依靠一颗器件“通吃”的想法是不现实的。室内空气监测市场的一个发展趋势,就是从工业和专用市场向消费级的市场渗透;而在消费电子市场,成本是一个需要优先考虑的因素。为此,ams推出了一颗低成本的CCS811[url=http://mall.ofweek.com/1897.html]VOC传感器[/url]来应对,让经典的设计“流行”起来。和CCS801VOC传感器相比,CCS811VOC传感器继承了其很多优点,如:出色的感测范围与精度、支持长达5年寿命的特殊工艺等等。而两者最大的差异在于,CCS811是一个数字VOC传感器,其内部集成了一个MCU,可以直接对VOC传感器的驱动和测量进行管理,并通过一个I2C接口与外部进行数据通信。虽然集成了更多的功能,CCS811仍然保持了相当“纤细”的身材,采用2.7 x 4.0mm的LGA封装,使得PCB占板面积可以节省60%,节省了BOM成本。同时,由于内部还集成了相应的算法,使得终端产品的开发也得以简化,进一步降低了整体的成本。想必消费类用户看到下面这个CCS811的性能清单,会非常动心。广泛的OFweek Mall传感器商城网VOC传感器感测范围内置MCU,无需外部主控MCU干预即可管理传感器驱动模式和测量、显示IAQ数值,包含RH+T补偿功能,标准I2C数字接口,与外部数据通信,集成相关算法,减少开发周期,体积小,采用2.7 x 4.0mm LGA小型封装,集成度高,减少系统BOM数量,功耗低,适用于电池供电便携应用,适用于大批量、高可靠性应用,寿命可达5年。VOC传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【转帖】双传感器的航星计程仪测试系统

