当前位置: 仪器信息网 > 行业主题 > >

碳素结构钢失效分析

仪器信息网碳素结构钢失效分析专题为您提供2024年最新碳素结构钢失效分析价格报价、厂家品牌的相关信息, 包括碳素结构钢失效分析参数、型号等,不管是国产,还是进口品牌的碳素结构钢失效分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳素结构钢失效分析相关的耗材配件、试剂标物,还有碳素结构钢失效分析相关的最新资讯、资料,以及碳素结构钢失效分析相关的解决方案。

碳素结构钢失效分析相关的资讯

  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 真没想到!小小棉籽壳居然可以变成新型碳素材料?上海净信研磨为您科普~
    赏析魔术表演的时候,粉丝们经常赞叹魔术师的奇妙能力。由于你没办法猜中下一阶段会产生哪些,也没办法猜中魔术师究竟是如何变出去的。  同样的,研发人员也被当做材料界的“魔术师”,也经常令人赞叹,由于你也没办法猜中他们是从哪些不值一提的东西中,“作出”新型材料;如同这小小的棉籽,在研究者精英团队的妙手实际操作下,成功制取出了“氮夹杂多孔结构碳素原材料”。   棉籽壳主体  棉籽壳,也称棉皮,是棉籽经历去壳机提取后剩下的外壳。它的羧甲基纤维素水分含量较高,平常多用于养植食药用菌、猪群颗粒饲料等,有“食药用菌的全能型细胞培养液”之称。  在我国是全世界关键产棉强国,西藏做为在我国几大产棉区之一,棉絮是西藏最具优点的特点資源之一,棉籽生产量达到450-500万吨级。西藏的棉籽壳資源来源于广,储量比较丰富,对棉籽壳的综合利用运用,意义重大。   功能性碳素原材料  功能性碳素原材料要以碳做为基础骨架图的新材料。它的优势包含:比较发达的孔隙度、高的堆积密度、优质的耐温性能,直径尺寸可调式等,在催化反应、吸咐、传感技术、分离出来及其储能技术行业拥有普遍的运用。选用各种各样可再生能源为原材料来制取新式碳素原材料,变成近些年的1个科学研究学术热点。   氮夹杂多孔结构碳素原材料的提取  依据研究人员的详细介绍,棉籽壳可立即开展炭化,提取方法全过程使用方便,安全性,炭化活性的低温冷冻研磨仪,且不用加上试剂开展后续处理等流程,可以以非常高效的情况下制取氮夹杂多孔结构碳素原材料。  相对于传统式碳素原材料的制取方式,该方式在制备原材料上有:低成本,原材料成份平稳均一,不用开展繁杂的成份分离步骤也能分离出来,原材料也不用预处理等优点。   上海净信低温全自动样品冷冻研磨仪JXFSTPRP-L系列   无需液氮预处理,可直接将样品降至所需温度,安全无噪音,全封闭研磨无污染可能性,进口材质内腔防腐易清洁,冷冻研磨领域的佳选仪器。  研究成果:  氮夹杂多孔结构碳素原材料的优点  据试验计算得出,所制取出的氮夹杂多孔结构碳素原材料堆积密度非常高,堆积密度达到2500 m2/g,氮含水量达到7%。并且以该方式制取的氮夹杂多孔结构碳素原材料制取的金属电极,在超级电容器中显示信息出出色的特性,比电容器达到320-340 F/g(电流强度为0.5 A/g),具备出色的光电催化性特性和循环系统可靠性。  除此之外,氮夹杂多孔结构碳素原材料还具备出色的染剂吸咐特性,可做为新式吸咐和分离出来用新型功能材料。  古语云:“人尽其才,物尽其用”。在科技人员这群“魔术师”的手上,真真正正的做到了灵活运用任何資源,让不值一提的事情也可以容光焕发更新的活力和想像力。也希望将来,他们能够作出更多更好的新型材料。  研磨实例对比图:   将样品和研磨珠加入研磨罐→设置好相关参数→研磨后成品
  • 日照获批筹建山东省精品钢质量监督检验中心
    大众网日照10月17日讯 10月14日,山东省质监局下发通知,正式批准山东省精品钢质量监督检验中心筹建,这是日照市质量技术监督局获批筹建的第四家省级质检中心。  通知要求,日照市质监部门要按照《省级质检中心管理办法(暂行)》、《省级质检中心等级评审标准》等有关规定,切实做好各项筹建工作。24个月内完成全部筹建工作,并通过实验室计量认证及依法授权。  目前,日照市正积极推进国家碳素结构钢质量监督检验中心和省精品钢质检中心的建设进度,已完成了前期的土地勘探测绘和土地规划等相应工作,土地评估、补偿和拆迁工作正在进行中。  据了解,国家精品钢质检中心工程概算投资1亿元,计划依托日照市产品质量监督检验所建设,在现有检验产品和检验项目的基础上,拟开展钢材力学性能、化学成分分析、无损检测、金相组织检验等检测项目。该精品钢质检中心将依托日照精品钢基地总体建设规划,建设&ldquo 国际一流、国内先进&rdquo 的检测服务平台,以满足山东区域乃至全国钢铁企业对高技术含量、高附加值钢铁产品的检测需求。
  • 『应用案例』钢铁厂电炉煤气的回收与应用
    目前,世界钢铁制造采用的炼钢方式主要有转炉炼钢和电炉炼钢两种。其中,相比转炉炼钢,电炉炼钢具有工序短、投资省、建设快、节能减排效果突出等优势。据测算,炼钢使用1吨废钢,可减少1.7吨精矿的消耗,比使用生铁节省60%能源、40%新水,可减少排放废气 86%、废水 76%、废渣 72%、固体排放物(含矿山部分的废石和尾矿)97%。电炉炼钢主要利用电弧热,在电弧作用区,温度高达4000℃。冶炼过程一般分为熔化期、氧化期和还原期,在炉内不仅能造成氧化气氛,还能造成还原气氛,因此脱磷、脱硫效率很高。同时,电炉炼钢多用于生产优质碳素结构钢、工具钢和合金钢,这类钢材质量优良、性能均匀;在相同含碳量时,电炉钢的强度和塑性优于平炉钢。且电炉炼钢用相近钢种废钢为主要原料,也有用海绵铁代替部分废钢;通过加入铁合金来调整化学成分、合金元素含量。电炉炼钢过程中将产生大量电炉煤气,电炉煤气中含有CO、H2、CH4及其他碳氢化合物等可燃气体成分和潜热。由于电炉煤气中的CO含量高达60%,热值高,属于洁净能源,充分利用该资源势在必行。近年来因能源价格上涨,煤炭价格涨幅较大,燃煤成本占热电成本构成比例已达70%~80%,因此,将矿热炉冶炼过程中烟气净化回收的煤气用于热电厂掺烧煤粉发电,既能节能环保,又能提高经济效益。典型工况条件如下:某客户是华南和西南地区的钢铁联合企业,拥有2650m3高炉、150吨转炉、360m2烧结机、6m焦炉、1550mm和1250mm冷轧板带生产线、2032mm和1450mm热轧板带生产线、2800mm中厚板生产线、高速线材及连轧棒材生产线、连轧中型生产线等一批先进工艺装备,主导产品为冷轧卷板、热轧卷板、中厚板、带肋钢筋、高速线材、圆棒材、中型材等。* 过程分析挑战性该应用测量氧气含量采用电化学氧传感器,配置样品预处理系统;由于过程气中的SO2,CH4等背景气干扰,存在测量值误差及波动范围很大,传感器寿命短,预处理系统维护量大,备品配件消耗量大且响应时间慢等缺点。该工艺流程测量点位于电炉上的煤气回收管线,过程气具有温度高、粉尘含量高且具有一定腐蚀性等特点。* 梅特勒托利多解决方案为适应高温、高粉尘恶劣工况条件,采用取样过程分析的解决方案,GPro500激光氧气分析取样池的解决方案,具有取样池体积小、响应速度快、系统结构紧凑、测量稳定性及精度高、备品备件消耗低等特点。* 选型配置:GPro500取样池探头+M400Type3采用激光在线取样池,实现在线激光氧分析,可以实时、快速、准确测量过程气体中的氧含量,保障生产过程安全及效率。与传统取样式电化学氧分析仪系统相比,具有独特技术优势:GPro500在线激光氧分析仪凭借产品的技术先进性,灵活的过程连接方式,响应速度快,测量准确及可靠性,运行成本低,在炼钢炼铁行业得到广泛应用,并通过实际现场应用检验,运行稳定、可靠,积累了丰富的行业应用经验。* 部分图片来源于网络
  • 舰船装备材料体系发展与需求分析
    pstrong  1 前言/strongbr//pp  由于关系到舰船服役安全性以及技战术水平,舰船材料的研发考核环节众多,周期较长,一般需要经过实验室研究、工业试制、综合性能评价、应用研究考核、模型结构考核及解剖、上舰考核等极为复杂的研制流程,往往从实验室到型号应用需要10 年以上的时间,甚至超过了很多型号的研制周期。目前全世界只有少数工业化强国具备从材料研发、生产、到应用的整体系列配套能力。因此,“材料先行”、“材料体系构建”是各海洋强国都十分重视的基本理念。/pp  舰船材料按照平台类型分,有舰船结构材料、动力机电系统材料、水中兵器用材料。按照材料类型分为结构材料、结构/功能一体化材料、特种功能材料3 大类。结构材料又分为船体结构钢、轮机及其他结构钢、耐热钢、高温合金、不锈钢、特殊性能钢( 防弹、低磁等)、焊接材料、铝合金、铜合金、钛合金等 结构/功能一体化材料分为树脂复合材料、金属复合材料、阻尼降噪材料等 特种功能材料分为涂料和涂层、阴极保护材料、电解防污材料、有源声学材料、隐身材料( 吸波、吸声等)、密封材料及胶粘剂、装饰材料、橡胶、耐火及绝缘材料等,共有22 个材料类别约1 000 个牌号。/ppstrong  2 国内外舰船材料的发展现状/strong/pp  2.1 国外舰船结构钢发展现状/pp  船体结构钢是现代舰船建造最关键的结构材料,也是用量最大的材料,其性能优劣直接关系舰船技战术性能的提高。船体结构钢作为船体结构材料,必须具有足够的强度和韧性、良好的工艺性及耐海水腐蚀性能。第二次世界大战后,世界各军事强国为了满足舰船装备的发展需求,研究开发了系列高强度舰船用钢。/pp  美国从第二次世界大战开始发展舰船用钢至今,其舰船船体钢的发展经历了多个阶段。先后选用过碳素船体钢、HTS、HY80、HY100、HSLA80、HSLA100 等多个型号的钢种。其研制应用大致可以分为4 个阶段[1 - 3]:/pp  第一阶段 二战期间,美国水面舰船主要选用HTS、A、B、D、E 等高强度及一般强度级别的结构钢作为主船体选材。该阶段钢的主要特点是强度级别不高,合金元素少、碳当量低,故成本低、焊接性好,但其韧性较低、抗弹性差、耐蚀性一般,且钢板厚度较大,但在当时也基本满足了美国水面舰船的使用要求。/pp  第二阶段 20 世纪60 年代以后,为了满足发展大型航母和新一代潜艇的需求,在Ni-Cr 系STS 防弹钢的基础上开发出了强度更高、韧性更好的HY 系列高强度结构钢,包括HY80、HY100 及强度更高的HY130 钢。HY 系列钢种为调质型Hi-Cr-Mo 系钢,其主要特点是:①高强度,HY80、HY100 分别为550 MPa、690 MPa 级别 ②Ni、Cr、Mo 等合金元素含量较多,碳当量高,焊接性差,建造成本高 ③钢板规格齐全,水面、水下舰艇结构通用 ④碳含量及碳当量较高,故焊接性差。/pp  表1 为20 世纪80 年代美国海军HTS /MS 钢和HY 钢在舰船方面的应用情况。可以看到,HTS /MS 钢在水面舰船上依然是主要且大量应用的钢,而潜艇则以HY80、HY100 钢为主。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/0190a421-9cfb-4310-aa7e-5cdc979d57be.jpg" title="111.jpg" width="419" height="168" style="width: 419px height: 168px "//pp style="text-align: center "  表1 美国海军舰船钢用量情况br//pp style="text-align: center "  Table 1 Consumption of ship building steel in U. S. Navy/pp  第三阶段 HY 系列钢虽然强度级别较高,但由于钢中的合金元素如Ni,Cr,Mo 等含量较高,导致该种钢成本高,且对焊接性能要求较高。20 世纪80 年代以后,为了改善海军舰船用钢焊接性能,节约舰船建造成本,又发展了HSLA80、HSLA100 新钢种,以替代对应强度级别的HY80、HY100 钢。图1 显示了690 MPa 级HSLA100 钢近年来在美国海军最新航母建造中的使用情况。可以看出,从CVN74 的少量试用,到CVN75、CVN76、CVN77 扩大采用,经过了10 多年时间。/pp  HSLA80、HSLA100 钢主要采取铜沉淀硬化型的强化机理,其主要特点是: ①碳含量及碳当量低,焊接性能好,建造成本低 ②Ni,Cr,Mo 含量较HY 系钢有了不同程度的减少,降低了材料成本。/pp  这一阶段的航母船体结构用型钢、铸锻钢及焊接材料仍然沿用了HY 系列的配套材料。为了充分发挥HSLA系列钢所具有的良好焊接性能,同时开发了配套材料。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/76c3e07d-6fe5-438a-842f-bf607a415fdd.jpg" title="112.png" width="344" height="176" style="width: 344px height: 176px "//pp style="text-align: center "  图1 HSLA-100 在美国航母上使用情况/t/pp style="text-align: center "Fig. 1 Utilization of HSLA-100 steel ( tons ) on theU. S. Navy aircraft carriers/pp  第四阶段 20 世纪90 年代以后,为了发展未来型航母,美国海军关注的焦点变为航母主船体重量越来越重,以及由此带来的航母机动性和有效载荷降低等突出问题。因此,美国海军又相继开发了HSLA65 和HSLA115及10Ni 钢。目前,美国航母主船体用钢主要是HTS、HY80、HY100、HSLA80、HSLA100 等5 种钢混用,并在非主要结构部位考核HSLA65 和HSLA115。/pp  美国在发展水面舰船用钢方面有以下4 个特点:①446 MPa强度以下的水面舰船用钢主要是Mn 系钢 ②注意改进现役钢种的质量及韧性 ③采用控轧控冷等现代冶金技术,发展新型船体钢,提高钢的强韧性及可焊接性 ④开展新钢种的研究,形成新的系列,旨在降低钢种本身成本及舰船制造成本。/pp  美国海军发展的HSLA65、HSLA80、HSLA100、HSLA115 系列易焊接、高强度舰船用钢, 逐步替代传统的HY 系列高强度舰船用钢,成为最新航母建造的主体材料,代表了航母用钢的发展方向。美军在现役航母上大胆考核下一代先进材料的做法, 使得其航母用钢研发和应用发展迅速,体系十分完备,可随时根据需求对设计做出调整。至此, 美国在舰船用钢方面基本形成了一套完整的体系, 以美国海军航母用钢为例, 其材料的发展替代历程如图2所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/2b02deda-1614-4b2d-8850-43f6c02997ab.jpg" title="113.png"//pp style="text-align: center "  图2 美国海军航母用钢的发展替代历程/pp style="text-align: center "  Fig. 2 Substitution progress of the steel for U. S. Navy aircraft carriers/pp  除美国外,俄罗斯、日本、法国、英国等国家也开发了系列高强度舰船用钢,如俄罗斯的AK 系列、АБ系列,日本的NS 系列,法国的HLES 系列等,其舰船材料的发展思路大致与美国相仿。国外舰船用钢的总体发展趋势可以概括为以下几点:/pp  高强度化 对潜艇来说,提高耐压壳体用钢的强度意味着减少艇体自重,增大下潜深度或增加储备浮力,可大大提高潜艇的技战术性能。对大型水面舰艇来说,提高船板强度意味着船体重量的减轻,可以为舰艇武备升级和全寿命维护节省出宝贵的重量,并显着降低造船成本。/pp  易焊接化 为满足航母和大型舰艇的建造需求,改善舰船钢焊接性能是另一个重要方向。如HSLA 系列钢利用微合金化、控轧控冷、时效硬化处理以及超低碳贝氏体组织来满足高强韧性、易焊接性要求,形成了0 ℃、室温焊接不预热等高强度舰船钢系列,显着降低了造船成本、提高了建造效率。/pp  现有钢种的改进与完善配套 为满足舰船用钢不断更新换代的要求,世界各国都对现有成熟钢种不断改进提高,进行深化完善的研究工作。如美国HY80 /100钢,自20 世纪50 年代研制成功以来一直在进行改进提高的研究工作,已修订标准11 次,对技术指标要求、冶金工艺方法、化学成份分档、钢板厚度规格、钢中夹杂元素及冶金质量控制等方面进行了深化完善。/pp  采用冶金新技术提高舰船用钢性能 舰船用钢的研制、开发和生产水平与一个国家的冶金工业基础密切相关。20 世纪80 年代后,随着超低碳、超纯净钢冶炼、连铸技术和控轧控冷等冶金技术的发展,舰船用钢也朝着高纯净化、高性能方向发展[4]。/pp  2.2 国外其他舰船材料发展现状/pp  舰船总体系统对关键材料技术的需求不仅限于高强度、易焊接的高性能结构材料,因此在发展船体结构钢材料的同时,国外也在大力推进其他高性能舰船材料的研发。/pp  钛及钛合金 钛及钛合金具有良好的断裂韧性、耐蚀性,高比强度和低磁性等特点,是优秀的海洋合金。俄罗斯在钛合金研制和应用上独树一帜,其技术水平、建造能力和规模在国际上处于领先地位,已基本形成用于船体、船机和动力装置的钛合金系列材料。美国用于舰艇的钛合金主要为中强可焊钛合金。美国将大量钛材用于通海系统的管、泵、阀换热器上,以解决海水腐蚀,从而提高其使用寿命与可靠性。/pp  铝合金 铝合金由于具有比重小,比强度、比模量高,耐腐蚀性能好,易加工成型,焊接性能好等优点,在舰船领域得到了广泛的应用,主要用于快艇、高速船、军辅船、航空母舰升降装置、大型水面舰船上层建筑、鱼雷壳体等,铝质船舶也从铆接、铆焊结构发展到全焊结构。多年来,世界各国对船用铝合金的研究与发展都非常重视,在美、日、英等发达国家,舰船用铝合金已成系列,品种配套、规格齐全,已成为海军舰船的主要结构材料之一。目前国外在船舶上应用的铝合金主要有以下几个系列: Al-Mg 系、Al-Mg-Si 系和Al-Zn-Mg系,其中以Al-Mg 系合金在舰船上应用最广泛[5]。/pp  铜及铜合金 铜及铜合金具有优异的耐海水腐蚀性、导热性、耐海生物污染性,优异的力学性能、良好的冷热加工性能及铸造性能等,广泛用于舰船螺旋桨,海水管系及其配件、泵、阀、轴套等零部件,潜艇螺旋桨用铜合金还应具备低噪音特性。20 世纪60 ~ 70 年代,英国斯通公司、俄罗斯、美国相继研制出了铸造阻尼Cu-Mn 合金,但使用性能不理想。英国斯通公司提出潜侧式噪音螺旋桨新方案,从精湛的设计技术、新型高阻尼合金和复杂桨叶形状精确制造3 个方面综合控制,共同提高潜艇的隐蔽性能。/pp  复合材料 复合材料包括树脂基与金属基复合材料,具有力学性能优良、耐腐蚀、大幅减重、优良的声、磁、电性能等特点,早期应用在小型巡逻艇和登陆舰上。近年来,随着低成本复合材料技术的提高,开始逐渐应用在大型巡逻艇、气垫船、猎雷艇、护卫舰以及上层建筑中。各国海军应用的复合材料制品还包括烟囱、舱壁、甲板、舵等次承载结构,这些材料可降低舰船的雷达信号特征,同时也降低了红外( 热) 信号特征,在结构减重方面所做的贡献非常显着。/pp  新型功能材料 除以上材料外,国外还大力发展了诸如防腐涂料、舰船隐身、减振降噪、隔热及其他特种功能材料等新型功能材料。其中防腐涂料: 主要用于舰船上层建筑、舰船内舱、舰船海水管路系统、船体及其附体如舵、减摇鳍、螺旋桨等部位。舰船隐身: 水面舰艇隐身技术的重点集中在雷达波隐身、红外隐身及减振降噪技术上 国外采取涂敷型吸波材料或结构型吸波材料解决雷达波隐身 采用特殊涂料解决红外隐身的研究工作正在进行。减振降噪: 减振降噪材料的主要类型包括吸声材料、隔声材料、阻尼材料。隔热材料: 主要用于舱室环境控制,它也是舰船舾装材料的重要组成部分,国外舰船用绝缘隔热材料有无机材料和有机泡沫材料两类。特种功能材料: 包括储氢材料、永磁材料、主动控振智能材料等。/pp  2.3 材料加工与成型新技术/pp  为更好地实现减免维护、降低维护成本这一航母腐蚀预防与控制的核心思想,目前美国海军在航母及其他新的舰艇建造和维护过程中,不断研发运用了一系列新材料、新工艺和新技术。/pp  新型铸造工艺 在HY-80 /100 钢铸造过程中,美国海军采用了新型压铸工艺以降低成本、提高铸件合格率。新工艺的运用每年可节省成本70 万美元,使大型铸件合格率提升至70% 以上,交货时间降至55 天。/pp  新型成型技术 美国海军采用闭塞冷锻技术( CDCF)制造的5 ~ 20 cmCVN-78 航母用Inconel 625 合金管弯头,使管道连接费用节省了约50 万美元。/pp  新型焊接技术 主要有远程焊接预热系统、轻型火焰钎焊技术、大功率电缆接头铝热焊技术、防涂层烧蚀焊接冷却技术。为避免焊接预热不均,提高焊缝质量,美国海军在航母CVN-78 建造过程中运用了新型的远程焊接预热系统 为克服人工钎焊造成的质量难以控制问题,在CVN-78 建造过程中,美军采用了轻型火焰钎焊技术,使每艘航母建造和大修成本节省了700 万美元 美军将新型铝热焊技术用于CVN-78 大口径电磁弹射器大功率电缆接头焊接,大大提高了焊接质量和可靠性,减少了焊接和维护工时 为防止已涂装区域在焊接过程中的烧蚀, CVN-78 建造过程中运用了焊接冷却技术[6 - 8]。/pp  2.4 国内舰船材料发展现状及特点/pp  2.4.1 发展现状/pp  我国舰船结构钢发展可以划分为4 个阶段[9 - 10]: 20世纪50 ~ 60 年代,主要是依赖原苏联进口和仿制 20世纪70 ~ 80 年代开始自行研制,当时受国内资源限制,立足于无镍合金钢,研制了我国第一代舰船用Mn 系无镍铬钢和低镍铬钢,如901、902、903 系列钢种,这些自行研制的舰船用钢在我国海军舰艇建造中得到了成功应用 进入20 世纪80 年代,海军装备有了很大发展,对舰船用钢也提出了更高的要求,第一代舰船用钢已满足不了现代海军的需求,开始研制综合性能更好的第二代舰船用钢及其配套材料,如390 MPa 级的907A 钢、440 MPa 级的945 钢、590 MPa 级的921A 系列钢、785 MPa级的980 钢等,至此,初步形成以4 大主力钢种为支撑的我国舰船结构材料体系 20 世纪90 年代后,改进提高和自主研发并举,特别是2000 年以后,在强度覆盖、品种规格及配套材料等方面有了长足的发展,为海军新型主战装备建设提供了强大的物质基础。/pp  在持续发展船体结构钢及其配套材料的同时,我国也加大了舰船用其他结构/功能一体化材料,以及特种功能材料的研发。/pp  钛及钛合金 我国舰船钛合金的研究始于1962 年,经过探索研究、自主研发、产业化及推广应用3 个发展阶段,研究水平有了很大的提高, 目前拥有包括Ti-B19、Ti91、Ti70、Ti80 等典型舰船钛合金,并形成了我国专用的钛合金系列,能批量生产板、管、锻件、中厚板、各种环材、丝、铸件等多种产品,基本满足国内舰船不同强度级别和不同部位的要求[11 - 12]。/pp  铝合金 我国舰船用铝合金的研究始于20 世纪60年代初。目前研制成功的船用铝合金结构材料主要有变形铝合金和铸造铝合金2 大类。变形铝合金包括铝合金板材、型材、管材、锻件及其配套焊丝,研制成功的船用变形铝合金牌号主要有Al-Mg 系的5A01、5A30、5A70 合金和Al-Zn-Mg 系的7A19 合金,铸造铝合金牌号主要有ZL305 和ZL115 合金等。自1979 年起,5A01、5A30、7A19、ZL305 和ZL115 等合金已广泛用于各种船舶及鱼雷壳体的建造等,5A70 合金已成功用于建造水撬模拟结构件。然而,我国舰船用铝合金的牌号、品种、规格却未能全面发展起来,我国用来制造高速舰船船体(包括军用快艇和高速客船) 的铝合金几乎都依赖国外进口,其中使用最多的是进口5083 铝合金。/pp  铜合金 我国对海水管系及其配件、泵、阀、轴套等零部件,舰船螺旋桨等用的铜合金研究相对薄弱。目前我国舰船海水管路系统主要采用以B10、B30 为主的铜镍合金。新研制了铸造铜镍铝合金ZCu7-7-4-2 及变形铜镍铝合金等,并发展了舰船用铜镍合金的焊接技术。/pp  复合材料 我国复合材料研发相对国外较晚,经历了由纤维增强复合材料、树脂复合材料到结构芯材的发展。