当前位置: 仪器信息网 > 行业主题 > >

比表面积及孔径测定仪

仪器信息网比表面积及孔径测定仪专题为您提供2024年最新比表面积及孔径测定仪价格报价、厂家品牌的相关信息, 包括比表面积及孔径测定仪参数、型号等,不管是国产,还是进口品牌的比表面积及孔径测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合比表面积及孔径测定仪相关的耗材配件、试剂标物,还有比表面积及孔径测定仪相关的最新资讯、资料,以及比表面积及孔径测定仪相关的解决方案。

比表面积及孔径测定仪相关的论坛

  • 【分享】选择比表面积孔径测定仪注意的问题!

    如何选择比表面积孔径测定仪注意的问题?——李鹏 北京彼奥德电子有限公司在工业上,固体高度分散后的固体比表面积的测定和分析(微观结构性能),对于吸附,催化,色谱,冶金,陶瓷,建筑材料的生产和研究工作都有重要意义。在定温下,测定不同相对压力时的气体在固体表面的吸附量后,基于布朗诺尔-埃米特-泰勒(BET)的多层吸附理论及其公式可计算出固体的比表面积,基于凯尔文的毛细管凝理论及其公式,惠勒关于综合考虑毛细管凝聚和多层吸附的理论,原则上便可以计算出固体精细比表面积。一款比表面积孔径测定仪的性能主要体现在1.气体流量怎样自动设定?孔径分布测定,需要测定几十甚至上千个吸附、脱附点。如果是手动设定气体流量,每设定一个点,需5至20分钟(精确度低于1毫升的流量,无法手动精确设定),假如某个样品需要测定100种孔径,若用手动设定流量,仅仅是在流量设定上就要耗废8至33小时。2.吸附及脱附自动化控制?每吸附及脱附一次需要大约10分钟时间(时间长短与样品和装样量有关),完整测定一个样品就需要10至30个小时,如果是手动吸附及脱附,操作员的测定工作将十分的繁重3.液氮饱和蒸气压怎样测定? 液氮饱和蒸气压是计算孔半径的重要数据之一,它对液氮温度很敏感,若液氮温度从-190摄氏度变化到-200摄氏度,液氮饱和蒸气压将会从1428降至459毫米汞柱。可想而之,液氮饱和蒸气压不能精确测量,会对孔隙的测定有多大的影响。4.进行吸附测定?吸附分支的测定与脱附分支的测定,在孔径分布报告中,有着同等重要的意义5.具有内置高精度定量管?定量管是转化氮气量的维一途径,如果保证不了其精度,测定结果将有很大偏差。如有需要可联系我们进行进一步讨论。彼奥德电子联系电话:010-62443971 82899987手机:13671343017联系人:李鹏

  • 比表面积测定仪特点

    比表面积测定仪以表面物理吸附相关理论为基础,采用连续流动法作为测定方法,用氦氮混合气(氦:氮=4:1,氦气为载气,氮气为吸附气体)流过被测样品,并利用氮气在液氮温度下的吸附及脱液氮环境下的脱附,精确测量氮气前后的比例变化的标准化仪器。利用固体标样参比法作为测试软件分析模型,计算出样品的比表面积。 1 比表面测定仪具有双工作站,测试效率提高一倍,多点BET比表面测定,每样平均15min 2 比表面测定仪具有国内唯一通过国家级技术鉴定的产品,控制和测试精度达到国际先进水平; 3 比表面测定仪具有独有的抽气与充气速度精密控制技术,超微粉样品也不会被抽飞; 4 比表面测定仪具有独特的多途径液氮面控制与校正技术,连续测试10小时也不需添加液氮; 5 比表面测定仪具有完善的标准等温线数据库和规范的分析方法,微孔常规测试技术国内领先; 6 比表面测定仪具有专用软件功能齐全、界面友好、操作方便、实时显示样品的吸、脱附压力变化及平衡过程; 7 比表面测定仪具有实验全程自动化、智能化控制,长时间运行