    在航海系统中,采用计程仪连续测量运动中船舶的速度并计算出船舶的累计航程。本文所设计的计程仪系统采用双传感器组合结构,并结合微处理机技术(选用了MCS-51系列单片机及与之配套的专用接口芯片),组成了计程仪专用计算机系统。仪器结构简单,体积小,精度高,操作调整方便。它能方便地进行数字通讯;根据实际需要,也能发送速度的模拟信息,接口灵活,适应了船舶控制与操作自动化的需求。 1 计程仪硬件设计该计程仪系统由主仪器、电磁传感器、压差式传感器、船底阀、导压杆、可由用户扩充的分显示器和一套开关分配器等部分组成(图1)。本系统的突出特点是采用了双传感器组合结构:分别利用电磁传感器和压差式传感器(利用贝努利方程原理)来测量船舶与水之间的相对运动速度,并由其计算与记录船舶的航程。1.1 技术性能 (1)测速范围:-10节~+40节(量程更改可由程序设定);(2)航速精度(测速场精度):±0.20节;(3)航速发送形式:R S-485;(4)单次航程范围:0~9999.99海里;(5)累计航程范围:0~999999海里;(6)工作时间累计范围:0~99999小时;(7)航程解算精度:±0.1%(负速度不计航程)。1.2 主仪器工作原理 主仪器是一个以MCS-51单片微计算机为核心的专用微机系统,如图2所示。它包括:直流电源装置,键盘输入与显示装置,及由CPU、EPROM、EEPROM及专用接口电路组成的单片机装置。主仪器是计程仪的核心部分,其面板上装有各种操作按钮,用以控制整个仪器的运行,完成测速校正操作。 主仪器采用中断方式实现双传感器的数据采集控制,其中定时器周期性地产生中断信号申请中断,中断服务程序接收电磁传感器和压差传感器输出的电信号,然后A/D转换装置和I/F转换器将它转换成数字量后送至微机系统;按一定的计算公式进行数椐处理,并按调整后的曲线进行修正,以得到船舶的速度,再根据时间间隔的大小进行数值积分来求得航程。计算机将求得的航速信息以适当的形式通过各相应的接口电路送到各用户和分显示器,完成航速航程的显示。计算机系统中的EEPROM可以永久性地保存诸如累计航程、累计工作时间、速度调整参数等结果。1.3 主要芯片及其系统功能简介 本系统中主要采用了AT89C55、ICL7109和AD652等芯片,简介如下:1.3.1 AT89C55 AT89C55芯片是由ATMEL公司推出的51系列8位单片机。片内主要有20KFlash存储器、256字节片内RAM,4个8位的双向可寻址I/O口,1个全双工UART(通用异步接收发送器)的串行接口、3个16位的定时器/计数器、多个优先级的嵌套中断结构,以及一个片内振荡器和时钟电路。本系统中利用了AT89C55丰富的20K闪存资源永久保存测量中累计航程、累计工作时间等关键结果,并利用了其定时器计数器及中断嵌套结构实现双传感器的数据采集。 在本系统中,T0、T1均工作在计数方式,T0产生1s计数中断,T1完成压差传感器转换的频率计数。INT0被用于按键中断处理,TXD串行发送计程仪的速度信息,波特率为4800。X1、X2外接8MHz的石英晶体。P1口各位分别完成发送显示码、测速/航行判断等功能,P2口部分参与地址译码,同时P0口分时输出数据/地址低8位。1.3.2 ICL7109 ICL7109是一种高精度、低噪声、低漂移、价格低廉的双积分式12位模/数变换器。该芯片由模拟电路和数字电路两部分组成,其中模拟电路由模拟信号输入、振荡电路、积分、比较电路和基准电压源组成。数字电路由时钟振荡器、异步通信握手逻辑、转换控制逻辑、计数器、锁存器、三态门组成。 ICL7109工作电压为双电源±5V,GND为公共端,外接6MHz的晶振,基准电压为外部分压输入的2.8V;接口方式为直接输出方式,数据输出为12位二进制数和一位极性,12位A/D转换通过控制高低字节使能端实现,分时读出低8位和高4位。 1.3.3 AD652 AD652是一种高速、高精度、同步I/F转换器;用外接时钟脉冲决定满量程频率,并允许电压或电流输入。本系统中AD652的功能是将压差传感器的4~20mA的电信号转换成频率信号输出给CPU,CPU再根据AD652的工作时钟解算出当前速度值。AD652工作电压为双电源±15V,工作时钟由单片机的晶振输出经54LS393分频获得,AD652输出脉冲由AT89C55的T1计数,计数时间间隔为1s。1.3.4 8155 8155除有三个I/O端口(A口、B口、C口)外,还带有一个256字节的静态随机存贮器和一个14位定时/计数器。具有一块芯片多种功能的特点。另外,8155和单片机的连接十分简单,甚至不需要8D锁存器。本系统利用8155构成键盘显示电路。2计程仪软件设计 在软件设计中,采用了数值逼近及多种滤波算法,并在充分利用CPU功能的前提下,尽量减少硬件数量。除合理选择硬件外,软件上采取抗干扰陷阱与冗余处理,提高了系统的稳定性和可靠性。 计程仪的工作程序用汇编语言编写,采用模块化结构的程序设计方法,便于使用维护与扩展。计程仪软件主要分为自检模块、管理模块、航速航程解算模块和测速校正等模块,各模块主要以中断方式调用。计程仪的基本工作程序框图如图3所示。当电源开关闭合后,仪器的专用计算机系统开始自检,主仪器及分显示器上将显示自检的结果;自检完毕后便开始对计算机系统进行初始化设置;初始化设置完毕后,定时器并未开始计时,而必须等到启动中断后才开始计时工作。此时计算机系统处于一种等待状态,等待定时或按钮所产生的中断发生。中断部分完成航速航程计算和发送。3结束语 本航星计程仪系统采用了双传感器结构实现船舶航速的连续测量并按一定的软件算法计算航程;具有硬件电路简单、可靠性高、工作稳定和性价比较高等特点,适应现代化舰船的需求。由于使用了AT89C55单片机等,使得该系统具有一定的可再开发性。目前该计程仪已批量生产,并安装于多种船舶上。 本贴来源于:www.ic36.com

