当前位置: 仪器信息网 > 行业主题 > >

能量分析器

仪器信息网能量分析器专题为您提供2024年最新能量分析器价格报价、厂家品牌的相关信息, 包括能量分析器参数、型号等,不管是国产,还是进口品牌的能量分析器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合能量分析器相关的耗材配件、试剂标物,还有能量分析器相关的最新资讯、资料,以及能量分析器相关的解决方案。

能量分析器相关的论坛

  • 【求助】半球能量分析器的电子倍增器

    我们有一台比较老的Leybold仪器能谱仪使用的半球能量分析器的电子倍增器需要更换type 643/4EMAserial 7898Thorn EMI Electron tubesRuislip Middlesex HA4 7TA England拆下来看过,有很多级组成的那种,共16级上面有个序号:872083可有哪位大侠知道哪里还有卖这种型号的电子倍增器请告知联系方式谢谢!

  • 常见质量分析器

    [b]质量分析[/b][font=&]其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有:[/font][b]四极质量分析器(quadrupoleanalyzer)[/b][font=&]原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。[/font][b]扇形质量分析器[/b][font=&]磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。[/font][font=&]特点:分辨率低,对质量同、能量不同的离子分辨较困难。[/font][b]双聚焦质量分析器[/b][font=&](double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。[/font]

  • 质谱仪的质量分析器-磁式质量分析器的原理特点

    磁式质量分析器又称单聚焦质量分析器,具有结构简单、操作方便等特点,见图1。由于磁式质量分析器只做方向聚焦,故分辨能力较低。在电动力学里,运动的带电粒子会受到磁场的作用力,这个力又叫作洛伦兹力。洛伦兹力定律是一个基本公理,不是从别的理论推导出来的定律,而是由多次重复完成的实验所得到的同样的结果。假设初始速度为0质量为m、电荷为z的离子,在加速电压U作用下,进入磁场强度为B的磁场内,会受到磁场力的作用发生偏转。在加速电压的作用下,离子在进入磁场时的瞬时速度v为: D=(2Uz/m)[sup]1/2[/sup]在磁场中受到与运动方向垂直的磁场力的作用发生偏离,离子运动轨道变成圆周运动,即 mu[sup]2[/sup]/r=Bzv合并两式,质荷比m/z等于: m/z=r[sup]2[/sup]B[sup]2[/sup]/2U式中,r为偏转轨道半径;m是原子量单位;z是离子的电荷量。该方程式为磁式质谱的基本方程。从方程式可知偏转轨道半径r为:r=(1/B)(2Um/z)[sup]1/2[/sup]从该式可知,只要改变加速电压U和磁场强度B的数值,就可使不同质荷比(m/z)的离子运动轨道半径相同。这就是磁式质量分析器工作的基本原理。在离子加速电压不变的条件下,改变磁场强度B的数值,就可使不同质荷比(m/z)离子沿一个固定运动轨迹到达离子接收器。[img=39f8a0dace71923d12022fcea072a59.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643179072768968.jpg[/img]图1 磁式质量分析器示意图磁式质量分析器的工作原理是依照带电粒子的质荷比来分离的,而且上面公式( D=(2Uz/m)[sup]1/2[/sup])的一个理想条件是离子的初始动能为0,进入磁场的动能完全由加速电压来决定。但实际上离子在离子化和加速过程中初始动能并不相同且不等于0,如果同一质量的离子进入磁场时能量不同,它的运动轨迹也会不同,这就无法实现同一质量数离子的正常聚焦。这种离子能量分散现象会严重影响仪器的分辨率。为了克服离子能量分散对分辨率的影响,通常会在磁分析器前面加一个静电分析器,利用静电分析器对离子进行能量聚集,这就是我们下面要介绍的双聚焦质量分析器。

  • 质谱的质量分析器系统

    质量分析器系统由各种不同类型的电磁场组合而成,具有一定能量并聚焦良好的离子束经质量分析器后,可按质荷比的大小而分开。根据离子束的特点和分析工作的要求,质量分析器系统应具有足够的离子传输效率和分辨本领。通常,这两者是相互矛盾的。完善质量分析器离子光学系统的设计,就是要保证足够分辨本领的条件下,达到最高的离子传输效率。目前,设计良好的质量分析器系统的离子传输效率已接近100%。

  • 实验室分析仪器--气质联用离子源与质量分析器功能介绍

    离子源的作用是接受样品产生离子,常用的离子化方式有:[b]1、电子轰击离子化(electron impact ionization,EI)[/b]EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。[b]EI特点:[/b](1)电离效率高,能量分散小,结构简单,操作方便。(2)图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。(3)所得分子离子峰不强,有时不能识别。本法不适合于高分子量和热不稳定的化合物。[b]2、化学离子化(chemicalionization,CI)[/b]将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。[b]CI特点[/b](1)不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。(2)分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。(3)场致离子化(fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。[b]4、场解吸离子化( field desorption ionization,FD)[/b] 用于极性大、难气化、对热不稳定的化合物。[b]5、负离子化学离子化(negative ion chemical ionization,NICI)[/b]是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。[b]质量分析器[/b]其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有:[b]1、四极质量分析器(quadrupole analyzer)[/b]原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。[b]2、扇形质量分析器[/b]磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。特点:分辨率低,对质量同、能量不同的离子分辨较困难。[b]3、双聚焦质量分析器(double-focusing massassay)[/b]由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率