  • 【原创】智能型全自动氮吸附比表面积测定仪选型指南

    智能型全自动氮吸附比表面积测定仪选型指南高精度比表面积测定仪应具有如下十项特征:1、比表面积测定仪是否具有程控风热助脱系统 当样品在液氮温度-195.8℃下吸附饱和后要升温脱附时,需要使温度迅速升高,使吸附在粉体表面的氮气迅速脱附出来进入检测器;高速脱附可以使信号集中,得到尖而锐的脱附峰,有利于提高比表面积测定仪仪器的灵敏度和分辨率,另外尖而锐的脱附峰可以降低背景噪声影响,提高比表面积测定仪仪器测试准确度,尖锐的脱附峰是色谱工作者追求的理想峰形。在之前的半自动化比表面积测定仪仪器中通常使用人为将液氮杯更换为水杯,利用水大比热的特性使样品温度迅速升高到常温;但在全自动化比表面积测定仪仪器中,如果为便自动化而放弃辅助加热脱附,进行空气中自然升温脱附,由于玻璃的导热系数很低,升温缓慢,将使脱附峰矮而宽, 使背景噪声影响增大,降低灵敏度和分辨率,损失测试精度。程控风热助脱装置,全自动程控启停,风热时间可根据样品脱附快慢设定,保证得到尖锐快速的脱附峰,使出峰时间缩短,脱附峰尖而锐,减少背景误差。--比表面积测定仪2、比表面积测定仪氮气分压检测控制是通过流量传感器法还是浓度色谱检测器法 BET多点法比表面积测定仪测试中,按BET理论要求氮气浓度需要从5%调整到30%,氮气浓度检测是比表面积测定仪测试结果准确度的关键环节。在氮气浓度测试方面,流量传感器法是分别测量氮气和载气流量的方式来求氮气浓度。所采用的进口霍林威尔流量传感器的标称极限精度是0.1ml/min,对于5ml/min的氮气流速的比表面积测定仪测试最高精度只能达到2%。色谱浓度传感器测试氮气浓度,精度可达到0.1%以上,且不受流速范围影响;--比表面积测定仪3、比表面积测定仪是否具有程控六通阀标定系统;定量管体积是否可程控切换;六通阀是色谱仪定量的主要标定装置,有手动六通阀和电动六通阀之分;程控电动六通阀标定系统,标定过程软件全自动控制;定量管体积程控可选功能;对于不同样品,比表面从相差可能数千倍,其吸附氮气量也就相差悬殊,不能一个体积的定量管来标定所有样品吸附量。所以对于标定系统应接入不同体积的定量管,可达到更高的精确度。人工更换不同体积的定量管比较复杂,甚至打开机壳更换。程控定量管切换只需要在软件中设置接入号,电动切换。--比表面积测定仪4、比表面积测定仪是否具有一体式原位吹扫装置 分体吹扫炉形式的吹扫方式,样品吹扫处理时需要安装在与主机分置的吹扫炉上,处理完毕后拆卸下来再重新安装在比表面积测定仪仪器主机上进行测试。一体化吹扫处理系统相对分体吹扫炉具有两个优势:一是操作方便,只需一次安装;二是处理效果更好,避免了拆装样品管时样品再次与空气接触;(对于部分有机和生物粉体材料,其水份的质量百分含量可能比较大,若超过1%则需要吹扫处理前先进行烘箱干燥后再进行,否则需要吹扫处理后重新称重;)--比表面积测定仪5、比表面积测定仪是否具有吹扫定时功能吹扫程序定时,到时停止加热,声音提示,此功能使比表面积测定仪吹扫处理条件统一一致,也使操作者更安心于其他工作,而不必担心吹扫超时造成处理条件不一致;--比表面积测定仪6、比表面积测定仪是否具有气体净化冷阱装置 比表面测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面积测定仪测试中气体是连续流过待测样品,所以样品表面的水份等气体杂质会逐渐积累;具体影响见《水份对吸附过程的影响》。冷阱是消除高沸点气体杂质的有效方式,一般在高要求设备中会配备此装置;比表面仪配备的冷阱,使本会被样品吸附的水份等高沸点杂质提前被冷阱捕获,使得经过净化后的高纯氮和高纯氦气体中的水分含量低于10-17Pa,达到超高纯气体状态;7、比表面积测定仪是否具有检测器恒温系统 色谱法比表面积测定仪采用热导池做检测器;温飘是热导池检测器的主要误差成因,一般高精度色谱仪的检测器都具有复杂的恒温系统和温飘抑制消除系统,但同时使比表面积测定仪仪器成本增加;检测器恒温装置前后,可以使零点漂移由1%降低到0.1%,该装置对测试小比表面积样品(10m2/g)效果尤为明显;--比表面积测定仪 8、比表面积测定仪是否具有液氮温度实时监测功能; 比表面测试使用的液氮都是使用单位就近采购,一般都是气体厂制氧的副产品,其纯度不稳定性相差较大,使得液氮温度有±1℃左右的变化;氮气吸附量对液氮温度的变化很敏感;另外液氮杜瓦杯内液氮面的高低也对吸附量有影响;液氮温度监测传感器,可监测液氮温度和杜瓦杯中的液氮量是否充足。--比表面积测定仪9、比表面积测定仪是否具有气源开关指示与保护装置; 色谱仪一般都要求操作者在没有开气的时候不要打开电源,即“先开气后开电,先关电后关气”,否则可能发生检测器在没有通气的情况下通电而烧坏的危险;而气源指示与保护装置则使此危险去除。10、仪器参数是否软硬件同时显示; 比表面积测定仪器的主要参数包括主检测器电压、电流、浓度检测器电压、电流、主检测器输出电压信号、浓度检测器输出信号、信号放大倍数、液氮温度等。若比表面积测定仪仪器具有不但在软件上检测显示外,还在比表面积测定仪仪器的LCD液晶显示屏上硬件显示的功能,即使在电脑没打开或通讯异常时仍能明确掌握比表面积测定仪仪器状态,使得比表面积测定仪仪器可靠度更高;另外比表面积测定仪仪器的机械部分,如电机、脱附风扇、吹扫定时、气源开关状态等都具有硬件指示灯指示工作状态,复杂设备的各个部分工作正常与否的状态,在通过软件显示的同时,再使硬件指示是必要的; 气体流量的显示在有电子传感器之外,再通过机械转子流量计显示,将使流量有无、大小一目了然,更稳定可靠可靠的现代分析仪器可以只有一个控制按钮,但显示屏、指示灯等各部分运行状态指示不可省;

