当前位置: 仪器信息网 > 行业主题 > >

全射线源快速定位仪

仪器信息网全射线源快速定位仪专题为您提供2024年最新全射线源快速定位仪价格报价、厂家品牌的相关信息, 包括全射线源快速定位仪参数、型号等,不管是国产,还是进口品牌的全射线源快速定位仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全射线源快速定位仪相关的耗材配件、试剂标物,还有全射线源快速定位仪相关的最新资讯、资料,以及全射线源快速定位仪相关的解决方案。

全射线源快速定位仪相关的论坛

  • 微操作立体定位仪优势

    [url=http://www.f-lab.cn/stereotaxis/sr-9m.html]微操作[b]立体定位仪[/b]SR-9M[/url]是专门为小鼠慢性实验设计的[b]小鼠定位仪器[/b],它可以在小鼠非麻醉状态下在相同位置重复固定,使得小鼠慢性实验或急性实验可以在不造成动物损害情况下顺利地完成。微操作[b]立体定位仪[/b]SR-9M可用于视觉和听觉实验。头部固定器可以从基板移出,因此可以放置在显微镜下。提供一个AP框架槽,可以连接许多不同类型的配件比如显微SM-15 L / R。通过将室框架连接到小鼠头部,在非麻醉状态在同一位置重复定位成为了可能。一旦室框架被固定在头上,不需要麻醉,无需使用口、鼻夹或耳棒小鼠可以被立体定位固定而,使SR-9M可以用于视觉和听觉实验。 [img=微操作立体定位仪]http://www.f-lab.cn/Upload/sr-9m_.jpg[/img]微操作[b]立体定位仪[/b]SR-9M需要不带立体定位显微操作器SM-15的版本,请访问SR-9M-HT。自从NARISHIGE的立体定位操作器根据新标准制作后,AP框架具有18.7mm的方形形状。微操作[b]立体定位仪[/b]SR-9M[b]规格[/b][table=610][tr][td] [/td][td]SM-15 R/L 立体定位显微操作器EB-3B 小鼠耳柱(一对)EB-5N 小鼠辅助耳柱CF-10 室框架 x 5件.[/td][/tr][tr][td]尺寸大小,重量[/td][td]宽400 x 深300 x 高110mm, 9.2kg [/td][/tr][/table]微操作立体定位仪:[url]http://www.f-lab.cn/stereotaxis/sr-9m.html[/url]

  • 牛津高亮微焦斑X射线源有在用的吗?

    牛津高亮微焦斑X射线源有在用的吗?

    http://ng1.17img.cn/bbsfiles/images/2012/11/201211131534_403820_2628448_3.jpgRT 实验室刚入手一台牛津微焦斑X射线源,端窗。搭配探测器,做XRF实验。1 现在想搭试验台,窗口冷却方式采用风冷,请问如何安排风冷呢?2 窗口上还想接上透镜,但是我目测窗口的螺栓孔好小,应该是0.3cm左右怎样安装透镜呢?3 射线源尺寸也不小,怎样安装能使装置空间利用率较高?谢谢大神们~~急

  • 禹州:许昌首台闪电定位仪安装 禹州开始驯服“雷电”?

    闪电定位仪是一种监测雷电发生的气象探测仪器,是指利用闪电辐射的声、光、电磁场特性来遥测闪电放电参数的一种自动化探测设备,并把经过预处理的闪电数据实时地通过通讯系统送到中心数据处理站实时进行交汇处理,可全天候、长期、连续运行并记录雷电发生的时间、位置、强度和极性等指标。闪电定位仪是开展雷暴预报的基础条件,将对该县的森林防火、防雷减灾、灾害调查和人工增雨等工作有很大的促进作用,能够为该县的经济社会又好又快发展提供有力的保障。 近日,许昌首台闪电定位仪成功安装,落户禹州。该闪电定位仪在河南省气象局技术装备保障中心技术人员指导下成功安装,结束了禹州市气象局人工目测雷电的历史。 对雷电监测能够有效的预报,防雷减灾,但传统的目测雷电由于精确度不高,限制了一系列工作的开展。随着闪电定位仪投入使用,能够对雷电进行有效监测,从而支持和指导防雷减灾、灾害调查、人工增雨和森林防火等工作的开展。 该闪电定位仪能够覆盖禹州市的26个乡(镇、办),进一步提升雷电监测精确性,也完善了当地雷电监测系统建设,为气象和安全提供可靠科学依据。