其中,纤维增强材料由最初的玻璃纤维,发展为碳纤维、芳纶纤维、超高分子量聚乙烯纤维和连续玄武岩纤维等4 大高科技纤维 树脂复合材料中的树脂也经历了不饱和聚酯树脂、环氧树脂、乙烯基酯树脂、酚醛树脂等几大类别的发展过程 复合材料夹层结构船艇常用的轻质高性能结构芯材包括泡沫塑料、轻木以及各种蜂窝材等。我国复合材料在舰船的应用较少,典型应用是潜艇的艇艏声纳导流罩,部分已经安全应用20 年。在实艇应用方面,除透声复合材料获得了较多的应用外,隔声、吸声和阻尼复合材料还没有在型号中实现应用,工程应用经验不足,与国外差距较大[13]。/pp  新型功能材料 现代舰船是高新技术高度密集的综合系统,所用功能材料的种类很多,但其中大多数并不是舰船专用材料。在舰船上有独特应用的功能材料主要有电磁力推进用超导材料、吸收雷达波材料、舰船隐蔽用消声与减振材料、水声换能材料、燃料电池用贮氢材料、永磁电机用永磁材料等,其中有些还兼作结构材料,属结构/功能一体化材料,这一系列新型功能材料大多尚处于探索研究阶段。/pp  2.4.2 发展特点/pp  我国舰船材料的发展以海军装备发展对关键材料特性要求为依据,经历了从无到有、从仿制到自行研制的过程。已研制和生产的舰船材料基本满足了不同时期海军各型装备发展的需求。近期国内舰船材料的发展主要有以下几个特点: ①正在完善4 大主力钢种的规格系列。近年来,研发了907A 和921A 双球扁钢、921A 超长超宽板、921A 高效不预热焊接材料等结构材料,满足大型船舶主船体结构的建造需求 研发了厚度为80~ 120 mm 的980 厚板,满足潜艇的建造需求。②在低成本和耐蚀钢应用方面进行了探索。研发E36 军民通用船体结构钢,降低了成本,简化了建造工艺,满足护卫舰的建造需求 开展了B 级耐蚀钢的推广,用于大型辅助船舶主船体结构建造。③研发系列复合材料。系列复合材料的开发应用,实现了舰船用结构/功能一体化材料零的突破 复合材料上层建筑、指挥台围壳整体方案的制定,可实现船体结构减重30% ,为护卫舰、潜艇的减重需求提供了技术途径。④新型功能材料不断涌现。研制了航母飞行甲板防滑涂料以及应用于不同基材表面、不同期效的防腐及防污涂层等,使舰船涂料防腐能力从5 a 提高到8 a,防污能力从3 a 提高到5 a 开展了耐压壳体用阻尼隔声去耦材料、耐压阻尼吸声材料等研制工作。⑤在材料新工艺方面进行了大量探索。全面推广舰船结构及配套焊接材料的结构模型建造考核,通过各型舰艇的模型建造考核,进一步深化了应用研究,通过结构模拟、环境模拟和工艺模拟条件,实现舰船结构材料上舰前的考核验证,确保安全可靠应用。/pp  2.5 国内舰船材料发展中存在的问题/pp  随着海军战略转型,海军装备进入高速发展期,对舰船材料的发展提出了更新、更高的要求,同时也暴露出舰船材料发展方面存在的问题[8]。/pp  材料研发体制缺乏顶层沟通机制 舰船材料特别是船体结构钢属于国家重大战略资源,建设投入大、周期长,一般均由国家投资进行立项研制。例如在船体结构钢的研制和应用方面,按照渠道划分为国家立项支持船体结构钢的基础研制和军方立项支持船体结构钢的应用研究。由于缺乏顶层的沟通机制,军方主导作用受到制约,导致基础研究和应用研究结合不紧密,需求和投入结合度不高。一方面,造成对材料的先期投入不足,难以实现“材料先行” 另一方面,易出现材料研制滞后问题,影响型号建造进度。/pp  材料及配套体系构建不完整 舰船关键材料及配套材料的现有体系( 如船体结构钢) 基本能满足现有舰船装备的要求,但距离战略转型后的海军装备发展需求还存在材料种类、规格缺失等问题,影响了现有装备建设进程及发展,急需开展相关研究,补充完善,同时加强舰船材料顶层规划的研究工作。/pp  材料应用工艺技术成熟度不够 船体结构用铝合金材料至今仍依赖进口,就是典型的材料加工技术成熟度不够的问题。船体结构钢也同样存在类似问题。舰船结构建造工艺包括焊接、火工矫正、水火弯板、冷成型等,种类多、工艺复杂。特别是舰船作为一个巨大的焊接结构,焊接工时占全船建造工时的30 ~ 40% ,焊接效率直接影响舰船的建造进度,焊接质量直接影响舰船结构的整体质量,因此舰船的焊接管控至关重要。921A 钢需焊前预热,980 钢需焊前预热、焊后后热,对施工环境条件要求苛刻,如果焊接工艺执行不严、焊接工艺更改的验证试验不充分,易出现如角焊缝裂纹等焊接质量问题,容易影响舰船建造质量。另外,先进高效的焊接工艺应用较少。/pp  关键材料技术性能落后甲板飞行涂料、液舱防腐蚀涂料、船体防污涂料、减振降噪材料、隐身材料等关键材料指标性能落后,不能满足舰船装备发展需求。/pp  舰船材料是海军装备发展的重要物质基础,“一代材料、一代装备”。“材料先行”是国内外武器装备建设的共识,应当结合生成技术的进步,动态地改进、提高舰船材料研制应用技术水平,实现舰船材料持续、协调、体系化发展。/ppstrong  3 舰船装备发展对材料的需求/strong/pp  由于国家发展战略和军队发展重点的要求,与国内其他兵种和国际海军装备发展大势相比,国内海军装备发展速度长期缓慢。随着海军转型要求,赋予了海军新的历史使命,对海军装备提出更高、更快、更强的要求,但材料问题成为制约海军装备快速发展的短板。在未来20 年,海军将会有更多的舰艇型号立项、研制、交付使用,对先进材料的需求将会以几何级数增长,舰船装备材料技术领域将会面临前所未有的压力和机遇。/pp  3.1 海军装备发展对先进材料的需求特征/pp  根据世界各国海军装备的特点,海军舰艇装备的发展趋势可概括为“深、大、远、高、低”,即: 下潜深度更深,大吨位舰船更多,走向更远海域,高航速、高机动性、高负载、高隐身性、高防护能力、高在航率等,低成本。因此对舰船装备材料也提出了更高的要求,可概括为以下几点: ①提高潜艇的潜航深度可以提高潜艇的隐蔽性、机动性和生存能力。未来海军潜艇下潜深度会更深,要求耐压壳体承受压力更大、耐压壳体材料强度更高、规格更厚、更耐腐蚀、焊接性能更好 但耐压壳体增厚会带来重量、重心变化等总体设计问题,因此耐压装备材料需要更新换代,需要发展轻质非耐压壳体材料。②航母、大型驱逐舰、两栖攻击舰等大型舰船以及气垫船、舰载机以及新型特种装备给材料技术提出更多特殊的要求。航母结构庞大、复杂,其艉轴架、动力轴等铸锻件尺寸远远超过一般水面舰船 飞机上舰要求研制弹射起飞、阻拦降落等关键设备,这些装备的关键材料需要强大的技术储备,需要开展相关大尺寸材料的制造工艺技术研究和新材料研制。③海军舰艇在海洋中服役,必然会面临腐蚀与海洋生物污损问题,远海航行对先进材料的耐蚀性、可靠性、安全性的要求更高。海军是材料腐蚀问题最为突出的兵种。海军装备逐步从近海走向远洋,腐蚀环境更为恶劣,对装备的可靠性、长寿命要求越来越高。提高坞修间隔期和在航率,才能充分发挥海军装备的作战能力,这要求舰船材料具有良好的耐蚀性。整体提高舰船结构材料、结构功能一体化材料、电子功能材料的耐蚀性以及重要装备的防腐蚀能力是迫切需要研究的课题。随着舰员在舰上生活、工作时间越来越长,以及国际上对海洋环保要求越来越高,舱室环境居住性和对海洋的友好要求越来越严格,长寿命、绿色环保防腐防污材料需求将更为突出。④隐身性是未来舰艇最突出的技术特征和有效作战最重要的技战术指标。海军装备高隐身性、高防护性能对先进的结构/功能一体化材料特性提出了高要求。主要体现在水面舰艇以雷达隐身、潜艇以声隐身等为重点,应发展并应用新型耐压阻尼材料、主动阻尼材料、水声材料、多频谱隐身涂料等技术,同时探索研究磁、红外、尾迹等其他隐身技术,加强舰船自身防护安全结构和材料研究、研制发展舰艇用轻型防护装甲材料,进一步提高关键结构材料的抗打击防护性能。⑤无论潜艇还是水面舰船,航速越高、机动性越好,越能在海战中赢得主动。另一方面,潜艇与水面舰船配备的武器装备及弹药越多,在海战中战斗力越强。而要实现高航速、高机动性与高负载,则要求舰艇的结构重量小,并尽量降低结构重心,这对先进材料的种类和性能提出了长远要求。钛合金、铝镁合金、复合材料等轻质材料的规模化应用是解决舰艇减重、增加有效载荷和提高航速的关键途径。⑥就单个装备比较,舰船相对其他兵种的装备要大得多、重得多,材料成本占装备经费比例非常高,控制材料成本意义重大。特别是在未来20 年海军装备处于大发展时期,大吨位舰船会越来越多,许多型号要批量建造、长时间保留。急需探索民用船体钢替代技术,发展低成本钛合金技术、低成本复合材料技术、先进高效焊接技术等。/pp  3.2 舰船装备发展对材料的需求分析/pp  材料技术是装备发展的三大支柱之一,先进材料制造技术的发展与核心军事装备的发展密切相关,新材料的探索研究并达到应用水平应早于新装备的探索研究和立项研制。根据海军装备体系建设的需要,并结合目前的舰船材料体系发展现状,舰船装备发展主要需要解决以下几个方面的需求。/pp  3.2.1 现实迫切需求/pp  在较短时间内我国舰船将有大量新型号立项研制,国内设计、研制、生产的材料中尚有大量的关键材料及技术急需突破。①在高性能结构材料技术方面,优先发展潜艇用钢及配套材料系列化研究,包括开展大规格980 厚板研制及相关模型结构考核 开展大规格980 双球扁钢研制 开展980 钢窄间隙焊接工艺研究,以及TIG 焊丝和金属粉芯焊丝的研制 开展40 MPa 高压气瓶用钢研制 开展通海系统、排烟管系以及专用关键设备与结构材料换代研究 开展潜艇阻尼材料/功能/结构的一体化设计及应用技术研究。另外围绕水面舰船优先发展921A、907A 双球扁钢的研制 690 MPa 级易焊接钢板及配套焊接材料的研制 上层建筑用高强抗弹装甲结构的研制 大尺寸铸锻件工艺研究。同时,还应开展对低雷达反射截面、抗腐蚀、具有优异的电磁屏蔽性能的先进材料制备技术的研究。围绕气垫船设计制造,针对耐蚀铝镁合金材料性能不稳定、可靠性差的问题,开展工艺优化研究、微弧氧化等表面处理技术应用优化设计理论及使用评价方法研究 开展空气螺旋桨材料和制造技术、焊接及连接技术、铝合金抗腐蚀技术等各种关键设备的材料和制造技术的研究。②针对隐身材料,包括电磁波隐身材料、阻尼降噪材料、磁隐身材料等结构/功能一体化材料技术方面,重点开展纳米隐身涂层材料研究 宽温宽频高性能阻尼材料的研究 高性能、耐高压(6. 0 MPa)、隔声量大的阻尼隔声材料的研究 主动阻尼控制技术、阻尼材料技术的集成应用及综合评定等。应用于舰船不同部位的复合材料及结构设计技术研究 复合材料上层建筑和潜艇指挥台围壳材料/结构/功能一体化设计和评价技术 舰船桅杆、烟囱用复合材料的应用研究 新型隔热绝缘配套材料研究等。③在特种功能材料应用技术方面,优先研究长效防腐防污涂层材料技术 高性能电极材料技术 舰船非钢质船体长效无毒防污材料 飞行甲板防滑涂料工程应用技术 防腐防污技术的智能化、集成化技术以及寿命快速评估预测技术 高温超导材料应用集成技术等。/pp  3.2.2 共性长期需求/pp  除以上迫切需要解决的现实需求外,舰船装备发展对先进材料提出了更长期的发展需求,主要包括:/pp  舰船材料腐蚀监检测与评估评价技术 腐蚀是影响装备可靠性最主要、最普遍的危害。应重点研究对关键部位、关键设备的在线监检测技术、涂层性能无损快速检测技术及相关的设备研制,并在此基础上形成评估专家系统、远程诊断系统,同时开展舰船装备材料使用评价方法、抗失效技术及评估理论研究。/pp  轻质材料及材料结构/功能一体化技术 对复合材料、钛合金以及高强度铝合金材料与结构( 如波纹夹芯板)均有长期的需求,对作战能力要求高( 搭载武器电子装备多、弹药多)、续航时间长( 自载燃油、淡水量大)、航速高( 重量小) 和抗风浪等级高( 重心低、稳性好)的作战舰艇尤其如此,需要大量采用轻质材料,对降低结构重心、增加有效载荷、提高机动性有重要意义。/pp  隐身材料技术 重点研究宽频、有效、可大面积应用、可操作性强的舰用雷达隐身材料 电磁屏蔽材料与技术 雷达兼容热红外等一体化舰用隐身材料 玻璃钢结构舰用隐身材料 舰用雷达伪装网 舰用多频谱伪装网 超高内耗阻尼材料、宽工作温度区间和宽频带范围高阻尼材料及结构/功能一体化高阻尼材料等。/pp  先进水声换能材料及换能器制造技术 对潜艇来说,需要突破低频大功率水声换能器性能,要研制满足大潜深要求的水声换能器,要重点解决大尺寸新一代磁致伸缩水声换能器制备关键技术。/pp  低成本材料制造及应用技术 舰船的特点是结构庞大、复杂,所需材料品种多、数量多、重量大,材料所占装备经费比例高。低成本钛合金、复合材料制备技术是舰艇装备发展的共性需求。另一个方面是材料的低成本应用技术。突出例子是高强度钢的焊接,要求预热焊接,工艺复杂,造成船体制造成本大幅度增加。如何在材料技术以及应用技术上创新,简化焊接工艺,对于降低成本具有重要意义。/pp  舰船材料性能退化抑制技术 舰船服役寿命要求长,一般在30 a 以上,航母甚至要求达到50 a。舰船服役环境苛刻,金属材料耐腐蚀表面处理技术及复合材料、非金属材料老化抑制技术是必须面对的问题。提高金属材料与复合材料的耐腐蚀性能,提高防腐防污材料的防护期效和服役寿命,是舰船装备长期的共性需求。例如复合材料的老化、阻尼材料阻尼性能下降。/pp  绿色安全材料技术 舰船装备既要执行战斗任务,还要执行和平使命,这就要求舰船防腐防污涂料是环境友好型的,包括舰船上的排放物。同时,海军官兵长期在舰船上居住生活,更要求舰船舱室内所用的材料是绿色环保、阻燃无毒的,保证官兵的健康,并在发生火灾的情况下保证官兵的安全。因此,舰船装备的发展,对绿色安全材料有共性需求。/pp  新型隔热材料技术 目前,各型舰船的隔热材料、绝热材料都相对落后。需要加强新型隔热材料———聚酰亚胺泡沫的应用研究和现用隔热材料升级换代,以及隔热绝缘配套材料研究。/pp  舰船材料全寿命支持数据库及信息系统 目前已经建立有“舰船用钢数据库”,应进一步扩大和加强舰船材料数据库的开发,使之涵盖舰船结构钢、舰船动力系统材料、复合材料、船用功能材料等,逐步建立起“舰船材料全寿命支持数据库及信息系统”,服务于舰船材料决策、研发、采购、建造、维护流程,有效支持舰船装备信息建设化的进程。/ppstrong  4 舰船装备材料未来发展方向/strong/pp  现代高新技术的发展使舰船装备的面貌产生了深刻的变化,成为其战斗力的主要标志,而先进材料又是舰船上高新技术实现的物质基础。先进材料的研发直接关系到舰船整个系统的运行、维护和安全,开发高性能的先进材料能为增强舰艇作战能力和降低服役期的成本提供有力保障。/pp  当前舰船材料研究与应用的总趋势是,由以结构材料为重点转向以结构/功能一体化材料、特种功能材料等高性能材料为重点。就用量而言,传统结构材料在未来的舰船建造中仍占绝对的多数 但就发挥功能而言,高技术新材料则占有更重要的地位。整体来看,舰船装备材料未来的发展方向可以从以下几个方面进行说明[14 - 15]:/pp  4.1 结构材料/pp  传统结构钢材料 鉴于传统舰船用高强度结构钢的不可替代优势,研发高性能的结构钢及相关配套材料仍将是我国舰船装备材料技术的主要发展趋势之一。我国舰船装备用高强度钢未来主要向提高加工制造工艺性、高性能化、低成本、建立材料技术设计基本理论和方法等方面发展。/pp  新型结构材料 对于某些特殊的结构( 如表面效应船、混合式水翼船、深潜器、大深度鱼雷等的壳体结构),要求使用高比强度的材料,以减轻壳体的重量,提供合理的有效载荷,必须发展如钛合金、铝合金、铜合金等新型结构材料,其中钛合金是未来新型结构材料发展的主力材料。我国船用钛合金品种、规格不完善,加工和制造技术也相对落后,目前仅局限应用于声呐导流罩、舷侧阵透声窗、进排气管路、少量阀门及管路附件等专用结构的制造。研究和应用钛合金材料,将进一步提高我国舰船装备的作战性能,提高舰船的生命力和使用寿命,是我国舰船装备的重要发展趋势之一。我国钛合金材料技术未来主要向提高综合性能、低成本、可靠焊接性、复杂制造、推广应用、完善材料体系等方向发展。/pp  4.2 结构/功能一体化材料/pp  鉴于复合材料的巨大优势,国外海洋强国不断加强舰船复合材料研制和应用,且逐渐由非承力结构向主/次承力结构发展,从局部使用向大规模应用扩展。我国舰船装备复合材料研制和应用水平起步较晚,仅在声呐导流罩、雷达天线罩、水雷壳体、桅杆等专用构件有所应用,因此加大复合材料的研发和应用力度,将对我国舰船装备的总体性能提高具有重大意义。我国舰船装备用复合材料未来主要向低成本、高性能化、多功能型、优化连接、长寿期、安全可靠等方面发展。/pp  舰船装备隐蔽性能的提高,离不开隐身材料技术的发展和支撑。舰船装备,尤其是潜艇的隐蔽性能,已日益成为其最突出的性能指标之一,而反潜技术的发展对潜艇的隐蔽性又提出了新的更高要求。我国舰船装备的隐蔽性能与国外存在差距,研发和应用先进的新型隐身材料技术,将是提高我国舰船装备,尤其是提高潜艇隐蔽性能的重要举措之一。未来主要向多功能化、主动减振、智能化、低成本化等方面发展。/pp  此外,探索纳米结构/功能一体化、仿生结构/功能一体化、智能结构/功能一体化材料等新概念材料的新特性、新方法也是结构/功能一体化材料技术发展的重要方向。/pp  4.3 特种功能材料/pp  无论是防护效果,还是防护材料的使用寿命,我国的防护材料技术水平均落后于国外发达国家。因此,开发和应用更先进、综合防护性能更好的防护材料,是提高我国舰船装备防护水平的必然选择。我国舰船装备防护材料(包括防腐、防污、防滑、耐高温密封防漏、舱室装饰等材料)未来主要向高效、低成本、可靠、环保、安全检测及控制等方面发展。在发展特种功能材料技术的同时,还应开展高性能储氢材料、永磁材料、电极材料、水声换能材料、高温超导材料等特种功能材料的探索研究。/pp  在发展以上材料的同时,应加大探索对舰船装备发展有重大影响和有重大军事应用前景的前瞻性材料,如生物材料、纳米材料等 同时,还应加强对先进制造与成型技术的探索。/ppstrong  5 结语/strong/pp  目前我国舰船材料整体技术水平和行业管理能力与船舰装备建设跨越式发展的要求还存在一定差距,针对以上存在问题,在今后工作中,应力争在不同层面和不同方面取得发展和提升。主要研究重点有以下几点: ①加强舰船装备先进材料技术的发展战略研究,制定相应的新材料发展规划 ②加强舰船装备先进材料研发过程中的顶层设计管理,确保研发效率和产品质量 ③尽快完成适应我国舰船装备发展的材料体系建设 ④加大舰船用前瞻性材料研究,建立新材料上舰应用有效模式。/pp  参考文献 References/pp  [1] Cheng Xin' an( 程新安) . 国外舰船用钢的回顾与展望[J]。/pp  Development and Application of Materials( 材料开发与应用) ,1997,12(2) : 46 - 48./pp  [2] Wu Shidong(吴始栋)。 美国舰艇用结构钢的开发与应用研究[J]。 Shanghai Shipbuilding(上海造船),2006,(4): 57 - 59./pp  [3] Yin Shike( 尹士科) ,He Changxian( 何长线) ,Li Yalin( 李亚琳) . 美国和日本的潜艇用钢及其焊接材料[J]。 Developmentand Application of Materials( 材料开发与应用) ,2008,(2) :/pp  61 - 62./pp  [4] Ma Heng( 麻衡) ,Li Zhonghua( 李中华) ,Zhu Xiaobo( 朱小波) ,et al. 航空母舰用厚钢板的发展现状[J]。 ShandongMetallurgy( 山东冶金) ,2010,32(2) : 8 - 11./pp  [5] Wu Shidong( 吴始栋) . 美海军开发舰船用高强度耐腐蚀铝合金[J]。 Torpedo Technology ( 鱼雷技术) ,2005,13 (5 ) :/pp  49 - 52./pp  [6] Wu Shidong( 吴始栋) ,Zhu Bingkun( 朱丙坤) . 国外新型金属材料及焊接技术的开发与应用[J]。 Torpedo Technology( 鱼雷技术) ,2006,14(5) : 6 - 11./pp  [7] Wu Shidong( 吴始栋) . 为美国新型航空母舰CVN 78 建造提供技术支撑的材料制造加工项目[J]。 Shipbuilding Scienceand Technology( 中外船舶科技) ,2011,1: 20 - 22./pp  [8] Pan Jingfu( 潘镜芙) . 国外航空母舰的发展和展望[J]。 ChineseJournal of Nature ( 自然杂志) ,2007, 29 ( 6 ) : 315- 322./pp  [9] Shao Jun( 邵军) . 舰船用钢研究现状与发展[J]。 AngangTechnology( 鞍钢技术) ,2013,(4) : 1 - 4./pp  [10] Wang Qihong( 王其红) ,Liu Jiaju( 刘家驹) . 舰船材料发展研究[J]。 Ship Science and Technology ( 舰船科学技术) ,2001,(2) : 12 - 15./pp  [11] Yang Yingli( 杨英丽) ,Su Hangbiao( 苏航标) ,Guo Dizi( 郭荻子) ,et al. 我国舰船钛合金的研究进展[J]。 The ChineseJournal of Nonferrous Metals( 中国有色金属学报) ,2010,20(1) : 1 002 - 1 006./pp  [12] Zhou Lian ( 周廉) , Zhao Yongqing ( 赵永庆) ,WangXiangdong( 王向东) ,et al. Development Strategy Study forChina Titanium Alloy and Application ( 中国钛合金材料及应用发展战略研究) [M]。 Beijing: Chemical Industry Press,2012: 30 - 32./pp  [13] Li Jiangtao( 李江涛) ,Luo Kai( 罗凯) ,Cao Mingfa( 曹明法) . 复合材料及其在舰船中应用的最新进展[J]。 Ship & Boat( 船舶) ,2013,24(1) : 10 - 16./pp  [14] Sun Jianke( 孙建科) . 建立舰船材料基本体系的顶层研究[J]。 Ship Science and Technology ( 舰船科学技术) ,2001,(2) : 9 - 11./pp  [15] Ma Yunyi( 马运义) ,Feng Yuqi( 冯余其) ,Yang Xionghui( 杨雄辉) ,et al. 我国舰船装备对材料的需求与应用探讨[J]。 Advanced Materials Industry ( 新材料产业) ,2013,(11) :11-16/pp文章作者:方志刚1,刘斌1,李国明2,李健1,3/pp  (1. 海军装备研究院,北京100161)/pp  (2. 海军工程大学,湖北武汉430033)/pp  (3. 中国钢研科技集团有限公司,北京100081)/p
  • NEWS|欧波同材料失效分析培训班走进新天钢集团
    近日,欧波同材料失效分析培训班走进新天钢集团,开展了为期两天的技术培训会议。欧波同(中国)有限公司应用技术专家与新天钢集团技术中心的工程师共同探讨电镜失效分析技术在钢铁行业的应用与发展。△ 培训会议现场新天钢集团总工程师、技术研究院院长孟宪成出席培训会议并对欧波同技术专家的到来表示欢迎和感谢。欧波同集团与新天钢集团多年来技术交流密切,建立了非常稳定的战略合作伙伴关系。△新天钢集团技术研究院院长助理、新技术所俞飞所长致辞欧波同自主创新的定制化应用解决方案得到了新天钢的高度认可,所提供的电子显微分析设备、全自动钢中夹杂物分析系统、应用技术培训服务等为新天钢的工程师们提供了很大的帮助,辅助技术中心的研发及检测工作高效推进,在提升钢铁质量、产品品质等方面起到了非常重要的作用。△欧波同(中国)有限公司副总经理张国滨介绍公司概况△OTS全自动钢中非金属夹杂物分析系统介绍欧波同失效分析技术培训班是欧波同售后服务体系中的重要版块,针对各个行业用户的具体需求,将定制化智能解决方案的应用功能最大化,让电镜成为一线技术人员的得力助手。一直以来,欧波同针对具有代表性的行业、用户密集的区域,定期展开应用技术培训,秉承打造一流服务品牌的理念,深度挖掘用户需求,从一线应用出发,坚持实践创新,以期实现与用户携手共赢的合作目标。△欧波同特聘专家、教授级高工宁玫老师介绍《扫描电镜在钢铁材料分析研究中的应用》△宁玫老师为参加培训的技术人员进行答疑交流2021年,欧波同顺利完成产线升级目标,与美国赛默飞世尔科技(ThermoFisherScientific)公司达成战略合作协议,全面负责赛默飞电镜(原FEI)全系列产品(含TEM透射电镜、FIB双束电镜)在中国工业领域市场的销售与技术服务业务。△欧波同电镜产品应用经理管玉鑫介绍赛默飞电镜(原FEI)△赛默飞电镜产品介绍△参加培训的欧波同技术专家与新天钢技术中心工程师合影随着产线不断丰富、业务板块持续升级,欧波同钢铁行业解决方案也将实现持续创新,在OTS全自动钢中非金属夹杂物分析系统等自主创新产品市场反馈良好的情况下,更多智能应用系统指日可待。欧波同有坚定的信心和决心面对智能时代的市场挑战,完善战略布局、升级技术服务,坚持创新理念,在势不可挡的科技强国浪潮中,实现企业科技创新、赋能发展的目标。