  • 【分享】比表面及孔径测定仪的分析方法

    [center]比表面及孔径测定仪的分析方法[/center] 表面积:颗粒的表面积包括内表面积和外表面积两部分。外表面积是指颗粒轮廓所包络的表面积,它由颗粒的尺寸、外部形貌等因素所决定。内表面积是指颗粒内部孔隙、裂纹等的表面积。 比表面积:单位体积(或单位质量)物体的表面积,称为该物体的比表面积或比表面。 常用的比表面分析方法: (1) BET吸附法 吸附法是在试样颗粒的表面上吸附截面积已知的吸附剂分子,根据吸附剂的单分子层吸附量计算出试样的比表面积,然后换算成颗粒的平均粒径。(2) 气体透过法 气体透过法的理论根据是kozeny Carman关于层流状态下气体通过固定颗粒层时透过流动速度与颗粒层阻力的关系气体透过法测定粉体比表面积应用最广泛的是Bline法(又称勃氏法)。(3) Bline法是测定水泥比表面积的常用方法,也可用于测定其他干燥细粉。 在同内的几家生产商中,北京彼奥德公司是唯一采用真空静态法进行比表面积及孔分析的厂家,并且测量过程为全部电脑控制,达到了真正的全自动化操作。 SSA-4200仪器的工作原理为国际通用的等温物理吸附的静态容量法。全程计算机自动控制无需人工监测。使用本方法的比表面积及孔隙度分析仪在国内只有我公司生产和销售,此项仪器技术我公司已经申请相关国家专利。SSA-4200全自动快速比表面积及孔隙度分析仪(氮单元系统),可同时进行两个样品的分析和两个样品的制备,仪器的操作软件为先进的“Windows”软件,仪器可进行单点、多点 BET比表面积、BJH中孔、孔分布、孔大小及总孔体积和面积、及平均孔大小等的多种数据分析,其比表面分析范围为0.1m2/g 至无上限,孔径的分析范围为0.35-200nm。[center][IMG]http://bbs.jixie.com/space/upload/2008/06/12/19573649372571.gif[/IMG][/center]

  • 如何准确解析比表面积和孔径分布

    作为固体材料最重要的物理性质之一,比表面积和孔径分布的性能表征在许多行业中都有着广泛的应用。材料吸附性能的优劣、吸附特点等与其孔隙结构有着密切的联系。本次微课从物理吸附理论出发,系统地介绍了多孔材料

  • 【分享】材料比表面积和孔径分析

    北京金埃谱科技有限公司,免费为有需要的科研工作者提供测试服务。材料比表面积和孔径分析测试,已经成为当前科研活动不可或缺的一项内容,本司可为您提供免费的测试。有需要的可以联系我、给我留言。

  • 【讨论】针对所谓 “高精度比表面积测定仪应具有如下十项特征”的反驳

    1、比表面积测定仪是否具有程控风热助脱系统助脱系统的确有利于使残留在样品比表面的氮气脱附出来。但是这里打来了一个问题,风热助脱的温度要是高于室温,造成热导池参考臂和测量臂所处的气体温度发生变化,而且往下走的脱附线不回归到X轴(这就是为什么有的仪器要用到0点校正:调零),造成脱附峰比实际要大,那么容易造成数据的偏大。2、比表面积测定仪氮气分压检测控制是通过流量传感器法还是浓度色谱检测器法首先说明氮气分压的测试方法不限于以上两种,还有现在的电压式流量控制,多大电压对应多大的流量,进而精确控制氮分压。可以说这种方法要比以上两种都好。不可否认浓度色谱检测器法能够检测氮分压,但是他不能控制前后流量的大小,所以有的仪器带有转子流量计。这是不准确的。3、比表面积测定仪是否具有程控六通阀标定系统;定量管体积是否可程控切换六通阀,不得不说已经落后了,现在全自动仪器基本都是用电磁阀来控制定量体积。4、比表面积测定仪是否具有一体式原位吹扫装置这个对于动态仪器来说无非是有点多余,一方面增加自身组装的复杂程度,另一方面增加了使用者对仪器的使用效率。动态仪器对真空没有要求,而预处理过程对真空要求很严格,这样就造成测试和处理的管路冲突。一旦出问题,维修相当麻烦。5、比表面积测定仪是否具有吹扫定时功能仅仅定时是不够的,现在的吹扫具有自动关闭功能,也就是说设定好时间,温度后,仪器自动吹扫,吹扫完毕,控制器发出信号。吹扫自动关闭。6、比表面积测定仪是否具有气体净化冷阱装置这个净化冷阱装置也是隐患,首先不得不承认,这个装置的确可以出去一部分杂质,但是带来的却是气体温度的降低,加重了热导池参考臂和测量臂所处的气体温度差距。也容易遭成测量值和实际值的偏差。7、比表面积测定仪是否具有检测器恒温系统这个我觉得,如果只是检测气路外面的温度。是完全没有必要的,真正影响测量值的是热导池进出臂的温度。8、比表面积测定仪是否具有液氮温度实时监测功能;这个可以9、比表面积测定仪是否具有气源开关指示与保护装置;实际上第9项已经落后了,现在动态仪器完全可以在不通气的情况下开仪器。而热导池不会受损10、仪器参数是否软硬件同时显示;这个方面我觉得对于客户需要的可以显示出来,如果对于客户没用的,显示出来客户也不懂。如仪器的打压。电流,只要这部分部件稳定、没问题就可以。

  • 对美国麦克公司的比表面积测定仪的感受如何?