  • 实验分析仪器--质量分析器种类及性能特点分析

    质量分析器是利用电磁场(包括磁场、磁场与电场组合、高频电场、高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子按空间位置、时间先后或运动轨道稳定与否等形式分离的装置。[b]1.质量分析器种类[/b]质量分析器依据不同方式将离子源中生成的样品离子按质荷比m/z的大小分开。质量分析器主要分为:扇形磁场,飞行时间质量分析器,四极杆质量分析器,离子阱,傅里叶变换离子回旋共振分析器。扇形磁场是历史上最早出现的质量分析器,其利用不同质荷比的带电离子在稳定磁场内偏转的半径不同,将离子分开检测。飞行时间质量分析器则是利用不同质荷比的离子经加速电压加速后,飞过一定距离所需的时间不同,即质荷比小的离子飞行速度快,先到达检测器,质荷比大的飞行速度慢则后到,从而获得分离。四极杆、离子阱、傅里叶变换离子回旋共振、轨道阱等质量分析器是利用离子囚禁技术来实现对带电离子的捕获、储存、筛选及分离,即根据离子振动频率的方式来区分。质荷比小的离子,频率较大,质荷比大的离子,频率较小。四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,离子进入后,在交变电场作用下产生振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子有稳定的运动轨迹,能通过四极杆电极到达检测器,其他离子则由于振幅大而撞到极杆上,实现不同质荷比离子的分离检测。离子阱质量分析器由一个环形电极和两个端盖电极组成,当环电极施加射频电压,两个端电极接地时,就会形成一个电势阱,使离子能够长时间地囚禁于阱内,通过调整扫描参数,使离子运动的频率增加,当和外加频率共振时,离子从外场吸收能量、轨迹变大、抛出阱外而被检测。傅里叶变换离子回旋共振(FTICR)质量分析器是根据磁场中离子回旋频率来测量离子质荷比(m/z)。彭宁阱(Penning trap)捕获的离子被垂直于磁场的振荡电场激发形成一个更大的回旋半径,当回旋的离子束接近一对捕集板时,捕集板上会检测到感应电流信号。通过傅里叶变换,可以将这些电流信号转换成质谱信号。轨道阱(orbitrap)质量分析器是近年来发展的一种新型的质量分析器,其是利用作用在纺锤形电极上的静电场将离子束缚,通过测定离子轴向场的谐振运动频率来确定其质荷比。[b]2.质量分析器性能指标[/b]衡量一个质量分析器性能主要有5个指标:质量分析范围、分析速度、传输效率、质量精度和质量分辨率。质量分析范围决定了质量分析器可以分析离子的m/的上下限。通常用Th或u来表示一个离子带一个单位的正电荷,即z=1。分析速度又称扫描速度,用来描述质量分析器分析某段特定质量范围的速度。通常用每秒可以分析的质量单位(u/s)或每毫秒可以分析的质量单位(u/ms)表示。传输效率指的是可以到达检测器和进入质量分析器的离子数目的比值。传输效率包括在分析器的其他部分的离子丢失,如通过质量分析器前和后的电子透镜所丢失的离子。质量精度是指质谱仪测量m/z精确度的描述,它主要是指理论值m/Z理论和测量值m/Z测量值之间的差距。它可以用毫质量单位即mmu来表示,也可以用百万分之一([img=CodeCogsEqn(1).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166392876602.gif[/img])来表示。质量精度在很大程度上与仪器的稳定性和分辨率有关。质量分辨率,或者也可以说是分辨能力。分辨率指的是仪器可以获得两个具有微小质量差别的离子所对应信号的能力。两个质量峰被认为区分的条件是:当使用磁场或离子回旋共振分析器时,两个峰之间的峰谷的强度不高于两峰之间较弱峰强的10%,当使用四极杆、离子阱、TOF时,不高于50%。如果用△m来表示两个具有质量分别为m和m+△m的质谱峰可以被分开的最小质量,则分辨率R的定义为R=m/△m。[table][tr][td][b]项目[/b][/td][td][b]扇形磁场(magnetic)[/b][/td][td][b]飞行时间(TOP)[/b][/td][td][b]四级杆(quadrupole)[/b][/td][td][b]离子阱(ion trap)[/b][/td][td][b]傅里叶变换离子回旋共振(FTICR)[/b][/td][td][b]轨道阱(orbitrap)[/b][/td][/tr][tr][td]质量范围[/td][td]20000Th[/td][td]1000000Th[/td][td]4000Th[/td][td]6000Th[/td][td]30000Th[/td][td]50000Th[/td][/tr][tr][td]分辨率[/td][td]100000[/td][td]5000[/td][td]2000[/td][td]4000[/td][td]500000[/td][td]100000[/td][/tr][tr][td]质量精度[/td][td]10[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166392926197.gif[/img][/td][td]200[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393329357.gif[/img][/td][td]100[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393370078.gif[/img][/td][td]100[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393225800.gif[/img][/td][td]5[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166393208659.gif[/img][/td][td]5[img=CodeCogsEqn(19).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394336945.gif[/img][/td][/tr][tr][td]离子进入方式[/td][td]连续[/td][td]脉冲[/td][td]连续[/td][td]脉冲[/td][td]脉冲[/td][td]脉冲[/td][/tr][tr][td]工作压力[/td][td][img=CodeCogsEqn(20).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394700923.gif[/img]Torr[/td][td][img=CodeCogsEqn(20).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394998738.gif[/img]Torr[/td][td][img=CodeCogsEqn(21).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166394184126.gif[/img]Torr[/td][td][img=10的-3.gif]http://www.ewg1990.com/upload/image/20190116/10%E7%9A%84-33576495.gif[/img]Torr[/td][td][img=CodeCogsEqn(22).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395141047.gif[/img]Torr[/td][td][img=CodeCogsEqn(22).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395961052.gif[/img]Torr[/td][/tr][/table]表1常见质量分析器性能参数[b]3.质量分析器的特点及联用[/b]每个质量分析器都有其优缺点。如扇形磁场质量分析器重现性好,能够较快地进行扫描,但在目前出现的小型化质量分析器中,其所占的比重不大,因为如果降低磁场体积和重量将极大地影响磁场的强度,从而大大削弱其分析性能;四极杆质量分析器结构简单,易加工,成本低,但是其分辨率不高,杆体易被污染,维护和装调难度较大;离子阱质量分析器体积小,可在较高压力下(如0.1Pa)工作,能方便地进行级联质谱检测,尤其在质谱仪器小型化研制中具有无可比拟的优势;傅里叶变换离子回旋共振质量分析器具有更高的灵敏度和分辨率,但价格昂贵;飞行时间质量分析器最大的特点是检测离子的质量范围较大,适用于大分子化合物的分析。为了将质量分析器的优势最大化,可以把不同的质量分析器按一定顺序结合来实现仪器的通用性,在同一台质谱仪器上实现多种功能,如四极杆飞行时间质量分析器、离子阱-飞行时间质量分析器、离子阱-傅里叶变换离子回旋共振质量分析器等。质量分析器的联用可以分析由第一级质量分析器筛选出的离子碎裂后的碎片谱图。从筛选出的离子获得的碎片具有时间依赖性,可以在其后的质量分析器观察到。同时这些仪器允许碎裂的离子继续进行下一级的碎裂,形成多级碎片([img=CodeCogsEqn(10).gif]https://i4.antpedia.com/attachments/att/image/20220126/1643166395559110.gif[/img]),并且被检测到

