当前位置: 仪器信息网 > 行业主题 > >

霍尼韦尔温度传感器

仪器信息网霍尼韦尔温度传感器专题为您提供2024年最新霍尼韦尔温度传感器价格报价、厂家品牌的相关信息, 包括霍尼韦尔温度传感器参数、型号等,不管是国产,还是进口品牌的霍尼韦尔温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霍尼韦尔温度传感器相关的耗材配件、试剂标物,还有霍尼韦尔温度传感器相关的最新资讯、资料,以及霍尼韦尔温度传感器相关的解决方案。

霍尼韦尔温度传感器相关的论坛

  • 【并购信息】霍尼韦尔斥资1.42亿美元收购 MATRIKON

    [url]http://www.instrument.com.cn/news/20100514/042357.shtml[/url]2010年5月13日,霍尼韦尔宣布签署价值为1.42亿美元(约合1.45亿加元)合同收购Matrikon公司。Matrikon公司专注于软件研发,用以帮助工业制造商安全、可靠并高效地进行生产运营。此次收购将加强霍尼韦尔在高速增长的石油、天然气以及电力行业价值链中的地位,并扩展其在全球核心区域的应用。该笔交易还需得到Matrikon的股东批准。Matrikon将被归入霍尼韦尔自动化与控制解决方案集团旗下的霍尼韦尔过程控制部。  霍尼韦尔过程控制部总裁诺曼• 吉尔斯多夫(Norm Gilsdorf)表示:“我们的行业客户希望其工厂能够在各种经济环境下均运转良好,Matrikon的产品对我们有所帮助。将Matrikon的技术和专业知识与霍尼韦尔工业及解决方案平台结合,将扩展我们服务范畴,帮助用户提升工厂绩效,这对于我们的业务是一个极佳的增补。”  Matrikon将为霍尼韦尔带来互补的应用,包括针对油气井状况和采掘设备监测应用,以及采矿业供应链解决方案。Matrikon网络安全以及报警管理解决方案同时会与霍尼韦尔过程安全和安防解决方案相结合。  Matrikon成立于1988年, 专注于管理生产、优化运营以及资产监控等技术,其涉足行业包括石油天然气、精炼、能源、电力以及采矿行业。其提供产品以及解决方案为工厂人员提供可操作的运行数据来预测并纠正错误,鉴别改进机会,分享最佳实践并采取必要行动以实现并保持运营目标。在2010年2月前的12个月里,Matrikon销售额大约为8千万美元。  Matrikon总裁兼首席执行官尼扎尔• J• 苏姆基(Nizar J. Somji)表示:“这一联合将为所有的Matrikon利益相关者,我们的股东,客户以及员工提供极大的机遇。我们相信我们所从事的下一代技术以及我们的产品和解决方案战略与霍尼韦尔的技术远景相得益彰。这将帮助我们才华横溢的员工继续在全球大型工程解决方案实施中不断发现机遇,同时为实现我们与客户长期技术合作伙伴关系的远景提供了基础。  此外,与Matrikon总裁兼首席执行官扎尔• J• 苏姆基(Nizar J. Somji)相关的实体,同时授权霍尼韦尔于2010年7月12日后,可以每股4.5加元于任何时间收购其已发行股票,直至此公告后9个月为止。[b]  关于霍尼韦尔[/b]  霍尼韦尔国际(www.honeywell.com)是一家位列财富100强的多元化技术和制造行业的领先企业。在全球,其业务涉及航空产品和服务,楼宇、家庭和工业控制技术、汽车产品、涡轮增压器、以及特殊材料。霍尼韦尔公司总部位于美国新泽西州莫里斯镇,公司股票在纽约、伦敦和芝加哥股票交易所上市交易。[b]  关于霍尼韦尔过程控制部[/b]  霍尼韦尔过程控制部隶属于霍尼韦尔自动化与控制集团, 作为全球领先的产品和解决方案供应商,霍尼韦尔过程控制部帮助全球家庭、楼宇建筑以及工业企业提升效率以及利润率、协助符合法律规范、确保安全并创建舒适的环境

  • 霍尼韦尔面试题

    参加霍尼韦尔分析岗位面试,四面是研发总监,问了几个问题,第一个是,发现牛奶有异味,开发方法从分析角度找原因,第二个问题,一个好的分析员和普通的分析员有什么区别,第三个。当有不懂得问题了,没有领导没有同事可以咨询和商量的情况下,怎么办。就这个几个问题没回答好,被刷下来了。有大神说说该怎么回答吗

  • 中化霍尼韦尔招聘化学实验室技术员

    中化霍尼韦尔招聘化学实验室技术员-多名太仓工厂公司地址:江苏太仓市太仓港区要求: 1. 大专以上学历,化学分析或相关专业; 2. 一年以上工作经验,有化学实验室工作经历者优先; 4. 熟悉化学分析或仪器分析,有GC, GC/MS, IC,ICP工作经验者优先; 5. 需要倒班;有意者请发送简历至rita.xu@honeywell.com Tel: 0512-53830462(rita)

  • 美国JT.Baekr、天地、霍尼韦尔色谱试剂

    大家好,我是美国JT.Baekr、天地、霍尼韦尔色谱试剂的国内一级代理商。有需求或者问题的可以联系,愿能为大家提供良好的服务。手机:13589029712 qq:1828262602

  • 双十二福利预热第二波——安谱实验携霍尼韦尔指定产品,清仓特价,65折,65折,65折!!!