  • 新材料十二五规划将出炉 高端钢铁产业获发展良机
    新材料“十二五”规划即将推出,涉及了包括高强轻质合金、高性能钢材、功能膜材料在内的6类新型材料。其中,高性能钢铁将分别受益于未来大飞机、新能源汽车和高端装备制造业的高速发展,需求提升潜力巨大,还将获得数千亿的资金支持,抚顺钢铁、西宁特钢、太钢不锈等上市公司值得重点关注。  《新材料产业“十二五”发展规划》即将推出,其中,高性能钢铁是新材料“十二五”规划中获得政策重点支持的品种之一,国家将通过税收减免、补贴、重大项目支持等形式支持企业的研发、研究成果产业化和发展相关配套设施,资金由企业和政府共同承担,保守估计达数千亿元。  当传统的钢铁产能面临着高耗能瓶颈,即将遭到大规模淘汰的时候,高性能钢铁产品有望成为突破能耗、资源和环境瓶颈的领头羊。同时,“十二五”高端装备制造业的发展将是这类产品需求提升的主要推动力。  据悉,中国目前需要淘汰的螺纹钢、热轧带钢、热轧硅钢产能分别达到7,800万吨、4,541万吨、58.5万吨。传统的低端钢铁产品逐步淘汰后,将为高端钢铁产品提供广阔的市场空间。  上半年出台的《钢铁行业“十二五”规划(草案)》指明的特种钢铁重点方向是:高速铁路、城市轨道交通、海洋工程和海上石油开采、大型和特殊性能船舶和舰艇、节能环保汽车、特高压电网等高端装备制造领域,预计大飞机、高铁、海工、能源等高端装备制造领域“十二五”投资规模有望达到10万亿元。  资料显示,钢铁分为22个大类,每一类都包含高性能钢铁,我国高性能钢铁总体占比不高,远低于发达国家水平。专家称,我国有的高性能钢铁技术水平相对较领先,如第三代汽车用钢、机械制造用钢、管线用钢等。业内人士表示,国内高性能钢铁部分技术还停留在实验室层面,科研成果产业化还需要继续努力。  特钢可以分为高、中、低三个层次:一是以优质碳素结构钢为主的低端特钢 二是以合金钢为代表的中端特钢 三是以不锈钢、工具钢、模具钢和高速钢为代表的高端特钢。数据显示,2010年我国特殊钢产量约为4.800万吨,仅占钢产量的8%左右,特钢占比远低于发达国家。目前我国特钢的发展以中低端产品为主,高端特钢占比不到7%,远低于日本30%的水平,未来高端特钢的市场前景广阔。  中国的特钢行业集中度是比较高的,前10大特钢企业市场占有率超过了50%,已形成了四大特钢集团,分别是:东北特钢集团、宝钢集团、中信泰富特钢和西宁特钢,目前主要的技术储备和订单都来自于这四大特钢集团。  东北特钢旗下的抚顺特钢是我国国防军工产业配套材料最重要的生产科研试制基地,为我国国防工程提供大批关键的新型钢材料,在模具钢、汽车用齿轮钢、高温合金轴承钢国内市场占有率分别为40%、35%、40%。宝钢股份作为中国钢铁的龙头企业,主要生产特钢和不锈钢,主要用于汽车和造船,其产品具有高技术含量、高附加值的特点,具有很强的定价能力。  西宁特钢的主要优势来自于其完整的“煤铁钢”一体化产业链,并形成了“高炉-转炉-精炼-连铸-连轧”优特钢生产线。  而在不锈钢方面,太钢不锈是这一子行业当仁不让的领头羊,该公司已经成为核电最全钢材供应商,目前在特种硅钢领域获得技术突破,未来发展潜力巨大。  除高性能钢铁外,新材料“十二五”规划将优先支持一些影响相对更大的先导性和更为基础的用量较大的材料,比如复合材料、高强轻型合金、稀土功能材料等。工业和信息化部部长苗圩表示,新材料是七大战略性新兴产业之一,对于支撑整个战略性新兴产业发展,促进传统产业转型升级,保障国家重大工程建设,具有重要战略意义。我国将大力发展新材料和先进制造技术,加快推进材料产业结构调整,积极发展先进结构材料、功能材料和复合材料 将加大新材料推广应用和市场培育,加快发展科技含量高、产业基础好、市场潜力大的关键新材料,选择最有可能率先突破和做大做强的领域予以重点推进,支持有条件的地区率先发展。  据估计,近几年中国新材料市场需求平均年增长高达20%左右,截至2010年产业规模已经超过1,000亿元。新材料产业具有基础性产业的特点,其产业规模的扩大对于扩大其他产业的规模具有乘数效应。未来,该产业的市场空间将更加广阔。
  • 一汽/陕汽/比亚迪/中车技术专家齐聚,共探汽车失效分析技术
    汽车零部件失效分析是研究汽车零部件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,目的在于分析零部件失效的原因,提出改进和预防措施,从而提高汽车可靠性和使用寿命。目前,失效分析已成为汽车材料及零部件检测的一个重要环节。汽车零部件的失效分析技术是一项涉及众多学科和工程技术的综合性工程技术。对于金属材料零部件而言,失效的主要类型包括断裂(开裂)、变形、磨损和腐蚀,而失效分析技术则涉及物理及化学学科、金属材料及金属工艺学、材料和工程力学,以及各种汽车工程技术等各门类学科何技术,同时也包括实践认知和逻辑推理等思维形式。为进一步加强汽车零部件失效分析技术和方法的交流,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造,仪器信息网将于2023年3月15-17日举办第五届“汽车检测技术”网络会议,联合中国汽车工程学会汽车材料分会特设“汽车零部件失效分析”专场。点击图片直达会议页面会议特邀一汽、陕汽、比亚迪、中车四大主机厂失效分析工程师,结合相关理论、大量工作实践与具体案例,从不同角度分享汽车零部件失效分析经验。部分报告预告如下( 点击报名 ) 。汽车工程学会材料分会理化及失效专业委员会研究员高工 刘柯军《汽车零部件失效分析的技术逻辑》(点击报名) 刘柯军高工自1982年进入一汽,一直从事汽车金属零部件的金相检验和失效分析工作,退休前任一汽技术中心材料部技术总监;长期从事失效分析工作,积累了大量的实际经验,现为汽车行业失效分析工作的技术带头人。汽车零部件失效分析是一项专门的工程技术,需要长期的技术时间积累,在此过程中失效分析工程师需要形成切实有效的认知技术和逻辑思维模式。本次会议中,刘柯军高工将分享汽车零部件失效分析的技术逻辑。中车戚墅堰机车车辆工艺研究所有限公司高级工程师 潘安霞《兔年读图——图解汽车零部件失效分析》(点击报名) 潘安霞高工为中车戚墅堰所失效分析高级工程师,现任全国机械工程学会失效分析分会委员、中国中车技术专家,中车计量理化培训讲师,主要从事轨道交通行业齿轮、紧固件、弹簧等关键零部件失效分析研究工作,著有《紧固件失效分析与案例》。本次报告中潘安霞高工将图解汽车零部件失效分析,通过齿轮、电池包、紧固件、轴承等零部件的典型失效案例讲解,说明损伤形貌的宏微观图片正确表征和解读是失效分析的重要环节。陕汽控股集团公司失效分析总监 白培谦《重型汽车零部件失效分析及改进》(点击报名) 白培谦总监自1987年参加工作以来,一直在陕汽从事检验、检测、失效分析和质量管理等技术工作,主要特长为失效分析和质量改进工作,对重型汽车的失效分析和质量改进有30多年的经验积累,发表论文40多篇,从事的失效分析及质量改进项目达1000多项,创造了很大的经济效益和社会效益。 本次报告中白培谦总监将重点分享重型汽车失效的特点分析、重型汽车常见的失效形式,以及如何做好失效分析工作,探讨质量改进方法,分析典型案例等。中国第一汽车集团有限公司高级工程师 陈成奎《汽车零件热疲劳典型案例分析》(点击报名) 陈成奎高工自1997年参加工作以来,一直从事与金属材料相关的零部件失效分析、检测分析及金属材料开发方面工作,解决各种零部件及总成失效问题200多项,为解决设计、生产和使用中存在的问题提供有力的支持。本次报告中陈成奎高工将分享汽车零件热疲劳典型案例分析,主要介绍热疲劳零件失效特征和热疲劳分析要点,分享典型的热疲劳案例,包括汽缸盖、制动鼓、排气歧管、散热器和活塞等热应力开裂案例;并介绍不同零件热疲劳开裂特点及失效原因。比亚迪汽车工业有限公司实验室主任 唐刚《汽车半轴失效模式的分析与探讨》(点击报名) 唐刚为比亚迪汽车工业有限公司材料实验室主任,现任中国汽车工程学会材料分会委员、机械工程学会失效分析分会专家、机械工程学会无损检测分会理事。主要从事金属零部件理化检验、失效分析、焊接工艺研究与检测,长期参与主持重大质量事故和失效分析工作,通过长期工作的实践和技术总结,在汽车相关领域金属零部件失效分析、轻量化焊接方面积累了一定的实际经验。半轴是汽车传动系统中一个重要的零部件,由于其自身特殊结构功能和使用状况等因素的影响,半轴的各种失效发生的频次非常高,而且是汽车重要结构件中失效频次最高的零件之一。本次会议中唐刚主任将分享汽车半轴失效模式的分析与探讨,主要从半轴结构特点、载荷性质、失效模式等方面来阐述汽车半轴失效的多样性和分析思路。中国第一汽车集团有限公司技术主任 李润哲《X射线残余应力检测在汽车上的应用》(点击报名) 李润哲为中国第一汽车集团有限公司研发总院材料与轻量化研究院金属材料开发主任。自1991年参加工作后,主要从事无损检测、X射线衍射分析、工业CT结构分析、喷丸工艺及金属材料开发工作。现任中国机械工程学会无损检测学会理事、中国机械工程学会吉林省无损检测分会负责人,吉林省分析测试协会常务理事,中国机械工程学会残余应力委员会委员,中国机械工程学会喷丸委员会委员。本次会议李润哲主任将分享X射线残余应力检测在汽车上的应用,内容包括:(1)残余应力基础知识;(2)X射线残余应力检测原理及标准; (3)X射线残余应力检测在汽车上应用示例; (4)X射线残余应力检测实践中注意事项。汽车零部件失效分析离不开各类分析检测仪器的助力。除了精彩的专家报告之外,北京欧波同光学技术有限公司业务发展(BD)工程师苏瑞雪、岛津企业管理(中国)有限公司应用工程师崔会杰、日立科学仪器(北京)有限公司电镜市场部副部长周海鑫也将在本会场分享其产品在汽车行业的应用案例。北京欧波同光学技术有限公司业务发展(BD)工程师 苏瑞雪《欧波同汽车材料检测显微分析解决方案》(点击报名) 岛津企业管理(中国)有限公司应用工程师 崔会杰《岛津电子探针在汽车材料分析中典型应用》(点击报名)日立科学仪器(北京)有限公司电镜市场部副部长 周海鑫《日立电镜在汽车行业的应用》(点击报名)以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/automobile2023/
  • 即将直播|锂电失效分析与检测技术线上大咖论坛
    近年来,新能源汽车应用推动下,锂离子电池市场保持高速持续增长。业界关注的锂电能量密度、锂电安全等都与锂电材料的结构、动力学等性能息息相关,准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。2022年11月30日-12月2日,仪器信息网与广州能源检测研究院、广东省动力电池安全重点实验室、国家化学储能材料及产品质量检验检测中心(广东)、国家烃基清洁能源产品质量检验检测中心(广东)将联合举办第五届“新能源材料检测技术发展与应用”网络会议。其中,11月30日全天将聚焦“新能源电池检测技术”,邀请12位锂电研究应用专家、知名仪器企业技术专家代表,详细讨论锂电失效分析与检测技术的最新进展。相关报告嘉宾及报告内容预告如下(按分享顺序):李丽 北京理工大学 教授《锂离子电池失效分析及回收再利用》【报名占位 】李丽,北京理工大学教授、博士生导师,英国皇家化学学会会士。长期从事新型绿色二次电池关键材料设计、锂离子电池回收处理与资源化利用、二次电池衰减机理与失效分析等研究。发表SCI收录论文200余篇,授权国家发明专利30余项。在国内外学术会议上做特邀报告90余次,多次担任中美双边国际会议锂离子电池回收技术分会主席。主编出版学术专著2部、参编多部。入选2012年度教育部新世纪优秀人才计划、北京市优秀人才支持计划和北京市科技新星计划,获部级科学技术一等奖4项。现任电动汽车动力蓄电池循环利用战略联盟技术专家委员会副主任、国家科技部固废重点专项评审专家、北京市资源强制回收环保产业技术创新战略联盟专家委员会副主任委员、《储能科学与技术》编委会委员等。【分享摘要】主要介绍锂离子电池战略资源背景、高镍三元正极材料微观结构与失效检测、硅碳负极材料性能衰减机理及其回收再利用技术。通过对锂电典型正负极材料失效机理与构效分析,重点讲述各种表征技术在锂离子电池关键材料研究开发中的应用,为新型高性能锂离子电池正负极材料提供指导。王娜 赛默飞世尔科技(中国)有限公司 分子光谱应用专家《赛默飞分子光谱技术在新能源电池表征及研发中的解决方案》【报名占位 】王娜, 2010年加入赛默飞,分子光谱应用科学家,主要负责分子光谱产品线的技术支持、产品推广,拓展分子光谱技术在各个行业领域中的新应用开发。【分享摘要】1、 赛默飞红外光谱仪及拉曼光谱仪产品介绍 2、 赛默飞红外光谱技术在新能源电池中电极材料、隔膜等材料表征中的应用; 原位电化学在锂离子电池表征及研发中的解决方案;GC-IR联用技术在锂离子电池溢出气体检测中的应用。 3、 赛默飞拉曼光谱技术在新能源电池电极材料、隔膜等材料表征中的应用;原位电化学在锂离子电池表征及研发中的解决方案。曹亚南 岛津企业管理(中国)有限公司 光谱产品专员《岛津光谱技术在新能源新材料测试中的应用》【报名占位 】岛津企业管理(中国)有限公司 分析计测事业部 光谱产品专员,硕士毕业于北京化工大学,目前主要负责岛津紫外-可见-近红外分光光度计、荧光分光光度计等光谱产品的市场工作,拥有多年光谱分析技术和光学材料测试方面的工作经验。【分享摘要】介绍岛津紫外、荧光及粒度仪产品在新能源新材料中的解决方案王愿习 天目湖先进储能技术研究院 技术经理《TIES锂电池失效分析及表面分析方案介绍》【报名占位 】材料化学专业,近8年的锂电池设计开发、工程化生产、测试及失效分析等工作经验,熟悉各类锂电池的性能失效机理和分析方法。带领团队对锂电池相关材料的测评、失效分析与对标分析开展了大量案例分析及研究,推动各类技术方法在3C、动力及储能锂电领域的应用,为客户提供相关测试及失效分析服务和整体解决方案。【分享摘要】TIES介绍、电池失效分析方法及案例分享、表界面失效研究的难点及分析方案、材料-电极-电池-PACK多层级的系统失效分析技术建立。陈剑锋 布鲁克(北京)科技有限公司 应用工程师《布鲁克新一代能谱仪及EBSD/同轴TKD技术与新能源上的应用》【报名占位 】2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。【分享摘要】随着新能源行业的蓬勃发展,无论是研究者还是生产者对于相应的材料,结构,性能的研究手段和分析设备的要求也越来越高,布鲁克纳米分析部门推出第七代能谱配合EBSD和同轴TKD技术继续在分析测试,产品工艺改进和品质控制等领域助力新能源行业的发展,本期报告我们将主要介绍布鲁克新一代能谱仪特点以及EBSD和同轴TKD的主要特点和应用,让新老客户对我们的产品及应用有一个更好的了解和认知。沈 越 华中科技大学 教授《电池超声检测技术在新能源领域中的应用》【报名占位 】沈越,2011年博士毕业于北京大学,现任华中科技大学材料科学与工程学院教授。在包括Science、Joule、J. Am. Chem. Soc、 Adv. Mater.等学术期刊发表论文50余篇,其中作为第一或通讯作者发表在影响因子大于10的期刊论文23篇。作为项目负责人主持国家自然科学基金项目3项,获授权国家发明专利21项,美国专利1项。主要研究方向包括:锂离子电池超声检测技术和搅拌式自分层电池。成果应用于比亚迪、宁德新能源、华为、通用汽车等30余家企业。【分享摘要】 1.当下制约电池技术发展的主要问题;2.学术及产业界对电池设计与制造缺陷的应对措施;3.超声技术在电池检测领域的应用原理及优异表现韩广帅 同济大学、上海智能新能源汽车科创功能平台有限公司 副总经理《锂离子电池的失效分析解析整体解决方案》【报名占位 】同济大学助理研究员,上海空间电源研究所博士后。上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理;国家质检总局缺陷产品管理中心汽车缺陷调查与鉴定特聘专家;工信部教育与考试中心电池制造工程师的高级培训导师;上海市新能源领域技术专家,多家新能源汽车技术委员会委员。建立了国内首个完整的非破坏和非大气暴露下的破坏性锂离子电池健康状态与安全评价与研究体系。【分享摘要】 1、锂离子电池的应用场景; 2、锂离子电池的失效模式; 3、锂离子电池的分析解析方法。葛小敏 上海微纳国际贸易有限公司 应用工程师《Fischione真空互联可控环境离子束切割技术在锂电行业中的应用》【报名占位 】葛小敏,工学硕士,毕业于南昌大学机电工程学院材料工程专业,曾在中国科学院上海光学精密机械研究所激光智能制造研发中心工作两年,主要研究方向为液态金属裂纹的成形机理,有着多种的显微分析技术及制样技术。目前任职于上海微纳国际贸易有限公司,主要负责Fischione设备的应用及推广。【分享摘要】 随着消费电池以及电动汽车行业的需求不断增加,越来越多的电池材料及各类新型电池不断进入研发及实际应用,如何获取这些材料及新型电池的结构与性能之间的构效关系,在多尺度下对材料结构及电学性能进行表征显得尤为重要。该报告将介绍如何实现在真空/惰性气氛保护下对电池材料进行带电状态样品制备及原位电镜分析工作。蔡斯琪 岛津企业管理(中国)有限公司 产品专员《岛津XPS在新能源材料领域的解决方案》【报名占位 】硕士毕业于同济大学,现岛津市场部X射线光电子能谱仪产品专员,负责XPS技术支持和各行业市场推广工作。【分享摘要】 X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在新能源领域的应用。叶菁菁 弗尔德(上海)仪器设备有限公司 应用工程师《新能源电池材料中的元素分析及粒度粒形表征》【报名占位 】德国弗尔德集团Eltra埃尔特元素分析仪资深应用工程师。具有多年仪器行业及元素分析行业应用经验,长期致力于金属材料、非金属材料以及各类新材料的元素分析应用工作,针对各行各业的用户均能提供及时且高效的应用方法及解决方案。【分享摘要】 新能源电池性能在很大程度上取决于电池组成的材料性能和制备工艺。使用合适的分析设备和工艺对电极材料进行检测,将大大有助于考察电池的性能指标。此外,原材料研发制备也至关重要,运用合适的条件制备原材料是新能源电池制造的基础。本场报告将聚焦新能源电池材料中的非金属元素分析及粒径粒形表征,同时分享相关原材料制备的解决方案。张江云 广东工业大学 副教授《主流动力电池热-电特性检测及本质原因分析》【报名占位 】张江云,广东工业大学副教授,博士后,英国赫特福德大学访问学者。研究方向主要为动力及储能电池的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与动力电池热管理领域科研项目10余项,包括国家自然科学基金青年基金,广东省动力电池安全重点实验室开放基金,美国国际铜专业协会招标项目等。发表相关学术论文20余篇,获授权发明专利博8件,参与技术标准编制5件,获得东莞市科学技术进步奖二等奖。【分享摘要】 包含瞄准动力电池热安全问题,针对目前市场上主流锂动力电池包括三元硅碳电池在滥用条件下得产热行为和电化学特性进行研究,并对引起电池性能衰退的本质原因从材料角度进行深度剖析。周永超 新能源事业部 中国机械科学研究总院集团有限公司/中机寰宇认证检验股份有限公司 部长《锂电池新型验证测试方法分析》【报名占位 】周永超,中国机械科学研究总院中机寰宇认证检验股份有限公司,新能源事业部副部长。电动汽车传导充电标准工作组专家、电动汽车换电标准工作组专家、特种车辆用充电设施标准工作组成员。现主要负责动力电池、驱动电机、车身电器、整车电安全等新能源检测实验室的检测工作。尤其在动力电池领域有着十几年的从业经验,熟悉电芯、电池包的研发、生产及检测工作,同时参与起草《北京市示范应用新能源小客车生产企业及产品备案管理细则》、《电动汽车充电站运营管理规范》等多项北京市新能源汽车相关行业管理政策的制订。【分享摘要】 随着电动汽车的快速普及,以及应用场景的复杂化,电动汽车所用锂电池的技术要求逐步提高。相应,各车企为了验证锂电池的性能和安全,在原有验证测试方法基础上,提出了许多新型测试方法。本报告将结合实际案例对几个典型的验证测试方法进行分析。附:关于第五届“新能源材料检测技术发展与应用”网络会议一、主办单位仪器信息网,广州能源检测研究院,广东省动力电池安全重点实验室,国家化学储能材料及产品质量检验检测中心(广东),国家烃基清洁能源产品质量检验检测中心(广东)二、会议时间2022年11月30日-12月1日三、会议形式线上直播,直播平台:仪器信息网网络讲堂平台四、会议日程第五届“新能源材料检测技术发展与应用”网络会议时间专场名称11月30日全天新能源电池检测技术专场12月1日上午储能材料检测技术专场12月1日下午清洁能源之氢能源材料检测技术专场12月2日上午其他清洁能源材料检测技术专场五、参会方式本次会议免费参会,参会报名请点击会议官网:会议官网:https://www.instrument.com.cn/webinar/meetings/xny2022/ (内容更新中)或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容杨编辑:15311451191,yanglz@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn仪器信息网广州能源检测研究院广东省动力电池安全重点实验室国家化学储能材料及产品质量检验检测中心(广东)国家烃基清洁能源产品质量检验检测中心(广东)2022年10月26日
  • CCATM'2014之材料微观解析与失效分析会场
    仪器信息网讯 2014年10月20日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 材料微观解析与失效分析&rdquo 会议在北京国际会议中心举行。  失效分析是指产品失效后,通过对产品及其结构、使用和技术文件的系统研究,从而鉴别失效模式、确定失效机理和失效演变的过程。失效分析对于提高产品质量和防止事故重演特别重要。失效分析工作是一个极其复杂的过程,它需要多学科相互交叉。主要分析内容包括断口分析、化学分析、金相显微分析、力学性能检查和无损探测等方面。  其中微观解析主要指断口分析中的微观分析和金相显微分析。在断口微观分析中,使用扫描电镜或透射电镜可观察微观断口的形貌,从而判断断裂失效机制。另外配合能谱分析仪还可以对断口的微区成分进行分析,以判断是否存在夹杂物、成分偏析等缺陷。  金相显微分析是指利用金相显微镜来观察和研究金属材料显微组织结构及分布的试验方法。是检查金属材料质量的好坏、热处理工艺质量评定的最直观、最准确的方法。  在本次会议中,武钢研究院孙宜强介绍了SPHC热轧板表面疤块缺陷分析 钢铁研究总院谢金鹏介绍了转向弯臂断裂失效原因分析 宝山钢铁股份有限公司王军艺介绍了火花塞膨胀槽脆性开裂失效分析 首钢通化钢铁集团韩德青介绍了隔热管断裂原因分析 钢铁研究总院郑凯介绍了某石化设备用 P201泵出口管道裂纹原因分析 马钢技术中心王德宝介绍了35CrMo高强度连接螺栓杯锥状断口失效分析 武汉钢铁集团公司研究院王志奋介绍了冷轧双相钢性能不合格原因分析 国家钢铁材料测试中心李云玲PSB1080 螺纹钢氢脆断裂分析 西安航空动力控制科技有限公司郭秀乔介绍了活门和衬套卡滞原因分析 江苏省宏晟重工集团有限公司乙海峰介绍了1Cr17Ni2钢热油泵泵轴断裂分析。会议现场
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • 探索微观 明察秋毫——浅谈扫描电镜在金属材料失效分析领域的应用