  • 微操作型狨猴立体定位仪规格说明

    [url=http://www.f-lab.cn/stereotaxis/sr-5c.html][b]狨猴立体定位仪[/b]SR-5C[/url]是带有[b]显微操作器[/b]的固定普通狨猴实验的[b]立体定位仪[/b]器,一套系统满足狨猴固定和定位以及显微操作实验。[b]狨猴立体定位仪[/b]SR-5C具有许多有用的功能可以安全地将动物固定到适当位置,进行立体定位步骤。为普通狨猴特别设计的辅助耳棒,可以只用一只抓牢,还可以固定到耳孔并使用指尖确认感觉。 眼孔的多孔面固定到固定器上,多孔面也是为尽量减少狨猴的损害而设计的。通过固定耳孔,眼孔和上颚,确保立体固定。提供一个18.7毫米AP框架,除了已连接的显微操作器SM-15外,这样许多不同类型的配件也可以连接到该[b]狨猴立体定位仪[/b]。[img=微操作型狨猴立体定位仪]http://www.f-lab.cn/Upload/sr-6c_.jpg[/img][b]狨猴立体定位仪[/b]SR-5C有一个AP框架,SR-6C有两个。不带显微操作器的版本可以在这里找到:[color=#0000ff]SR-5C-HT[/color][b][b]狨猴立体定位仪[/b]规格[/b][table=530][tr][td]配件[/td][td]SM-15 立体定位显微操作器EB-3A辅助耳棒六角扳手[/td][/tr][tr][td]尺寸大小/重量[/td][td]W400 × D300 × H110mm, 8.85kg[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]

  • 关于GPRS定位仪

    想购买一个GPRS定位仪,网上查查好象类型很多,初次接触什么都不懂,请教大侠买那种比较实惠

  • X射线成像仪简介

    本视频简单的向大家介绍了什么是X射线成像仪,以及它的主要组成部分即X射线源、高精度样品台、光学物镜耦合的CCD探测器、计算机图形控制系统:同时介绍了X射线成像仪的工作流程、应用范围