    数十年来,霍尼韦尔研究化学品业务以Burdick & Jackson™ 和Riedel-de Haë n™ 品牌持续为客户提供一系列强大的产品组合。现在,霍尼韦尔新增了Fluka™ ,Hydranal™ ,Chromasolv™ 和TraceSELECT™ 等业界知名的研究和实验室用化学品牌,可满足客户不同应用需求。[align=center]今天,安谱实验作为霍尼韦尔五星合作伙伴,联合霍尼韦尔,精选指定产品,限时特价,钜惠2018![/align][align=center]无论您是霍尼韦尔的铁粉,还是新粉,您一定知道:有一种遇见,叫做一眼就会爱上!经历过双11,期待过双12,您一定知道:有一种态度,叫做质量面前不谈价格!今天,霍尼韦尔用它的大爱告诉我们:有一种错过,叫做擦肩即是天涯![color=#e53333][b]史前钜惠,65折!65折!65折![/b][/color]这难道不是大爱!限时促销,数量有限,晚一分钟下单都感觉错过一个亿![/align][color=#e53333][b]活动时间:[/b][/color]2018年12月1日-31日[b][color=#e53333]温馨提示:[/color][/b]史前最低价且数量有限,若您已下单,经核实产品已被抢空,低价产品将无法提供!实际库存以霍尼韦尔官网为准。[align=center]产品清单[/align][align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20181206/20181206135335_0638.png[/img][/align]

  • 礼品放送——霍尼韦尔-Hydranal™ 40周年有奖调研

    礼品放送——霍尼韦尔-Hydranal&#8482 40周年有奖调研

    2019年是首瓶卡尔• 费休试剂问世40周年。为了纪念这个特殊的日子,霍尼韦尔将在全球40个城市举办卡尔• 费休滴定法研讨会,暨[url=https://bbs.instrument.com.cn/topic/7159028]Hydranal™ 40周年纪念研讨会[/url]。在这些特殊的活动中,霍尼韦尔将展示技术的发展、最新的创新,帮助您完善您的分析。通过这种独特的技术培训,霍尼韦尔的目标是为您提供一个行业平台,以了解最新的发展,这将有助于提供指导,并进一步推广这种关键的分析技术。为了了解水分测定试剂的用户市场,仪器信息网联合霍尼韦尔公司举行水分测定试剂有奖用户调研,欢迎各位版友积极参加,同时还有精美礼品可以拿呦![b][color=red]活动时间:[/color][/b]5.15-5.30[b][color=red]活动规则:[/color][/b]参与问卷调研,填写真实姓名参与活动。[b][color=red]奖励规则:[/color][/b][color=#333333]1、[/color][color=#333333]问卷经审核通过后,前200名用户将得到10元话费和20元仪课通优惠券。[/color][color=#333333]2、[/color][color=#333333]活动结束后,我们将从有效问卷中随机抽取幸运用户,送上大礼:华为荣耀手环一对,霍尼韦尔除味净化机3份,霍尼韦尔冰箱除味盒10份[/color][align=center][img=,497,497]https://ng1.17img.cn/bbsfiles/images/2019/05/201905151101236164_9557_3389662_3.jpg!w497x497.jpg[/img][/align][b][color=red]注:礼品在活动结束后3-5个工作日内邮寄,请务必填写真实有效的信息,谢谢大家的理解![/color][color=red]参与步骤:[/color][color=#3333ff]1、[/color][color=#3333ff]点击链接参与答题:[/color][/b][url]http://oi0wqtzbtgf3t31e.mikecrm.com/SUzG5kN[/url][b][color=#3333ff]2、[/color][color=#3333ff]扫描二维码参与答题:[/color][img=,198,198]https://ng1.17img.cn/bbsfiles/images/2019/05/201905151102439555_5000_3389662_3.png!w198x198.jpg[/img]活动联系人:马先生[/b][color=#3333ff] [/color][color=#333333]010-51654077-8089 [/color][b][color=#333333]邮箱:[/color][/b][email]maqy@instrument.com.cn[/email]