  • 【原创大赛】色谱仪常用电气部件 温度传感器之二

    【原创大赛】色谱仪常用电气部件  温度传感器之二

    色谱仪常用电气部件 温度传感器之二 热电偶、热敏电阻、半导体温度传感器1 热电偶:两种不同材质的导体构成闭合回路,如果两端存在温度差,回路两端就会产生电压。这就是热电偶的基本原理,即塞贝克效应。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457066_1604036_3.jpg 图1 热电偶原理图http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457067_1604036_3.jpg图 2 热电偶图片热电偶的信号较弱,一般只有数个mV的电压。但是温度测量范围较宽,比较铂电阻更加耐高温。一般常见于高温应用场合,例如马弗炉的温度控制系统。在色谱仪器上,一般用于温度保护。2 热敏电阻有点类似热电阻,温度改变后,元件的电阻值发生变化。但是其工作机理和热电阻不同。色谱仪中常用的为负温度系数热敏电阻。下图为负温度系数热敏电阻的温度-阻值特性曲线。温度越高,元件的电阻值越小。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457068_1604036_3.jpg图3 热敏电阻的温度-电阻曲线显著的和热电阻不同的,热敏电阻的阻值比较大,室温下可能电阻值在数十k欧姆,相对于100欧姆左右的铂电阻,温度变化,热敏电阻阻值的变化十分显著。所以热敏电阻对温度有较高的灵敏度,但是热敏电阻的工作范围较窄,一般不超过150度。不同器件之间性能的重复性也比较一般。如图,液相色谱仪使用的温度传感器。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457069_1604036_3.jpg实用案例:在Shimadzu的泵或者检测器模块前部右下角可以看到一个红色的小元件,是漏液传感器,其实就是负温度系数的热敏电阻。漏液传感器内使用了两个热敏电阻,有一个的位置比较低,如果系统泄漏,液体附着在热敏电阻的表面,液体的蒸发使得元件的温度降低,电阻阻值增大,系统检测到这一变化(其实是温度的变化),便认为系统泄漏。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092214_457070_1604036_3.jpg3 集成电路的温度传感器集成电路的温度传感器,温度范围和热敏电阻相似。但是有较好的各器件之间的重复性和温度线性,应用场合越发广泛。小结: 简单介绍了常见的几种温度传感器原理

  • 湿度传感器怎样准确检测湿度范围

    [align=left]湿度传感器测量技术已经存在很长时间了。随着电子技术的发展,现代测量技术也得到了迅速发展。湿度测量按原理分为两部分:。湿度表达为绝对湿度、相对湿度、露点、湿气比(重量或体积)等。但湿度测量一直是计量领域的着名问题之一。看似简单的价值衡量,涉及相当复杂的物理 - 化学理论分析和计算,可能涉及湿度测量中必须注意的许多因素,从而影响湿度传感器的合理使用。[/align]常用的湿度测量方法有:动态法(双压法、双温法分割方法、):双压法、双温法基于热力学P、 V、 T平衡原理,平衡时间较长,分流法是基于绝对精确混合水分和绝对干燥空气。由于采用了现代测量和控制方法,这些设备可以做得相当复杂,但由于设备的复杂性,、价格昂贵,操作既费时又费力,主要用作标准测量,测量精度可以超过±2%。静态法(饱和盐法、硫酸法):饱和盐法是湿度测量中最常用的方法,简单易行。然而,饱和盐法对液体、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的平衡有严格的要求,并且环境温度的稳定性非常高。需要等待很长时间才能平衡,并且要求低湿度点更长。特别是当室内湿度和瓶内湿度差异很大时,每次需要平衡6-8小时。湿度传感器测量方法:电子湿度传感器产品和湿度测量属于20世纪90年代出现的行业。近年来,国内外公司在湿度传感器研发领域取得了长足的进步。湿度传感器正在从简单的湿度传感器迅速发展到集成的、智能、多参数检测,为新一代湿度测量和控制系统的开发创造了有利条件,并将湿度测量技术提升到了一个新的水平。在工农业生产、气象、环境保护、防御、研究、航天等部门,往往需要测量和控制环境湿度。然而,在传统的环境参数中,湿度是准确测量的最困难的参数之一。用湿式和干式球形湿度计或毛发湿度计测量湿度的方法长期以来无法满足现代技术发展的需要。这是因为测量湿度比测量温度复杂得多,温度独立测量,湿度受其他因素影响(大气压力、温度)。另外,湿度标准也是一个问题。国外生产的湿度校准设备非常昂贵。近年来,国内外湿度传感器研发领域取得了长足的进步。湿度传感器正在迅速发展,从简单的湿度传感器到集成的、智能、多参数检测,为新一代湿度/温度测量和控制系统的开发创造了有利条件,并将湿度测量技术提升到了一个新的水平。湿度传感器的精度是分段的:低湿度部分(0-80%RH)的、是±2%RH,高湿部分(80-100%RH)是±4%RH。并且此精度在指定温度下。值(例如25°C)。在不同温度下使用湿度传感器。其指示还考虑了温度漂移的影响。众所周知,相对湿度是温度的函数,它严重影响给定空间内的相对湿度。温度变化0.1°C。将产生0.5%RH的湿度变化(误差)。在使用的情况下,如果难以实现恒定温度,则提出过高的湿度测量精度是不合适的。由于温度变化时湿度也不稳定,豪华测量精度将失去其实际意义。因此,控制湿度的第一件事是控制温度。这就是为什么大量应用通常是温度和湿度集成传感器而不是纯湿度传感器。湿度传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨流量传感器[/color][color=#333333]丨压电薄膜传感器丨微型压力传感器丨[/color]湿度传感器https://mall.ofweek.com/263.html[color=#333333]丨[/color][color=#333333]电流传感器丨[/color]微型传感器[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]超声波传感器丨光纤传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color][color=#333333][/color]