    我们单位是中央驻地方单位,拥有数台大型仪器。其中物性表征使用的是美国麦克公司的比表面积测定仪,使用了很多年了,感觉该仪器测试结果准确、测试数据可信。请问大家对美国麦克公司的比表面积测定仪的感受如何?

  • 【原创】比表面积测定仪在以下行业中得到应用

    电池行业 随着工业技术的发展,能源问题越来越成为社会关注的焦点,不可再生能源枯竭和造成的环境污染迫使人类寻找新的替代能源。电能,特别是储能型电池,由于其低污染,可再生等特性被人们普遍看好,最有可能成为未来替代型能源,有着广阔的发展前景。储能电池中的关键部分-储能材料,由于其储能的特殊要求,对材料的比表面积性能要求非常严格,过大或过小都对电池的性能不利,因此比表面积成为电极材料最重要的物理性能指标。 化工行业 化工行业中很多的产品生产过程都需用到催化剂,催化剂发展也因此由来已久。随着材料技术的发展,催化剂的性能也越来越强大。材料的催化性能除其化学成分外,最主要的决定因素是其比表面积和孔容积的大小及其表面形貌结构。催化材料一般比表面积都很大,且为多孔物质,两者皆能增加催化剂与反应物质的接触面积,因此大大提高催化效能。比表面积和孔容积的大小是衡量催化剂性能好坏的重要性能指标。 橡胶行业 在橡胶行业中,炭黑补强已经是一项非常成熟的技术,被广泛采用。目前已经发展成非传统上的单一碳黑补强,近年来出来了很多的普通碳黑的替代物,如白炭黑。研究表明,再炭黑补强工艺上,补强剂的除微孔外的外比表面积对补强性能有非常重要的影响。因此在炭黑行业,通常需要测定补强剂的外比表面积来衡量其性能的好坏。 随着材料技术的不断发展,比表面积测定仪还在其它许许多多的行业中都有着广泛的应用,如电磁材料、荧光材料、陶瓷、粉末冶金、吸附剂、化妆品、食品活性炭、二氧化硅、活性碳、分子筛、活性氧化铝,颜填料、无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉、陶瓷材料、氧化铝、氧化锆、氧化釔、氮化硅、碳化硅、炭黑、金属氧化物、碳黑、白碳黑、白炭黑、纳米碳酸钙、电池材料(钴酸锂、三元素、三元素材料、聚合物、聚合物材料、聚合物电池材料、石英、碱锰材料、锂离子材料、锂锰材料、碱性材料、锌锰材料、石英粉、镁锰材料、碳性材料、锌空材料、锌汞材料、乙炔黑、镍氢材料、镍镉材料、隔膜、镍钴酸锂、氧化钴、磷酸铁锂、活性物资、添加剂、导电剂、缓蚀剂、锰粉、电解二氧化锰、锌材、石墨粉、氢氧化亚镍、泡沫镍、储氢合金、改性石墨材料、正极活性物质、负极活性物质、锌粉、锰酸锂、石墨)、发光稀土粉末材料、粉体材料、粉末材料、磁性粉末材料、四氧化三铁、铁氧体,纳米粉体材料、纳米陶瓷材料、纳米材料、纳米金属材料、纳米银粉、铁粉、铜粉、钨粉、镍粉、铝粉、钴粉、超细纤维、多孔织物、复合材料、沉积物、悬浮物等粉体和颗粒材料等。对颗粒材料来讲,比表面积逐渐成为重要的物理性能。

  • 综合比较各类比表面积测定仪

    应同学要求,想了解比表面积测定仪,纵观进口及国产各大厂家的产品,规格繁多,众说纷纭,那么在硅酸锂,生物炭,MOF材料的比表面积测定中,选择哪个厂家的哪款型号更合适呢?希望得到此领域应用技术人员的解答,留言。不甚感谢

  • 求教,比表面积测定

    大家好,我最近在做比表面积和粒度分析。我知道根据激光粒度分析测出来的粒径计算得到的比表面积没有实际的意义。而后又用勃氏自动比表面积仪测(硅酸盐类粉体)。我知道也可用氮吸附的BET方法做。两者测量的量程和要求可能不一样。但是通常一个磨过的粉体,我也并不清楚他的孔径分布,是小于2nm还是大于50nm,或者介于其中,因此选择仪器是个难题。你有什么好办法么?你知道勃氏仪和N2吸附测出的数据差别有多大么(当两种方法对材料都有效时)?谢谢你