  • 安谱实验成为霍尼韦尔中国区代理商 ------Research Chemicals Business

    安谱实验成为霍尼韦尔中国区代理商 ------Research Chemicals Business

    http://ng1.17img.cn/bbsfiles/images/2016/11/201611020950_615573_0_3.jpg近期, 安谱实验(ANPEL)与 霍尼韦尔(Honeywell Research Chemicals)已签订中国区合作伙伴协议。2017年起,安谱实验将全面承担Honeywell旗下试剂品牌Riedel-de Haën, Fluka, Burdick&Jakson在华业务。安谱实验将携手霍尼韦尔共同为实验室工作者创造更多价值。霍尼韦尔的化学试剂产品业务Honeywell Research Chemicals product profile:1.分析化学试剂Analytical Applications (Fluka品牌)2.卡尔费休试剂Karl Fischer Titration (Fluka品牌))3.实验室基础试剂Laboratory Essentials (Fluka品牌))4.生物合成试剂Oligo & Peptide Synthesis (Burdick & Jakson品牌)5.高纯溶剂Solvents (Riedel-de Haën品牌)2015年,霍尼韦尔成功收购Sigma-Aldrich公司的Riedel-de Haën和Fluka品牌, 其中还包含了用于水分滴定检测的Hydranal®卡尔费休试剂产品线。关于安谱实验上海安谱实验科技股份有限公司,于1997年组建成立;是中国领先的实验用品供应链管理服务商;目前公司已是集研发、生产与销售以及客户供应链管理为一体的综合性企业;在行业内具有良好的 声誉;主要产品包括色谱产品、化学试剂、标准品、实验室用品、分析仪器配件及耗材等;总部位于上海,目前拥有近300位员工,15年销售额超过2亿,处于中国色谱消耗品行业的前列。安谱实验科技是“新三板”挂牌企业,(证券简称:安谱实验,证券代码:832021)。2015年8月11日,安谱实验与聚光科技(证券代码:300203)签订战略合作协议。更多资讯请访问:www.anpel.com.cn

  • 安谱实验联合霍尼韦尔成功举办“Hydranal Karl Fischer水份滴定产品应用及技术探讨”讲座

    2017年6月,为进一步提升实验室科研人员的技术知识和技能水平,安谱实验特别邀请霍尼韦尔Hydranal技术专家Agnieszka Kossakowska女士,在上海及苏州为广大客户带来主题为“Hydranal Karl Fischer 水份滴定产品应用及技术探讨”的专业讲座。 今年,安谱实验(ANPEL)与 霍尼韦尔(Honeywell Research Chemicals)签订中国业务合作伙伴协议,承担起霍尼韦尔公司旗下Riedel de Ha?n(RDH), Fluka, Burdick&Jakson(B&J), Hydranal等所有著名试剂品牌的中国区业务。 作为水份滴定分析领域的全球领导品牌, Hydranal卡尔费休产品享誉全球。历经半个世纪的品质升级、技术创新和品牌建设,是其稳步健康发展的坚固基础。同时,Hydranal凭借其强大的技术团队和广泛的产品应用,为科研工作者提供了独一无二的使用体验,也赢得了全球市场的高度认可。 此次培训,由安谱实验特别邀请霍尼韦尔Hydranal技术专家Agnieszka Kossakowska女士主讲,培训内容包括Karl Fischer 水份滴定原理及正确选型、常见问题分析解惑、 经典商务案列分享等。到场客户反响热烈,收获一致好评。 安谱实验承诺会在全国范围继续为广大客户提供领先、专业的技术服务!请大家继续给力支持![align=center]6月12日 上海[/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/afb594c2-6a81-41c9-87c2-6509ec09ac32.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/7a7a3c5a-c4a5-4f6b-945e-9d0f10fc453a.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/67fdbe38-99d4-4191-96b6-9adf5a9080c9.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/6662939d-fd78-4695-9d43-2ac093afa40e.jpg[/img][/align][align=center]6月13日 苏州[/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/58e2a7a8-fc49-45d8-8192-4b256e6b8cab.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/1328b586-ba5a-445c-8d99-c62a6fb8ee5e.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/173598b6-67da-46e0-bfad-54158a8c4925.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201706/uepic/6f65c7aa-75ee-43f1-8953-31fb99e2c6a7.jpg[/img][/align]

  • 难溶样品水分检测束手无策——霍尼韦尔携手安谱实验带您体验王者之旅,从此难溶样品不难测

    您还在为难溶样品水分检测前方法和溶剂选型费心吗?您还在为难溶样品水分检测过程的溶解性绞尽脑汁吗?您还在为难溶样品水分检测结果的重现性摸不着头脑吗?甩开烦恼,安谱实验携手霍尼韦尔为您出谋划策!!![img]https://img1.17img.cn/17img/images/201808/insimg/6751a5aa-b74d-4d79-83a9-9c28bd6b0371.jpg[/img][align=center][b]1.正确选型,让实验事半功倍[/b][/align]■容量法单组份滴定的难溶样品检测选型[img]https://img1.17img.cn/17img/images/201808/insimg/05fa5914-1098-4a82-a907-ec015c733714.jpg[/img]■容量法双组份滴定的难溶样品检测选型[img]https://img1.17img.cn/17img/images/201808/insimg/3cfdac34-a4b7-4833-9cef-8527a97258cc.jpg[/img]■库伦法滴定的难溶样品检测选型[img]https://img1.17img.cn/17img/images/201808/insimg/01ad2c0a-0eb7-4328-9ac2-63c534c42b2d.jpg[/img]■增溶剂[img]https://img1.17img.cn/17img/images/201808/insimg/f92e6738-c295-4b28-a8ee-273defbe9a93.jpg[/img][img]https://img1.17img.cn/17img/images/201808/insimg/c30e76f1-4f6d-41e0-aa36-16df7de124ef.jpg[/img][align=center][b]2.还不过瘾?更多惊喜往下看![/b][/align]霍尼韦尔的张彦华老师为我们提出提高样品溶解性的三大妙招:共溶剂添加剂、提高溶剂体系温度和向系统中增加均质仪器。[align=center]扫描下方二维码进入直播间[/align][align=center][img]https://img1.17img.cn/17img/images/201808/insimg/fcf212c6-b87e-402a-b5d1-2867637a7720.jpg[/img][/align][align=center][b]3.小编你这是搞事情,选型讲座太抽象,实验还是不会做怎么办?[/b][/align][align=center][b][img]https://img1.17img.cn/17img/images/201808/insimg/21ec7c97-c4b5-4a13-9798-3777ea965527.jpg[/img][/b][/align][align=center][img]https://img1.17img.cn/17img/images/201808/insimg/ff14734a-a2a7-4983-82d3-31a68111c664.jpg[/img][/align]