    失效分析是近些年由军工企业向科研学者及企业所普及的一门新学科[1],金属零部件失效轻则会导致工件性能退化,重则会导致人生安全事故,通过失效分析定位失效原因,提出有效改进措施是保证工程安全运行必不可少的一步,因此,充分利用扫描电镜的优势将为金属材料行业的进步做出巨大贡献。 金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。其中最基本也最为常人所熟知的钢铁,作为基本的结构材料,对国家和人民的意义重大。自工业革命爆发后,不论是小到日常生活用品材料,还是大到军事设备,轨道交通,都离不开钢铁的参与。众多钢铁企业及科研院所利用扫描电镜得天独厚的优势来解决生产时遇到的问题,并协助科研开发新产品。扫描电镜搭载相应的附件已成为钢铁冶金行业进行研究和生产过程中发现问题的有利手段。随着扫描电镜分辨率及自动化程度的提高,扫描电镜在材料分析表征方面的应用愈发广泛[2]。01 电镜观察金属件拉伸断口断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析研究一些导致材料发生断裂的基本问题,如断裂起因、断裂性质、断裂方式等。如果要深入研究材料的断裂机理,通常要对断口表面的微区成分进行分析,断口分析现已成为对金属构件进行失效分析的重要手段。图1 国仪量子扫描电镜SEM3100拉伸断口形貌图 根据断裂的性质,断口大致可分为脆性断口和塑性断口。脆性断口的断裂面通常与拉伸应力垂直,脆性断口从宏观来看,由光泽的结晶亮面组成;塑性断口从宏观来看,通常断口上有细小凹凸,呈纤维状。断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径,但如果要对断裂源附近进行细致研究,分析断裂原因和断裂机制,必须进行微观观察,且因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的景深,尽可能宽的放大倍数范围和高的分辨率。综合这些需求,扫描电镜在断口分析领域得到广泛的应用。图1三个拉伸断口样品,通过低倍宏观观察及高倍显微组织观察,样品A断口呈河流花样(如图A)为典型脆性断口特征;样品B宏观无纤维状形貌(如图B),微观组织无韧窝出现,为脆性断口;样品C宏观断口由光泽的刻面构成,故以上拉伸断口均为脆性断口。02 电镜观察钢铁夹杂物 钢的性能主要取决于钢的化学成分和组织。钢中夹杂物主要以非金属化合物形态存在,如氧化物、硫化物、氮化物等,造成钢的组织不均匀,而且它们的几何形状、化学成分、物理因素等不仅使钢的冷热加工性能降低,还会影响材料的力学性能[3]。非金属夹杂物的成分、数量、形状和分布等对钢的强度、塑性、韧性、抗疲劳、耐腐蚀等性能有极大的影响,因此,非金属夹杂物是钢铁材料金相检验中不可缺少的项目。通过研究钢中夹杂物的行为,采用相应技术防止钢中夹杂物进一步形成和减少钢液中已存在的夹杂物,对生产高纯净钢以及提高钢的性能具有十分重要的意义。图2 国仪量子扫描电镜SEM3100夹杂物形貌图图3 TiNAl2O3复合类夹杂能谱面分析图图2、图3所示夹杂物分析案例中,通过使用扫描电镜观察夹杂物,配合能谱分析电工纯铁所含夹杂物成分,可知纯铁内部所含夹杂物种类为氧化物类、氮化物类以及复合类夹杂。扫描电镜自带的分析软件具有强大的功能,可以直接对样品测量或直接在图片上进行任何距离、长度的测量,例如通过测量上图所示案例中电工纯铁夹杂物的长度,可知Al2O3夹杂物平均尺寸约为3μm,TiN及AlN尺寸均在5μm以内,复合类夹杂尺寸不超过8μm;这些细小的夹杂在电工纯铁内对磁畴起到钉扎的作用,会影响最终的磁性能。氧化物类夹杂Al2O3来源可能为炼钢的脱氧产物和连铸过程的二次氧化物,在钢铁材料中的形态多为球形,少部分为不规则形状。AlN在钢铁材料中的形态通常呈细长条状;TiN在钢铁中的形态通常呈四边形,夹杂物的形态与其组分以及在钢液内所发生一系列的物理化学反应有关,观察夹杂物时不仅要观察夹杂物的形态及成分,还要关注夹杂物的尺寸大小及分布,需要多方面统计,从而综合评判夹杂物水平。在对单个夹杂物进行观察分析时扫描电镜具有一定的优势,例如夹杂物导致工件开裂进行失效分析,通常在开裂源头处会发现大颗粒夹杂,此时对夹杂物进行尺寸、成分、数量以及形状等研究具有重要意义,通过分析可以定位工件的失效原因。03 扫描电镜对钢铁材料中有害析出相的检测方法析出相是指饱和固溶体温度降低时析出的相,或固溶处理后得到的过饱和固溶体在时效时析出的相,相对的时效过程是一个固态相变的过程,是第二相粒子从过饱和固溶体中沉淀脱溶并且形核长大的过程。析出相在钢中具有十分重要的作用,其对钢的强度、韧性、塑性、疲劳性能等许多重要的物理化学性能均具有重要影响。合理控制钢铁析出相能够强化钢铁性能,如果热处理温度及时间控制不当,会引起金属性能急剧下降,如脆断、易腐蚀等。图4 国仪量子扫描电镜SEM3100电工纯铁析出相背散图在一定的加速电压下,由于背散射电子的产额基本随试样原子序数的增高而增加,所以可以利用背散射电子作为成像信号,显示原子序数衬度像,在一定范围内可以观察试样表面的化学组分分布情况。铅原子序数为82,在背散模式下Pb的背散射电子产额很高,所以图像中Pb呈亮白色。Pb在钢铁材料中的危害有以下几种,因为Pb和Fe不生成固溶体,在冶炼过程中难以去除,且易在晶界处发生偏聚,形成低熔点的共晶体削弱晶界结合力,使材料的热加工性能下降。电工纯铁中的铅析出可能来源是炼铁原料中含有的Pb,以及冶炼时添加合金元素所含有的微量Pb;如果特殊用途使用,不排除在冶炼过程中加入的可能,目的是改善切削加工性能。04 结语扫描电镜作为一种显微分析工具,可以对金属材料进行多种形式的观察,可以对各类缺陷进行详细的分析、金属材料失效的原因进行综合定位分析,随着扫描电镜功能的不断完善和提升,扫描电镜能够完成的工作也越来越多,不仅为改善材料性能的研究提供了可靠依据,同时也在生产工艺控制、新产品设计和研究等方面发挥了重要作用。参考文献:[1] 陈南平,顾守仁,沈万慈等.机械零件失效分析[M].北京:清华大学出版社,2008,15-17.[2] 张鋆川. 金属材料检测常见问题及解决措施[J]. 数字化用户, 2018, 24(052):67.[3] 郭立波,李朋,武强,等. 扫描电镜及能谱分析在钢铁冶金中的应用[J]. 物理测试,2018,36(1):30-36. 本文作者:于文霞 国仪量子应用工程师
  • 岛津与用户共聚2011陕西分析测试交流会
    由陕西省分析测试协会主办,西安近代化学研究所分析测试中心协办的2011年度陕西省分析测试实验室协作交流会议于5月14-15日在陕西省柞水县召开。陕西省分析测试协会60多家会员单位和仪器厂商共160余人参加了本次会议。 岛津国际贸易(上海)有限公司与陕西省分析测试协会合作历史悠久,通过岛津的精密科学分析仪器与优质的售后服务为会员单位排忧解难,为陕西省分析测试水平的不断提高做出自己的贡献。 应协会邀请岛津公司陕西区域经理 朱正辉先生做了题为《岛津大型分析仪器》的会议开场报告。首先介绍了岛津的历史,从1875年岛津源藏在创业伊始就制定了创业宗旨&mdash &mdash 要&ldquo 以科学技术向社会做贡献&rdquo ,因此岛津公司以此作为公司宗旨,不断钻研先进的、满足社会需求的科学技术,为整个社会的发展做出贡献。并且致力于光技术、 X 射线技术、图像处理技术这三大核心技术基础上的研发,不断推陈出新,在分析测试仪器、医疗仪器、航空产业机械等领域享有全球盛誉。可以说,正是对科学技术的孜孜以求,才使得岛津由一个教学仪器厂走到了今天全球化的分析仪器专业厂家。 岛津大型分析仪器主要包括X射线荧光、衍射、直读光谱仪、扫描探针显微镜、电子探针、光电子能谱等产品。这些名字听起来比较陌生,谈到它们的贡献您就熟悉了。最简单的就是我们住的房子、开的车子,里面的钢筋、钢板都是这些仪器在把质量关,检测里面有些什么成份、各种成份的存在状态、在各种试验条件下的变化,通过优胜劣汰,最终都照着冠军的标准生产,整个研发、生产过程都是在大型仪器的检测下完成的。不谦虚的说,日常生活中您用到的金属产品,从矿石到冶炼到加工到产品的全过程中没用过大型仪器的还真难找。还记得08奥运的标志性建筑&ldquo 鸟巢&rdquo 吧,壮观的主结构钢就是用了岛津X射线荧光研制开发的Q460D高强度钢。还有近几年备受关注的高速铁路装备,铁路机车车辆行业在引进岛津PDA光谱仪和ICP光谱仪的基础上,研发生产出国际领先水平的在动车组和大功率电力机车。功能强大的X射线光电子能谱仪更是将研究深度大为扩展,主要用于固体材料的表面(2~3nm深度)元素成分和价态的定性和定量分析,与成像功能和离子溅射刻蚀相结合,也可以用于固体表面元素成分及价态的二维面分析和深度剖析,在纳米材料、高分子材料、材料的腐蚀与防护、各类功能薄膜的机理研究、催化剂研究与失效等方面具有不可替代的作用。 岛津大型分析仪器部陕西区域经理 朱正辉先生
  • OPTON|失效分析高级培训班(第3期)邀请函
    培训时间:2019年4月22-26日培训地点:北京欧波同光学技术有限公司2楼会议室培训地址:北京市朝阳区惠河南街1069号水南庄壹号21栋尊敬的用户,您好!为了更好的发挥扫描电镜在用户实际生产、质量控制及科研中解决问题的能力,欧波同公司将于2019.04.22-04.26在北京DEMO实验室举办针对金属材料用户的高级应用培训,此次主要培训内容为:钢铁行业失效分析原理及实际案例讲解、牛津仪器能谱及EBSD使用原理及数据分析、蔡司扫描电镜设备维护及内部结构介绍、透射电镜数据及案例解析等。本次为收费培训,费用为2600元/人。 本次培训为小班授课、干货满满,人数上限为20人,报名满额即止,报名以付款的先后顺序为准,有兴趣的小伙伴们立刻行动起来吧。同时本次培训感谢牛津仪器的大力支持。培训内容钢铁行业失效分析原理及实际案例讲解1、钢铁产品失效分析的概述2、扫描电镜和光学显微镜在钢铁产品失效分析中的应用简介3、基础知识简介4、常用金相标准和典型金相组织5、钢铁产品断口宏观和微观分析6、钢铁产品失效分析案例能谱及EBSD使用原理及数据分析1、EDS工作原理及日常维护2、能谱分析原理及分析技术3、如何确认未知元素4、定量分析设置与分析5、能谱分析的试样要求6、EBSD技术简介蔡司扫描电镜设备维护及内部结构介绍1、蔡司扫描电镜设备日常维护保养2、扫描电镜内部构造简介透射电镜数据分析及案例解析1、TEM设备及基本概念2、衍射理论3、材料缺陷与图像处理4、相关行业应用培训详情 培训时间:2019年4月22-26日培训地点:北京欧波同光学技术有限公司2楼会议室培训地址:北京市朝阳区惠河南街1069号水南庄壹号21栋联系人:王艳媛18768193159邮箱:yy.wang@opton.com.cn培训报名方式报名方式一:请您点击“阅读原文”进行报名报名方式二:扫描下方二维码,即可报名!培训费用此次培训费2600元/人(包括午餐),住宿及交通费用需要自理。汇款信息:名称:北京欧波同光学技术有限公司 开户行:交通银行北京东三环中路支行账户: 1100 6108 3018 0100 41753
  • 彼奥德电子携多款产品精彩亮相第35届炭素经济技术信息交流会
    第35届碳素经济技术信息交流会于7月8-9日在素有“中国煤都”之称的山西大同国宾大酒店盛大举办,会议历时2天。本次会议以“结伴同行,相互借力”为主题,针对当前炭素制品生产经营形势,共同研究探讨炭素产业的发展新思路。彼奥德电子作为会议的主要协办单位,携多款产品惊艳亮相会议,前往展台咨询了解设备的用户络绎不绝,兴致勃勃。 现场用户咨询火爆 【展品介绍】kubo 1200超高速比表面积分析仪kubo-1200是一款具有超强测试能力和超高测试效率的静态容量法比表面积分析仪。最多可配置8个分析站,可在30分种内完成bet分析并输出结果,比标样参比法的比表面积仪测试数据更稳定、重复性更好。升级后的 kubo-1200还可进行多孔材料的总孔容积、孔径分布分析。 td2200真密度仪 td-2200气体法真密度分析仪是先进的检测材料骨架体积和真实密度的仪器,能测试排液法无法测定的固体材料。它是理想气态方程的应用,采用惰性气体标定体积,具有不污染不破坏样品的优点,同时具备更高的测试精度和稳定性。 北京彼奥德电子技术有限公司(简称“彼奥德电子”)成立于2003年1月9日,是一家集项目研发、产品生产、测试咨询于一身的技术服务型企业。公司拥有独立的技术研发、产品制造、组装测试及客户服务团队,并具备设计室、数控机床加工中心、装配车间及实验室等自主硬件设施,是业界内规模最大和团队最完善的技术服务型企业。彼奥德电子以“品质至上、服务优先”作为核心发展理念,以用户实际反馈为出发点,提高产品技术等级的同时,引入更多的专业人才,在物理吸附、化学吸附、真密度测试等领域取得了多项技术突破,着力攻克用户的应用难题。
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 获奖名单揭晓!“欧波同杯”第五届全国失效分析大奖赛视频合集
    仪器信息网讯2020年11月28日,“欧波同杯”第五届全国失效分析大奖赛(以下简称“大赛”)总决赛在“云端”打响,经过文本评审初赛、11月20-22日为期三天如火如荼的云端复赛,11月28日上午的激烈决赛,最终获奖名单在下午闭幕式上云端揭晓,共9个参赛小组获得五千元到两千元不等金奖励,其余各奖级获奖选手及优秀指导教师均获得个人奖励证书。大赛由中国体视学学会金相与显微分析分会和欧波同(中国)有限公司共同主办,中国机械工程学会失效分析分会、中国机械工程学会可靠性工程分会、中国机械工程学会材料分会、中国机械工程学会理化检验分会、《理化检验-物理分册》联合协办,同时得到牛津仪器纳米分析部的赞助支持。疫情之下,本次大赛采用“云端”形式进行,取得了圆满成功:比赛历时两周,100件作品参赛,数量历届之最,每天线上观摩达2000余人次,使大赛的关注度也达到历届之最。同时,本届参赛作品涉及面广,含盖了高铁、航空、汽车、火电、风电、石化、石油、化工、天然气、冶金、建筑、医疗、军工、微电子、通用机械及先进材料等16个行业,不仅涉及传统的结构材料,还涉及先进的功能材料,比如3D打印结构件、信息电子材料、微电子器件封装等。两周的“云端”比赛历程中,六位评审、专家也现场接受了仪器信息网现场视频采访,针对大赛分享了精彩观点(采访视频合集见文末附1)。本届比赛参赛选手分为本科生组、研究生组和专业组,各组复赛的前三名直接进入决赛。比赛设特等奖、一等奖、二等奖三个奖级。特等奖加一等奖获奖人数按照参加复赛人数的三分之一设定,其余参加复赛选手获二等奖。每组设特等奖一名,奖励团队人民币5000元;每组一等奖前两名获得现金奖励,奖励团队人民币2000元。各奖级选手及优秀指导教师均获得个人奖励证书以资鼓励。各组获奖前三名名单如下:(获奖全名单见文末附2)本科生组成绩姓名学校/单位奖项成绩徐嘉维、陈靖中南大学第一名5000元决赛86.8张逸青、周楚仪浙江工业大学第二名2000元决赛81.2刘家岑徐子涵中国矿业大学第三名2000元决赛79.8研究生组成绩姓名学校/单位奖项成绩李沅骏付小雨深圳大学第一名5000元决赛79.8康文江王芳兰州理工大学第二名2000元决赛78.4张雨,路筱歆华中科技大学第三名2000元决赛78.2专业组成绩姓名学校/单位奖项成绩李平平、吴飞虎、张冯章中车戚墅堰机车车辆工艺研究所有限公司第一名5000元决赛81.4陶敏张怡襄阳航泰动力机器厂计量检测中心第二名2000元决赛78.2何竹风王洪伟张浩东北大学第三名2000元决赛74.8专家齐聚云端,共同为大赛寄语,为获奖者赠言大赛复赛开幕式由中国体视学学会金相与显微分析分会副理事长、东北大学教授尹立新主持,欧波同(中国)集团董事长、中国体视学学会金相与显微分析分会理事皮晓宇,中国体视学学会金相与显微分析分会常务理事、EngineeringFailureAnalysis国际期刊副主编、中国机械工程学会失效分析分会副理事长、复旦大学教授杨振国,中国机械工程学会失效分析分会理事长、北京航空航天大学教授张峥,中国机械工程学会可靠性工程分会副理事长、东北大学教授谢里阳,中国机械工程学会材料分会秘书长、上海材料所教授胡军,中国机械工程学会理化检验分会秘书长、上海材料所教授梅坛,《理化检验-物理分册》杂志常务总编乐金涛相继致辞。在闭幕式上诸位学会领导、评审专家代表、赞助代表等也对大赛的圆满落幕进行了高端评价,并分别对大赛的所有参与者表示致敬,为大赛进行了寄语。中国体视学学会金相与显微分析分会理事长、东北大学材料科学与工程学院院长秦高梧致开幕词,并表示,比赛不是最终目的,大赛的意义在于收集汇总失效分析优秀案例,作为教材培养出更多高素质的失效分析人才,从而助力中国工程质量提升,建设安全中国。国际期刊EngineeringFailureAnalysis副主编杨振国在致辞中谈到,失效分析是一门不断发展的综合性学科,该学科有助于提升从业人员的综合能力,增强其责任和担当;希望参赛选手把握机会,充分展示自己的能力和学术水平,展现新时代青年人的精神风貌,以比赛促交流,以交流促发展,以发展促创新,通过互相观摩学习,吸纳他人的优点,不断提升自我,从而为国家经济和文明建设添加砖瓦。值得一提的是,由于线上无法进行颁奖仪式,会务组特别设置了专家组分别向获奖者赠言的形式对各组获奖选手进行了祝贺与寄语。公平公正,6评审专家跨3地云端评审比赛分为初赛、复赛和决赛三个阶段。初赛为文本评审;11月20~22日举行复赛,公开答辩,采用网上在线实时比赛方式进行;决赛于11月28日举行,形式与复赛相同。参赛选手分为本科生组、研究生组和专业组,各组复赛的前三名直接进入决赛。三地3地云端评审现场大赛聘请杨振国、张峥、谢里阳、尹立新四位教授,与上海材料所教授巴发海、中国铁道科学院教授习年生一同担任评委。为保证比赛的公开、公平、公正性,比赛期间,六位评委分成三组,分布于欧波同(中国)有限公司的上海办事处、北京办事处和鞍山总部三处;三组评委在主办方监督下完成评审工作,且在比赛过程中不与外界进行任何联系。附1:评审及专家现场采访视频集锦习年生教授接受视频采访:张铮教授接受视频采访:杨振囯教授接受视频采访:巴发海主任接受视频采访:苏瑞雪老师接受视频采访:韩鹏经理接受视频采访:附2:获奖全名单本科生组成绩姓名学校/单位奖项成绩徐嘉维、陈靖中南大学第一名5000元决赛86.8张逸青、周楚仪浙江工业大学第二名2000元决赛81.2刘家岑徐子涵中国矿业大学第三名2000元决赛79.8邓琦、江北斌西南科技大学一等奖81.67李浩宇,徐呈甲齐鲁工业大学一等奖80.33李欣然李其伟河南理工大学一等奖80.33李龙,杜怡悦浙江工业大学一等奖79.67秦澜浩,朱振业华中科技大学一等奖79.33彭福张振中国矿业大学一等奖79刘传瑞毕智轩青岛滨海学院一等奖79焦燕妮汶欣媛西安石油大学一等奖77.67张志强于宁宁东北大学秦皇岛分校一等奖75.67彭洁丽龙晓琴百色学院一等奖75李祖冲仲永杰南京工业大学一等奖74.67熊焱王赟泽湖北汽车工业学院一等奖74.67徐卫东张书源西安石油大学一等奖74.33王洪鑫伊哲锋辽宁科技学院一等奖74.33鲁越辉武汉科技大学二等奖73.67贾高恩,李清超河南理工大学二等奖73.67上官子轩中北大学二等奖73.33郭甜甜,杜美玲西安文理学院二等奖73邓雨星徐咏捷西南交通大学二等奖72吴雯萱刘晨朝华中科技大学二等奖71.67侯峻李承阳北京石油化工学院二等奖71.67刘利,周虹池齐鲁工业大学(山东省科学院)二等奖70.67李福泽,吴洪旭东北大学秦皇岛分校二等奖70.67尹梦姣李宗涛西安文理学院二等奖70.33赵晓席振西安石油大学二等奖70.33王泳惠徐伟兰州理工大学二等奖70温晓蕊宋子翰中国石油大学(华东)二等奖69.33孙聪丁震山东理工大学二等奖69.33李林涛,刘畅内蒙古科技大学二等奖69刘旭升辽宁科技学院二等奖69黄永亮、刘庆杰百色学院二等奖68.33蔡蕊茹太原科技大学二等奖67.67张云龙赖兴旺沈阳航空航天大学二等奖67.67张宇王晴晴山东理工大学二等奖67.67周猛桑胜虎青岛滨海学院二等奖67.67蔡天程南京理工大学二等奖67.67殷锦华武汉科技大学二等奖67.33王祖淳韩旭南京工业大学二等奖67.33张博李诗雅中国石油大学(华东)二等奖66.67陈潇然、王南西南科技大学二等奖66程锦石朝朝湖北汽车工业学院二等奖66王毅洋朱丽涛中国矿业大学二等奖65戎泽浩施展泽西南交通大学二等奖64.67王梓尧曾楷西南交通大学二等奖64.67王薇宁夏大学二等奖64研究生组成绩姓名学校/单位奖项成绩李沅骏付小雨深圳大学第一名5000元决赛79.8康文江王芳兰州理工大学第二名2000元决赛78.4张雨,路筱歆华中科技大学第三名2000元决赛78.2应桂元钟荣驱深圳大学一等奖80周永浪、胡家锋东北大学一等奖80陈勇、牛亚涛西南交通大学一等奖79.67李锐、徐晨中国民用航空飞行学院一等奖79.33刘稆西南科技大学一等奖79高一峰武汉科技大学一等奖79姜通昊,陈昊翔复旦大学一等奖76.5零的应,孙家帅重庆科技学院一等奖76.33李蓉于翔宇中南大学一等奖76.33邓志鹏上海大学一等奖76.33任怡彭奕西南科技大学二等奖76李英,荣瑞雪河南理工大学二等奖76王君,白洁南京理工大学二等奖75.67任玉霞,赵芳兰州理工大学二等奖75.67薛磊,陶天成江苏科技大学二等奖75王东瑞、李福杰山东科技大学二等奖74.67钟强潘冬梅四川轻化工大学二等奖74.33卢佳欣东北石油大学二等奖74.33胡辰于金瑞山东理工大学二等奖74王军军刘凌波兰州理工大学二等奖74梁国栋、王存喜北方民族大学二等奖73.67刘意武汉科技大学二等奖73.33韩得福、李德发北京交通大学二等奖73.33孙辉,姚南华中科技大学二等奖73周昊高征远南京工业大学二等奖72.67张亚南、周子超江西科技师范大学二等奖72.67李科肖男哈尔滨理工大学二等奖71.67王翠苹、洪淼北京交通大学二等奖71.67翁冠军满振宇哈尔滨理工大学二等奖70.67喻兵、徐海鹏沈阳大学二等奖69.67徐祺昊,夏明内蒙古科技大学二等奖69.67杜丽娟苏霄鹏兰州理工大学二等奖69.33樊帅奇,张平义河南理工大学二等奖69季晓迪李璐妍南京工业大学二等奖68.67夏奎,龚靖四川轻化工大学二等奖67.33专业组成绩姓名学校/单位奖项成绩李平平、吴飞虎、张冯章中车戚墅堰机车车辆工艺研究所有限公司第一名5000元决赛81.4陶敏张怡襄阳航泰动力机器厂计量检测中心第二名2000元决赛78.2何竹风王洪伟张浩东北大学第三名2000元决赛74.8竺哲明,陈仙凤,郭涛绍兴市特种设备检测院一等奖78.8章武林杨朋飞西南交通大学一等奖78.4张海涛大连理工大学二等奖77.8浦红方政程志远宝武集团马钢技术中心二等奖77.2王秀红、梁会雷、梁雪冬中车戚墅堰机车车辆工艺研究所有限公司二等奖76.6寇沙沙,刘莉,李文亚内蒙古包钢钢联股份有限公司技术中心二等奖75.8唐刚比亚迪汽车工业有限公司二等奖75.2侯婷陕西法士特汽车传到研究院材料中心二等奖74.4谢文婷、龚凯、任蓓蕾通标标准技术服务(上海)有限公司二等奖73.6姚良苏州迈拓金属检测服务有限公司二等奖69.8周金华东北大学二等奖69.6优秀指导教师(本科生组)导师姓名学校/单位蔡圳阳、张毅中南大学薛松、郑丽璇西南科技大学娄有信,王志浩齐鲁工业大学李平河南理工大学周成双浙江工业大学胡树兵,邹辉华中科技大学康学勤任耀剑中国矿业大学李守英王阿敏青岛滨海学院孙粲西安石油大学谭雁清东北大学秦皇岛分校孙敬会张旭明百色学院刘杰师红旗南京工业大学史秋月马冬威湖北汽车工业学院奚运涛西安石油大学刘冰张宇辽宁科技学院吴传栋武汉科技大学曹新鑫河南理工大学张国伟,叶云中北大学何坛,王小艳西安文理学院董立新西南交通大学胡树兵华中科技大学郝保红北京石油化工学院赵玉军,徐越齐鲁工业大学(山东省科学院)李金生,林小娉东北大学秦皇岛分校畅庚榕尹志福西安文理学院雒设计王晨西安石油大学杨贵荣兰州理工大学蒋淑英、李美艳中国石油大学(华东)秦聪详谷万里山东理工大学齐建波,王权内蒙古科技大学吕光哲石为喜辽宁科技学院李维俊、张旭明百色学院任晓霞张少华太原科技大学沙桂英沈阳航空航天大学秦聪祥谷万里山东理工大学宋玉强肖亚梅青岛滨海学院刘瑛申小平南京理工大学吴润武汉科技大学宋玉强、韩彬中国石油大学(华东)马冬威湖北汽车工业学院董立新刘力菱西南交通大学黄兴民西南交通大学宿友亮宁夏大学优秀指导教师(研究生组)导师姓名学校/单位胡勇兰州理工大学向雄志深圳大学王立军东北大学周友龙、王良辉西南交通大学谭德强、贺强中国民用航空飞行学院薛松西南科技大学刘静武汉科技大学杨振国,龚嶷复旦大学姚宗湘,尹立孟重庆科技学院肖柱李周中南大学吴晓春上海大学李平河南理工大学刘瑛,靳慎豹南京理工大学郭铁明兰州理工大学董松涛,朱志愿江苏科技大学孙金全、李辉平山东科技大学罗宏四川轻化工大学孟庆武万家瑰东北石油大学安钰坤赵而团山东理工大学杨贵荣兰州理工大学李涌泉北方民族大学甘章华武汉科技大学齐红元、万里冰北京交通大学胡树兵,邹辉华中科技大学刘杰师红旗南京工业大学多树旺、张豪江西科技师范大学刘洋哈尔滨理工大学齐红元、于玲北京交通大学王敬泽哈尔滨理工大学贾征、张钧沈阳大学杨礼林,赵莉萍内蒙古科技大学曾宪光,蓬国渊,杨祖生四川轻化工大学优秀指导教师(专业组)导师姓名学校/单位洪力王晓娟襄阳航泰动力机器厂计量检测中心徐罗平、庄军中车戚墅堰机车车辆工艺研究所有限公司贾楠东北大学余焕伟,王泽民绍兴市特种设备检测院樊小强孙奇西南交通大学于凤云大连理工大学李平平中车戚墅堰机车车辆工艺研究所有限公司李智丽内蒙古包钢钢联股份有限公司技术中心唐刚比亚迪汽车工业有限公司祁红璋、袁象恺通标标准技术服务(上海)有限公司刘丽苏州迈拓金属检测服务有限公司申勇峰东北大学