  • 【征集质谱质量分析器的不同版本】秀出你的质谱质量分析器图片(PPT)

    [size=4][B]本次活动以质谱的质量分析器为主题,征集各类型分析器的图片和PPT,谁在最短时间内回复,根据回答情况将会获得此次活动的1-10分的奖励。[/B][/size]奖励方法:积极参与回答的,也将获得参与奖!1--5分最短时间回答全面正确的,将获得全部积分(10分)(活动结束)。[color=#00008B]质量分析器类型:质量分析其图片/PPT:[/color][color=#DC143C]如果你有好的idea或者创意,想发起活动,那么我们热烈欢迎和支持,需要任何帮助或者有任何疑问,请跟我们的版主联系,我们将为板油提供大力的支持![/color]

  • 实验室分析仪器--质谱仪扇形电磁质量分析器原理及现状

    [b]1.基本原理[/b]在离子源的出口处,离子的动能为[img=image.png,132,52]https://i2.antpedia.com/attachments/att/image/20220126/1643167362417733.png[/img](1)式中,m为离子质量;q为离子电荷;V[sub]s[/sub]为离子源电压。[b](1)离子在磁场中的运动 [/b]如果离子运动方向和磁场方向垂直,离子所受到的磁场力F[sub]M[/sub]的大小如式(2)所示。[img=image.png,97,30]https://i2.antpedia.com/attachments/att/image/20220126/1643167362609171.png[/img](2)向心力与磁场力相等,因而有[img=image.png,205,56]https://i2.antpedia.com/attachments/att/image/20220126/1643167363983837.png[/img](3)离子在磁场中的运动如图1所示。 [img=image.png,500,252]https://i2.antpedia.com/attachments/att/image/20220126/1643167364125938.png[/img]图1 离子在磁场中的运动当把离子的初始动能(离子在离子源出口处的动能)考虑进来时[式(1)],就有[img=image.png,103,69]https://i2.antpedia.com/attachments/att/image/20220126/1643167365259925.png[/img](4)如果离子在磁场中作圆周运动的半径r一定,那么在给定的磁场强度B下,只有拥有相应m/q值的离子能够通过该质量分析器。随时间改变磁场强度B即可依次观察到不同m/q的离子。除了固定半径r,通过扫描磁场强度来依次检测离子外,还可以利用具有相同动能、不同质荷比的离子具有不同的运动半径r这一特性来进行检测。具体检测方法还将在“2.工作方式”部分详细阐述。注意到,从式(1)和式(4)可以得到如下关系式:[img=image.png,124,68]https://i2.antpedia.com/attachments/att/image/20220126/1643167365867400.png[/img](5)这一结果说明,在一定磁场强度下,具有一定电荷和质量的离子会因其动能不同而分散这样的分散会影响质谱的分辨率。为了避免这一情况,动能分散必须加以控制。这是通过添加静电分析器来实现的。[b](2)离子在静电场中的运动 [/b]假设由圆柱体电容器产生一个静电场,轨道形状为圆形,速度方向一直垂直于该电场方向。那么就有如下关系式:[img=image.png,113,61]https://i2.antpedia.com/attachments/att/image/20220126/1643167365251860.png[/img](6)式中,E为静电场强度。引入初始动能公式,则有[img=image.png,88,60]https://i2.antpedia.com/attachments/att/image/20220126/1643167366557255.png[/img](7)由式(7)可以看出,离子运动半径与离子质量是无关的,静电场并不是一个质量分析器,而是一个动能分析器。扇形静电场根据动能不同来分离离子。因而可以用来对磁分析器中的动能分散现象加以校正。具体内容参见后面“②能量聚焦”部分内容。[b](3)扇形电磁质量分析器的色散效应 [/b]质量分析器的分辨率与离子在质量分析器出口处的色散情况有关:如果离子进入电场或磁场时具有不同的动能,那么它们的运动轨道半径将不同,这叫作能量色散;如果离子进入电场或磁场时的角度不同,那么随着离子在场中的运动,这一差别可能会越来越大,这叫作角度色散。[b]①扇形电磁质量分析器的方向聚焦能力[/b] 正如前面所讲到的,当一个离子进入磁场时的运动方向正好垂直于磁场边缘时,该离子在磁场中将做圆周运动。如果另一个离子以一定的角度(α)进入磁场,它的运动半径仍与前者相同,两者将在离开扇形磁场后一定距离后再次会聚(见图2)。因此,正确选择扇形磁场的尺寸将可以聚焦进入磁场的离子束。而当离子进入扇形电场的运动方向垂直于电场边缘时,该离子在电场中将作曲线运动。然而,当离子的初始运动方向与电场方向不垂直时,离子的运动轨迹长度将与其初始运动方向有关:如初始运动方向靠近电场外沿,则运动轨迹长度较长;相反,则较短(见图3)这一现象也可以用来进行方向聚焦,只需选择恰当的扇形电场尺寸即可。[img=image.png,500,358]https://i2.antpedia.com/attachments/att/image/20220126/1643167366868959.png[/img]图2 扇形磁场分析器的方向聚焦示意图 [img=image.png,500,237]https://i2.antpedia.com/attachments/att/image/20220126/1643167367167962.png[/img]图3 扇形电场分析器的方向聚焦[b]②能量聚焦[/b] 由前面的叙述我们得知,磁场具有方向聚焦、质量色散和能量色散的功能,而静电场具有方向聚焦、能量色散的功能。