  • 2018年安谱实验与霍尼韦尔、万通水分滴定分析培训交流会邀请函

    2018年,安谱实验特别邀请了业内闻名的霍尼韦尔和万通联合举办水分滴定分析培训,该培训将重点为您解读容量法和库仑法检测、不同仪器样品滴定试剂的选择、复杂样品检测经典案例分享、仪器校准、仪器常见问题详解等。 在这里,我们有业内顶级的专家、强大的样品检测应用案例、全面的产品和贴心的服务。三大品牌强强联手,这将是一场无与伦比的学术交流盛宴,您还在等什么,赶紧报名参与吧! 报名链接:[url=https://www.wjx.top/jq/23330301.aspx][color=#337fe5][u]https://www.wjx.top/jq/23330301.aspx[/u][/color][/url][align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180507/20180507142622_8758.jpg[/img] [/align][align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180507/20180507142658_5085.jpg[/img] [/align][align=center] [/align]

  • 【资料】光纤电流传感器概述及应用

    光纤电流传感器概述  光纤电流传感器是一种新型的电流传感器,与电磁式电流互感器相比,基于光学、微电子、微机技术的光纤式电流传感器(OFCT),具有无铁心、绝缘结构简单可靠,体积小、重量轻、线性度好、动态范围大、无饱和现象,输出信号可直接与微机化计量及保护设备接口等优点。这些优点既满足、推动了电力系统的发展,而且应用前景十分广阔。  当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度ψ与磁感应强度B和光穿越介质的长度l的乘积成正比,即ψ=VBl,比例系数V称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。上述现象称为法拉第效应。1845年由M.法拉第发现。  由于光在光纤中,一边反射,一边行进,偏振波相应于曲线的形状会出现旋转。针对此现象,在光纤的一端设置一块镜面导致光纤中光线的往返,借助光的来回往返,成功补偿和解决了偏振波的旋转问题。将铅玻璃光纤用于传感器元件,并结合利用镜面的方法,只需把光纤卷绕在载流导体上,用于电流计测的反射型传感器就基本完成。其次,开发了调制程度的平均处理与信号处理方式,这有利于特性的稳定及噪音的抑制。此外,对光源、受光元件、信号传输光纤等种类与传感器特性的关系进行了研究,而且,慎重选择了旨在降低成本和实现小型化的传感器制作技术。目前,光纤传感器技术正朝实用化的方向进展,以适应电力系统的广泛需求。  光纤电流传感器的结构  光纤电流传感器主要由传感头、输送与接收光纤、电子回路等三部分组成,如图1所示。传感头包含载流导体,绕于载流导体上的传感光纤,以及起偏镜、检偏镜等光学部件。电子回路则有光源、受光元件、信号处理电路等。从传感头有无电源的角度,可分为无源式和有源式两类。光纤电流传感器工作原理   光纤电流传感器是以法拉第磁光效应为基础,以光纤为介质的新兴电力计量装置,它通过测量光波在通过磁光材料时其偏振面由于电流产生的磁场的作用而发生旋转的角度来确定被测电流的大小。传感头是光纤电流传感器最为重要和关键的部件。分析了全光纤型和混合型光纤电流传感器传感头的结构和工作原理,对改进光纤电流传感器的设计,提高光纤电流传感器的性能具有重要的指导作用。  光纤回转仪是MOCT(光纤电流互感器)的核心部件,它由光源,探测器,调节器,以及缠绕电流导线的光电探头组成。其中调节器是光纤电流传感器的核心部件,通过这套系统可以对电流进行精确测量,此项技术受20多项国际专利保护。光纤回转仪最早由波音公司和霍尼韦尔公司共同研制。    光纤电流传感器的优点  与传统的电磁式CT 比较,光纤电流传感器除具有前述的优点以外还具备:  (1)容易安装,不用断开导线,仅将细长、柔软的绝缘光纤卷绕在导体上就可检测电流,能实现整个传感装置的小利轻量化;  (2)无电磁噪音的干扰。近年的计测控制系统中,一般将传感器的输出连接于半导体的电子回路,传感装置本身全部由光学器件构成,故具有抗电磁干扰(EMI)特性;  (3)计测范围广,没有铁心磁饱和的制约,同时,法拉第效应的响应速度快,具有从低频到高频、到大电流的广阔测量范闱;  (4)因为信号通过光纤传输。波形畸变小。传输损耗小,故可实现长距离的信号传输。  光纤电流传感器在电力系统中的应用  国外在六十年代就已开始对光纤电流传感器进行研究。美国、日本及西欧的一些国家的研究机构和一些电气仪器公司都在此领域作了大量的工作,如美国国家标准与技术研究所、贝尔实验室、日本的中央研究所、NEC公司及东芝、松下等公司、瑞典皇家技术学院等,到八十年代初期,光纤电流传感器开始进入工业试用阶段。  1986 年美国的田纳西州流域电力管理局(TVA)在其所属的Chkamauga水坝电力编组站安装了第一台单相高电压光学计量用的电流互感器,可靠地运行两年多后拆除。电站的常规电压互感器为OCT 提供电压。在一年的千瓦小时的计量中,与参照系统比仅变化0.08%。按照各种预定的条件如负载、温度、湿度以及电磁干拢等条件下完成了其应负的任务。在变电站的环境中,展现出稳定、准确的性能。  国内应用法拉第效应的光学电流传感器处于探索阶段,在“六五”期间,以1982 年9月在上海召开的“激光工业应用座谈会”为起步,先后有多家单位进行这方面的研究,中电八所、上海硅酸盐所、上海冶金所、华北电力局、北京化工学院、清华大学、华中理工大学等都取得一定成果。  据第15 届国际光纤传感器会议统计在FOS市场份额中,“应力”占23%,“温度”占17.2%,“气压声学”占15.2%,“电流电压”占12.2%,“化学汽体”占11.3%。就传感器类型来说,“光纤光栅”占44.2%,“分光计”占11.1%,“散钟反射”占10%,“Fraday旋光效应”占6.9%,“荧为黑体”占6.6%。  光纤电流传感器不仅能用于电力系统中电流的测量,而且与电机制造厂、测量仪器仪表厂结合,还可研制开发线路事故点的标定装置及事故区间的判定装置等一系列电力系统的测量、诊断装置。