  • 技术线上论坛丨《全新亚微米红外光谱及成像技术在生物、微塑料、高分子以及失效分析的前沿应用》
    [报告简介]本次报告中,Ji-Xin Cheng教授将介绍一种新型的、突破性的亚微米红外光谱学技术,该技术基于光热红外 (O-PTIR)原理,克服常规红外光谱在应用中一些不足之处,开创性的提供了:- 亚微米的空间分辨率- 非接触反射模式下的高质量红外吸收光谱,且没有散射/色散像差。- 可以与水溶液兼容的红外测量- 同时/同地/亚微米分辨的红外+拉曼技术 在报告中,Ji-Xin Cheng教授将阐述亚微米红外光谱和同拉曼光谱技术基本原理,结合前沿研究进展及有影响力文章,深入分析此技术在生命科学、颗粒/微塑料、聚合物和失效/缺陷分析等广泛领域的应用,并展开详细的讨论。[报名注册] 您可通过点击此链接https://www.koushare.com/lives/room/252140或扫描下方二维码报名注册此次会议。[报告时间]2021年6月2日 19:00 -20:00[主讲人介绍]Prof. Ji-Xin Cheng,波士顿大学Theodore Moustakas光子学与光电子学讲座教授Ji-Xin Cheng教授于1989年至1994年就读于中国科学技术大学。1994至1998年在中国科学技术大学攻读选键化学博士学位。研究生期间,他先后担任研究助理在Universite Paris-sud进行振动光谱学研究和香港科技大学(HKUST)进行量子动力学理论研究。在香港科技大学完成了超快光谱学博士后培训后,他加入了哈佛大学Sunney Xie的研究团队开展博士后研究工作,在那里他率先开发了CARS显微镜用于细胞和组织的高速振动成像。Cheng于2003年加入美国普渡大学,担任Weldon生物医学工程学院和化学系助理教授,2009年晋升为副教授,2013年晋升为正教授。Cheng于2017年夏天加入波士顿大学,担任届Theodore Moustakas光子学与光电子学讲座教授。Ji-Xin Cheng教授和他的团队在化学成像的创新、发现和临床转化方面一直走在国际前沿,并由于其在振动光谱成像领域的贡献,获得了2020年匹兹堡光谱学奖、2019年OSA应用光谱学协会Ellis R. Lippincott奖、2015年Coblentz协会Craver奖。Cheng发表了超过260篇同行评审文章,H-index为81(谷歌学术)。他总共获得了超过3000万美元的联邦机构研究资金支持,包括NIH, NSF, DoD, DoE和私人基金会(包括Keck基金会)。2014年,他作为共同创始人创立了Vibronix Inc公司,以医疗设备创新拯救生命为使命。Cheng是美国光学学会(Optical Society of America)会员、美国医学与生物工程研究所(American Institute of Medicine and Biological Engineering)会员、《科学进展》(Science Advances)杂志副主编。
  • 工信部公布一批行业标准,53项涉及环境试验箱及试验机
    近日,工业和信息化部批准公布《船舶生产钢质托架安全要求》等183项行业标准,分三批正式实施,实施日期列于表中。  其中机械行业标准95项、制药装备行业标准5项、汽车行业标准11项、航空行业标准7项、船舶行业标准4项、化工行业标准8项、石化行业标准15项、冶金行业标准3项、黄金行业标准7项、轻工行业标准20项、包装行业标准1项、电子行业标准7项。  本次发布的行业标准中,需要用到环境试验箱对物件测试评价的标准有19项,其中机械行业标准12项、汽车行业标准、船舶行业标准、化工行业标准、石化行业标准、轻工行业标准、包装行业标准、电子行业标准各1项。  需要用到试验机对物件测试评价的标准有38项,其中机械行业标准18项、汽车行业标准8项、航空行业标准1项、船舶行业标准1项、化工行业标准2项、石化行业标准4项、轻工行业标准3项、包装行业标准1项。  摘录本次发布的行业标准一览表中涉及环境试验箱及试验机部分标准内容如下:表1本次发布涉及环境试验箱的行业标准编号、名称、主要内容等一览表序号标准编号标准名称标准主要内容实施日期机械行业28JB/T13538-2018电磁屏蔽用镀金属层导电粉体本标准规定了电磁屏蔽用镀金属层导电粉体的技术要求、检测方法、检验规则及标志、包装、运输和贮存。本标准适用于电磁屏蔽用镀金属层导电粉体。2019-05-0129JB/T13539-2018敞开式光栅传感器本标准规定了敞开式光栅传感器的术语和定义、结构型式与基本参数、功能、要求、环境适应性、连续运行试验、试验方法、检验规则、标志与包装等。本标准适用于以由一系列等间距刻线的光栅为检测元件的敞开式光栅传感器。2019-05-0130JB/T13540-2018磁性角度编码器本标准规定了磁性角度编码器的术语和定义、结构型式与基本参数、功能、要求、电气安全性能、环境适应性、试验方法、检验规则、标志与包装等。本标准适用于以圆磁环、旋转齿轮或霍尔器件为角度测量基准,准确度等级为± 5″级、± 10″级、± 20″级及± 50″级的磁性角度编码器。2019-05-0131JB/T13541-2018磁性旋转编码器本标准规定了磁性旋转编码器的术语和定义、结构型式与基本参数、功能、要求、电气安全性能、环境适应性、试验方法、检验规则、标志与包装等。本标准适用于以圆磁环、齿轮或霍尔器件为测量基准、用于旋转运动测量的磁性旋转编码器。2019-05-0133JB/T13543-2018球栅线位移测量系统本标准规定了球栅线位移测量系统的术语和定义、基本参数、基本功能、要求、环境适应性、试验与检验方法、检验规则、标志与包装等。本标准适用于机床、仪器等的坐标线位移检测与测量,由球栅线位移传感器和球栅数字显示仪表相连组成球栅线位移测量系统。2019-05-0169JB/T13564-2018微电机石墨尼龙垫圈本标准规定了微电机石墨尼龙垫圈的术语和定义、规格和标记、要求、检验项目、检验规则和标志与包装。本标准适用于微电机用石墨尼龙垫圈2019-05-0174JB/T13568-2018LED节能灯具用开关本标准规定了LED节能灯具用开关的安全、性能、试验方法和检验规则。本标准适用于LED节能灯具中的,借助人体动作或由人激发传感器去操动开关(或借助开关系统)接通和断开LED节能灯具电源的,额定电压直流不超过250V和交流不超过480V、额定电流不大于30A的开关。本标准适用于由人通过触摸、按压等方式操作操动件,或者靠激发传感器(可在实体上或电气上与开关结合在一起,也可分开配置)操作的开关。在特殊环境下使用的类似开关也可参照本标准。2019-05-0175JB/T13569-2018园林工具开关本标准规定了园林工具的电源开关的安全、性能、试验方法和检验规则。本标准适用于装在园林工具中的,借助人体动作去操动开关接通、承载和断开工具电源,调节工具转速或改变工具旋转方向的,额定电压不超过480V、额定电流不大于63A的开关。本标准适用于由人通过操动件操作,或者靠激发传感器(可在实体上或电气上与开关结合在一起,也可分开配置)操作的开关。在特殊环境下使用的类似开关也可参照本标准。2019-05-0176JB/T13570-2018灯具开关电子控制装置本标准规定了灯具开关电子控制装置的安全、性能、试验方法和检验规则。本标准适用于灯具、穿戴器具中的,借助人体动作或由人激发传感器去操动开关控制装置(或借助开关组成)接通、控制调节(包括灯具亮度等)和断开灯具及器具电源的,额定电压直流不超过250V和交流不超过480V、额定电流不大于30A的控制装置。本标准适用于由人通过触摸、滑动、按压等方式操作操动件、触摸屏,或者靠激发传感器(可在实体上或电气上与开关结合在一起,也可分开配置)操作的控制装置。在特殊环境下使用的类似灯具控制装置也可参照本标准。2019-05-0177JB/T13571-2018延长线插座用开关本标准规定了延长线插座用开关的安全、性能、试验方法和检验规则。本标准适用于装在延长线插座、转换器插座、PDU排插和其他类似设备中的,借助人体动作去操动开关接通和断开延长线插座电源的,额定电压不超过交流480V、额定电流不大于30A的开关。本标准适用于由人通过操动件操作,或者靠激发传感器(可在实体上或电气上与开关结合在一起,也可分开配置)操作的开关。在特殊环境下使用的类似开关也可参照本标准。2019-05-0193JB/T13574-2018电气绝缘用树脂基活性复合物环氧滴浸树脂本标准规定了电气绝缘用环氧滴浸树脂的技术要求、试验方法、检验规则、包装、标志、贮存和运输。本标准适用于低挥发的电气绝缘用双组份环氧滴浸树脂。2019-05-0194JB/T13575-2018电气绝缘用树脂基活性复合物环氧连续沉浸树脂本标准规定了电气绝缘用环氧连续沉浸树脂的技术要求、试验方法、检验规则及包装、标志、贮存和运输。本标准适用于电气绝缘用双组份环氧连续沉浸树脂。2019-05-01汽车行业111QC/T1099-2018汽车主减速器总成可压缩弹性隔套技术条件本标准规定了汽车主减速器总成可压缩弹性隔套的技术要求、检测方法。本标准适用于汽车总质量不大于10000kg的汽车主减速器用隔套。2019-01-01船舶行业122CB/T4488-2018船舶生产钢质托架安全要求本标准规定了船舶修造过程中所用钢质托架(本标准中特质门式钢质托架、框架式钢质托架两种型式的钢质托架)在设计、制造、使用和维修中的安全要求和管理职责。本标准适用于船舶(含海洋结构物)修造过程中、钢结构等产品生产过程中涉及钢质托架的设计、制造、使用和维修等。其他用途钢质托架可参照使用。2019-01-01化工行业125HG/T20696-2018纤维增强塑料化工设备技术规范本标准规定了用于化工行业中纤维增强塑料设备的设计、制造、检验和使用管理。本标准适用于采用缠绕成型、接触模塑成型的地上整体纤维增强塑料化工设备的设计、制造、检验及验收、包装及运输、安装、使用及维护。2019-01-01石化行业144SH/T3540-2018钢制冷换设备管束防腐涂层及涂装技术规范本标准规定了钢制管壳式热交换器和空气冷却器管束表面防腐蚀涂层、涂装及验收要求。本标准适用于石油化工用管壳程工作温度不超过300℃的管束内、外表面的防腐蚀涂层及涂装。2019-01-01轻工行业164QB/T5175.3-2018手表外观件佩戴环境试验方法第3部分:光照试验本部分规定了手表外观件佩戴环境光照试验的试验准备、氙弧灯方法、紫外灯方法和试验结果。本部分适用于手表玻璃,以及金属及合金、金属陶瓷、塑料、橡胶、皮革等材料制造的表壳、表盘、后盖、表带、带扣等手表外观件的光照试验。氙弧灯方法适用于模拟在日光照射环境下的试验。在不具备氙弧灯方法试验装置的情况下,可使用简易的紫外灯方法。2019-01-01包装行业176BB/T0077-2018包装用双向热收缩型聚酯薄膜本标准规定了包装用双向热收缩型聚酯薄膜的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于以改性聚对苯二甲酸乙二醇酯树脂为主要原料,经双向拉伸工艺而制得,可单独使用或同其它薄膜复合使用的薄膜材料。2019-01-01电子行业181SJ/T11720-2018高性能计算机刀片式服务器计算刀片机械技术要求本标准规定了刀片服务器计算刀片及计算刀片机箱外观和结构、安全、噪声、电磁兼容性、环境适应性、可靠性等的要求。本标准适用于刀片服务器计算刀片的设计、制造和测试。2018-10-01表2本次发布涉及试验机的行业标准编号、名称、主要内容等一览表序号标准编号标准名称标准主要内容实施日期机械行业25JB/T13535-2018电磁屏蔽吸波片本标准规定了电磁屏蔽用固态片状吸波材料的术语和定义、分类和标识、技术要求、测试方法、检验规则以及包装、标志、贮存和运输的要求。本标准适用于频率范围为10MHz~40GHz的吸波片。2019-05-0135JB/T13545-2018闭式宽台面单轴多点压力机静载变形测量方法本标准规定了闭式单轴多点宽台面高速超精密压力机静载变形测量方法的术语和定义、整机刚度测量方法、滑块挠度测量方法和工作台挠度测量方法。本标准适用于闭式单轴多点宽台面高速超精密压力机。2019-05-0148JB/T6723.1-2018内燃机冷却风扇第1部分:金属冷却风扇技术条件本部分规定了内燃机金属冷却风扇的产品分类、代号和型号规格、技术要求、检验方法、检验规则、标志、包装、运输及贮存。本部分适用于外径不大于750mm的水冷式、风冷式内燃机(汽油机、柴油机)冷却系统用金属冷却风扇总成。2019-05-0149JB/T6723.3-2018内燃机冷却风扇第3部分:冷凝式内燃机冷却风扇技术条件本部分规定了冷凝式内燃机冷却风扇的分类、命名、技术要求、检验规则以及标志、包装、运输和贮存。本部分适用于冷凝式内燃机带发电机及不带发电机两种冷却风扇。2019-05-0151JB/T7762-2018内燃机气缸盖垫片技术条件本标准规定了内燃机气缸盖垫片的术语和定义、结构、技术要求、试验方法、检验规则、包装、标志、运输及贮存。本标准适用于汽车、拖拉机、工程机械、固定式和船用等中小功率内燃机的气缸垫。2019-05-0156JB/T13552-2018柴油机热冲击试验方法本标准规定了柴油机热冲击试验的术语和定义、试验准备、试验条件和试验方法。本标准适用于水冷柴油机。2019-05-0158JB/T13554-2018内燃机曲轴弯曲疲劳试验方法本标准规定了内燃机曲轴弯曲疲劳试验的术语和定义、试件抽样、试验装置、试验步骤、试验数据处理方法、试验报告。本标准适用于内燃机曲轴曲拐的台架弯曲疲劳试验。2019-05-0164JB/T13559-2018袋式除尘器滤料高温拉伸性能测试方法本标准规定了袋式除尘器滤料高温拉伸性能测试方法的原理、仪器、测试温度、测试程序、测试报告。本标准适用于袋式除尘器、电袋复合除尘器滤料高温拉伸性能的测试。2019-05-0165JB/T13560-2018袋式除尘器用滤料耐折性能测试方法本标准规定了袋式除尘器用滤料耐折性能测试方法的原理、仪器、测试程序、测试报告。本标准适用于袋式除尘器、电袋复合除尘器用滤料耐折性能的测试。2019-05-0169JB/T13564-2018微电机石墨尼龙垫圈本标准规定了微电机石墨尼龙垫圈的术语和定义、规格和标记、要求、检验项目、检验规则和标志与包装。本标准适用于微电机用石墨尼龙垫圈2019-05-0178JB/T2300-2018回转支承本标准规定了回转支承的符号、分类和标记、要求、检测方法、检验规则、标志、包装、运输和贮存。本标准适用于工程机械、矿山机械、港口机械、建筑机械及其他需要两部分相对回转运动的机械用回转支承。2019-05-0179JB/T5939-2018工程机械铸钢件通用技术条件本标准规定了工程机械产品用铸钢件的要求、试验方法、检验规则及标志、包装、运输和贮存等。本标准适用于碳钢铸件和低合金钢铸件。2019-05-0180JB/T5940-2018工程机械高锰钢铸件通用技术条件本标准规定了工程机械用高锰钢铸件的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于承受不同冲击负荷的耐磨损高锰钢铸件。2019-05-0181JB/T5941-2018工程机械有色合金铸件通用技术条件本标准规定了工程机械产品中有色合金铸件的要求,试验方法,检验规则以及标志、包装、运输和贮存。本标准适用于砂型、金属型、熔模铸造的铜基、铝基、锌基合金铸件。2019-05-0182JB/T5942-2018工程机械自由锻件通用技术条件本标准规定了自由锻件的要求、试验方法、检验规则及标志、包装、运输和贮存等。本标准适用于工程机械产品锻件、胎模锻制造的碳素钢、优质碳素钢和合金结构钢锻件。2019-05-0183JB/T5943-2018工程机械焊接件通用技术条件本标准规定了工程机械产品中焊接件的要求、试验方法、检验规则以及标志、包装、运输和贮存等。本标准适用于手工电弧焊、埋弧焊和气体保护焊的焊接件。2019-05-0184JB/T5944-2018工程机械热处理件通用技术条件本标准规定了工程机械产品中热处理件的术语和定义、分类、要求、试验方法、检验规则以及标志、包装、运输和贮存。本标准适用于碳素结构钢和合金结构钢的热处理件。2019-05-0188JB/T6031-2018工程机械钢质模锻件通用技术条件本标准规定了工程机械产品中模锻件的要求,试验方法,检验规则,标志、包装、运输和贮存等。本标准适用于模锻制造的碳素结构钢和合金结构钢锻件。2019-05-01汽车行业104QC/T788-2018汽车踏板装置性能要求及台架试验方法本标准规定了汽车制动踏板和离合器踏板的术语和定义、性能要求、试验相关要求和试验方法。本标准适用于汽车用机械铰接式金属制动踏板和离合器踏板,其他类型的踏板装置可参照执行。2019-01-01105QC/T311-2018汽车液压制动主缸性能要求及台架试验方法本标准规定了汽车用液压制动主缸总成的术语和定义、产品分类、性能要求、试验装置和试验方法。本标准适用于汽车用串联双腔液压制动主缸总成,其它型式的制动主缸可参照执行。2019-01-01106QC/T564-2018乘用车行车制动器性能要求及台架试验方法本标准规定了乘用车行车制动器总成的术语和定义、性能要求、试验相关要求、试验准备、试验方法。本标准适用于GB/T15089规定的M1类车辆用行车制动器总成及摩擦衬片(块)总成。2019-01-01107QC/T1096-2018乘用车用扭转梁后桥疲劳寿命台架试验方法本标准规定了乘用车用扭转梁后桥的疲劳寿命台架试验方法。本标准适用于以内燃机为动力的乘用车用扭转梁后桥。2019-01-01108QC/T1097-2018乘用车用前桥水平模块疲劳寿命台架试验方法本标准规定了乘用车用前桥水平模块的疲劳寿命台架试验方法。本标准适用于以内燃机为动力且匹配麦弗逊悬架的乘用车用前桥水平模块,匹配其它结构形式悬架的乘用车用前桥水平模块可参照本标准执行。2019-01-01109QC/T491-2018汽车减振器性能要求及台架试验方法本标准规定了汽车减振器性能要求和台架试验方法。本标准适用于M、N、O类汽车悬架用减振器,驾驶室悬置用减振器及其它类减振器部件可参照执行。2019-01-01110QC/T1098-2018汽车离合器用粉末冶金盘毂技术条件本标准规定了乘用车离合器从动盘总成用粉末冶金盘毂的技术要求、试验方法。本标准适用于乘用车离合器从动盘总成用粉末冶金盘毂。2019-01-01111QC/T1099-2018汽车主减速器总成可压缩弹性隔套技术条件本标准规定了汽车主减速器总成可压缩弹性隔套的技术要求、检测方法。本标准适用于汽车总质量不大于10000kg的汽车主减速器用隔套。2019-01-01航空行业114HB8542-2018航空配重用钨基高密度合金规范本标准规定了航空配重用钨基高密度合金的技术要求、试验方法、检验规则,以及包装、标志、运输、贮存和质量证明书、订货文件内容。本标准适用于航空配重用W-Ni-Cu系钨基高密度合金毛坯。2019-01-01船舶行业122CB/T4488-2018船舶生产钢质托架安全要求本标准规定了船舶修造过程中所用钢质托架(本标准中特质门式钢质托架、框架式钢质托架两种型式的钢质托架)在设计、制造、使用和维修中的安全要求和管理职责。本标准适用于船舶(含海洋结构物)修造过程中、钢结构等产品生产过程中涉及钢质托架的设计、制造、使用和维修等。其他用途钢质托架可参照使用。2019-01-01化工行业124HG/T20545-2018化学工业炉受压元件制造技术规范本标准规定了化学工业管式炉受压元件材料选择和材料复验要求,轧制炉管、离心铸造炉管、管件的制造和检验规定,受压元件焊接和焊后热处理规定,受压元件的检验、无损检测和耐压试验的规定。本标准适用于直接火焰加热的化学工业管式炉受压元件的制造、检验和验收。不适用于有耐火衬里的受压筒体、封头和元件,如气化炉、二段转化炉、冷壁集合管等。2019-01-01125HG/T20696-2018纤维增强塑料化工设备技术规范本标准规定了用于化工行业中纤维增强塑料设备的设计、制造、检验和使用管理。本标准适用于采用缠绕成型、接触模塑成型的地上整体纤维增强塑料化工设备的设计、制造、检验及验收、包装及运输、安装、使用及维护。2019-01-01石化行业133SH/T3074-2018石油化工钢制压力容器本标准规定了石油化工钢制压力容器的材料、设计、结构、制造、检验、验收以及表面处理、运输包装等方面的要求。本标准的适用范围同GB150.1《压力容器》中钢制压力容器部分。2019-01-01138SH/T3417-2018石油化工管式炉高合金炉管焊接工程技术条件本标准规定了石油化工管式炉用高合金炉管(含管件)焊接工程的材料、焊前准备、焊接、无损检测等要求。本标准适用于石油化工管式炉用合金含量为18Cr-8Ni及合金含量更高的奥氏体不锈钢、铁镍基合金和镍基合金轧制炉管及管件及离心铸造炉管或静态铸造管件的焊接、检验和验收,焊接方法为焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。2019-01-01141SH/T3429-2018石油化工管式炉用铸铁预热器工程技术条件本标准规定了石油化工管式炉空气预热系统铸铁板翅式预热器的设计、材料、制造、检验与试验、验收、包装与运输、现场储存、安装与维护以及文档资料的基本要求。本标准适用于石油化工管式炉用烟气与空气换热的铸铁预热器。2019-01-01142SH/T3430-2018石油化工管壳式换热器用柔性石墨波齿复合垫片本标准规定了柔性石墨金属波齿复合垫片的材料、设计、制造、检验、验收、运输和包装等方面的要求。本标准适用于公称压力为1.0Mpa~6.4MPa,工作温度-196℃~450℃的管壳式换热器管箱、壳体、外头盖法兰和浮头盖用柔性石墨金属波齿复合垫片。2019-01-01轻工行业165QB/T4595.7-2018合页第7部分:三维可调型本部分规定了可调型合页的要求、试验方法、检验规则、标志、包装、运输和贮存。本部分适用于可以调节3个方向间隙、调节量不小于1.0mm的建筑门窗用合页。2019-01-01166QB/T5280-2018玻璃门铰链本标准规定了玻璃门铰链的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于无框平开玻璃门的合页及固定夹,其他型式玻璃门的合页及固定夹可参考使用。2019-01-01171QB/T5285-2018不锈钢真空气压壶本标准规定了不锈钢真空气压壶的术语和定义、要求、试验方法、检验规则、标志、标签、使用说明书及包装、运输、贮存。本标准适用于存放冷热水的日用不锈钢真空气压壶。2019-01-01包装行业176BB/T0077-2018包装用双向热收缩型聚酯薄膜本标准规定了包装用双向热收缩型聚酯薄膜的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于以改性聚对苯二甲酸乙二醇酯树脂为主要原料,经双向拉伸工艺而制得,可单独使用或同其它薄膜复合使用的薄膜材料。2019-01-01附件:183项行业标准编号、名称、主要内容等一览表6342021.doc
  • 芯片集成度越来越高,故障后失效分析该如何“追凶”?