  • 气体吸附法比表面积及孔径分布(孔隙度)测试中,对测试过程和结果会产生非常重要的影响的因素

    气体吸附法比表面积及孔径分布(孔隙度)测试中,有几个因素对测试过程和结果会产生非常重要的影响。对测试结果的有效分析需考虑这些因素。这些因素包括:样品处理条件,吸附质气体特性,测试方法的不同等,以下分别进行详细介绍。样品处理条件由于比表面积和孔隙度的测定与颗粒的外表面密切相关,且吸附法测定的关键是吸附质气体分子“有效地”吸附在被测颗粒的表面或填充在孔隙中,因此样品颗粒表面的是否“洁净”至关重要。样品处理的目的主要是让被非吸附质分子占据的表面尽可能地被释放出来,以便测试过程中有利于吸附质分子的表面吸附,一般的样品测定前都需进行预处理,处理的方法依测定的样品特性进行选择。一般情况下,大多数样品需要去除的是其表面吸附的水分子,因此高于100℃(一般取105℃-120℃)常压下的烘干即可达到此目的,这样有利于简化操作流程。对于含微孔类的或吸附特性很强的样品,常温常压下就很容易吸附杂质分子,或是在制造过程中导致其表面吸附很多其它分子,通常情况下有必要在真空条件下进行脱气处理,有时还必须在预处理过程中通入惰性保护气体,以利于样品表面杂质的脱附。总之,样品预处理的目的是使样品表面变得洁净,以确保比表面积及孔径(孔隙度)测量结果的准确有效。吸附质气体特性气体吸附法比表面积及孔径分布分析测试中,对吸附质气体最基本要求是其化学性质稳定,被吸附过程中不会对样品本身的性能和表面吸附特性产生任何影响,且必须是可逆的物理吸附。氮气是最常用的吸附质,实践表明,绝大多数物质的测定选择氮气作为吸附质,测试的结果准确性和重复性都很理想。对于含有微孔类的样品,若微孔尺度非常小,基本接近氮气分子的直径时,一方面氮气的分子很难或根本无法进入微孔内,导致吸附不完全;另一方面,气体分子在与其直径相当的孔内吸附特性非常复杂,受很多额外因素影响,因此吸附量大小不能完全反应样品表面积的大小。对于这类样品,一般采用分子直径更小的氩气或氪气来作为吸附质,以利于样品的吸附和保证测试结果的有效性。测试方法因素不同的测试方法对测试结果也会有很大的影响,不同的测试方法有着各自的优缺点。连续流动法中,由于采用的是“对比”的原理,相比容量法,能有效降低样品处理对测试结果的影响。通过对比的方法,在某种程度上,标准样品和被测样品由于处理的不完善导致的误差可以抵消掉,前提是两种样品的表面结构和吸附特性相近似,处理条件相同。这对于用于产品质量现场控制目的的检测非常有价值,减少样品处理时间,可以大大提高检测效率。如果用同样的物质作为标准样品和被测样品,由于表面结构和吸附特性近似,比表面积测试结果就会对样品处理条件不敏感,换句话说就是误差被抵消掉。因此连续流动法非常适合产品质量现场检测。相反,容量法可以说对样品处理非常敏感,因其采用的是绝对的吸附量测定原理,任何的表面不洁净或其它影响吸附质吸附过程的因素都会对测定结果产品直接的影响。

  • 关于氮气等温吸脱附计算比表面积、孔径分布的若干说明

    目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。◆六类吸附等温线类型  几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。◆几个常数※ 液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※ 标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※ STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明 此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。在p/p0 =0.5~0.8左右吸附量有一突增。该段的位置反映了样品孔径的大小,其变化宽窄可作为衡量中孔均一性的根据。在更高p/p0时有时会有第三段上升,可以反映出样品中大孔或粒子堆积孔情况。由N2-吸脱附等温线可以测定其比表面积、孔容和孔径分布。对其比表面积的分析一般采用BET(Brunauer-Emmett-Teller)方法。孔径分布通常采用BJH(Barrett-Joiner- Halenda)模型。◆Kelvin方程  Kelvin方程是BJH模型的基础,由Kelvin方程得出的直径加上液膜厚度就是孔道直径。弯曲液面曲率半径R‘=2γVm/,若要算弯曲液面产生的孔径R,则有R’Cosθ=R,由于不同材料的接触角θ不同,下图给出的不考虑接触角情况弯曲液面曲率半径R‘和相对压力p/po对应图:◆滞后环※滞后环的产生原因  这是由于毛细管凝聚作用使N2 分子在低于常压下冷凝填充了介孔孔道,由于开始发生毛细凝结时是在孔壁上的环状吸附膜液面上进行,而脱附是从孔口的球形弯月液面开始,从而吸脱附等温线不相重合,往往形成一个滞后环。还有另外一种说法是吸附时液氮进入孔道与材料之间接触角是前进角,脱附时是后退角,这两个角度不同导致使用Kelvin方程时出现差异。当然有可能是二者的共同作用,个人倾向于认同前者,至少直觉上(玄乎?)前者说得通些。※滞后环的种类 滞后环的特征对应于特定的孔结构信息,分析这个比较考验对Kelvin方程的理解。 H1是均匀孔模型,可视为直筒孔便于理解。但有些同学在解谱时会说由H1型滞后环可知SBA-15具有有序六方介孔结构,这是错误的说法。H1型滞后环可以看出有序介孔,但是否是六方、四方、三角就不知道了,六方是小角XRD看出来的东西,这是明显的张冠李戴; H2比较难解释,一般认为是多孔吸附质或均匀粒子堆积孔造成的,多认为是 “ink bottle”,等小孔径瓶颈中的液氮脱附后,束缚于瓶中的液氮气体会骤然逸出; H3与H4相比高压端吸附量大,认为是片状粒子堆积形成的狭缝孔; H4也是狭缝孔,区别于粒子堆集,是一些类似由层状结构产生的孔。※中压部分有较大吸附量但不产生滞后环的情况  在相对压力为0.2-0.3左右时,根据Kelvin方程可知孔半径是很小,有效孔半径只有几个吸附质分子大小,不会出现毛细管凝聚现象,吸脱附等温线重合,MCM-41孔径为2、3个nm时有序介孔吸脱附并不出现滞后环。◆介孔分析  通常采用的都是BJH模型(Barrett-Joiner- Halenda),是Kelvin方程在圆筒模型中的应用,适用于介孔范围,所得结果比实际偏小。  针对MCM-41、SBA-15孔结构分析的具更高精度的KJS(Kruk-Jaroniec-Sayari)及其修正方法,KJS出来时用高度有序的MCM41为材料进行孔分析,结合XRD结果,得出了比BJH有更高精度的KJS方程,适用孔径分析范围在2-6.5nm之间。后来又做了推广,使之有较大的适用范围,可用于SBA-15孔结构(4.6-30nm)的表征。◆关于t-Plot和αs方法  是对整条吸附或脱附曲线的处理方法,t-Plot可理解为thickness图形法,以氮气吸附量对单分子层吸附量作图,凝聚时形成的吸附膜平均厚度是平均吸附层数乘以单分子层厚度(0.354nm),比表面积=0.162*单分子层吸附量*阿伏加德罗常数。样品为无孔材料时,t-Plot是一条过原点直线,当试样中含有微孔,介孔,大孔时,直线就会变成几段折线,需要分别分析。αs方法中的下标是standard的意思,Sing提出用相对压力为0.4时的吸附量代替单分子层吸附量,再去作图,用这种方法先要指定一个标准,或是在仪器上做一个标样,处理方法和图形解释两种方法是类似的。两则之间可以相互转化,t=0.538αs◆微孔分析  含微孔材料的微孔分析对真空度,控制系统,温度传感器有不同的要求,测试时间也比较长,时间可能是普通样品的十倍甚至二十倍。由于微孔尺寸和探针分子大小相差有限,部分微孔探针分子尚不能进入,解析方法要根据不同的样品来定,需要时可借鉴相关文献方法来参考,再则自己做一批样品采用的是一种分析方法,结果的趋势多半是正确的。现在用一种模型来分析所有范围的孔径分布还是有些困难,非线性密度泛涵理论(NLDFT)听说是可以,但论文中采用的较少。★送样提醒★  明确测试目的:比表面积和孔结构对活性中