  • 【分享】钢铁工业在线X射线测量技术的应用

    1、X射线产生原理  阴极丝在加热的情况下,会发射出热电子,在射线管的阴极和阳极之间施加高压,热电子在电场中被加速并撞击到阳极靶材料上,辐射出电磁波,产生的光谱为连续谱并存在着短波限(λmin),相当于电子所有能量都转换成X射线,短波限与阳极材料无关。    连续光谱的强度随热电子加速电压的平方成正比,与电流、阳极元素原子序数Z成正比,转换成X射线的效率与ZV成正比。当管电压超过靶材料激发电势时,连续光谱上会叠加特征光谱,特征光谱的波长与靶材料有关。特征谱线的频率为:    式中:R为里德伯常数(R=109737.3/cm);Z为原子序数;在Ka谱系中,σ=1,K=3/4。    由于产生的X射线是连续谱,X射线在穿过射线管窗口材料时,低能部分的射线及低能特征射线容易被吸收,能谱的谱线发生变化   2、X射线与放射性同位素的比较    2.1X射线测量技术的优点    2.1.1测量精度和分辨率高,统计噪声低    无论射线源采用何种方式,射线的产生都是随机的,并服从统计分布,存在统计涨落,根据射线衰减公式,可以得到:    式中:μ表示被测物质的吸收系数;τ表示探测器的响应时间;Ks表示探测器特征系数;I表示初级X射线的强度;T表示被测材料的厚度。    从式(4)可以知道,厚度的影响与射线的强度I有关。对于同位素放射源其强度不能无限制地增加,射线源强度的增加会造成辐射防护难度的增加,电离辐射危险性增大,另一方面放射源本身存在自吸收效应,射线源强度越大,自吸收效应越大。而根据公式(2),增加X射线管的高压和阴极丝电流就可快速地增加射线的强度,来达到降低噪声的目的,对于相同的噪声等级,X射线源的响应速度也可以提高。    假设在厚度为0时的噪声值为SN0,则厚度为X时的噪声为:    根据式(5),可以方便地计算出对于任意厚度时的相对统计噪声,相对统计噪声与半厚度值(射线强度衰减到一半时的厚度值)之间的关系如图4所示,其最小值时的厚度为2.9倍半厚度值。对于使用放射性同位素测量的设备,由于射线的能量是单一的,其最佳测量厚度值是2.8倍半厚度值,是固有的物理特性;对于X射线测量设备通过调整能量,使设备在整个量程内的统计噪声保持在较低的水平。

  • 【分享】X射线衍射仪

    [url=http://baike.baidu.com/image/8b527d278fe8dd10918f9de9][img]http://imgsrc.baidu.com/baike/abpic/item/8b527d278fe8dd10918f9de9.jpg[/img][/url]X射线衍射仪是利用[url=/view/59839.htm]衍射[/url]原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.  X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业。  基本构造 X射线衍射仪的形式多种多样, 用途各异, 但其基本构成很相似, 图4为X射线衍射仪的基本构造原理图, 主要部件包括4部分。  (1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。  (2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。  (3) 射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。  (4) 衍射图的处理分析系统 现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。

  • x射线衍射仪和荧光分析仪卫生防护标准

    x射线衍射仪和荧光分析仪卫生防护标准Radiological standards for X-ray diffraction and fluorescence analysis equipmentGBZ115-20021 范围 本标准规定了X射线衍射仪和X射线荧光分析仪的放射防护标准和放射防护安全操作要求。 本标准适用于X射线衍射仪和X射线荧光分析仪的生产和使用。2 规范性引用文件 下列标准中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB4075 密封放射源分级 GB4076 密封放射源一般规定 GB8703 辐射防护规定 ZBY226 X射线衍射仪技术条件3 术语和定义 下列术语和定义适用于本标准。3.1 X射线衍射仪和X射线荧光分析仪 X-ray diffraction equipment and X-ray fluorescence analysis equipment X射线衍射仪 利用X射线轰击样品,测量所产生的衍射X射线强度的空间分布,以确定样品的微观结构的仪器。 X射线荧光分析仪 利用射线轰击样品,测量所产生的特征X射线,以确定样品中元素的种类与含量的仪器。 以下把X射线衍射仪和X射线荧光分析仪统称为分析仪。3.2 闭束型分析仪和敞束型分析仪 enclosed-beam analytic analytical equipment and open-beam analytical equipment 闭束型分析仪 以结构上能防止人体的任何部分进入有用线束区域为特征的分析仪。 敞束型分析仪 结构上不完全符合闭束型分析仪特征的分析仪,操作人员的某部分身体有可能意外地进大有用线束区域。3.3 射线源 radiation source 本标准中,射线源特指X射线管或能便样品受激后发出特征X射线的密封型放射性核素源(以下简称密封型源)。3.4 联锁装置 interlocking device 分析仪的一种安全控制装置,当其中相关的组件动作时可以发出警告信号,或能够阻止分析仪进入使用状态,或使正在工作的分析仪立即关停。3.5 有用线束 primary radiation 来自射线源并通过窗、光栏或准直器射出的待用射线束。3.6 受照射部件 exposed components 分析仪中受到有用线束照射的部件,如:源套、遮光器、准直器、连接器、样品架、测角仪、探测器等。3.7 源套 radiation source housing 套在射线源外部的具有一定防护效能的壳体,分为密封源套和X射线管套。3.8 防护罩 protective enclosure 敞束型分析仪中,用来屏蔽源套和所有受照射部件的一种防护设备。在防护罩的侧面,通常装有可以平移的防护窗,调试、校准等操作结束后,关闭防护窗,能够有效地防止人员受到有用线束和较强散射线的照射。3.9 遮光器 shutter 安装在有用线束出口处的可以屏蔽有用线束的器件。