    随着科技进步,智能化产品与日俱增。从电脑、智能手机,再到汽车电子、人工智能,如今在我们的生产生活中已随处可见。它们之所以能够得以发展,驱动内部收发信号的半导体芯片是关键。 我们这里讲的半导体为IC(集成电路)或者LSI(大规模集成电路)。制造的芯片可以分为逻辑芯片、存储芯片、模拟芯片、功率器件。根据摩尔定律,每18-24个月,集成电路上可以容纳的器件数目就会增加一倍,这将让更多的科技应用逐步实现,并得以优化。应用场景和市场的扩大,半导体芯片的需求无疑也会随之增长,对其质量则有了更高的要求。 比如汽车行业,除了传统的汽车电子,目前也有许多目光投向了自动驾驶。像这样高度涉及人身安全的车用芯片,在高温、低温、受潮、老化、长期工作等因素下,性能都必须保持稳定。所以,无论从半导体芯片的研发设计,再到前道工序,后道工序,甚至最终投入使用,每一个流程都需要有必要的检测来护航。 芯片制作流程概括性示意 对于芯片制造商来说,单纯知道芯片是否达标,以此来淘汰坏品保证输出产品质量,是远不够的。还需要“知其所以然”,保证良率,追根溯源,节约成本的同时给企业创造更高的效益。所以围绕着这个主题,将进行一系列的检测,我们将此称为半导体失效分析。它的意义在于确定半导体芯片的失效模式和失效机理,以此进行追责,提出纠正措施,防止问题重复出现。失效分析检测简直就像一场“追凶”之旅。通过初步证据锁定嫌疑范围,再通过各种方法获得更多证据,步步锁定,拨开层层“疑云”去获得最终的真相。检测流程上,一般来说,制造商会首先对待测半导体晶圆(wafer)或裸片(die)实施传统的电性测量。一方面来确定芯片是否有故障的情况存在;一方面,若故障确切存在,也可以为后续失效分析提供必要的信息。 已经过诸多工艺处理后的晶圆(wafer),裸片(die)即从其切割而来 但想达到溯源的目的,仅凭传统的电性测试是远不够的。还需要进一步了解缺陷具体存在的位置,甚至还原出失效的场景、模式,用以了解失效机理。这也就是在半导体失效分析中重要而困难的一项,缺陷定位。失效分析工程师结合测试机测得的失效模式以及其他故障信息,可以初步判断需要采取的定位方法,然后不断结合获得的新数据,逐步推测出失效发生在芯片的哪层结构中,及其根本缘由。缺陷定位 而半导体工艺日新月异发展飞速,制程上,从70年代的微米级芯片早已经提升至纳米级芯片。芯片层数增加和晶体管数量的急剧增加,让失效点越来越难以发现。不断提升的集成度,对检测设备的性能提出了更多的挑战。1971年到2000年,英特尔芯片的发展 挑战 1:更高的弱光探测能力 首先,芯片集成化程度越来越高,芯片的层数也将逐渐增多,电路会变得越来越细,电压要求也随之降低。因此,在检测过程中,故障处可能发出的光信号就变得微弱,再加上层数的叠加,光信号将再次被削弱,这要求检测仪拥有更高的弱光探测能力。挑战 2:更多检测功能 不断提高的集成度在带来了日趋强大的芯片功能外,也让可能出现的故障风险变得更多。一旦出现失效,其故障原因亦可能更加复杂。因此,在失效定位时,需要发展出更多、更细化的测试方法和功能模块,去对应这样的变化。 挑战 3:无损检测技术的推进 对于出现问题返厂的成品芯片,一般会在完成一系列无损检测(如X射线检测),以及打开封装后的显微镜检查后,再进入到传统电性测试这一步。对于愈加高集成化、紧凑的芯片来说,打开封装时内部裸片受损的可能性会增大,而这一步亦是不可逆的。受损后,失效模式将难以还原,继而无法得出失效的真正原因。因此,需要时,可以尽量达到无损检测,也是给失效定位提出的又一挑战。 早在30余年前,滨松就开始了在半导体失效分析应用中的研究。1987年,推出了第一代微光显微镜,并在此后逐渐组建起了专门针对半导体缺陷位置定位的PHEMOS系列产品。针对应用中呈现出的诸多要求,滨松亦在技术上做出了进一步的开发。 滨松半导体失效分析系统PHEMOS系列 为了增强微光探测能力,滨松开发了C-CCD、Si-CCD、InGaAs等多类高端相机。用户可根据样品制程和结构,选择不同的相机加装在设备中。 IPHEMOS-MP的信号侦测示意 除了相机以外,滨松还不断为PHEMOS系列开发出了新的功能模块,实现更多元、更深入的检测,以应对越来越复杂的故障原因: 可通过Probing的方式给样品加电,广泛适用于从prober card到12英寸wafer的测试; 可搭载波长为1.3 μm的激光,实现OBIRCH(Optical beam induced resistance change 激光诱导电阻改变测试)。也可选配其他光源,将样品连接测试机进行DALS, EOP/EOFM测量,实现样品的动态缺陷检测分析。通过这些诱导侦测方法,能有效的截获因温度、频率、电压的改变而导致sample时好时坏的困扰; 可选配Laser marker功能,方便后续分析。Laser marker为脉冲激光,可自定义设置打点位置、次数、能量强度、打点形状等; 可选配Nano lens & Sil cap,从样品背面观察内部结构。Nano lens & Sil cap在工作时会与样品表面完全接触,增加了图像的清晰度,提升了分辨率便于观察更细的线路。搭配Nano lens的使用,用户还可以选配tilt stage,将样品调平,增强信号侦测强度 除了Emission功能外,PHEMOS系列还具备Thermal的功能模块。通过配备InSb材料的高灵敏度热成像相机,可探测发射热点源,方便用于package样品侦测,不需要给待测品去除封装,实现无损检测。设备可以同时满足给样品加多路电,有效降低噪声提升信号敏感度。(可提供单独拥有此功能的Thermal-F1)高灵敏度热成像相机 C9985-06 半导体制造涉及众多工序,过程复杂。除了失效分析以外,滨松还有众多产品都被应用在了其中,以保证生产制造的顺利进行以及产品的质量。以沉淀了60余年的光子技术,为半导体制造提供支持。
  • 第四届全国电池失效分析与测试技术研讨会将于10月30-31日在溧阳召开
    为了推动我国电池失效分析和测试技术的发展,满足研究机构和企业的需求,及时了解失效分析和先进测试技术方面的进展,第四届全国电池失效分析与测试技术研讨会将于2021年10月30-31日在江苏省溧阳市举行。组织机构 主办单位:天目湖先进储能技术研究院承办单位:溧阳深水科技咨询有限公司协办单位:中国汽车研究中心、中国科学院物理研究所、长三角物理研究中心、《储能科学与技术》杂志组织委员会:会议主席:王芳 中汽中心检测认证事业部总工程师李泓 中科院物理所研究员刘啸嵩 中国科学技术大学教授,国家同步辐射实验室副主任委员:顾问委员会:王芳、朱静、李宝华、吴宁宁、胡炳文、张剑波、乐艳飞、李云明、何安定、王庆生、张国军、杨志伟、姜久春、Yuji Otsuka、闫鹏飞、褚赓、夏永高、吴大勇、黄建宇、谷林、王雪锋、彭章泉、孙杰、任瑜、沈越、薄首行、王家钧、杨斯元、孙丙香、樊彬、周健、周江、张浩楠、韩广帅、王青松、许骏、卢兰光、吴明龙、邵丹、薛钢、李泓、崔光磊、尉海军、魏丽英、季恒星、夏进阳、胡博、毛鸥、陈浩森、黄佳琦、张强、王安邦、王丽平、胡勇胜、曹余良、王红、吴伟、张宗、张硕、崔义、冯旭宁、金阳、禹习谦、马朝晖、吴凡、徐航宇、周晓崇、钱韫娴、廖承林、王子冬、胡进、李子坤、刘兆平、徐美兰、王震坡、赵成龙、马瑞军、陈小波、叶睿乔、侴术雷、郭向欣、陈立桅、郭新、向勇、苏岳锋、杨世春、王少飞、从长杰、陈人杰、李剑、葛志浩。拟交流讨论的科学与技术主题1.电池(动力、消费电子、储能、其他)测试与安全标准及发展趋势。2.锂离子电池、固态电池、钠离子电池、新型电池的失效机理。3.电池材料分析方法与技术(无损测试、原位表征、3D成像、热分析、力学分析、晶体结构、化学组分)。4.电池失效分析方法与技术(安全性、热分析、可靠性、电化学、界面测试、高通量方法、失效机理、模拟仿真)。5.电池状态的监测与预测(SOX、寿命、加速老化、管理系统)。6.智能传感(植入式/外置式:电压、电流、压力、温度、气体)。邀请报告嘉宾参会报名参会报名:报名注册:缴费:付款方式一:银行转账扫描注册二维码完成注册选择线下支付。公司名称:溧阳深水科技咨询有限公司地址:江苏省溧阳市昆仑街道上上路87号(江苏中关村创智园1号楼)电话:0519-87300136开户行:建设银行溧阳燕山路支行账号:32050162634800000124付款请注明:“失效分析+姓名”,并将付款凭证保留,便于报到时查验。付款方式二:支付宝,微信扫描注册二维码完成注册选择支付宝,微信进行支付*注:本次会议以费用支付成功为注册成功。参展注册本次会议接受赞助,会议为各位参展商提供了多种参展方案。参展请联系会务组:18115066088 史女士。食宿交通1、住宿安排会务组在江苏溧阳天目湖豪生大酒店以优惠价格为本次会议联系了一定数量的房间,预注册的参会人员可享受会议优惠价。会议代表如有订房需求请联系会务组:guxiaoyan@aesit.com.cn,电话:18115797956(顾女士),费用自理。请大家尽量在2021年10月20日前完成订房。2、交通安排1)飞机:南京禄口国际机场,南京禄口机场距离会议酒店78公里,打车约1个小时。2)高铁站:溧阳站(推荐路线,可从南京南站转到溧阳站,只需20几分钟)。打车距离:溧阳站距离会议酒店8公里,打车约15分钟。3)汽车站:溧阳汽车客运站。打车距离:溧阳汽车客运站距离会议酒店5.4公里,打车约10分钟。会议联系人其他如需要会议邀请函的参会者,请直接与上述联系人联系。新威奖学金 奖金、奖品设置1、通过天目储能学堂线上答题领取奖学金,取前15名优秀学生发放奖金,奖金 2000元/人,获奖证书一份。2、通过参加失效分析会议线下答题领取奖学金,取前10名优秀学生发放奖金,奖金 2000元/人,获奖证书一份。注1:如何参与奖学金领取,请关注“深水科技咨询”公众号,后续发布。注2:已在天目储能学堂获得过新威尔奖学金的学员,线下会议不再享受获奖资格。第三届失效分析会议参会单位上届回顾2020年12月2日,第三届全国锂电池失效分析与测试技术研讨会在天目湖豪生大酒店召开。为了持续推动锂电池失效分析与测试技术发展,满足研究机构和企业需求,及时了解锂电池失效分析与先进测试技术方面的进展,本届研讨会吸引了相关学者及行业专家500余人。上届参会人员分布图
  • 专家约稿|功率器件可靠性研究和失效分析的全面解析
    功率器件可靠性研究和失效分析的基本介绍邓二平(合肥工业大学 电气与自动化工程学院 230009)摘要:功率器件可靠性是器件厂商和应用方除性能参数外最为关注的,也是特性参数测试无法评估的,失效分析则是分析器件封装缺陷、提升器件封装水平和应用可靠性的基础。可靠性测试项目的规范性、严谨性和可追溯性,对于功率器件可靠性评估和失效分析至关重要,也是保障分析结果全面性、准确性和有效性的基础。本文结合团队多年的可靠性和失效分析研究的相关经验,对研究步骤等进行了基本介绍,旨在为行业的发展提供可能的参考。1、引言功率器件近年来在国内得到了大力发展,尤其是第三代半导体器件SiC MOSFET与新能源汽车应用的结合,迎来了功率器件国产化的重大发展机遇,包括芯片、封装、测试和设备等。而可靠性研究和失效分析则是器件封装后评估器件长期稳定运行的基础,对器件封装改进、可靠性评估等具有重要意义。本文结合团队多年的可靠性研究经验,主要介绍了进行功率器件可靠性研究和失效分析的一些基本步骤、原理和需要注意的事项等,具体测试电路请参考相应的测试标准(如IEC、MIL、JESD和AGQ等测试标准)。功率器件主要包括:Si IGBT/diode, Si MOSFET/diode, SiC MOSFET/diode, GaN器件,目前市场上比较成熟的产品还是以硅基为代表的IGBT器件,电压等级最高可到6500V,电流目前最大到3600A。随着使用开关频率的提升、能耗要求和基础材料的发展,SiC基的功率器件己逐渐成熟,典型的代表是SiC MOSFET,新能源汽车的800V平台正大量使用1200V的SiC MOSFET。进一步地,GaN工艺的不断成熟以及在射频领域的发展经验,目前600V左右的高频开关领域GaN器件非常有优势,尤其是车载充电机(OBC)。不同类型的功率器件具有不同的特性,因此在测试方法和细节上要有所区分,如SiC器件由于栅极的不稳定性以及GaN动态的快速性需要重点关注。2、测试项目分类功率器件的测试一般分为基本特性测试来表征器件性能优良、极限能力测试来评估器件的鲁棒性、可靠性测试来评估器件长期运行稳定性以及失效分析助力器件改进和优化升级,具体如下。2.1 基本特性测试主要包括:静态特性测试(以IGBT为例一般指饱和压降Vces,阈值电压Vgeth,集-射极漏电流Ices,栅-射极漏电流Iges,稳态热阻Rth等静态参数)和动态特性测试(一般指双脉冲测试,包括开通延时时间td(on),下降时间tf等动态参数),其中动态特性测试还可包括安全工作区SOA的测试,有RBSOA和SCSOA。静态特性主要表征模块的一些基本性能参数,是表征模块优良的重要指标,如饱和压降Vces表征器件的导通能力,Vces越小,模块工作过程中的导通损耗越小,相同条件下温升越小。器件加速老化可靠性实验前必须进行模块的基本特性测试,尤其是静态特性测试,一方面确保被测器件功能的完整性,另一方面可用于老化后的对比分析,助力器件失效模式的分析。但一般在可靠性老化测试中不进行器件的动态特性测试,即使是进行栅极老化的高温栅偏实验,一方面是动态特性测试时间很短,封装的老化并不会影响器件的动态特性,另一方面器件的部分动态特性可通过Iges和Vgeth表征,甚至可进行栅极电容的测试来表征。2.2极限能力测试主要包括:短路能力测试、浪涌能力测试和极限关断能力测试,考核的是器件在极端工况下的能力,尤其是关断能力。如短路能力测试主要考核器件在短路(一般有3类短路情况)条件下器件的极限关断能力,一般为10µs能关断电流的数值,主要考核芯片的能力。浪涌能力则是考核反并联二极管抗浪涌能力,一般是10ms正弦半波的冲击,尤其是SiC MOSFET的体二极管非常重要,可能还会影响栅极的可靠性,由于时间较长,主要考核封装的水平。极限关断能力则是考核器件饱和状态下在毫秒级的关断能力,如电网用的直流断路器需要在3ms关断6倍的额定电流。从物理和传热学理论来看,短路测试虽然会有大量的能量产生,最终也是由于能量超过芯片极限而损坏,但由于测试时间非常短,反复的短路测试不会引起封装的老化,而浪涌能力和极限能力测试则将进一步影响封装的老化,是加速老化测试未来应该重点关注的测试。进一步地,极限能力是特种电源等极端应用时需要重要关注的测试。2.3可靠性测试主要包括:功率循环、温度循环、温度冲击、机械冲击、机械振动、高温栅偏、高温反偏、高温高湿反偏和高低温存储等,额外的还包括盐雾等测试。按照应力的来源区分其实可分为电应力加速老化和环境应力加速老化,从器件研发到量产以及应用过程中,需要经过大于10项可靠性测试,机械冲击、机械振动、温度存储等主要考核的是器件在运输或者存储过程中的可靠性,而最重要的测试主要有高温栅偏、高温反偏、高温高湿反偏、温度循环和功率循环。这些实验也是工业界和学术界研究最多,最复杂的测试,尤其是功率循环测试。通过上述加速老化实验,提前暴露器件在芯片设计、封装工艺、样品制备、运输存储、实际应用过程中可能存在的问题,一方面可为器件厂商提供改进建议,优化器件的性能并提高器件可靠性,另一方面可为器件的应用方提供技术指导以及实际产品设计和可靠性验证提供数据支撑。2.4失效分析主要包括:SAM超声波扫描分析、X-ray材料损伤检测分析、SEM电子显微镜分析、光学显微镜分析和有限元仿真分析。SAM超声波扫描分析主要是通过超声波对器件内部各层材料进行探伤,尤其是材料的界面处,当存在一个空洞时,返回的超声波能量和相序发生了变化,即可进行定位。X-ray则更多是用于材料本体探伤研究,多用于材料级的失效分析,SEM电子显微镜和光学显微镜也是一样,但光学显微镜需要打开模块才能对相应的位置进行深入探究。有限元仿真分析是一个除实验外最好的检测、分析和研究手段,通过实验测量数据的对比和修正,完全重现实验过程中器件内部的细节和薄弱点,也是失效分析最难和最为重要的环节。3、可靠性研究步骤可靠性研究的基本步骤如下图1所示,一般需要在可靠性测试前进行一些基本特性测试确保器件的性能以及方便与老化后的进行对比分析,然后进行加速老化等可靠性测试,再进行基本特性测试和失效分析,探究器件的失效模式和失效机理。为了进一步深入探究器件内部各层材料在可靠性测试过程中的应力分布情况,可采用SAM超声波扫描以及有限元分析方法配合进行相应的失效分析。上述可靠性测试中高温栅偏100%与芯片有关、高温反偏约80%情况与芯片有关,也有因为封装老化导致的退化、高温高湿反偏测试也是类似的情况,其他所有可靠性测试均与封装有关,尤其是热特性和机械特性有关。图1所示的基本步骤也只是通用的研究过程,对于具体的问题还需要进行特定的对待和分析。比如大部分情况在可靠性研究中是不会进行极限能力测试的,但如果要研究器件老化对极限能力的影响,则需要进一步考虑,包括多应力的耦合测试。图1 功率器件可靠性测试基本流程这里以Si基IGBT器件的功率循环为例简单介绍一下可靠性加速老化的基本流程和各项参数测试的必要性,如下图2所示。以Infineon公司1200V, 25A Easypack封装的IGBT器件为例进行功率循环的老化测试、寿命评估和失效机理研究等。第I步:确定研究对象,也就是FS25R12W1T4,此封装内有6个开关组成的三相全桥,如下图3所示。上桥臂的IGBT开关共用一个上铜层,下桥臂的IGBT开关均是独立的,这里以U相的下桥臂开关S2为例,减小热耦合影响。S2的上铜层面积与芯片面积相当,热扩散角小,导致散热条件相对较弱,热量会更集中于芯片焊料层。第II步:器件基本特性测试,包括常温下饱和压降Vces (@VGE=15V,Ic=25A,Tvj=25ºC),阈值电压Vgeth (@VGE= VCE,Ic=0.8mA,Tvj=25ºC),集-射极漏电流 Ices (@ VGE=0V,VCE=1200V, Tvj=25ºC),栅-射极漏电流 Iges (@VCE=0V,VGE=20V,Tvj=25ºC),具体条件来源于器件的数据表datasheet。需要说明的是,这里只测试了器件常温下的基本特性,一方面是用于判断器件的性能与好坏,另一方面用于老化后进行对比,常温下的数据即可满足要求。若测试过程中发现某个器件的某个参数超过datasheet里的规定值,则说明此器件是不良品,需要更换新的器件进行测试。进一步地,还可通过此数据来评估各器件间的一致性。第III步:SAM超声波扫描,通过专有设备如SAM301进行器件封装内部各层材料连接状态的检测和参照,将模块倒置于装有去离子水的设备中,超声波从器件的基板开始向下探测,可得到器件各层材料的二维平面图,如下图4所示。此模块没有系统焊接层,因此只展示了器件最薄弱的,也是可靠性测试最为关注和重要的芯片焊料层和芯片表面键合线连接状态,对于新器件而言,各层的连接状态良好。做完SAM后还有一个非常重要的一步,尤其是对于硅胶封装的模块,将模块拿出后必须倒置放置24小时以上,以充分晾干模块内的水分 。进一步地,还需要通过加热板或者恒温箱将器件放置在85ºC环境中至少半小时以上,更加充分的挥发模块内的残余水分以不影响模块的性能。对于TO封装的器件来说,尤其有环氧树脂的充分保护以及环氧树脂吸水性差等特点,加上放置时间很短以及没有高温作用等,可不进行此步骤,但做电学特性实验前必须保证器件表面己无明显水分。在进行热阻等测试前,还需要进行连线,最好通过焊锡连接,以确保连接的可靠性。图2 Si基IGBT器件功率循环测试基本流程 (a) 内部结构 (b) 等效电路图3 FS25R12W1T4模块的内部结构(a) 芯片焊料层 (b) 芯片表面键合线图4 FS25R12W1T4模块SAM超声波扫描结果第IV步:温度关系校准,对于功率器件而言,器件的结温是评估模块电学特性和热学特性最重要的参数,结温不仅可反映模块的散热能力,还可影响器件的电学特性,甚至是可靠性。现在方法中,只有电学参数法测量结温适用并广泛应用于器件可靠性测试中,如热阻测试、功率循环、高温反偏等测试。一般来说,对于低压器件,测量电流选择合适的话,温度校准曲线将呈现完美的线性关系,如下图5所示。可以看到4个器件的曲线均呈现很好地线性关系,虽然在截距上存在一定的差异,但斜率几乎一样,说明芯片的一致性好,此微小差异一般来源于热电源的位置或者加热源的差异,但这种小差异可忽略。图5 FS25R12W1T4的温度校准曲线@IM=100mA第V步:瞬态热阻抗Zth测试,在进行功率循环测试之前,一般为了获得模块内部芯片PN结到散热器甚至环境的热路径情况,以及用于与老化后的状态进行对比,以定位模块失效位置,需要进行瞬态热阻抗Zth测试。通过两次不同散热条件下Zth的测试,也称为瞬态双界面法,可直接获得模块结到壳的热阻值Rthjc,以评估模块的整体性能。将被测器件按功率循环测试的要求安装到测试设备的水冷散热器上,放置好热电偶以以测量相应位置的温度,如壳表面,散热器或环境温度。瞬态热阻抗测试其实相当于一次功率循环,通过给被测器件通过相应的测试电流以加热器件至热平衡状态,降温过程测量器件的结温变化。这里需要注意的是,测试电流越大,测量电路的信噪比越大,测试结果越好,但要保证器件的最大结温不能超过器件允许的最大结温。此器件测量得到的Zthjs如下图6所示,测试条件为升温时间ton=5s, 降温/测量时间toff=40s, 测试电流IL=25A, 水冷温度Tinlet=58ºC, 测量延时tMD=200µs。图6 FS25R12W1T4的瞬态热阻抗曲线,#40器件在功率循环前的结果第VI步:功率循环加速老化测试,做完Zth测试和所有准备工作后,即可进行功率循环的测试,本实验室的测试设备有3条测试支路,每条支路可串联4个器件,共计12个通道,实验过程可以用2条支路或者3条支路。本次测试的器件为4个,每条支路串联2个被测器件,先通过调节测试电流,使得所有器件的结温差在目标温度范围左右,然后再通过控制各个器件的栅极电压来达到精细化和逐点调节。进一步地,通过控制外部水冷的入口温度调整所有器件的最大结温在目标温度范围左右,然后再通过安装条件的修正来达到各个器件的精细化和逐点调节。最终得到的测试条件为升温时间ton=2s, 降温时间toff=2s, 测试电流IL=29.7A, 水冷温度Tinlet=58ºC, 最大结温Tjmax≈150ºC,结温差ΔTj≈90K,测量延时tMD=200µs。功率循环条件设置完成后,只需要在程序中设定相应的保护即可实现完全无人值守运行,保护变量一般应该包括电压Vce保护,电流IL保护,热阻Rth保护,结温Tj保护,水温Tc保护,电源输出保护等。设置完成后的程序运行界面如下图7所示,可看到4个器件的测试条件相应比较接近。值得注意的是,上述测试过程中设置了测量延时,这是由于在半导体器件电流关断时,载流子复合需要时间,尤其是双极性器件。在这个延时时间里,芯片的结温其实是持续下降的,这就导致我们在延时时间tMD后测量的结温并不是器件真正的最大结温,而存在一定的误差,需要通过一些方法进行修正,如根号t方法,具体这方面的内容需要参考相关论文。而此结温的误差将会导致器件的寿命数据存在一定的差异,需要通过现有的模型进行相应的修正。进一步地,我们也看到不可能使得所有器件的数据完全一致,达到我们的想要的测试条件,最终在进行寿命对比时,需将所有器件的条件均归一到同样的条件以保对比的公平性和数据的正确性,如下图8所示。图7 功率循环运行界面示意图图8 功率循环寿命数据第VII步:瞬态热阻抗Zth测试,当模块老化到一定程度或者达到失效判定条件后,需要停止功率循环测试,对其进行瞬态热阻抗测试,进一步准确定位老化位置。测试条件与功率循环前一致,下图8列举了#40器件在不同功率循环次数条件下的测试结果,可以看到,随着老化程度的增加,器件的热阻增加。进一步地,可以看到在模块功率循环前没有经过老化(No.68)时,整个曲线均较小,当老化到一定程度后(No.76888),热阻增加不是非常明显,可以理解为裂纹的形成过程。当功率循环加速老化持续进行(No.91522),这个过程为焊料裂纹生长过程,热阻增加非常明显。图9 #40器件功率循环前后Zthjs结果对比第VIII步:SAM超声波扫描,将功率循环测试后的器件,利用原有的参数设置进行SAM超声波扫描,通过对比可得到器件芯片焊料层和键合线的老化状态,利于器件的失效模式和失效机理研究。下图10展示的是#40功率循环老化后IGBT芯片焊料层和芯片表面键合线的连接状态,可以看到芯片焊料层出现了白点,有严重老化的迹象,这也与图9的结果相吻合。而键合线的状态由于焊料的老化,改变了超声波的路径,使得键合线的状态很难识别,从实验结果来看并没有发生严重的老化。(a) 芯片焊料层 (b) 芯片表面键合线图10 #40器件功率循环老化后的SAM结果值得说明的是,图中的S3和S6也出现了老化是因为之前做过不同ton的实验,但也可以看到S2和S6的老化程度和现象比较一致,更集中于中心区域,而S3则比较均匀,这是由于S3具有更大的散热面积,使得S3焊料的温度分布更均匀。这里想给大家展示的是如何通过SAM图来获得相应的老化信息,要有全局观念,要知道整个实验的计划、过程、细节和数据等,才能给出更为准确的结论。第IX步:器件特性参数测试,完成器件的SAM测试后,仍然要将器件放置干燥处理后才能进行相应的电气特性测试,采用相同的实验条件对上述参数进行测量。一般情况下,上述参数在功率循环老化后不会发生变化,SiC MOSFET由于栅极可靠性问题可能会存在一定程度的阈值电压偏移。同时,Si IGBT一般也会存在轻微的阈值电压偏移,而且是负偏移,但一般在5%以内,这也侧面说明利用阈值电压作为温敏参数可能存在的误差。一般器件的温敏关系约为-2mV/ºC,假定器件的初始阈值电压为5V,则电压偏移25mV,最终导致约12 ºC的误差。第X步:有限元仿真分析,没有仿真解释和验证的实验数据是不可信的,因为实验数据很大程度依据于测试人员、经验、测试方法、测试条件等各方面因素;而没有实验验证的仿真分析也是不可信的,能否解释实际现象很关键。因此,有限元仿真分析其实与实验是相辅相成的,仿真的第一步必然是建立仿真模型,并修正和验证仿真模型的有效性。对于功率循环来说,考核的主要是器件封装在往复周期性温度变化过程中的热应力,因此,模块的热流路径至关重要,可通过瞬态热阻抗来修正模型。下图11为仿真和实验获得的模块S2瞬态热阻抗曲线,仿真与实验结果有非常高的吻合度,最后的些许差异来源于不同的安装条件,从两个实验结果也可看到。图11 S2的瞬态热阻抗曲线对比实验验证后的有限元仿真模型就具备与真实器件相同的热流路径了,可以用来进行功率循环仿真分析。这里值得一提的是,对于功率循环的功率循环仿真分析,必须使用电-热耦合仿真,一方面是纯热仿真没有芯片的电热耦合作用,另一方面是纯热仿真没有键合线的自发热现象,这会导致仿真结果的偏差。这里以S2和S3的有限元仿真来进行说明,下图12为功率循环仿真的结温变化曲线,芯片的结温提取的是芯片表面平均温度,这是与VCE(T)方法获得的值最接近的表征。仿真所用的条件均来源于实验测量结果,仿真过程与实验测试过程一样,通过调整芯片的电导率来获得不同的功率最终达到相同的结温差,调整环境温度来达到相应最大结温。(a) S2在不同ton条件下仿真的结温曲线 (b) S3在不同Tjmax条件下仿真的结温曲线图12 仿真得到的结温曲线获得与实验相同的结温后就可以进行器件内部更为细致和全面的分析,下图13为S2和S3在相同的功率循环条件下芯片表面的温度分布,由于铜散热面积的差异,导致温度分布有所差异,最终导致失效位置发生了变化,如图10所示。因此,通过电气参数的测试可以知道器件的整体变化情况,但无法定位到具体位置,而通过SAM超声波扫描则可获得基本位置信息,但无法准确分析其原因以及产生的机理。最终通过有限元仿真可以得到器件内部更为细节的信息,实现对器件的失效机理研究和封装结构优化。但最为根本的是要把握器件的所有信息,结果能进行相互验证,缺一不可。(a) S2, ton=2s, ΔTj=89.5K和Tjmax=147.7˚C (b) S3, ton=2s, ΔTj=90.9K和Tjmax=152.1˚C图13 芯片表面温度分布4、总结上述以功率循环为例详细描述了需要进行的哪些实验、步骤和原理,严格按照上上述实验步骤再加上一些经验基本上就具备了全面分析功率器件老化失效的能力。但要达到更高水平,尤其是能在做实验过程中主动解决所有遇到的问题,还需要更为细致和深入的学习,其中最最最为核心的就是要把握每个测试的基本原理。只有把握了这些参数、测试的基本测试原理,逻辑思路和功率器件的基本物理过程,才能更深刻的理解一些问题,并解决实际中遇到的问题。主要参考文献[1] MIL-STD-883G, United States Department of Defense Test Method Standard: Microcircuits, Method 1012.1 Thermal Characteristics, 1980.[2] Electronic Industries Association, Integrated Circuit Thermal Measurement Method – Electrical Test Method, EIA/JEDEC Standard, JESD51-1, 1995 (www.jedec.org ).[3] ECPE/AQG 324, Qualification of Power Modules for Use in Power Electronics Converter Units (PCUs) in Motor Vehicles [S], 2018. [4] U. Scheuermann and R. Schmidt, “Investigations on the Vce(T)-Method to determine the junction temperature by using the chip itself as sensor,” in Proc. PCIM Europe, 2009, pp. 802–807. [5] E. Deng and J. Lutz, "Measurement Error Caused by the Square Root t Method Applied to IGBT Devices during Power Cycling Test," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 545-548, [6] 邓二平,严雨行,陈杰,谢露红,王延浩,赵雨山,黄永章.功率器件功率循环测试技术的挑战与分析[J/OL].中国电机工程学报:1-20[7] 赵雨山,邓二平,马丛淦,谢露红,王延浩,黄永章.考虑器件结构布局的功率循环失效模式分离机制[J].中国电机工程学报,2022,42(07):2663-2672.[8] 陈杰,邓二平,张一鸣,赵子轩,黄永章.功率循环试验中开通时间对高压大功率IGBT模块失效模式的影响及机理分析[J].中国电机工程学报,2020,40(23):7710-7721.[9] 邓二平,赵雨山,孟鹤立,陈杰,赵志斌,黄永章.电动汽车用功率模块功率循环测试装置的研制[J].半导体技术,2020,45(10):809-815.[10] 邓二平,陈杰,赵雨山,赵志斌,黄永章.90 kW/3000 A高压大功率IGBT器件功率循环测试装备研制[J].半导体技术,2019,44(03):223-231.作者简介邓二平(1989),男,教授,博士,“黄山学者”优秀青年,中国能源学会专家委员,2013年哈尔滨工业大学获得学士学位,2018年华北电力大学获得博士学位,2018年6月留校任教(2018年~2022年华北电力大学),2018年10月,德国开姆尼茨工业大2年学博士后,2022年5月,合肥工业大学教授。第二完成人获2021年电工技术学会技术发明二等奖1项,主持、参与多项国家项目和企业项目(30余项),发表高水平论文70余篇,其中SCI检索论文30余篇,申请专利30余项。研究方向为功率器件(IGBT、SiC MOSFET和GaN器件)封装、可靠性和失效机理研究,如可靠性测试方法、测试技术、失效分析以及寿命状态监测等。
  • 三元素分析仪可检测普碳钢及低合金钢
    三元素分析仪可检测普碳钢及低合金钢 微机三元素高速分析仪是用于多元素分析的三通道光电比色分析仪。该仪器在国内外先进技术的基础上,首次采用了&ldquo 智能动态跟踪&rdquo 和&ldquo 标样曲线的非线性回归&rdquo 等先进技术,使传统比色仪的日常调整和标样曲线的建立方法起了根本性的变化。使本仪器跻身于高档分析仪器的行列。 QL-BS3型微机三元素分析仪也可以单独作为一台数据处理计算机使用,使其处理功能得到充分发挥。微机三元素分析仪主要可检测普碳钢及低合金钢,更适用于对金属等材料中的硅、锰、磷、镍、铬、铜、稀土、镁、铜、铁、铝、钒、钨、钛等多种元素的比色分析,现已大量地在冶金、机械、化工等行业,对炉前、成品、来料化验等均可使用。它是新一代比色分析仪器的理想换代产品。 南京麒麟分析仪器有限公司技术部
  • 《铝用炭素检测方法》等129项有色金属标准审定会召开