当一束具有不同动能的离子从离子源发出进入扇形电场和磁场分析器后,会产生能量分散和方向聚焦。如果具有相同能量分散的扇形电场和扇形磁场按如图4所示的方式组合,离子源发出的离子首先经过聚焦进入电场,电场将不同动能的离子加以区分后,离子又进入磁分析器。磁分析器根据离子的m/z值对离子加以区分,同时,也会将具有不同动能的离子聚集到不同的位置。原则上说,两种分析器由于离子动能不同都会造成能量分散,但该分散的方向恰好相反,因而只要恰当安排这两种分析器,能量分散现象就会相互抵消。经过这两个场之后,质量相同而能量(即速度)有分散的离子就能重新聚集在检测器的同一点。[img=image.png,500,225]https://i2.antpedia.com/attachments/att/image/20220126/1643167371621283.png[/img]图4 扇形电磁质量分析器示意图[b]2.工作方式[/b]扇形电磁质量分析器最简单的工作方式就是保持加速电压不变,通过扫描磁场强度来实现不同质荷比离子的分别检测。经典的磁质谱并不太适合快速扫描,这是由诸多原因造成的,如磁场的快速变化引起的磁滞现象和涡电流现象等。因而该质谱不能与需要快速扫描的色谱技术联用。新的电磁铁制造技术使这个问题得到了一定程度的解决。另一种工作方式是电压扫描,即磁场强度不变,电场强度改变。扇形电场分析器的电压与加速电压是相关联的。这种扫描方式没有了磁滞现象的影响,因而质荷比与加速电压的关系是线性的,可以得到较好的质量准确度。此外,电磁质量分析器可以以峰匹配的模式进行工作即保持磁场强度不变,扇形电场和加速电压在根小的质荷比范围内进行扫描。这种方式可以提供最佳的准确度和质量分辨能力,适合于分析质量非常接近的两种离子或在高分辨率下确定元素组成的分析中。[b]3.性能参数[/b]扇形电磁质量分析器的分辨能力和准确度与其工作方式有很大关系。在最佳的峰匹配工作模式下,该类仪器可以获得高达100000的分辨率分辨率的大小由狭缝宽度所控制,要得到较高的分辨率,必须减小狭缝宽度,而这意味着进入分析器的离子数量减少。因而,扇形电磁质量分析器的灵敏度和分辨率是两个相互制约的因素。扇形电磁质量分析器所能分析的质荷比上限取决于磁体本身。此外,加速电压越高,所能测到的质荷比范围越小;而加速电压越高,灵敏度越高。因而需权衡质荷比范围和灵敏度二者的关系。商用的扇形电磁质量分析器所给出的质荷比测定范围为10kTh。扇形电磁质量分析器通常具有很好的重现性、很好的定量分析能力以及很宽的动态分析范围。这是因为在该种分析过程中,离子在离子源处较短的停留时间以及较短的分析器中飞行时间减少了离子与中性分子或其他离子之间的相互干扰,缩小了空间电荷效应。通常,扇形电磁质量分析器的定量分析能力是所有质谱类型当中最强的。分析速度与分析器的工作方式有很大的关系。扫描速率会对分析器的分辨率和质量准确度造成影响,因而如果要得到高质量的分析数据,那么就得考虑降低扫描速率。扇形电磁质量分析器与连续离子源(如ESI、SIMS、ICP、EI、Cl等)的兼容性非常好,尽管有 MALDI与扇形质量分析器相连接的报道,但它其实并不太适合与脉冲式离子源进行连接,扇形仪器通常都较其他质量分析仪(如TOF、四极杆和离子阱)更贵,体积也更庞大。[b]4.发展历史和现状[/b]在1910年左右,Thomson用磁场和电场来分离具有不同质量和能量的离子。几年之后,Dempster 利用可变的磁场来扫描一定的m/z区域。高分辨、双聚焦的质量分析器分别由 Mattauch 和 Herzog在20世纪30年代、 Johnson和Nier在20世纪50年代研制而成。若干年前,双聚焦扇形分析器是质谱仪中的佼佼者,它在绝大多数方面都表现出非常好的能力,除了质量分析范围不如飞行时间质谱(TOF)宽外,在 MALDI出现之前,质荷比范围上限m/z=10kTh已经足够了。四个扇形分析器的质谱仪可以用来获得MS/MS数据,但仪器体积过于庞大。近年来,根据分析过程的具体要求,这些仪器大都被Q-TOF和 FTICR所取代。Q-TOF能够提供很好的MS/MS数据,并且体积小,价格也比电磁分析器要低很多。如果要实现高分辨率和高质量准确度, FTICR(或后来发展的轨道离子阱)更能适应要求,且所占空间也更小。然而,扇形电磁质量分析器在高分辨率定量分析方面的地位仍是不可动摇的,如确定同位素比例、分析有毒物质及其类似物(如二噁英)方面。由于这些分析都是小分子范围甚至是原子级的,因而现代扇形电磁质量分析器大都是双扇形电磁质量分析器,这相对来说较为节省空间

  • 【分享】采购中,简单说说质谱-质量分析器。。

    【分享】采购中,简单说说质谱-质量分析器。。

    对于使用过的高手就当是复习一下质谱-质量分析器[em0903]如果这是方面的新手,就当是普及一下基础知识..[size=4][font=黑体][url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子能够被适当的电场或磁场在空间或时间上按照质荷比的大小进行分离。广义地说,能够将气态离子进行分离分辨的器件就是质量分析器。在质谱仪器中,也使用或研究过多种多样的质量分析器,此处只介绍在商品仪器中广泛使用的质量分析器,即扇形磁场、飞行时间质量分析器、四极杆质量分析器、四极杆离子阱和离子回旋共振质量分析器。[/font][/size] [img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904171034_144745_1603372_3.jpg[/img]