  • 【求助】骨架镍催化剂的比表面积和孔径测试

    我要做骨架镍催化剂的比表面积和孔径测试,送去给测试老师,问我需要设的参数,我头一次做不知道怎么选啊?吸附仪型号是Autosorb-1mp,老师问我加热温度和加热时间多少,测中孔还是微孔?多少点吸附,多少点脱附,多少点BET,P/P。取多少?请大侠们帮帮忙,这些参数选择的依据是什么啊,一般的取值多少啊

  • 【原创】比表面积测量

    比表面积及孔径分布测试仪F-Sorb 3400是目前国内唯一完全自动化,智能化的比表面积及孔径分布测量仪器,2008年国内市场销量第一,众多著名科研院所及500强企业应用案例,由金埃谱科技与兵器系统合作研发,秉承兵器行业高标准,严要求的技术宗旨,依据国际经典孔径分布测试理论和原理,采用国内外通用孔径分布测试方法,符合国际孔径分布测试标准,显著提高产品稳定性和使用寿命,测试结果更准确,操作简单快捷,大大降低测试人员工作量. 金埃谱科技是国内最早参与比表面积标准物质标定的机构,测试结果与国外数据可比性平行性最好,并唯一获取上海计量院检测证书,同时金埃谱科技也是国内同行业中唯一一家注册资本超百万的生产企业,让您选购的产品无后顾之忧! 比表面积和孔径分析测试其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的孔径测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间.F-Sorb 3400比表面积及孔径分布测试仪是目前国内同类产品中唯一能够完全实现测试过程自动化、智能化的产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,提高了工作效率.符合国际上现代化仪器制造标准和潮流,实现了从测试标准、理论计算到制造规范上和国际化产品完全接轨,致力于为我国科研单位及生产企业提供高性价比精密检测仪器.

  • 比表面积测试方法之多点BET法

    比表面积测试仪方法有很多种,但是我们常采用的就是多点BET法,这种方法是国标比表面测验办法,其原理是求出不同分压下待测样品对氮气的肯定吸附量,然后就是经过BET理论计算出单层吸附量,然后求出比表面积的这个过程。  这种理论认可度相对较高,比表面积测试仪在实际使用中会面临这习惯对的困难,因为测试进程相对杂乱、耗时长的情况下,使得测验成果重复性、稳定性、测验功率相对直接比照法都不具有优势,相对的情况下是直接比照法的重复性标称值比多点BET法高的缘由;。  动态法和静态容量法是当前常用的首要的比表面积测试仪测验办法,那么这两种方法都有哪些特点和缺点呢?  我们通常使用的两种办法对比而言,动态法对比合适测验疾速比表面积测验和中小吸附量的小比表面积样品,静态容量法对比合适孔径及比表面测验。  比表面积分析仪在多点BET法比表面剖析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时,静态法相关于动态法因为氮气分压能够很简单的操控到挨近,所以说直接使用还是BET方法是我们最为有效的测试方式。www.chinazhongqi.net/84.html

  • 【求助】寻北京哪里可以测定比表面积和孔隙率?

    我这里有一批塑料热解后的固体残渣,需要测定一下热解残渣的比表面积和孔隙率,估计比表面积会在100m2/g,空隙应该属于中孔或微孔。请问北京哪里可以测这些东西,知道的短一下电话或单位。这里先谢谢了!