    2011年3月24日~27日,全国有色金属标准化技术委员会在扬州召开了 《铝用炭素检测方法》等129项有色金属标准审定会、讨论会和任务落实会。来自全国有色金属行业的200多名代表参加了此次会议。  会议对《变形铝及铝合金扁铸锭》、《铝电解槽技术参数测量方法》和《镁及镁合金化学分析方法》系列标准等27项轻金属标准进行审定、预审和讨论 对《加工铜及铜合金化学成分与产品形状》、《电工用火法精炼再生铜线坯》、《铜精矿化学分析方法》等14项重金属标准进行审定、预审和讨论 对《碳化钨粉安全生产规程》、《钼化学分析方法》、《钛及钛合金带、箔材》等79项稀有金属、粉末冶金标准进行审定和预审 对《金珠》、《银条》等9项贵金属标准进行讨论。
  • 2019年7月-材料微观结构分析样品制备培训通知
    材料微观结构分析样品制备邀请函 尊敬的客户,您好!为更好的服务于客户,我们特别为金相技术员或者要学习先进制备工艺的金相学者设计了SumMet™ 材料微观结构分析样品制备课程。该课程通过理论学习和实践操作,涵盖了切割、镶嵌、研磨和抛光的知识,这些知识也是标乐在过去80多年历史中的经验累积。此外,学生还可学习有关硬度测试和微观结构解读方面的知识。 基本信息 培训时间:2019年7月8-10日(三天)培训主题:材料微观结构分析样品制备培训地点:标乐中国上海实验室(依工测试测量仪器(上海)有限公司)具体地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼 主要内容 三天的课程涉及多种材料的微观结构分析样品制备和硬度测试的知识。课程内容涉及到样品切割,镶嵌,研磨和抛光的技术知识,对于各种材料的样品制备提供大量实习课程。课程内容包括: 取样和切割(理论和实践) 样品镶嵌(理论和实践) 样品研磨和抛光(理论和实践) 硬度测试原理(理论)注:学员实践操作中可自行携带需要得到解决方案的样品。 特邀讲师 Dr. Mike Keeble 毕业于威尔士大学(The University of Wales),主修材料科学与工程。获得了钢的蠕变性能(creep properties of steels)博士学位及部分熔融铝合金的力学试验和有限元模拟(mechanical testing and FE modelling of partially molten aluminium alloys)硕士学位。Dr. Keeble 之前在英国国防评估和研究机构(现QinetiQ)担任先进金属材料研究员,研究新材料和制造工艺的疲劳、损伤容限和---失效分析。Dr. Keeble 目前在美国标乐担任美国实验室和技术经理的职务,他有超过12年的在金相分析方面提供技术支持和培训的工作经验。Dr. Keeble 曾在伯明翰大学(Birmingham University)担任荣誉讲师,并在华威大学(Warwick University)担任访问学者。Dr. Keeble 是 ASM 和 IMS 的成员,也是金相和硬度测试标准组织(Standards Organizations in metallography and hardness testing)的成员。【助教】 Leo-柳文鹏,标乐应用工程师毕业于西北工业大学材料学院,获得硕士学位。曾多年就职于英业达集团,负责电子材料的可靠性及失效分析;之后就职于德国双立人公司,担任主管金相工程师,主要负责金属材料金相分析及硬度测试;加入标乐公司后,每年前往美国总部接受金相制备高级课程培训,现担任标乐应用工程师,在汽车、航空航天及电子等行业积累了丰富的经验。 Kevin-程凯,标乐应用工程师毕业于河海大学材料科学与工程学院,曾就职于无锡鹰普集团,担任理化工程师、热处理工程师;此后分别就职于通标标准服务(上海)有限公司(SGS),担任金相工程师;莱茵技术(上海)有限公司(TUV Rheinland),担任高级金相工程师。主要负责金相及硬度实验室的所有测试及管理。在金属材料检测以及失效分析方面都有较丰富的经验。现任标乐公司应用工程师,为亚太用户提供全面的技术支持,解决金相制备方面的难题,在原材料、汽车、电子等行业样品的制备积累了丰富的经验。注:课程全英文教学,全程有中文翻译。 费用说明 费用:5000RMB/人说明:费用包含:SumMet教材、培训期间中餐,以及9日晚宴,其他住宿交通等费用自理。汇款账号:名称:依工测试测量仪器(上海)有限公司开户行:农业银行上海浦江支行 行号:103290003237账号:03408800040017687 报名方式 烦请可以填写下方报名回执后发送 info.cn@buehler.com,本次培训小班教学,名额有限,先到先得! 住宿交通 (住宿仅供参考,请学员自行预定)培训地点:依工测试测量仪器(上海)有限公司培训地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼附近交通: 浦东机场:打车:距离35.3KM,打车约138元,约30min;公交:磁悬浮地铁16号线796路(鹤坡塘桥站下), 约134min 虹桥机场:打车:距离30.9KM,打车约108元,约47min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 虹桥火车站:打车:距离31.8KM,打车约111元,约45min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 上海火车站(上海站):打车:距离22.3KM,打车约77元,约34min;公交:地铁1号线地铁8号线796路(鹤坡塘桥站下), 约75min周边住宿(仅供参考,请学员自行预定) 名称:新奇士国际酒店(浦江店) 地址:浦江镇三鲁路3585号(近江月路) 名称:上海浦江智选假日酒店 地址: 浦江镇联航路1188号10号楼3楼H座诚挚地期待您的参加! 标乐市场部2019年5月20日 附件一 报名回执报名人员*单位*姓名*部门*职务*电话*邮件兴趣及关注项目 (如材料、零部件等):工作范畴 (如研究、品质控制、失效分析等):*单位业务范围 □ 金属 □ 航空/航天 □ 热处理 □ 电子 □ 政府研发/教育 □ 测试实验室(第三方实验室) □ 国防 □ 生物医药 □ 汽车/其他运输工具 □ 能源 □ 其他__________________________________说明:务必准确填写,其中 * 为必填项。填写完毕请发送至:info.cn@buehler.com 。
  • 蔡司推出半导体封装失效分析高分辨3D X射线成像解决方案
    p  新型亚微米与纳米级XRM系统及新型microCT系统为失效分析提供了灵活选择,帮助客户加速技术发展,提高先进半导体封装的组装产量。/pp  strong加州普莱斯顿与德国上科亨,2019年3月12日/strong--蔡司发布了一套新型高分辨率3D X射线成像解决方案,用于包括2.5/3D与扩散型晶圆级封装在内的先进半导体封装的失效分析(FA)。蔡司X射线显微系统包括:通过亚微米级和纳米级高分辨率成像对封装产品进行失效分析的a href="https://www.instrument.com.cn/news/20190124/479353.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "Xradia 600 Versa系列/span/strong/a和 Xradia 800 Ultra X射线显微镜(XRM),以及Xradia Context microCT。随着在现有产品基础上新设备的研发推出,现如今,蔡司可以为半导体行业提供一系列3D X射线成像技术辅助生产。/pp  蔡司制程控制解决方案(PCS)部门与蔡司SMT部门总裁Raj Jammy博士介绍说:“在170年的历史中,蔡司始终致力于拓展科学研究的疆域,推动成像技术的发展,以实现新的工业应用和技术创新。在今天的半导体行业,封装尺寸与器件尺寸越做越小,因此我们比以往任何时候都更需要新型成像解决方案,用于快速排除故障,实现更高的封装产量。蔡司很荣幸宣布推出这一新型先进半导体封装3D X射线成像解决方案,为客户提供强大的高分辨率成像分析设备,以提高失效分析准确率。”/pp  strong先进封装技术需要新型缺陷检测与失效分析的方法/strong/pp  随着半导体产业面临CMOS微缩极限的挑战,人们需要通过半导体封装技术弥合性能上的差距。为了继续生产更小巧、更快速、更低功耗的器件,半导体行业正在通过芯片的3D堆叠和其他新型封装方式尝试封装创新。这些创新催生了日益复杂的封装架构,带来了新的制造挑战,同时也增加了封装故障的风险。此外,由于发生故障的位置往往隐藏于复杂的三维结构之中,传统的故障位置确认方法难以满足高效分析的需求。行业需要新型技术来有效地筛选和确定产生故障的根本原因。/pp  为满足这一需求,蔡司开发出全新3D X射线成像解决方案,提供亚微米与纳米级3D图像,显示出隐藏于完整的封装3D结构中的特性与缺陷。将样品置于系统,样品在光路中旋转,从不同角度捕捉一系列2D X射线投影图像,然后使用复杂的数学模型和算法重建3D模型。新型解决方案可以从任意角度观察3D模型虚拟切片,从而在进行物理失效分析(PFA)之前对缺陷进行三维可视化。蔡司亚微米和纳米级XRM解决方案相结合,为客户提供独特的故障分析工作流程,有助于显著提高失效分析成功率。蔡司的新型Xradia Context microCT采用基于投影的几何放大技术,在大视场中实现高衬度和高分辨率成像,而且也可以全面升级至Xradia Versa X射线显微镜。/pp strong 新型成像解决方案详解/strong/pp  a href="https://www.instrument.com.cn/news/20190124/479353.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strongXradia 600 Versa/strong/span/a系列是新一代3D XRM,能够在完整的已封装半导体器件中对已定位的缺陷进行无损成像。在结构化分析和失效分析应用中,新型解决方案在制程开发、良率提升和工艺分析等方面表现出色。Xradia 600 Versa系列以屡获殊荣且具有大工作距离高分辨率(RAAD)特性的Versa X射线显微镜为基础,提供优异的成像性能,实现大工作距离下的大样品的高分辨率成像,用于为封装、电路板和300毫米晶圆生产确定产生缺陷与故障的原因。利用该解决方案,可以轻松看到与封装级故障相关的缺陷,例如凸块或微型凸块中的裂纹、焊料润湿或硅通孔(TSV)空隙。在进行物理失效分析之前对缺陷进行3D可视化处理,有助于减少伪影,提供横纵方向的虚拟切片效果,从而提高失效分析成功率。新型解决方案的主要特性包括:/pp  ◆最高空间分辨率0.5微米,最小体素40纳米/pp  ◆与Xradia 500 Versa系列相比, 工作效率提高了两倍,且在保证高分辨率的同时,在整个kV(电压)和功率范围内保持出色的X射线源焦点尺寸稳定性与热稳定性/pp  ◆更加简便易用,包括快速激活源/pp  ◆可靠性测试中可实现多个位点连续成像,并能观察封装结构内部亚微米结构变化/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/fcb3b14e-afb6-4859-b117-ade3ce9e1694.jpg" title="1.jpg" alt="1.jpg"//pp  strongXradia 800 Ultra/strong将3D XRM提升至纳米级尺度,并在纳米尺寸下探索隐藏的特性,获得高空间分辨率图像的同时保持感兴趣区域的结构完整性。其应用包括超密间距覆晶与凸块连接的工艺分析、结构分析和缺陷分析,从而改进超密间距封装与后段制程(BEOL)互连的工艺改进。Xradia 800 Ultra能够对密间距铜柱微凸块中的金属间化合物所消耗焊料的结构和体积进行可视化。在成像过程中保留缺陷部位,有助于采用其他技术进行针对性的后期分析。还可以利用3D图像来表征盲孔组件(blind assemblies)的结构质量,例如晶圆对晶圆键合互连与直接混合键合等。该解决方案的主要特性包括:/pp  ◆空间分辨率150纳米与50纳米(需要制备样品)/pp  ◆选配皮秒激光样品制备工具,能够在一小时内提取完整体积(结构)样品(通常直径为100微米)/pp  ◆兼容多种后续分析方法,包括透射电子显微镜(TEM)、能量色散X射线谱(EDS)、原子力显微镜(AFM)、二次离子质谱(SIMS)和纳米探针/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/52ac92be-9189-4c80-bd09-b60d7bb9da1b.jpg" title="2.jpg" alt="2.jpg"//pp  strongXradia Context microCT/strong是一种基于Versa平台的新型亚微米分辨率3D X射线microCT系统。该解决方案用于封装产品在小工作距离和高通量下进行高分辨率成像。主要特性包括:/pp  ◆在大视场下提供大样品的全视场成像(体积比Xradia Versa XRM系统大10倍)/pp  ◆小像素尺寸的高像素密度探测器(六百万像素)即使在观察视野较大的情况下也能确保较高分辨率/pp  ◆X射线microCT拥有空间分辨率0.95微米,最小体素0.5微米/pp  ◆出色的图像质量与衬度/pp  ◆可升级为Xradia Versa,实现RaaD功能,对完整大样品进行高分辨率成像/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/a444699e-2096-43cc-a3ed-3471855ecc79.jpg" title="3.jpg" alt="3.jpg"//pp  上海新国际博览中心即将于3月20日至22日举办中国半导体展(SEMICON China),蔡司将在展会上展示最新显微镜产品和解决方案,包括新型Xradia 600 Versa系列、Xradia 800 Ultra和Xradia Context microCT系统。如有意了解详情,您可到N2展厅2619号展位参观蔡司展品。/pp  strong关于蔡司/strong/pp  蔡司是全球光学和光电领域的先锋。上个财年度,蔡司集团旗下四个部门的总收入超过58亿欧元,包括工业质量与研究、医疗技术、消费市场,以及半导体制造技术(截止:2018年9月30日)。/pp  蔡司为客户开发、生产和分销用于工业测量与质量控制的创新解决方案,用于生命科学和材料研究的显微镜解决方案,以及用于眼科和显微外科诊断与治疗的医疗技术解决方案。在半导体行业,“蔡司”已成为世界优秀的光学光刻技术的代名词,该技术被芯片行业用于制造半导体元件。眼镜镜片、照相机镜片和双筒望远镜等引领行业潮流的蔡司产品正在全球市场热销。/pp  凭借与数字化、医疗保健和智能生产等未来增长领域相结合的投资组合,以及强大的品牌,蔡司正在塑造光学和光电行业以外的未来。该公司在研发方面的重大、可持续投资为蔡司技术和市场成功保持领先地位和持续扩张奠定了基础。/pp  蔡司拥有约30,000名员工,活跃于全球近50个国家,拥有约60家自有销售和服务公司、30多家生产基地和约25家开发基地。公司于1846年创办于耶拿(Jena),总部位于德国上科亨。卡尔· 蔡司基金会(Carl Zeiss Foundation)是德国最大的基金会之一,致力于促进科学发展,是控股公司卡尔· 蔡司股份公司的唯一所有者。/p
  • 飞纳用户专访 - CTI 华测检测谈金属材料失效分析
    华测检测认证集团股份有限公司成立于 2003 年,总部位于深圳,是第三方检测与认证服务的开拓者和领先者,中国检测认证行业首家上市公司(股票代码:300012),为全球客户提供一站式测试、检验、认证、计量、审核、培训及技术服务,致力于在政府、企业和消费者之间传递信任,以“为品质生活传递信任”为使命,全面保障品质与安全,推动合规与创新,实现更健康、更安全、更环保的高质量发展。华测检测认证集团股份有限公司中心材料实验室能够为工业材料领域提供全方位的材料检测、无损检测、失效分析、质量评定和安全评估等服务,适用于金属、高分子等各类原材料以及紧固件、机械零部件、塑料、橡胶等各类成品。近日,我们有幸采访到 CTI 华测检测杭州中心材料实验室,主要负责金属失效分析的温洪波工程师,结合在测试分析中的实际案例,为我们分享了金属材料失效分析的思路和方法,我们一起来看看吧。 失效分析工程师 温洪波Q1. 飞纳电镜 :目前造成金属件失效的主要原因有哪些? 温工 :通常原材料问题、后续加工工艺和热处理不当、金属件工作时受力状况及其工作环境等,都会造成金属件的失效。比如原材料内生和铸造过程中产生的不同类型的夹杂物;工艺不当时会产生裂纹、折叠、过烧等缺陷,以及机加工表面粗糙度较大造成应力集中、热处理不当造成的金相异常、内应力过大、电镀涂层造成的氢脆等;由接触应力导致的磨损、剥落等,这些都是常见的失效方式。Q2. 飞纳电镜 :您在进行失效分析时的一般流程是怎样的呢? 温工 :通常当我们对金属件进行失效分析时,会进行宏观观察、微观检测、化学成分定量检测、金相组织观察以及显微硬度检测等,并结合综合受力状态进行综合分析并得出失效结论。其中作为失效分析必不可少的一个环节,想要确定断裂机制、裂纹局部扩展途径、确认裂纹源以及对异常点进行成分定性分析时,就必须借助扫描电镜来进行微观层面的检测。Q3. 飞纳电镜 :有没有常见的金属材料失效分析的案例分享呢? 温工 :比如外球笼螺纹在装配过程中锁紧螺母时发生断裂,如果客户想要对失效产品进行相应的改进,就必须要找出断裂的微观机制,进而找出产品失效原因。宏观分析图 1 为外球笼螺纹处断裂示意图,在第 2 螺纹处发生断裂,断口匹配不太紧密,存在少量变形。图 2 为其断口宏观形貌,整个断口分为两个区域。区域 A 较光亮,存在发亮的小刻面,为脆性断裂;区域 B 较粗糙,呈现暗黑色,有断后磨损所致的光亮地带,扩展方向如图中黄色箭头所示,图中红色方框为终断区,存在 45° 的剪切唇,因此区域 B 为塑性断裂。根据断口细小的弧形纹路及 A、B 区域断裂特征判断,外球笼在断裂时受扭转力作用,断裂起始于 A 区域。图 1 外球笼螺纹处断裂示意图图 2 断口宏观形貌微观分析在这个失效分析案例中,我们对处理好的样品进行微观机制的探究时,使用飞纳大仓室扫描电镜 Phenom XL G2 可以快速地对断口进行微观形貌观察,以及对断口异常区域进行能谱分析。对外球笼螺纹处断口的 A 区域、B 区域进行微观分析,区域 A 微观形貌为河流花样,为典型的解理形貌。区域 B 微观形貌主要由韧窝 + 珠光体片组成。区域 A - 断裂起始区区域 B - 心部扩展区区域 B - 边缘扩展区区域 B - 终断区再结合失效件的成分分析、金相分析和硬度分析结果,可以综合判断出外球笼螺纹处内部存在孔洞及裂缝,因而产生严重的应力集中,造成锁紧螺母时发生断裂。CTI 华测检测向客户提供详细的分析报告Q4. 飞纳电镜 :目前使用下来,您觉得飞纳电镜怎么样? 温工 :飞纳电镜是我们进行微观层面失效分析的有力工具,对于我们快速判断裂纹机制,寻找裂纹源非常重要。这台设备抽真空不到 30 秒,并且操作很简单,可以自动消磁/消像散,Revisit 样品位置一键回溯、自由切换低真空模式等,对各类样品的检测都非常便捷,基本上只需要几分钟就可以完成一个样品的微观测试。Q5. 飞纳电镜 :当初为什么会选择飞纳电镜呢? 温工 :像我们这样综合性的第三方检测机构,平时接收的样品量很大,种类多样,飞纳电镜对于我们而言,不仅是帮助我们完成了微观形貌和成分的测试,更大的价值是这台扫描电镜提高了我们的检测效率,因其操作简便,缩短了我们的培训时间,节省了我们学习成本,对我们帮助很大。目前 CTI 华测检测杭州中心材料实验室的金属失效分析服务可以涵盖汽车零部件、精密零部件、模具制造、铸锻焊、热处理、表面防护等多类金属相关行业,同时包括机械性能、化学成分分析、金相分析等丰富的金属材料检测服务,欢迎大家问询和参观。
  • 长春市固体废弃物管理中心180.00万元采购固体废弃物
    详细信息 [社会代理]长春市城市生活垃圾处理中心移动路基箱采购项目竞争性磋商公告 吉林省-长春市 状态:公告 更新时间: 2022-11-24 项目概况 长春市城市生活垃圾处理中心移动路基箱采购项目采购项目的潜在供应商应在吉林长春易荣工程咨询有限公司(邮箱:1921619893@qq.com)获取采购文件,并于2022年12月07日13点30分(北京时间)前提交响应文件。 一、项目基本情况 1.1 项目名称:长春市城市生活垃圾处理中心移动路基箱采购项目 1.2 合同履行期限:合同签订后30 天内 1.3 招标控制价:180万元 1.4 项目交付或者实施的地点:长春市城市生活垃圾处理中心 (长春市莲花山生态旅游度假管理区泉眼镇双山村) 采购人指定地点 1.5 采购内容: 包号 采购标的 数量 具体参数值或功能要求表述 预算金额(元) 最高限价(元) 1 移动路基 箱 44块 1、单块尺寸:长8米 ,宽1.51 米,厚0.22米钢结构路基箱,路基箱一面为12毫米厚钢板,一面为8毫米厚花纹板,路基箱内腔采用方钢支撑,路基箱两侧有吊耳和连接装置;2、面板及底板,吊耳:材料为热轧钢板,材质牌号为Q235,其尺寸、外形、重量要求符合《热轧钢板和钢带 的 尺 寸 外 形 重 量 及 允 许 偏 差》 (GB/T 709 — 2019),材质要求符合《碳素结构钢》(GB/T700— 2006) ;3、纵向及横向支撑件:材料为热轧 方钢管,材质牌号为Q235B,材质要求符合《碳素结构钢》(GB/T700—2006) ;4、防滑条:材料热轧带胁钢筋,材质牌号为HRB335。5、所用钢板材料符合国家GB/T230.1-2018检测标准,腐蚀性能符合国家QB/T3826-1997检测标准,铅、镉、汞、六价铬、多溴联苯和多溴联苯醚含量符合GB/T26125-2011六种限用物质检验或实验合格标准。其中五金配件金属杆、支座、金属支架、横梁方管硬度符合国家GB/T230.1-2018标准或同类相关标准,腐蚀性能符合国家QB/T3826-1999标准或同类相关标准,铅、镉、汞、六价铬、多溴联苯和多溴联苯醚含量符合GB/T26125-2011六种限用物质检验或实验合格同类相关标准;6、其它具体尺寸、材料、制作工艺按附件中图纸要求; 1800000 1800000 1.6 采购需求:长春市城市生活垃圾处理中心在生活垃圾的填埋作业过程中需要使用移 动路基箱铺垫道路,供环卫车辆、飞灰运输车辆、推土机等车辆设备通行。路基箱尺寸、材质及制作方法需满足图纸要求。 1.7 质量标准:符合国家及行业合格标准。 二、申请人的资格要求: 3.1 参加政府采购活动的供应商应当具备《中华人民共和国政府采购法》第二十二条规 定; 3.2 落实政府采购政策需满足的资格要求:本项目为专门面向中小企业采购的项目、节约能源、保护环境等; 3.3 供应商必须是在中华人民共和国境内注册的具有独立法定代表人资格的企业,具有有效的营业执照,且经营范围须包含钢结构或钢结构设计、制造、安装、改造及维修等相关内容,并具有独立生产场所及生产能力。(供应商需提供相关证明材料原件,且在有效期内); 3.4 财务状况报告,依法缴纳税收和社会保障资金的相关材料; 3.5 具备履行合同所必需的设备和专业技术能力; 3.6 参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明; 3.7 供应商近三年 (2019 年至今) 至少完成过2项类似项目业绩。 3.8 供应商应登录“信用中国”网站查询“失信被执行人”和“重大税收违法案件当事人名单” 、登录“中国政府采购”网站查询“政府采购严重违法失信行为记录名单”。(根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》 (财库[2016]125 号)的规定,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动)。 3.9 同一生产厂家授权的不同经销商不得参加同一采购项目的投标、生产厂家与其授权经销商不得参加同一采购项目的投标(只允许投标产品的生产制造商总部参加投标,或者由生产制造商总部全权委托一家代理商参加),否则作无效标处理; 3.10 本项目不接受联合体投标。 三、获取采购文件 请于2022年11月25日至2022年12月01日(法定公休日、法定节假日除外),每日8:30~16:00 (北京时间,下同)采取发送电子邮件方式(邮箱:1921619893@qq.com)获取,供应商发送邮件主题为“项目编号+项目名称+公司名称”;邮件正文内容:列明公司名称、法定代表人或授权代表人姓名及联系方式;邮件附件:需采用A4纸幅面,将报名材料加盖企业鲜章的彩色扫描件,按下列顺序制作成1个PDF格式文件。报名材料审核未通过的,采购代理机构以邮件形式回复审核情况,供应商可在文件申领时间内重新提交材料: (1) 法人授权委托书 (2) 法人身份证明 (3) 被授权人身份证 (4) 营业执照副本,具有独立生产场所及生产能力证明材料 (5) 财务审计报告或报表(提供近三年 2019-2021 年度,新成立企业提供当年验资报告或 银行出具的公司资信证明) (6) 依法缴纳税收和社会保险费的证明材料 (提供近半年内 2022 年 1 月 1 日至今任意一 月缴纳社会保险及税收的凭证) (7) 供应商近三年 (2019 年至今) 完成过类似项目业绩的中标通知书或合同 文件售价:每套售价 500 元(人民币),过期不售,售后不退。 四、响应文件提交 1 响应文件递交的截止时间为2022年12月07日13时30分,地点:东北亚国际金融中心(人民大街与谊民路交汇东行100米)3号楼1楼第一开标室。 2 逾期送达的或者未送达指定地点的竞争性磋商响应文件,采购人不予受理。 3 有效供应商不足三家时,采购人另行组织采购。 五、开启 时间:2022年12月07日13点30分(北京时间) 地点: 东北亚国际金融中心(人民大街与谊民路交汇东行100米)3号楼1楼第一开标室 六、公告期限 自本公告发布之日起5个工作日。 七、本项目落实的政府采购政策 《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号) 、《环境标志产品政府采购实施意见》(财库[2006]90号)。 八、公告媒介 中国招标投标公共服务平台、、长春市公共资源交易网 九、凡对本次采购提出询问,请按以下方式联系。 1.采购人:长春市固体废弃物管理中心 地址:长春市朝阳区信义路 197 号 联系人:迟孟春 联系电话:0431-85960774 2.采购代理机构:吉林长春易荣工程咨询有限公司 地 址:长春市朝阳区卫星路7440号远创国际大厦607室 联系人:詹云凤 电 话: 13394312057 3.监督单位:长春市财政局政府采购管理工作办公室 电 话: 0431-89865657 采购人名称 长春市固体废弃物管理中心 采购人联系方法 0431-85960774 采购人地址 长春市朝阳区信义路 197 号 采购代理机构名称 吉林长春易荣工程咨询有限公司 代理机构联系方法 13394312057 采购代理机构地址 长春市朝阳区卫星路7440号远创国际大厦607室 采购项目名称 长春市城市生活垃圾处理中心移动路基箱采购项目 采购项目预算金额(万元) 180.000000 采购项目的数量、简要规格描述或项目项目基本概况介绍 移动路基箱采购 采购项目需要落实的政府采购政策 本项目为专门面向中小企业采购的项目 对供应商的资格要求 3.1 参加政府采购活动的供应商应当具备《中华人民共和国政府采购法》第二十二条规 定;3.2 落实政府采购政策需满足的资格要求:本项目为专门面向中小企业采购的项目、节约能源、保护环境等;3.3 供应商必须是在中华人民共和国境内注册的具有独立法定代表人资格的企业,具有有效的营业执照,且经营范围须包含钢结构或钢结构设计、制造、安装、改造及维修等相关内容,并具有独立生产场所及生产能力。(供应商需提供相关证明材料原件,且在有效期内);3.4 财务状况报告,依法缴纳税收和社会保障资金的相关材料;3.5 具备履行合同所必需的设备和专业技术能力;3.6 参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明;3.7 供应商近三年 (2019 年至今) 至少完成过2项类似项目业绩。3.8 供应商应登录“信用中国”网站查询“失信被执行人”和“重大税收违法案件当事人名单” 、登录“中国政府采购”网站查询“政府采购严重违法失信行为记录名单”。(根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》 (财库[2016]125 号)的规定,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动)。3.9 同一生产厂家授权的不同经销商不得参加同一采购项目的投标、生产厂家与其授权经销商不得参加同一采购项目的投标(只允许投标产品的生产制造商总部参加投标,或者由生产制造商总部全权委托一家代理商参加),否则作无效标处理;3.10 本项目不接受联合体投标。 获取谈判、磋商、询价文件的时间 2022-11-25 08:30 获取谈判、磋商、询价文件的地点 长春市朝阳区卫星路7440号远创国际大厦607室 获取谈判、磋商、询价文件的方式 详见招标公告 文件售价(元) 500 响应文件提交的截止时间 2022-12-07 13:30 响应文件的开启时间 2022-12-07 13:30 地点 长春市朝阳区卫星路7440号远创国际大厦607室 采购项目联系人姓名 詹云凤 采购项目联系人电话 13394312057 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:固体废弃物 开标时间:2022-12-07 13:30 预算金额:180.00万元 采购单位:长春市固体废弃物管理中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:吉林长春易荣工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [社会代理]长春市城市生活垃圾处理中心移动路基箱采购项目竞争性磋商公告 吉林省-长春市 状态:公告 更新时间: 2022-11-24 项目概况 长春市城市生活垃圾处理中心移动路基箱采购项目采购项目的潜在供应商应在吉林长春易荣工程咨询有限公司(邮箱:1921619893@qq.com)获取采购文件,并于2022年12月07日13点30分(北京时间)前提交响应文件。 一、项目基本情况 1.1 项目名称:长春市城市生活垃圾处理中心移动路基箱采购项目 1.2 合同履行期限:合同签订后30 天内 1.3 招标控制价:180万元 1.4 项目交付或者实施的地点:长春市城市生活垃圾处理中心 (长春市莲花山生态旅游度假管理区泉眼镇双山村) 采购人指定地点 1.5 采购内容: 包号 采购标的 数量 具体参数值或功能要求表述 预算金额(元) 最高限价(元) 1 移动路基 箱 44块 1、单块尺寸:长8米 ,宽1.51 米,厚0.22米钢结构路基箱,路基箱一面为12毫米厚钢板,一面为8毫米厚花纹板,路基箱内腔采用方钢支撑,路基箱两侧有吊耳和连接装置;2、面板及底板,吊耳:材料为热轧钢板,材质牌号为Q235,其尺寸、外形、重量要求符合《热轧钢板和钢带 的 尺 寸 外 形 重 量 及 允 许 偏 差》 (GB/T 709 — 2019),材质要求符合《碳素结构钢》(GB/T700— 2006) ;3、纵向及横向支撑件:材料为热轧 方钢管,材质牌号为Q235B,材质要求符合《碳素结构钢》(GB/T700—2006) ;4、防滑条:材料热轧带胁钢筋,材质牌号为HRB335。5、所用钢板材料符合国家GB/T230.1-2018检测标准,腐蚀性能符合国家QB/T3826-1997检测标准,铅、镉、汞、六价铬、多溴联苯和多溴联苯醚含量符合GB/T26125-2011六种限用物质检验或实验合格标准。其中五金配件金属杆、支座、金属支架、横梁方管硬度符合国家GB/T230.1-2018标准或同类相关标准,腐蚀性能符合国家QB/T3826-1999标准或同类相关标准,铅、镉、汞、六价铬、多溴联苯和多溴联苯醚含量符合GB/T26125-2011六种限用物质检验或实验合格同类相关标准;6、其它具体尺寸、材料、制作工艺按附件中图纸要求; 1800000 1800000 1.6 采购需求:长春市城市生活垃圾处理中心在生活垃圾的填埋作业过程中需要使用移 动路基箱铺垫道路,供环卫车辆、飞灰运输车辆、推土机等车辆设备通行。路基箱尺寸、材质及制作方法需满足图纸要求。 1.7 质量标准:符合国家及行业合格标准。 二、申请人的资格要求: 3.1 参加政府采购活动的供应商应当具备《中华人民共和国政府采购法》第二十二条规 定; 3.2 落实政府采购政策需满足的资格要求:本项目为专门面向中小企业采购的项目、节约能源、保护环境等; 3.3 供应商必须是在中华人民共和国境内注册的具有独立法定代表人资格的企业,具有有效的营业执照,且经营范围须包含钢结构或钢结构设计、制造、安装、改造及维修等相关内容,并具有独立生产场所及生产能力。(供应商需提供相关证明材料原件,且在有效期内); 3.4 财务状况报告,依法缴纳税收和社会保障资金的相关材料; 3.5 具备履行合同所必需的设备和专业技术能力; 3.6 参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明; 3.7 供应商近三年 (2019 年至今) 至少完成过2项类似项目业绩。 