  • 简述四级杆质量分析器原理

    质量分析器是依据不同方式将离子源中生成的样品离子按质荷比m/z的大小分开的仪器,是质谱仪的重要组成部件,位于离子源和检测器之间。质量分析仪器主要包括单聚焦质量分析器、双聚焦质量分析器 、四极杆质量分析器 、离子阱质量分析器、傅立叶变换离子回旋共振(FT-ICR) 以及飞行时间质量分析器(TOF)。  四极杆质量分析器是由四根平行的圆柱形金属极杆组成,相对的极杆被对角地连接起来,构成两组电极。在两电极间加有数值相等方向相反的直流电压Ude和射频交流电压Urf。四根极杆内所包围的空间便产生双曲线形电场。从离子源入射的加速离子穿过四极杆双曲型电场中,会受到电场作用,只有选定的m/z离子以限定的频率稳定地通过四极滤质器,其它离子则碰到极杆上被吸滤掉,不能通过四极杆滤质器,即达到"滤质"的作用。碎片离子的共振频率与四支电极的频率相同时,才可通过电极孔隙到达检测器,改变扫描频率可使不同质荷比的离子通过。实际上在一定条件下,被检测离子(m/z)与电压呈线性关系。因此,改变直流和射频交流电压可达到质量扫描的目的,这就是四极滤质器的工作原理。由于四极滤质器结构紧凑,体积小,扫描速度快,适用于色谱-质谱联用仪器。  优点:  四极杆质量分析器是一种无磁分析器,体积小,重量轻,操作方便,扫描速度快,分辨率较高,适用于色谱—质谱联用仪器。

  • 质谱的质量分析器,你知道多少?

    我就知道四级杆,离子阱,飞行时间这三种,百度一下原理,跟大家分享:四极杆(Quadrupole):由四根带有直流电压(DC)和叠加的射频电压(RF)的准确平行杆构成,相对的一对电极是等电位的,两对电极之间电位相反。当一组质荷比不同的离子进入由DC和RF组成的电场时,只有满足特定条件的离子作稳定振荡通过四极杆,到达监测器而被检测。通过扫描RF场可以获得质谱图。四极杆成本低,价格便宜,虽然目前日常分析的质荷比的范围只能达到3000,但由于分析器内部可容许较高压力,很适合在大气压条件下产生离子的ESI离子化方式,并且,ESI电离最突出特点是产生多电荷,蛋白质和其他生物分子电喷雾电离所产生的电荷分布一般在3000以下,所以四极杆广泛地与ESI联用。另外,三重四极杆由于可以做多级质谱,定量也方便,使用极为广泛。离子阱(Ion trap):由一对环形电极(ring electrod)和两个呈双曲面形的端盖电极(end cap electrode)组成。在环形电极上加射频电压或再加直流电压,上下两个端盖电极接地。逐渐增大射频电压的最高值,离子进入不稳定区,由端盖极上的小孔排出。因此,当射频电压的最高值逐渐增高时,质荷比从小到大的离子逐次排除并被记录而获得质谱图。离子阱质谱可以很方便地进行多级质谱分析,对于物质结构的鉴定非常有用。  在质谱的使用过程中,离子阱被认为做定性方面有较大优势;而四极杆在定量方面有优势。  离子阱在做多级MS方面有性能(非常容易就能做到3级以上的MS)和成本(只用一个阱就能做)上的优势;而四极杆只能做到二级MS(三重四极杆仪器),且价格较贵。 飞行时间质谱 Time of Flight Mass Spectrometer (TOF)   是一种很常用的质谱仪。这种质谱仪的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。飞行时间质谱仪可检测的分子量范围大,扫描速度快,仪器结构简单。这种飞行时间质谱仪的主要缺点是分辨率低,因为离子在离开在离子源时初始能量不同,使得具有相同质荷比的离子达到检测器的时间有一定分布,造成分辨能力下降。改进的方法之一是在线性检测器前面的加上一组静电场反射镜,将自由飞行中的离子反推回去,初始能量大的离子由于初始速度快,进入静电场反射镜的距离长,返回时的路程也就长,初始能量小的离子返回时的路程短,这样就会在返回路程的一定位置聚焦,从而改善了仪器的分辨能力。这种带有静电场反射镜的飞行时间质谱仪被称为反射式飞行时间质谱仪/Reflectron time-of-flight mass spectrometer。我暂时接触的都是四级杆的,有没有人愿意分享一下离子阱和飞行时间的优势呢?怎样选择我们的质量分析器呢?

  • 实验室分析仪器--质谱仪四极杆质量分析器结构及原理

    四极杆质谱仪自20世纪50年代问世以来,目前已成为最主要的质量分析器之一,其体积小、结构简单、造价低廉,且性能相对优秀。对于一般用途而言,其价值和性能都具有较为明显的优势。早期的四极杆质谱仪最大的限制在于其小的质量范围,一般在几百以内,但如今新一代仪器的质量分析范围已经可以较为普遍地达到3000,甚至更高。[b]1.基本原理[/b]四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,金属杆的截面多为双曲线,但也可以简单地制作为圆形或其他形状。图1为一种双曲线截面四极杆质量分析器的示意图。相对的两根极杆连接在一起,施加相同的电压,两组极杆电压相反。施加的电压由直流分量和交流分量叠加而成。从而,形成了一个在电极间对称于z轴(垂直于x-y平面)的电场分布。离子束进入电场后,在交变电场作用下产生了振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子能通过电场到达检测器,其他离子则由于振幅增大而撞到极杆上。 [img=image.png,500,203]https://i2.antpedia.com/attachments/att/image/20220126/1643167399292927.png[/img]图1 四极杆质量分析器示意图[b]2.三重四极杆[/b]利用三重四极杆,可以实现多级质谱分析。第二个四极杆(现在多数为六极杆或八极杆)并不是用于离子的选择和扫描的,而是作为一个含有气体的碰撞池。利用这样的装置,就可以实现低能的CID碎裂。这种手段虽然能较为高效地产生碎片离子,但是仪器与仪器之间的重复性并不好。这是由于碰撞气体的选择、气压、碰撞能量以及其他相关参数都会较为严重地影响二级质谱谱图。得到碎片离子后,离子进入第三个四极杆进行分析。三重四极杆最大的优势在于能够对母离子进行扫描并且筛选出其中某一个母离子进行碎裂分析检测。 [img=image.png,500,380]https://i2.antpedia.com/attachments/att/image/20220126/1643167401866561.png[/img]图2 二维四极场的稳定区图(I 和Ⅱ代表第一和第二稳定区)与扇形分析器类似,四极杆分析器非常适用于连续离子源,例如电喷雾离子源(ESI),并不太合适脉冲离子源,例如基质辅助激光解吸电离源(MALDI),但目前仍然有文章报道利用三重四极杆分析器检测 MALDI离子源产生的样品。四极杆质谱仪价格相对便宜,体积小,因此经常与[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用