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 【转帖】X射线衍射原理

    特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如铜靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。   当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。  X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。   X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 爱心捐助

  • 【资料】X射线衍射原理及应用介绍

    X射线衍射原理及应用介绍特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布喇格定律: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。 当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。   X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。 X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。[color=#DC143C][size=4]希望对大家有用。[/size][/color]

  • 【原创】全铝X-射线分析仪分析铝电解质

    摘要:本文叙述全铝X-射线分析仪分析铝电解质中的Al、F、Na、Ca、Mg含量,进一步计算分子比、CaF2、MgF2、Al2O3、过剩AlF3的方法,以及每个元素及化合物谱线的选择与修正、分析参数的建立、工作曲线的绘制、样品的制备方法等。实践证明:分析结果准确可靠,精密度良好,实现了准确快速测定的目的。一 前言铝槽电解质的分子比是铝电解生产控制的重要参数之一,正确分析电解质的各项指标,直接影响铝电解的工艺控制和经济效益。目前,在国内铝工业生产中铝电解质的分析方法有热滴定法、化学法、结晶光学法和X-射线衍射法,在这些方法中,热滴定法和化学法是基础,但其分析速度慢,分析结果严重滞后;结晶光学法对于有多种添加剂和低分子比的电解质分析时误差太大。X-射线衍射法只有国内少数铝厂采用,其分析的项目较少。本文介绍全铝X-射线分析仪(X荧光+X衍射综合性仪器)分析铝电解质的方法。这是国内从瑞士ARL公司引进的最先进的仪器,经过近一年的实践,证明仪器所分析的数据准确、精密度高、速度快。为青铜峡铝厂三期13万吨200千安预焙电解槽在短时间内达产达标提供了有力的技术支持。使其在4个月内电流效率提高到92%,创造了可观的经济效益。二 实验部分1 实验原理根据邱竹贤、K. Grjotheim等人铝电解质的酸度理论,固态酸性电解质的基体是由冰晶石(Na3AlF6)、亚冰晶石(Na5Al3F14)和Al2O3组成。当加入CaF2时,增加了NaCaAlF6相,液态中增加了CaF2相;加入MgF2时,增加了Na2MgAlF7相,液态中增加了NaMgF3相;加入LiF时,增加了Na2LiAlF6相,液态中增加了Li3AlF6相。因预焙槽工艺中不加LiF,其含量可忽略。根据以上理论,用仪器的荧光部分测定电解质的Al、F、Na、Ca、Mg含量, 再用数学模型计算NaF,AlF3,CaF2,MgF2,Al2O3,过剩AlF3及分子比。2 标样的研制这种标样在实际生产电解槽中直接采取。保证基体相同及每个元素和化合物有足够的梯度。我们在实际生产的640台槽中取样,先用仪器分析其强度,发现单元素有异常的样品,立即大量取样,选取17个单元素有一定梯度的样品,经本厂化验室、郑州轻金属研究所、北京有色金属研究院、包头铝厂、中宁铝厂多家单位化学定值。综合评定,最后选取10个作为标样。3 样品制备为保证分析结果的重复性,从电解槽取样必须严格遵守取样的操作规程。新型全铝分析仪使用慢冷样品,样品中基本上没有非晶质物质存在。各标准样品的冷却条件要和实际取样时尽量保持一致。试样制备过程如下;(1) 粉碎:取电解厂房送来的铝电解质冷却试料块约30g,放入破碎机的试料容器中进行破碎。为了避免破碎时试料粘在容器壁上及压片时易于成型,破碎前滴上1-2滴无水乙醇。经实验在转速1550转/分条件下破碎20秒,可使试料达到300目以上。(2) 压片:将料环放在样托上,称取5克试样粉末倒入料环内,放入压样机,选用30吨压力静压15秒,取出压成的试样片,即可上仪器分析。注意:正常分析样品的取样冷却条件、试样的破碎程度、压样时的压力、静压时间对测量结果均有影响,尽量和标样制备时保持一致。4 选择谱线X-射线荧光是激发原子的最内层K层电子,所以每种元素的特征谱线有好几条,首选Ka谱线,理论Ka谱线与实际生产工艺中元素的谱线并不吻合,必须多做实验加以调整,衍射的谱线也应做调整,无需扣背景,具体谱线见表1。5 确定激发条件对某一种元素,其谱线、晶体、探测器、计数时间、准直器、X-光管电压、电流选择搭配不同,其分析效果也不同。必须做大量实验,总结经验,选择适合生产工艺并能准确反映元素真实含量的分析参数