  • 霍尔电流传感器简绍

    在工业、电力、牵引等领域,电压、电流及功率的计量是非常至关重要的。对于电压的计量,低压可以用电压表直接测量,如果测量高压就需要有电压互感器变压后进行测量。那么对于电流的测量交流直流电流很小时,可以用万用表直接串入电路测量,稍大点的(0-7000A以下)电流可以用分流器测量,但是这种方法测量精度低,隔离程度低,电流超过7000A以上时分流器就无法使用了。这里介绍一下测量电流的一种设备电流传感器,电流传感器是电流的一种新型设备,该设备采用霍尔检测原理具有测量精确度高、线性好、隔离程度高、安装更换简便等优点。逐渐取代比较笨重的电流互感器。电流传感器主要有霍尔直测试和霍尔检零式两种原理其中霍尔楂零式精度高但是电路复杂有功耗成本高,霍尔直测式电路简便,成本低安装件结。在此着重介绍一下直测试电流传感器。 一、霍尔电流传感器原理 霍尔元件在聚集磁路中检测到与原边电流成比例关系的磁通量后输出霍尔电压信号,经放大电路放大后输送到仪表显示或计算机采集来直观反映电流的大小。 二、霍尔元件的电原理 当霍尔元件的垂直方向加上一个磁场B,在原件上加上控制电流I,那么霍尔元件就有一个霍尔电压Uh输出,它们的关系式为Uh=kh·I·B,其中kh为霍尔元件的灵敏度,B为磁场轻度。

  • 霍尔传感器在各大领域的应用

    霍尔传感器是一种基于霍尔效应的器件,它能实现磁电转换,可用于检测磁场及其变化。霍尔效应虽然在1879年才被发现,但是直到20世纪50年代才出现了对其的应用,然而器件成本很高。1965年,人们开始将霍尔传感器集成进硅芯片中,从而促进了霍尔器件的应用。霍尔器件有许多优点。它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHz),耐震动,不怕灰尘、油污、水汽及烟雾等的污染或腐蚀。 霍尔传感器作为核心检测元器件,其具有使用范围的广泛性、多样化、不可替代性等特点,各个行业对于霍尔传感器的各种电性能和抗外界因等都有一定的要求,如:电力机车、坦克、机床、油田、光伏、风电等相关行业,都要求元器件要耐低温、高温、强震、高潮湿等问题。目前市场上的电流传感器,很多产品都无法解决这样的问题,致使很多客户的设备无法高效的正常运转,带来的损失无法衡量、计算。  鉴于目前客户的一系列要求,宁波锦澄电子有限公司推出一系列镀金焊针PCB霍尔电流传感器、霍尔电压传感器,很好的解决了目前市场上众多客户的需求。本次推出的镀金焊针闭环霍尔电流传感器包括以下型号:JCE6…25-TSNP、JCE6….25TSRNP,JCE25….50-151NP、JCE25-ANP等四种;闭环霍尔电压传感器为JCE-L25P。  JCE镀金焊针PCB霍尔电流电压传感器一经推出已经广泛的在变频器、光伏汇流箱、变频调速、伺服系统、电动汽车、变频空调、液晶电视、军工电源等众多行业、设备上批量使用。并且完全替代进口传感器,在价格、周期、服务上具有一定的市场竞争力。 但由于霍尔传感器的成本较高,因此其应用领域基本锁定在汽车等高端市场,而对于需求量较大、对成本控制非常严格的消费电子市场则受到了成本的限制。相信随着技术的进一步发展,霍尔传感器走进手柄等消费电子应用领域将是大势所趋。