  • 比表面积测试时装样量的选择

    BET比表面积测试时,您是否遇到过:氮气脱附进行了很长时间也不结束?比表面积测试结果与经验值或理论值差距很大?吸附脱附等温线不闭合?等等实验情况,这都与样品装样量有很大关系,所以选择适当的装样量对于实验快速、准确的进行起着决定性的作用。因此在测试前应对样品的比表面积范围(超小、小、大或超大比表面积等)有个大概估计,以便确定所需样品质量范围。一般来讲,装样量遵循以下原则:http://img1.17img.cn/17img/images/201402/uepic/f950cc77-6a59-4bc8-a045-e8024cc679b4.jpg具体来讲,实验前确定装样量有什么影响呢?http://www.bjbuilder.com/zcuploadfile/20140115165040811.jpg 1、满足压力传感器的探测精度:比表面积及孔径分析仪要求氮气吸附时所测样品应能提供20-40M2的总表面积。彼奥德选用的进口高精度的压力传感器配合独有的“压力平衡点B-ST探测技术”(可参考SSA-7000系列、MFA-100系列科研型比表面积及孔径分析仪)保证压力探测时形成的吸附-脱附等温线很平滑,减小测试结果相对误差。 2、保证样品称量准确度:一般样品管的长度要大于万分之一天平的高度,称量时,天平上盖不能关闭。为了保证称量准确度,避免称量不受静电、空气干扰的影响,样品质量建议大于100mg。 3、节省实验时间:装样量过大样品提供的总表面积会过大,会增加不必要的测试时间。例如:脱附一直不结束;杜瓦瓶中的液氮没有了,但实验未完成。

  • 表面电位测试,粒度测试,氮气吸附法测孔径分布、比表面积和孔容、压汞法测孔径分布、孔隙率,孔容

    表面电位测试、粒度测试、比表面积测试、氮气吸附法测孔径分布、氮气吸附法测孔容、压汞法测孔径分布、压汞法测孔隙率(或气孔率)、压汞法测孔容。表面电位/激光粒度测试仪器 型号:zeta plus(made in USA);粒度测试范围:3nm~3um。比表面仪(氮气吸附法)型号:ASPA2010(made in USA) 孔径测试范围:1.7nm~300nm。压汞仪 型号:poresizer9320(made in USA) 孔径测试范围10nm~360um。流变仪 型号:SR5上海硅酸盐研究所国家重点实验室电话:52412224

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 比表面积测试篇-流动法

    比表面积测试篇-流动法

    [b]一、定义:[/b]比表面积是指单位质量物料所具有的总面积。单位是m2/g.通常指的是固体材料的比表面积,例如粉末,纤维,颗粒,片状,块状等材料。比表面积还有另一种定义:面积/体积。[b]释文:[/b]比表面积是指单位质量物料所具有的总面积。分外表面积、内表面积两类。国标单位m2/g。理想的非孔性物料只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)棉、硅藻土等。测定方法有容积吸附法、重量吸附法、流动吸附法、透气法、气体附着法等。比表面积是评价催化剂、吸附剂及其他多孔物质如石棉、矿棉、硅藻土及粘土类矿物工业利用的重要指标之一。石棉比表面积的大小,对它的热学性质、吸附能力、化学稳定性、开棉程度等均有明显的影响。[b]测量:[/b]固体有一定的几何外形,借通常的仪器和计算可求得其表面积。但粉末或多孔性物质表面积的测定较困难,它们不仅具有不规则的外表面,还有复杂的内表面。通常称1g固体所占有的总表面积为该物质的比表面积S (specific surface area,m2/g)。多孔物比表面积的测量,无论在科研还是工业生产中都具有十分重要的意义。一般比表面积大、活性大的多孔物,吸附能力强。测定比表面积方法有气体吸附法和溶液吸附法两类。粉尘粒子愈细,比表面积愈大。细粒子常常表现出显著的物理和化学活动性,如氧化、溶解、蒸发、吸附、催化以及生理效应等都能因细粒子比表面大而被加速。有些粉尘的爆炸危险性和毒性随粒度的减小而增加,原因即在于此。粉尘的润湿性和粘附性也与其比表面积相关联。[font=&][color=#333333]方法提要:[/color][/font][font=&][color=#333333]比表面积测试方法主要分连续流动法[/color][/font][font=&][color=#333333](即动态法)和[/color][/font][font=&][color=#333333]静态容量法[/color][/font][font=&][color=#333333]。[/color][/font][font=&][color=#333333]动态法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量。[/color][/font]主要参考标准有以下:1、GB/T 13390-2008 金属粉末比表面积的测定 氮吸附法;2、GB/T 19587-2017 气体吸附BET法测定固态物质比表面积。涉及仪器大概照片:[img=,311,367]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311917592208_2413_1614854_3.png!w311x367.jpg[/img][align=center]=======================================================================[/align]二、测试步骤: ①打开仪器,预热,让仪器处于稳定状态。②称量样品:先称取洁净的U形管,然后装取一定量的样品,记录样品质量M。[img=,434,388]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311920230803_2337_1614854_3.png!w434x388.jpg[/img]③安装U形管:安装前确保样品平铺于U形管底部,确认插紧即可。④放置液氮罐:使用专用的杜瓦瓶盛装液氮至距离瓶口1-2cm处,并将其置于升降托盘上。[img=,505,483]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311924498658_8845_1614854_3.jpg!w505x483.jpg[/img]⑤输入信息:打开测试软件,设置信息主要包括标准样品的信息和待测样品的信息,多个样品是依次输入对应的名称、重量等。⑥开始测试:确认信息无误后,点击开始测试,仪器自动测试,自动生成测试结果。⑦记录结果。⑧将液氮回收至大的液氮罐中,拆下U形管,用空的U形管替换样品罐,关闭仪器,关闭气体。[align=center]=======================================================================[/align][b]三、注意事项:[/b] 1、测试比表会使用到氮气、氦气或者是混合气,不管是什么气体,气体的分压设置好之后,后期建议分压阀不要随意动,每次只开总压阀,确认分压有无异常即可;2、因U形管比较长,称量时建议用一个烧杯放在天平中央,去皮开始称重;3、粉末样品盛装完毕后,检查U形管的管壁是否有粉末挂壁的现象,有的话,需要清理;4、盛装的质量要合适,即质量与样品比表面积的乘积在仪器最佳检出区间;5、有些设备不是卡扣式,安装U形管时需要拧紧螺帽,需要平衡U形管的位置,以免造成密封不良或者损坏U形管;6、盛装液氮时需戴上防冻手套,防护眼镜,液氮温度极低,溅到皮肤上会带来较大伤害;7、因气体流动法是一种对比法,标准物质的准确性直接影响了样品的测试结果的准确性,需要定期确认标物的可靠性,建议每天质控;8、环境温度对设备的热敏元件有影响,因此,确保环境温度处于20-28℃,并处于相对稳定的状态。[table=100%][tr][td]GB/T 13390-2008[/td][/tr][/table]