3.8 供应商应登录“信用中国”网站查询“失信被执行人”和“重大税收违法案件当事人名单” 、登录“中国政府采购”网站查询“政府采购严重违法失信行为记录名单”。(根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》 (财库[2016]125 号)的规定,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动)。 3.9 同一生产厂家授权的不同经销商不得参加同一采购项目的投标、生产厂家与其授权经销商不得参加同一采购项目的投标(只允许投标产品的生产制造商总部参加投标,或者由生产制造商总部全权委托一家代理商参加),否则作无效标处理; 3.10 本项目不接受联合体投标。 三、获取采购文件 请于2022年11月25日至2022年12月01日(法定公休日、法定节假日除外),每日8:30~16:00 (北京时间,下同)采取发送电子邮件方式(邮箱:1921619893@qq.com)获取,供应商发送邮件主题为“项目编号+项目名称+公司名称”;邮件正文内容:列明公司名称、法定代表人或授权代表人姓名及联系方式;邮件附件:需采用A4纸幅面,将报名材料加盖企业鲜章的彩色扫描件,按下列顺序制作成1个PDF格式文件。报名材料审核未通过的,采购代理机构以邮件形式回复审核情况,供应商可在文件申领时间内重新提交材料: (1) 法人授权委托书 (2) 法人身份证明 (3) 被授权人身份证 (4) 营业执照副本,具有独立生产场所及生产能力证明材料 (5) 财务审计报告或报表(提供近三年 2019-2021 年度,新成立企业提供当年验资报告或 银行出具的公司资信证明) (6) 依法缴纳税收和社会保险费的证明材料 (提供近半年内 2022 年 1 月 1 日至今任意一 月缴纳社会保险及税收的凭证) (7) 供应商近三年 (2019 年至今) 完成过类似项目业绩的中标通知书或合同 文件售价:每套售价 500 元(人民币),过期不售,售后不退。 四、响应文件提交 1 响应文件递交的截止时间为2022年12月07日13时30分,地点:东北亚国际金融中心(人民大街与谊民路交汇东行100米)3号楼1楼第一开标室。 2 逾期送达的或者未送达指定地点的竞争性磋商响应文件,采购人不予受理。 3 有效供应商不足三家时,采购人另行组织采购。 五、开启 时间:2022年12月07日13点30分(北京时间) 地点: 东北亚国际金融中心(人民大街与谊民路交汇东行100米)3号楼1楼第一开标室 六、公告期限 自本公告发布之日起5个工作日。 七、本项目落实的政府采购政策 《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号) 、《环境标志产品政府采购实施意见》(财库[2006]90号)。 八、公告媒介 中国招标投标公共服务平台、、长春市公共资源交易网 九、凡对本次采购提出询问,请按以下方式联系。 1.采购人:长春市固体废弃物管理中心 地址:长春市朝阳区信义路 197 号 联系人:迟孟春 联系电话:0431-85960774 2.采购代理机构:吉林长春易荣工程咨询有限公司 地 址:长春市朝阳区卫星路7440号远创国际大厦607室 联系人:詹云凤 电 话: 13394312057 3.监督单位:长春市财政局政府采购管理工作办公室 电 话: 0431-89865657 采购人名称 长春市固体废弃物管理中心 采购人联系方法 0431-85960774 采购人地址 长春市朝阳区信义路 197 号 采购代理机构名称 吉林长春易荣工程咨询有限公司 代理机构联系方法 13394312057 采购代理机构地址 长春市朝阳区卫星路7440号远创国际大厦607室 采购项目名称 长春市城市生活垃圾处理中心移动路基箱采购项目 采购项目预算金额(万元) 180.000000 采购项目的数量、简要规格描述或项目项目基本概况介绍 移动路基箱采购 采购项目需要落实的政府采购政策 本项目为专门面向中小企业采购的项目 对供应商的资格要求 3.1 参加政府采购活动的供应商应当具备《中华人民共和国政府采购法》第二十二条规 定;3.2 落实政府采购政策需满足的资格要求:本项目为专门面向中小企业采购的项目、节约能源、保护环境等;3.3 供应商必须是在中华人民共和国境内注册的具有独立法定代表人资格的企业,具有有效的营业执照,且经营范围须包含钢结构或钢结构设计、制造、安装、改造及维修等相关内容,并具有独立生产场所及生产能力。(供应商需提供相关证明材料原件,且在有效期内);3.4 财务状况报告,依法缴纳税收和社会保障资金的相关材料;3.5 具备履行合同所必需的设备和专业技术能力;3.6 参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明;3.7 供应商近三年 (2019 年至今) 至少完成过2项类似项目业绩。3.8 供应商应登录“信用中国”网站查询“失信被执行人”和“重大税收违法案件当事人名单” 、登录“中国政府采购”网站查询“政府采购严重违法失信行为记录名单”。(根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》 (财库[2016]125 号)的规定,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动)。3.9 同一生产厂家授权的不同经销商不得参加同一采购项目的投标、生产厂家与其授权经销商不得参加同一采购项目的投标(只允许投标产品的生产制造商总部参加投标,或者由生产制造商总部全权委托一家代理商参加),否则作无效标处理;3.10 本项目不接受联合体投标。 获取谈判、磋商、询价文件的时间 2022-11-25 08:30 获取谈判、磋商、询价文件的地点 长春市朝阳区卫星路7440号远创国际大厦607室 获取谈判、磋商、询价文件的方式 详见招标公告 文件售价(元) 500 响应文件提交的截止时间 2022-12-07 13:30 响应文件的开启时间 2022-12-07 13:30 地点 长春市朝阳区卫星路7440号远创国际大厦607室 采购项目联系人姓名 詹云凤 采购项目联系人电话 13394312057
  • 第三届全国锂电池失效分析与测试技术研讨会在溧阳召开
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯 /strongspan style="text-indent: 2em "2020年12月2日,第三届全国锂电池失效分析与测试技术研讨会在天目湖豪生大酒店召开,本届研讨会聚焦电池与下一代电池关键材料与器件的失效分析,围绕电池失效分析与测试技术进行相关科学与技术的交流与研讨,吸引相关领域学者、产业链上下游企业研发人员超400人参会,仪器信息网作为特别支持媒体参会报道。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/2e611a68-14d4-4a2d-971a-d8af936aba3a.jpg" title="会场.jpg" alt="会场.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大会现场/span/pp style="text-indent: 2em "会议由天目湖先进储能技术研究院、溧阳市人民政府、江苏中关村科技产业园联合组办,溧阳深水科技咨询有限公司承办,会议为期两天,会议首日依次展开锂电正极材料、负极材料、锂硫电池、钠离子电池等四个专题的15个大会报告及对应专题讨论。/pp style="text-indent: 2em "会议次日为分析技术、电池热失效、电解液失效、电池模拟仿真等后四个专题的18个大会报告及对应专题讨论a href="https://www.instrument.com.cn/news/20201203/566680.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "【次日报道链接】/span/strongstrongspan style="color: rgb(0, 176, 240) "/span/strong/a。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/94f31e62-402c-4e66-b85c-644a33877dcb.jpg" title="IMG_8439.jpg" alt="IMG_8439.jpg"//pp style="text-align: center "span style="text-align: center text-indent: 0em color: rgb(0, 176, 240) "中国科学院物理研究所李泓研究员致开幕词/span/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong专题1:正极材料/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/cdd50a58-ddb1-476a-ad5b-d0ddbc55e551.jpg" title="IMG_8151_副本.jpg" alt="IMG_8151_副本.jpg"//pp style="text-align: center "span style="text-indent: 2em color: rgb(0, 176, 240) "报告人:中国科学院青岛生物能源与过程所 崔光磊 研究员/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:高镍三元正极电池失效机理的新发现/span/pp style="text-indent: 2em "由于电池失控过程中内部反应复杂,目前对热失控的引发原因仍没有一个清晰的认识。崔光磊介绍了其课题组利用绝热和等温量热仪,对三元电池在不同环境中及不同条件下的热行为特征进行系统表征,提出电池管理系统的设计应综合及智能化的考虑电池在不同阶段的放热特点。此外,基于自主设计的同位素标记-气体质谱在线检测装置及电池热失控过程中内部材料原位气体穿梭效应检测装置,首次揭示了三元/石墨电池体系中负极产氧及其穿梭至正极而释放大量热量为电池热失控的主要触因。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/68a4ef99-aa5a-4a6d-a060-eeb28e0e4452.jpg" title="IMG_8167.jpg" alt="IMG_8167.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "报告人:北京工业大学 尉海军 教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:富锂正极研究进展与失效分析/span/pp style="text-indent: 2em "学术界与产业界都在全力开发更高能量密度和更安全的锂离子电池,正极材料是制约锂离子电池能量密度进一步提升的瓶颈。尉海军在报告中重点介绍了富锂正极材料尤其是LLOs的最新研究进展并对其失效过程展开讨论,通过系统的研究来进一步提升其循环稳定性,尤其是降低其循环过程中的电压降,进一步推动材料走向应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ea69f063-0959-4656-ba08-204bcddb7c41.jpg" title="IMG_8207.jpg" alt="IMG_8207.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:厦门厦钨新能源材料股份有限公司 魏丽英 主任/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:锂离子电池关键材料失效分析/span/pp style="text-indent: 2em "失效分析技术能够帮助企业提高产品的可靠性、降低风险成本、保证用户权益,是未来产品研发与推广的必经之路。而锂电失效分析是一个非常负责的过程,魏丽英表示,针对失效分析,公司正在尝试将失效分析流程标准化,从多角度分析,利用电子显微镜观察颗粒内部裂纹,应用相关原位技术表征材料结构变化,利用电化学工作站分析界面问题等多种设备多种方法作为切入点,以期综合多种方法和失效分析数据,将材料结构与电性能数据间建立更强联系性。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202012/uepic/62046e5c-9017-4825-9bda-0943c3c6e082.jpg" title="讨论1.jpg" alt="讨论1.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/5329781f-df8f-4ca2-abde-5b1a983ececb.jpg" title="答疑1.png" alt="答疑1.png"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "现场答疑集锦/span/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong专题2:负极材料/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/5509f65e-6915-4bf9-9f62-638b76fa14d7.jpg" title="IMG_8305.jpg" alt="IMG_8305.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "报告人:中国科学技术大学 季恒星 教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:快充储能电池的电极界面调控/span/pp style="text-indent: 2em "近十年来,电池的充电速率逐渐成为限制其应用的突出因素,电池快充能量由电极反应速率决定,是电极反应过程中电子传到、离子传导和电化学转化率的集中体现。季恒星报告面向快充电池对高倍率电极材料的需求,探讨了在不损失能量密度、循环寿命等性能指标的同时,如何提高电极反应速率,并从“界面消除”、“界面重构”、“界面催化”三个方面介绍了其课题组近期的研究进展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/7334520f-3a8c-4654-9bcb-841462d6aa97.jpg" title="IMG_8334.jpg" alt="IMG_8334.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:深圳市比克电池有限公司 夏进阳 工程师/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:硅基负极在锂离子电池中的应用及失效研究/span/pp style="text-indent: 2em text-align: left "随着高镍三元正极及硅基负极等具有高比容量的正负极材料在电池中的应用越来越普遍,锂电发生失效的风险越来越高,对其进行失效分析相关研究更显重要。夏进阳在报告中主要介绍了比克动力目前硅基负极体系电芯的失效研究进展,涵盖了硅碳和硅氧两种不同的硅负极体系,通过一些案例分析,进行了相应的失效原因的探究。/pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3f464fc7-7097-48a1-b128-0192fc70ec82.jpg" title="IMG_8375.jpg" alt="IMG_8375.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:湖州金灿新能源科技有限公司 蔡新辉 总监/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:快充负极材料的应用进展与失效问题简析/span/pp style="text-indent: 2em "蔡新辉在报告中介绍了不同应用领域电池对快充负极材料的性能需求,简单探究了负极材料充电时的电化学反应机理与快充失效问题,提出响应的快充产品开发方案:通过源材料结构优选、包覆及造粒技术、工艺、、材料应用等方面的优化,提升负极材料的快充性能并改善其快充析锂问题。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9c96559e-b2eb-4ea8-a1ad-b72f4e249775.jpg" title="IMG_8402.jpg" alt="IMG_8402.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:江苏天奈科技股份有限公司 毛鸥 总监/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:碳纳米管锂电池负极的导电添加剂/span/pp style="text-indent: 2em "毛鸥在报告中介绍了用碳纳米管等新型导电剂改进硅基负极材料的循环性能及其失效研究。对不同形貌和纯度的碳纳米管和石墨烯及不同种类的硅基材料进行了实验,制备了不同微观尺度的导电网络,减少导电剂用量,提高了电极结构稳定性,改善了硅基负极材料的循环性能。研究了高容量硅材料与常用的石墨复合负极,发现用碳纳米管及石墨烯新型导电剂,尤其少量的单壁碳纳米管,可以有效提高硅材料用量,增加电池首次循环效率与容量。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202012/uepic/7ae4ee78-58cd-4474-8c6b-98b324651b68.jpg" title="讨论2.jpg" alt="讨论2.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: center"span style="color: rgb(0, 176, 240) text-indent: 0em "专题讨论环节/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 239px " src="https://img1.17img.cn/17img/images/202012/uepic/4d3225e7-5d4c-4b13-abb0-205606231cdd.jpg" title="答疑2.jpg" alt="答疑2.jpg" width="600" height="239" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "现场答疑集锦/span/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong专题3:锂硫电池/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1cf4441d-1f57-4d53-9b64-9de73ca45fb3.jpg" title="IMG_8452.jpg" alt="IMG_8452.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "报告人:北京理工大学 陈浩森 教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:锂电池先进结构技术/span/pp style="text-indent: 2em "针对国内“重材料、轻结构”的现状,陈浩森讲解了锂电结构设计的重要意义。他表示,目前,多数企业采用简单模仿来设计电池,不能完全满足电池使役应用需求,更谈不上自主创新电池结构。反观国外,特斯拉设计制造新型4680、2170单体结构,与传统1865相比,材料完全相同,2170系统能量密度提升20%,系统成本下降约9%,重量下降约10%。因此,急需解决电池先进结构瓶颈技术难题。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/4f43eb32-1b5b-4d71-8aac-28391e5e46a4.jpg" title="IMG_8500.jpg" alt="IMG_8500.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:北京理工大学 黄佳琦 教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目: 金属锂固液界面形成机制及调控策略/span/pp style="text-indent: 2em "针对金属锂电极的实用化受到锂枝晶生长和较低循环效率限制的问题,黄佳琦课题组从固液界面形成机理角度理解金属锂界面形成过程,并调控金属锂固液界面形成过程中成分和组成的空间分布,有效提升了金属锂界面的循环稳定性。且通过深入分析金属锂界面离子传输特性,通过构建锂离子单离子传输通道,固定阴离子的方式有效提升了金属锂循环沉积的稳定性。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9490adaa-de81-4295-9cbb-5b4b28dbf119.jpg" title="IMG_8519.jpg" alt="IMG_8519.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:清华大学 张强 教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:实用条件下锂硫电池典型失效分析/span/pp style="text-indent: 2em "张强在报告中介绍了锂硫电池体系中适用条件下锂硫电池典型失效分析,并提出“锂键”这一化学概念。“锂键”的形成有效增强了锂硫电池正极界面相互作用,抑制了多硫化物的“穿梭效应”。调控活性硫物种的电化学行为是提升锂硫电池性能的关键手段。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/cf992151-7e29-43ca-8bef-dae089659025.jpg" title="IMG_8527.jpg" alt="IMG_8527.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:军事科学院防化研究院 王维坤 副研究员/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:锂硫电池的实用化挑战/span/pp style="text-indent: 2em "近年来,研究人员在正极材料的设计制备、负极的钝化保护和电解液的组分改进等方面进行了很多有益探索,但是锂硫电池的实用化进展依然缓慢,还面临诸多挑战:正极面容量难以提高、电解液用量过大、电池寿命短、倍率性能差以及锂负极稳定性问题等,针对这些问题,王维坤 结合近期的研究进展提出思考及系列解决方案。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/4a0eaf4f-a490-4800-b4ae-1e85f66271aa.jpg" title="IMG_8542.jpg" alt="IMG_8542.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:电子科技大学 王丽平 副教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:高能量密度无锂正极FeS2材料研究/span/pp style="text-indent: 2em "随着金属锂负极和电解质技术成熟,不含锂源的材料可用负极。FeS2具有成本低、导电性好、比容量高、能量密度高等优点,成为有竞争力的无锂正极材料。然而其在循环过程中,具有电压滞后、容量衰减快等缺点。王丽平在报告中,针对FeS2性能衰减机制,对其充放电过程机理进行了分析。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202012/uepic/7d1c0361-8091-4b9c-9d07-ff6b17651559.jpg" title="讨论3.jpg" alt="讨论3.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/2a635d55-abcf-4574-8a3d-c71c9a264a0b.jpg" title="答疑3.png" alt="答疑3.png"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "现场答疑集锦/span/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong专题4:钠离子电池/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/385fd7da-e4ea-4679-a526-e01b4156c40f.jpg" title="IMG_8564.jpg" alt="IMG_8564.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:中国科学院物理研究所 周权 博士/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:高功率钠离子电池失效分析/span/pp style="text-indent: 2em "周权在报告中围绕高功率钠离子电池的失效分析展开,主要针对电池的循环衰减和热稳定性两大主要失效现象,进行测试表征及机理研究分析,找到其失效原因,并给出针对性解决方案,同时进一步挖掘钠离子电池的潜在特性和可能的性能优势。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/91830921-9de0-4ee5-9d53-491661bfad7a.jpg" title="IMG_8580.jpg" alt="IMG_8580.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:武汉大学 曹余良 教授/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:储能钠离子电池材料及体系的问题与发展/span/pp style="text-indent: 2em "从资源与环境方面考虑,具有与锂电相似电化学性能的钠离子电池体系作为储能电池更具应用优势。近些年,钠离子电池体系方面的研究取得了突飞猛进的发展,一些电极材料已经达到产业化可能。曹余良在报告中简要分析了嵌钠正负极材料的一些问题,讨论了适合嵌钠反应的一些思路,同时对安全性储钠电池电解液和体系成本也进行了一些探讨,并讨论了钠离子电池及其关键材料的发展方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/d04f7754-1a12-43fa-8881-acd8b60c58b0.jpg" title="IMG_8602.jpg" alt="IMG_8602.jpg"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告人:上海交通大学 王红 讲师/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "报告题目:钠离子电池层状氧化物正极材料失效机理研究/span/pp style="text-indent: 2em "王红在报告中系统讲解了层状氧化物正极材料在环境存储过程中的失效机理,并发展了一种简单的原位再生方法,使得时获的正极材料重新得到应用。此外,选用ZrO2作为包覆材料,采用固相球磨法在层状氧化物正极材料表面包覆修饰,采用XRD、SEM、TEM、ICP、等方法研究了其正极材料电化学性能、高温性能、空气稳定性等的不同。表明通过ZrO2包覆的正极材料高温循环稳定性明显提高,过渡金属离子的溶出速度得到抑制。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202012/uepic/c96c61e5-0053-4945-9858-8796bfc98e7b.jpg" title="讨论4.jpg" alt="讨论4.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: center"span style="color: rgb(0, 176, 240) text-indent: 2em "专题讨论环节/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/84881f7d-082d-454e-9d55-4fb9ce6f6d7e.jpg" title="答疑4.png" alt="答疑4.png"//pp style="text-indent: 2em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 2em "现场答疑集锦/spanspan style="color: rgb(0, 176, 240) text-indent: 2em " /span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 202px " src="https://img1.17img.cn/17img/images/202012/uepic/6df143d2-60be-43b1-abe2-63a4308b2b52.jpg" title="展位.jpg" alt="展位.jpg" width="600" height="202" border="0" vspace="0"//pp style="text-indent: 2em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 2em "同期展商一角/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/4154b701-1b1e-4b3a-8404-1c41b811d185.jpg" title="合影.jpg" alt="合影.jpg"//pp style="text-indent: 2em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 2em "参会代表合影/span/ppbr//p
  • 红外碳硫分析仪检测不锈钢中的常用元素
    红外碳硫分析仪检测不锈钢中的常用元素目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 1).各种元素对不锈钢的性能和组织的影响和作用 1-1.铬在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。迄今为止,还没有不含铬的不锈钢。铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。1-2. 碳在不锈钢中的两重性 碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成&mdash 系列复杂的碳化物。所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。 为了能准确的检测不锈钢的多种元素:碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁等。麒麟品牌QL-S3000C型电脑红外全能联测多元素分析仪是本公司独家拥有、国内最先进的一款多元素联测分析仪,QL-S3000C型全能元素分析仪经由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!在国内首创元素分析仪用衍射光栅数码电机波长可调光学系统。产品采用可由计算机控制的元素分析仪专用的衍射光栅单色体,实现波长数码可调,即任意输入所需波长,光学系统即调整至指定波长,从而使产品可以实现由计算机控制,根据被测材料元素的要求,方便的迅速设定所需波长,可用于不锈钢、钢铁、铜铝等各种金属、非金属材料及其合金的多种元素分析。红外碳硫分析仪参考网站:http://www.jqilin.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制