  • 温度传感器的标定方法

    温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。  由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。  由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。  温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 温度传感器

    哪个大侠对温度传感器很了解,谁能给接收一下?有没有分辨率达到0.005K的温度传感器,有的话,推荐一下。谢谢

  • 【原创】温度压强传感器出故障了

    10月份我们实验室的微波消解仪的温度压强传感器由于我们使用不当导致温度传感器异常,之后拿去供货商那里校准可以用了,之前的问题是1号罐的外管温度比内管温度高,现在温度是正常的,但是压强升不上去,直接导致温度升不上去,但是温度传感器是正常的,所以现在很郁闷啊,只有把温度压强传感器寄到总部请求帮忙,所以大家以后使用温度压强传感器的时候一定要小心使用,以免出现故障

  • 压力传感器原理_压力传感器怎么用

    [align=center]压力传感器跟压力变送器比较相似,但是它们在功能上也是有一些细微的差别的,当您在使用压力传感器的过程中需要提前对压力传感器的量程,精度,信号输出,电源,环境温度,介质,是否防爆,安装螺纹等特性做一定的了解,只有这样才能知道压力传感器的正确的使用方法。[/align]压力传感器实际上是一种输出电流为4-20 mA的传输方式。以下是OFweek Mall对压力传感器原理的描述。压力传感器将要测量的物理量转换为可读取和处理的另一物理量。在现代控制中,这个物理量是一个电信号 压力传感器的主电信号转换为标准电信号。例如电流信号4--20mA,0-20mA,电压信号0-10V,1--5V。压力传感器是一种产生毫伏信号变化的压力诱导应变。如果传感器已经具有输出标准电流或电压信号的放大和整形电路,则这样的传感器也可以被称为压力传感器;压力传感器的名称与先前输出毫伏信号的压力传感器相比,大多数现代压力传感器都直接输出标准信号。因此,可以合并压力传感器和压力变送器。看到这里,相信大家对压力传感器(压力变送器)有了新的认识,这是选择不可或缺的参数,例如:1,测量介质2,输出信号3,压力测量范围(量程)4,安装方法5,准确性要求6,工作温度根据上述要求,相信压力传感器(压力变送器)的选择将是清晰明了的。压力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器丨[url=http://mall.ofweek.com/2071.html]压力传感器[/url]丨电流传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制