  • 【讨论】微波消解仪温度传感器如何维护

    已经看到几个版友介绍自己实验室中的微波消解仪温度传感器所容易出现的问题。每次出问题后,所花费的价格都不菲。 除了企业产品自身的问题外,在日常使用过程中应该对温度传感器如何维护呢?

  • 【原创】温度压强传感器出故障了

    10月份我们实验室的微波消解仪的温度压强传感器由于我们使用不当导致温度传感器异常,之后拿去供货商那里校准可以用了,之前的问题是1号罐的外管温度比内管温度高,现在温度是正常的,但是压强升不上去,直接导致温度升不上去,但是温度传感器是正常的,所以现在很郁闷啊,只有把温度压强传感器寄到总部请求帮忙,所以大家以后使用温度压强传感器的时候一定要小心使用,以免出现故障

  • 【分享】传感器与检测技术6-2:磁电式传感器:霍尔式传感器

    【分享】传感器与检测技术6-2:磁电式传感器:霍尔式传感器

    传感器与检测技术6-2:第6章:磁电式传感器:第2节:霍尔式传感器[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905050818_148154_1605035_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905050818_148155_1605035_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905050818_148156_1605035_3.jpg[/img]

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 电流传感器原理_如何选择电流传感器

    电流传感器原理_如何选择电流传感器

    [align=center][/align]电流传感器具体的工作原理是:当主电路有大电流Ip流动时,导体周围会产生强磁场。该磁场由多磁环收集并作用于电流传感器器件以使其具有信号输出。该信号由放大器A放大并输入到功率放大器。此时,功率管的相应电压降变化以获得补偿电流Is。由于Is电流流过太多,绕组产生磁场Hs。 Hs与由主电流Ip产生的磁场Hp相反,由此补偿原始磁场,逐渐减小从霍尔器件输出的信号,最后乘以Is和匝数以产生磁场和磁场由Ip生成的字段。当它相等时,Is不再增加。此时,电流传感器达到零磁通量检测。如何选择当前电流传感器:霍尔电流传感器基于磁平衡霍尔原理。根据霍尔效应原理,从霍尔元件的控制电流端施加电流Ic,并且在霍尔元件平面的法线方向上施加具有B的磁场强度的磁场。然后,在垂直于电流和磁场的方向上(即,在霍尔输出端子之间),将产生电势VH,其被称为霍尔电势,其与控制电流I成比例。产品。即,其中K是霍尔系数,其由霍尔元件的材料确定 一,控制电流 B是磁场强度 VH是霍尔的潜力。电流传感器应用:电流传感器在许多领域都有应用,如电池监测,汽车,工业,铁路,机车,车载电力测试,能源和自动化等。电流传感器的主要特性参数:1、线性线性决定了电流传感器输出信号(次级电流IS)和输入信号(初级电流IP)与测量范围成正比的程度。2、温度漂移偏移电流ISO在25°C时计算。当霍尔电极周围的环境温度变化时,ISO会改变。因此,考虑偏移电流ISO的最大变化很重要,其中IOT指的是当前电流传感器性能表中的温度漂移值。3,偏移电流ISO偏移电流也被称为剩余电流或剩余电流。这主要是由霍尔元件或电子电路中的运算放大器不稳定造成的。当电流传感器在25°C和IP = 0下制造时,偏移电流会最小化,但传感器在离开生产线时会产生一定量的偏移电流。4、标准额定值IPN和额定输出电流ISNIPN是指电流传感器可以测试的标准额定值。它由有效值(A.r.m.s)表示。 IPN的大小与传感器产品的型号有关。 ISN是指电流传感器的额定输出电流,一般为10〜 400mA。当然,这可能会因型号而异。5、准确性霍尔效应电流传感器的精度取决于标准额定电流IPN。在+ 25°C时,传感器的测量精度对初级电流有一定的影响。同时,在评估电流传感器精度时,还必须考虑偏移电流,线性度和温度漂移的影响。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【转帖】线性温度传感器使用指南