  • 有关质谱离子化方式、质量分析器的图片

    在这个网页上 http://www.proteomics.ac.cn/cpic.html常见图表—离子化方式I: 快原子攻击(FAB)离子化方式II: 基质辅助激光解析(MALDI)离子化方式III: 电喷雾(ESI)美妙的 nano-ESI 喷雾照片 质量分析器I: 双聚焦质谱 质量分析器II : 三级四级杆质谱 质量分析器III : 离子阱质谱 质量分析器IV: 飞行管质谱质量分析器V: 傅立叶回旋变换质谱 不同质量分析器的比较 MALDI原理图Q-Tof原理图 盐和胶粒对MALDI 等等希望对大家有帮助。

  • 【原创】质量分析器 大讨论,悬赏了!

    您的GC-MS用的是什么质量分析器?你认为这类分析器的优缺点是什么?如果再给你一次机会,你会选择什么样的质量分析器?跟帖格式:--------------------------------------质量分析器类型:我觉得这类分析器的优缺点:如果再给我一次机会,我会选择:--------------------------------------欢迎各位版友积极发表看法,分数不多了啊,快快!

  • 【学习心得之二十二】液质三种主要质量分析器的比较以及大家的认识

    在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]中,比较常见的就是三种质量分析器,包括四级杆分析器、飞行时间质量分析器和离子肼。首先我给大家讲述一下它们的主要使用领域,然后给大家总结了他们组成结构以及原理上存在的不同,最后希望大家也来谈一谈你们对于这个不同类型质量分析器的认识,可以是感性的,当然也可以是理性的认识。[color=#DC143C][B][center]第一部分:四级杆分析器、飞行时间质量分析器和离子肼分析器的使用领域[/center][/B][/color]根据应用领域的不同所使用的分析器是不一样的,四级杆分析器则较多的应用于药物分析,进行定性定量的研究中;飞行时间质量分析器和离子肼则主要是应用于代谢领域,目的是以定性为主,定量次之。[color=#DC143C][B][center]第二部分:我对三种质量分析器组成结构以及原理的总结[/center][/B][/color]这三种分析器的不同,主要是组成和原理的不同:1、四级杆分析器主要由四根棒状电极组成,一般使用的是镀金陶瓷或者钼合金,由四级电场来选择目标离子,两根的电压为正,另外两根为负,电压由直流电压和射频电压组成,直流电压和射频电压的比值是恒定的,通过改变射频电压来筛选特定质荷比离子,遵循的是马蒂厄微分方程规律,具体是这个方程是怎样的其实无需知道太多;2、飞行时间质量分析器无需电场或磁场,通过离子漂移管,给离子以加速电压,通过离子的飞行时间来确定离子荷质比,飞行时间与离子质量平方根成正比,在所加电压能量相同的情况下,离子质量越大则到达检测器所需时间就越长;3、离子肼的主体是由一个环电极加上下两个盖电极组成的,与四级杆分析器相同,遵循的也是马蒂厄微分方程。质量扫描方式与四级杆类似,在恒定的直流电压和射频电压的比值下,改变射频电压来获取质谱。[color=#DC143C][B][center]第三部分:大家对这三种质量分析器的认识,包括感性和理性的[/center][/B][/color]在谈到[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]分析器时,论坛里讨论四级杆分析器的板油占大部分,而其他的相对较少,这也主要是因为我们几个斑竹使用三重四级杆稍微多一些的原因所导致的,大家可以来谈下你对这三种分析器的认识,可以是原理上的,可以是组成上的,可以是实际仪器使用的心得体会,可以是感性的认识,也可以是理性的看法都可以谈谈。

  • 【参数解读】解析质谱质量分析器的技术参数及评价

    【参数解读】解析质谱质量分析器的技术参数及评价

    质谱质量分析器:是将离子束按质荷比进行分离的装置,它的作用是将离子源中形成的离子按质荷比的大小不同分开。它的结构有单聚焦、双聚焦、四极矩、飞行时间和摆线等。也就是我们常说的扇形磁分析器、四极杆分析器、离子阱分析器、飞行时间分析器、傅里叶离子回旋共振变换分析器。http://ng1.17img.cn/bbsfiles/images/2013/06/201306052251_443222_1608710_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/06/201306052251_443223_1608710_3.jpg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆列举部分仪器的个别参数,供参考:质量范围:m/z 10-3000amu。质量数稳定性: ±0.1 m/z最大扫描速率: ≥ 5000 Da/s。质量精度:≤0.1amu动态范围:(有动态与静态之分吗)〓〓〓〓〓〓〓〓〓〓〓〓〓〓分割线〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓请您来解析:1、质量范围大小与什么相关?范围大,会影响精确度吗?2、你认为质谱的质量数稳定性应该为多少合适?3、扫描速率对测试有什么影响?4、说说你知道的各质量分析器主要使用领域。5、你认为各种质量分析器的优缺点是什么?6、你的实验室质谱仪都是什么质量分析器,谈谈对它的看法。欢迎大家参与讨论,补充自己想交流的参数,说说自己的认识或者提出自己的疑问!!!往期回顾:【参数解读】解析原子吸收光谱仪的技术参数或指标