  • 【分享】比表面积测试方法主要分动态色谱法和静态容量法

    动态色谱法  动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量;    动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。    由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法主要用于计算外比表面;   动态色谱法仪器中有种常用的原理有固体标样参比法和BET多点法;动态色谱法之固体标样参比法  固体标样参比法也叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因;动态色谱法之BET多点法  BET多点法为国标比表面测试方法,其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积;其理论认可度相对固体标样参比法高,但实际使用中,由于测试过程相对复杂,耗时长,使得测试结果重复性、稳定性、测试效率相对固体标样参比法都不具有优势,这是也是固体标样参比法的重复性标称值比BET多点法高的原因;   动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动,态色谱法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等,使得测试效率相对动态色谱法的快速直读法低,对小比表面积样品测试结果稳定性也较动态色谱低,所以静态法在比表面测试的分辨率、稳定性方面,相对动态色谱并没有优势;在BET多点法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时;静态法相对于动态色谱法由于氮气分压可以很容易的控制到接近1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。静态容量法  在低温(液氮浴)条件下,向样品管内通入一定量的吸附质气体(N2),通过控制样品管中的平衡压力直接测得吸附分压,通过气体状态方程得到该分压点的吸附量;   通过逐渐投入吸附质气体增大吸附平衡压力,得到吸附等温线;通过逐渐抽出吸附质气体降低吸附平衡压力,得到脱附等温线;相对动态法,无需载气(He),无需液氮杯反复升降;   由于待测样品是在固定容积的样品管中,吸附质相对动态色谱法不流动,故叫静态容量法; 比表面积测试相关仪器简介  动态法比表面积仪测试比表面积精度影响因素   对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其相对不具有该装置的动态法比表面仪,其精度得到明显提高;动态法比表面仪,与其它分析仪器类似,其精度和灵敏度大小主要取决于信噪比;也就是要提高精度和灵敏度,就需要从提高信号强度、抑制背景噪声、消除外界干扰三方面来控制。增加信号强度的方法一般有增加称样量、增加检测器电流,但增加检测器电流一般噪声也会同时增大,所以检测器电流会有个最佳范围;所以在抑制噪声、消除外界干扰方面可做的工作就比较多了;其源于仪器自身的误差来源主要有:检测器温漂,信号锐度;以检测器恒温装置来抑制温漂,风热助脱装置可以提高信号锐度,其对于比表面1m2/g的样品0.5g对氮气的吸附量在分压0.2左右时脱附峰面积与背景可以保证在2%以内的误差;   所以对于小比表面样品,对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其灵敏度和分辨率的优势就体现出来了;但对中大比表面样品,由于信号强,普通动态法比表面积仪和静态法比表面积仪都可以保证精度;这点就像万分之一分析天平和千分之一天平的区别;   静态法比表面积仪测试小比表面积样品精度分析   以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到3%以内,可以算出要求压力传感器的精度要达到0.03%以上;但目前进口最好的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前最高精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。 但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题;   所以在小比表面样品的测试方面,静态法仪器测试的误差相对高精度的动态法仪器的误差大;静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;这点是采用静态法仪器测试比表面积应考虑的因素。   比表面积计算公式    参考国标GB/T24533-2009    放到气体体系的样品,其物质表面在低温下将发生物理吸附。当吸附达到平衡时,测量平衡吸附压力和吸附的气体流量,根据BET方程式(1)求出试样单分子层吸附量,从而计算出试样的比表面积。   (P/P0 )/ V(1-P/P0) = (C-1 )/( VmC ) × P/P0 + 1/( VmC )

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制