    1.什么是线性NTC温度传感器?   线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通以工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。 2.线性NTC温度传感器的主要特点是什么?   这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。 3.线性NTC温度传感器的测温范围是如何规定的?   就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路的温度补偿之用。 4.延长线的选用应遵循什么原则?   一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。 5.基准电压的含义是什么?   基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。其计算公式为:V(T)=V(0)+S×T示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。这一点正是线性温度传感器优于其它温度传感器的可贵之处。 6.温度系数S的含义是什么?    温度系数S是指在规定的工作条件下,传感器的输出电压值的变化与温度变化的比值,即温度每变化1℃传感器的输出电压变化之值: S=△V/△T(mV/℃)。温度系数是线性温度传感器做为温度测量元件的物理基础,其作用与热敏电阻的B值相似,这个参数在整个工作温度范围内是同一值,即-2mV/℃,而且各种型号的传感器也是同一值,这一点传统的热敏电阻温度传感器是无可比拟的。 7.互换精度这一参数有什么意义?   互换精度是指在同一工作条件下(同一工作电流、同一温场)对于同一个确定的理想拟合直线,每一只传感器的电压V(T)—温度T曲线与该直线的最大偏差,这个偏差通常按传感器的温度—电压转换系数S折合成温度来表示。由于传感器的输出线性化及温度—电压转换系数相同,即在测温范围内全程互换,所以互换精度表示了基准电压值的离散程度,即用基准电压值的离散值折合成温度值的大小来描述整批传感器之间的互换程度。一般分为三级:I级的互换偏差不大于0.3℃;J级不大于0.5℃;K级不大于1.0℃。 8.线性度的意义是什么?   线性度是描述传感器的输出电压值随温度变化的线性程度,实际上也就是传感器输出电压在工作温度范围内相对于理想拟合直线的最大偏差。一般情况下,其线性度的典型值为±0.5%,很显然传感器的线性度越高(其值越小),对于仪表的设计就越简单,在仪表的输入级完全不必采用线性化处理。 9.为什么说线性温度传感器是规范化输出?   所谓规范化输出,就是在0℃温度点上传感器在规定的工作条件下,输出的电压值仅限于某一小范围内,即使不互换,其基准电压值仅限定在690-710mV之间,这样在电路设计时,易于在宏观上把握传感器的输出情况,不论在桥路设计还是温度补偿,只要在690-710mV之间考虑,在调试中稍加调整即可。而不象普通的热敏电阻由于型号不同,其阻值也不同,针对不同的型号,需进行不同的设计计算。所以线性温度传感器的规范化输出,可以使仪表电路实现规范化设计。 10.用户如何检验线性温度传感器?   用户在购买传感器后,可在恒流的条件下,依温区的大小,采用两点或三点测试,以检验互换精度、线性度和温度系数。一般情况下,最简单的检验方法只要检验基准电压值即可。而所有电气参数,在交货时均有随货参数表(合格证),以提供该批传感器的详细参数指标。对测试条件有如下要求:恒流源:100μA±0.5%;恒温温场:波动度:≤±0.05℃;测试仪表:41/2或51/2数字电压表。 11.实际使用温度传感器是否一定要采用恒流源供电?   一般情况下是不必要的,桥路恒压供电完全可以(参见图1、图2)。这是因为在100μA左右的电流条件下,传感器的温度—电压转换系数变化量很小,可以给一个实测数量级的概念:在100μA时 S=-2mV/℃在40μA 时 S=-2.1mV/℃在1000μA时S=-1.9mV/℃而在实际的桥路恒压供电时,其电流变化不会有如此大的幅度。恒压供电时,传感器负载电阻值如何确定?   恒压供电时,负载电阻接在电源与传感器正极之间,信号从传感器正极与负极之间输出,设计电阻值R时,以在0C时使传感器工作电流为100μA即可。如传感器的基准电压为V(0)(mV),恒压源为VDD(mV),则R=(VDD-V(0))(mV)/0.1(mA)。对于计算出的电阻值R,如果实际的电阻没有这种阻值,可就近阻值选用,对测温精度没有影响。 12.线性温度补偿元件做为电路温度补偿有什么优越性?   这主要考虑热敏元件的输出规范化及温度系数的一致性,便于设计。另外,由于温度系数与晶体管电路中的晶体管基、射极电压的温度系数相同,做为稳定晶体管电路的工作点的基极偏流元件是非常合适的。而将几只元件串联使用,可以通过并联电位器方式,通过电位器的调节出不同的温度系数,以实现精确的温度补偿作用(参见图3)。这种温度系数可调的补偿元件,无须繁杂设计,对元件的工作电流也无严格要求,这也是这种线性热敏元件用于温度补偿的一大优点。 13.稳定性的含义是什么?   稳定性是指传感器的基准电压值年漂移量,这个漂移量再按温度—电压转换系数折合成温度值,即稳定性=±△V/S/年。线性温度传感器的稳定性为±0.05℃/年。这一参数描述了传感器在各种使用条件下保持原有特性的能力。 14.长线传输对传感器信号是否有影响?   应当说影响不大,一般情况下传输距离可达1000米以上。如果距离再远,可以考虑将传感器输出的信号在当地转换成数字量,这样可以方便地实现更远距离的传输。

  • 智能温度传感器的发展趋势

    智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。   能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化   目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计   传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。   为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。   LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。   为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。   最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器   虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器   网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统   单片系统(

  • 哪些微波消解仪采用光纤温度传感器?