  • 实验室分析仪器--质谱仪四极杆质量分析器结构及原理

    四极杆质谱仪自20世纪50年代问世以来,目前已成为最主要的质量分析器之一,其体积小、结构简单、造价低廉,且性能相对优秀。对于一般用途而言,其价值和性能都具有较为明显的优势。早期的四极杆质谱仪最大的限制在于其小的质量范围,一般在几百以内,但如今新一代仪器的质量分析范围已经可以较为普遍地达到3000,甚至更高。[b]1.基本原理[/b]四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,金属杆的截面多为双曲线,但也可以简单地制作为圆形或其他形状。图1为一种双曲线截面四极杆质量分析器的示意图。相对的两根极杆连接在一起,施加相同的电压,两组极杆电压相反。施加的电压由直流分量和交流分量叠加而成。从而,形成了一个在电极间对称于z轴(垂直于x-y平面)的电场分布。离子束进入电场后,在交变电场作用下产生了振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子能通过电场到达检测器,其他离子则由于振幅增大而撞到极杆上。 [img=image.png,500,203]https://i2.antpedia.com/attachments/att/image/20220126/1643167399292927.png[/img]图1 四极杆质量分析器示意图[b]2.三重四极杆[/b]利用三重四极杆,可以实现多级质谱分析。第二个四极杆(现在多数为六极杆或八极杆)并不是用于离子的选择和扫描的,而是作为一个含有气体的碰撞池。利用这样的装置,就可以实现低能的CID碎裂。这种手段虽然能较为高效地产生碎片离子,但是仪器与仪器之间的重复性并不好。这是由于碰撞气体的选择、气压、碰撞能量以及其他相关参数都会较为严重地影响二级质谱谱图。得到碎片离子后,离子进入第三个四极杆进行分析。三重四极杆最大的优势在于能够对母离子进行扫描并且筛选出其中某一个母离子进行碎裂分析检测。 [img=image.png,500,380]https://i2.antpedia.com/attachments/att/image/20220126/1643167401866561.png[/img]图2 二维四极场的稳定区图(I 和Ⅱ代表第一和第二稳定区)与扇形分析器类似,四极杆分析器非常适用于连续离子源,例如电喷雾离子源(ESI),并不太合适脉冲离子源,例如基质辅助激光解吸电离源(MALDI),但目前仍然有文章报道利用三重四极杆分析器检测 MALDI离子源产生的样品。四极杆质谱仪价格相对便宜,体积小,因此经常与[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用

  • 【质谱比较】质谱质量分析器的类型、区别及特点

    气相离子能够被适当的电场或磁场在空间或时间上按照质荷比的大小进行分离。广义地说,能够将气态离子进行分离分辨的器件就是质量分析器。在质谱仪器中,也使用或研究过多种多样的质量分析器,这里我们就集中对质量分析器做一个认识和探讨。本期主题:质谱质量分析器的类型、区别及特点讨论内容:1、你的仪器质量分析器的类型及主要使用领域是什么?2、你认为各种质量分析器的优点是什么?3、根据应用,我们应该如何来选择适合的质量分析器?...................等等相关的讨论筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇=总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • GC—MS的质量分析器

    用于质谱仪的质量分析器种类很多。GC—MS的质量分析器多用四极杆分析器,也有使用离子阱或飞行时间分析器的。HP5973使用的是四极杆分析器。它由4根棒状镀金陶瓷电极组成。相对两根电极施加电压(vdc,+vrf),另外两根电极施加电压-( vdc,+vrf)。其中Vdc为直流电压,Vrf为射频电压。4个棒状电极组成一个四极电场。  离子从离子源进入四极场后,在场的作用下产生振动,数学计算表明,在保持Vrf/Va。不变的情况下,对应于一个特定的Vrf值,四极场只允许一种质荷比的离子通过,到达检测器被检测。其余离子的振幅不断增大,最后碰到四极杆而被吸收。改变Vrf值,可以使另外质荷比的离子顺序通过四极场实现质量扫描。设置扫描范围实际上是设置Vrf的变化范围。当vrf由一个值变化到另一个值时,检测器检测到的离子就会从m1变化到m2,也即得到一个m1到m2的质谱。该质谱被送到计算机储存。Vrf的变化速度是可调的,因此可以人为地设置一次扫描所用的时间(即扫描时间)。

  • 各类质谱仪质量分析器及其特性

    各类质谱仪质量分析器及其特性

    质谱仪种类很多,一般以质量分析器分类。根据质量范围大小和分辨率高低可分为高、中、低档仪器,其结构特点、体积、适用范围不同,价格也有很大的差异。不同质量分析器可以串联,获得性能更好的仪器 。 质谱仪器各类质量分析器概览 http://ng1.17img.cn/bbsfiles/images/2015/12/201512171102_578409_2984502_3.jpg 质量分析器特性 真空状态下,根据离子在不同场中的运动规律,将离子源产生的离子按 m/z大小分离 各类质量分析器特性 http://ng1.17img.cn/bbsfiles/images/2015/12/201512171103_578410_2984502_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512171104_578411_2984502_3.jpg 各类质量分析器串联组合总览表http://ng1.17img.cn/bbsfiles/images/2015/12/201512171105_578412_2984502_3.jpg