    荧光光纤温度传感器传感探头采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,而且测温探头尺寸小,柔韧性好,耐高温,可实现探头直径0.2mm~3mm,弯曲半径最小到5mm以下,使得荧光光纤测量技术可以应用在不同工作的情况下,尤其微小功能系统中和电磁干扰下的测量;测温探头可以互换,测温探头替换后不需要校正。 荧光光纤温度传感器既可以采用接触式的测量方式,也可以采用非接触式的测量方式,并可远距离传输,使传感器的光电器件脱离测温现场,避开了恶劣的环境。由于采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,荧光光纤温度传感器不仅限于物体表面的定向测量,其探头还可以插入固体物质中、浸入液体中或导入设备中,到达特定区域。 传感器温度探头被安放在光纤的顶端内部。使用时将光纤传感器探头直接永久安装在变压器需要测量温度的位置。传感器光纤具有高抗电流击穿和抗化学腐蚀的特性,还具有非常强的机械特性。 荧光光纤温度传感器传感探头&光纤定制考虑因素:1)测温范围;2)测温精度;3)距离(长短);4)芯径;5)光纤及探头类型

  • 霍尔传感器什么情况下会出现饱和情况?

    磁饱和主要是指霍尔电流传感器 vfe.cc/NewsDetail-482.aspx  被测电流高于传感器标称的输入范围一定程度时会饱和。  从原理上讲,开环霍尔电流传感器只要电流大到一定程度,一定会饱和。  闭环霍尔电流传感器只要副边电流能够跟随上,铁芯中实际磁感应强度等于零,看似不会饱和,但实际上副边电流由电子电路产生,对于固定的某个传感器而言,其电流大小也是有限度的,当一次电流过大,二次不能产生相应的电流时,磁平衡打破,一次电流继续增大,也会发生磁饱和。  一般的宣传资料中都会讲霍尔电流传感器无饱和问题,实际上是指相对电磁式互感器而言,不容易饱和,并不是说怎样都不饱和。

  • 基于温度传感器的新型多点测温系统设计

    1、温度传感器DS18B20介绍    DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。    DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。    2、系统硬件结构    系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。    系统各模块分析如下:    2.1DS18B20与单片机的接口电路    DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。    2.2键盘及显示    键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。    2.3报警电路    当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。    3、软件设计及流程    3.1下位机软件    系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。    3.2上位机软件    系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。    4、结论    本系统具有如下特点:    a.结构简单,成本低廉,维护方便。    b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。    c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。    d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。    e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 【原创大赛】色谱仪常用电气部件 温度传感器之二

    【原创大赛】色谱仪常用电气部件  温度传感器之二

    色谱仪常用电气部件 温度传感器之二 热电偶、热敏电阻、半导体温度传感器1 热电偶:两种不同材质的导体构成闭合回路,如果两端存在温度差,回路两端就会产生电压。这就是热电偶的基本原理,即塞贝克效应。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457066_1604036_3.jpg 图1 热电偶原理图http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457067_1604036_3.jpg图 2 热电偶图片热电偶的信号较弱,一般只有数个mV的电压。但是温度测量范围较宽,比较铂电阻更加耐高温。一般常见于高温应用场合,例如马弗炉的温度控制系统。在色谱仪器上,一般用于温度保护。2 热敏电阻有点类似热电阻,温度改变后,元件的电阻值发生变化。但是其工作机理和热电阻不同。色谱仪中常用的为负温度系数热敏电阻。下图为负温度系数热敏电阻的温度-阻值特性曲线。温度越高,元件的电阻值越小。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457068_1604036_3.jpg图3 热敏电阻的温度-电阻曲线显著的和热电阻不同的,热敏电阻的阻值比较大,室温下可能电阻值在数十k欧姆,相对于100欧姆左右的铂电阻,温度变化,热敏电阻阻值的变化十分显著。所以热敏电阻对温度有较高的灵敏度,但是热敏电阻的工作范围较窄,一般不超过150度。不同器件之间性能的重复性也比较一般。如图,液相色谱仪使用的温度传感器。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457069_1604036_3.jpg实用案例:在Shimadzu的泵或者检测器模块前部右下角可以看到一个红色的小元件,是漏液传感器,其实就是负温度系数的热敏电阻。漏液传感器内使用了两个热敏电阻,有一个的位置比较低,如果系统泄漏,液体附着在热敏电阻的表面,液体的蒸发使得元件的温度降低,电阻阻值增大,系统检测到这一变化(其实是温度的变化),便认为系统泄漏。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092214_457070_1604036_3.jpg3 集成电路的温度传感器集成电路的温度传感器,温度范围和热敏电阻相似。但是有较好的各器件之间的重复性和温度线性,应用场合越发广泛。小结: 简单介绍了常见的几种温度传感器原理

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制