  • 【原创大赛】质量分析器新理论初探

    摘 要本文主要说明一种带电粒子的加速方法,以及应用本加速方法形成的多种质量分析器,在质谱分析检测方面有多种应用。真空中带电粒子在加速电场中被加速,控制加速电压或电场,使各种带电粒子被加速的时间相同,相同电荷数的带电粒子增加相同的动量,此运动特征可以应用于多种质量分析器,可以提高现有质量分析器的性能,也可以创造出新类型的质量分析器。本文提出了六种应用方法:高分辨飞行时间质量分析器、扇形电场质量分析器、静电场偏转质量分析器、脉冲电场偏转质量分析器、扇形磁场质量分析器,环柱形电场质量分析器,并从这些质量分析器中总结出一些带电粒子在电场或磁场中的运动规律。1.前言质谱技术在同位素分析、化学分析、生命科学分析中有广泛的应用,其基本原理是:在真空中,将样品离子化变成带电粒子,通过质量分析器进行分离,检测出各种质量数离子的数量,从而得到样品的定性、定量信息。在质谱技术中,质量分析器是最核心的部件,按其种类可将质谱分为以下五种:(1)磁质谱。带电粒子被加速后进入磁场,不同质荷比的粒子偏转情况不同,使各种质荷比的粒子分离。(2)四极杆质谱。带电粒子被引入四极杆滤质器,只有与四极杆上所加射频电场发生共振的特定质荷比的粒子可以通过,使各种质荷比的粒子分离。(3)飞行时间质谱。带电粒子被加速后,不同质荷比的粒子速度不同,经过一段无场飞行,到达检测器的时间不同,使各种质荷比的粒子分离。(4)离子阱质谱。带电粒子被引入离子阱,只有与阱上所加射频电场发生共振的特定质荷比的粒子可以在阱中稳定振荡飞行,使各种质荷比的粒子分离。(5)傅立叶变换-回旋振荡质谱。带电粒子被引入电场和磁场共同作用区,在射频电场作用下回旋振荡,产生的象电流信号用傅立叶变换处理,得到各种质荷比的粒子信号。还有两种质谱:二维线性离子阱质谱,可看作离子阱质谱改进的变体,本质仍然是离子阱质谱;Orbitrap质谱,可看作离子阱质谱和傅立叶变换-回旋振荡质谱的杂合质谱。在这里不作为单独的质谱类型列出。以上五种质谱,带电粒子要进入质量分析器,都需要用电场加速。但是四极杆质谱、离子阱质谱、傅立叶变换-回旋振荡质谱中,带电粒子进入质量分析器的初速度对质量分析影响很小,可以忽略不计;而磁质谱、飞行时间质谱中,带电粒子进入质量分析器的初速度对质量分析起决定作用,带电粒子加速装置是质量分析器的一部分。本文从现有的带电粒子加速方法改进,创新出一种新的加速成方法,使带电粒子具有一定的运动特征,这种特征用于质谱技术中,可以改进现有某些种类质量分析器的性能,也可以创造出多种新类型的质量分析器,并从这些质量分析器中总结出一些带电粒子在电场或磁场中的运动规律。2.现有质量分析器中带电粒子加速方法在磁质谱、飞行时间质谱中,带电粒子加速装置如图1http://ng1.17img.cn/bbsfiles/images/2013/01/201301010001_417898_1626978_3.gif在两个或多个平行电极上加一定电压,电极之间形成加速电场,带电粒子在电场作用下被加速,从电极上的小孔或狭缝射出。转换加速电压的正负极性,可以选择射出带电粒子的正负极性。假设加速电压为http://ng1.17img.cn/bbsfiles/images/2013/01/201301010630_417989_1626978_3.gif,带电粒子质量为http://ng1.17img.cn/bbsfiles/images/2013/01/201301010630_417990_1626978_3.gif,电量为http://ng1.17img.cn/bbsfiles/images/2013/01/201301010631_417991_1626978_3.gif,初速度为0,则带电粒子从加速电极射出时,电场对带电粒子所做的功等于带电粒子的动能:http://ng1.17img.cn/bbsfiles/images/2013/01/201301010126_417922_1626978_3.gif带电粒子从加速电极射出时速度为:http://ng1.17img.cn/bbsfiles/images/2013/01/201301010131_417923_1626978_3.gif1.本文创新的带电粒子加速方法3.1 本文提出一种新的加速方法,加速装置如图1,在两个或多个平行电极上加一定电压,电极之间形成加速电场,带电粒子在电场中加速一定时间,在带电粒子飞出电场之前撤消加速电场,或者部分带电粒子飞出电场,还有部分没有飞出电场时撤消加速电场。撤消加速电场即加速电压降为0V或接近0V。`新加速方法结果是:加速后没有飞出原加速电场区域的所有带电粒子被加速的时间相同,速度为http://ng1.17img.cn/bbsfiles/images/2013/01/201301010139_417925_1626978_3.gif其中http://ng1.17img.cn/bbsfiles/images/2013/01/201301010143_417926_1626978_3.gif是带电粒子的初速度,为方便计算假设http://ng1.17img.cn/bbsfiles/images/2013/01/201301010557_417982_1626978_3.gif,http://ng1.17img.cn/bbsfiles/images/2013/01/201301010557_417983_1626978_3.gif时下面(3)式会多一个常数项,不影响带电粒子的主要运运规律,http://ng1.17img.cn/bbsfiles/images/2013/01/201301010600_417985_1626978_3.gif是带电粒子被加速的时间,为常数。又因为加速度http://ng1.17img.cn/bbsfiles/images/2013/01/201301010607_417986_1626978_3.gif,其中http://ng1.17img.cn/bbsfiles/images/2013/01/201301010608_417987_1626978_3.gif是带电粒子的质量,http://ng1.17img.cn/bbsfiles/images/2013/01/201301010612_417988_1626978_3.gif是带电粒子在加速电场中所受的电场力,得http://ng1.17img.cn/bbsfiles/images/2013/01/201301010151_417927_1626978_3.gif电场力http://ng1.17img.cn/bbsfiles/images/2013/01/201301010155_417928_1626978_3.gif,其中http://ng1.17img.cn/bbsf

  • 质谱中常见的四种质量分析器有哪些?

    质谱仪是分离和检测不同同位素的仪器。质量分析器是质谱仪器的核心,由质量分析器的不同构成了不同种类的质谱仪器。是将离子源产生的离子按m/z顺序分开并排列成谱的仪器。[align=center][url=https://www.antpedia.com/batch.download.php?aid=269216][img]https://i3.antpedia.com/attachments/2020/03/105659_202003201526121.jpg[/img][/url][/align]  常见的质量分析仪器包括四极杆质量分析器 、离子阱质量分析器、傅立叶变换离子回旋共振(FT-ICR) 以及飞行时间质量分析器(TOF)。  四极杆质谱分析器是目前最成熟、应用最广泛的小型质谱计之一。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱( GC/MS)和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱(LC/MS) 联用仪中,四极杆是最常用的质量分析器之一。  离子阱质量分析器具有灵敏度高、质量范围大、结构简单、可实现多级串联质谱MSn等优点。  飞行时间质谱计检测离子的质荷比是没有上限的,这就特别适合于生物大分子的测定。  傅立叶变换离子回旋共振(FT-ICR)的分辨率极高,远远超过其它质谱分析器,可完成多级(时间上)串联质谱的操作,可采用各种电离方式,便于与色谱仪联机;具有灵敏度高、质量范围宽、速度快、性能可靠等优点

  • 质量分析器问题

    有专家能浅显解释一下这些质量分析器的原理和应用吗,Q和QQQ不用解释,特别是线性离子阱和静电场轨道阱构造,原理,能力有什么区别?[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2021/11/202111272149517123_9616_3485549_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制