  • 【仪器前沿】之:Thermo新型X射线光谱仪上市

    [url]http://www.instrument.com.cn/news/20100603/043100.shtml[/url]([color=#0162f4]赛默飞世尔科技推出新型600W X射线光谱仪[/color])ECUBLENS, 瑞士(2010年6月1日)-世界服务科学领域的领导者赛默飞世尔科技公司宣布,Thermo Scientific ARL 9900 IntelliPower系列X射线光谱仪有了新成员。新的ARL 9900 IntelliPower 600在600W的功率下运行,可以配备一个游离氧化钙通道,满足水泥工业的大部分分析要求,性能优越,价格合理。  ARL 9900 IntelliPower 600可以配备XRF固定通道,每个通道专门对单个元素进行快速精确的分析。最多可以配备12个固定通道,同时分析水泥工业通常需要检测的元素(或氧化物),包括测定水泥的矿渣添加物中的硫(或硫化物)。ARL 9900 IntelliPower 600也可以无需任何气体进行操作,分析包括钠在内的所有元素。  另外,ARL 9900 IntelliPower 600可以配备两种Thermo Scientific测角仪—SmartGonio™ 和F45通用测角仪,快速而高度准确的无齿轮测角仪可以程控进行定性和定量分析。其莫尔条纹技术提供了优秀的角度定位和高质量的顺序X射线光谱分析能力。SmartGonio用于分析从氟到铀的所有元素,能够满足大部分水泥实验室的分析要求。F45通用测角仪用于测定更轻的元素,例如碳元素。两种测角仪完全满足非常规元素的分析要求,并可以辅助XRF的所有固定通道。与合适的软件包,例如UniQuant™ 或QuantAS™ 联用,可以实现无标样分析。  游离氧化钙通道是一种专用的紧凑型一体化的X射线衍射系统,整个系统由新型的微处理器控制,为水泥熟料中游离氧化钙的分析提供智能化解决方案,有利于水泥厂进行炉窑控制。另外,它可以用于测定炉渣(GBFS,粒化高炉矿渣)中的游离氧化钙 如果在高功率水平下应用,它可以用于分析原材料中的石英,解决水泥质量控制的难题,也可以监测热料煅烧和石灰石添加过程。因此,游离氧化钙通道可以降低水泥厂的成本,提高整体产品的质量。

  • 【原创】X射线荧光光谱仪基础知识普及(一)X射线

    X射线波长小于0.01nm的称超硬X射线,在0.01~0.1nm范围内的称硬X射线,0.1~10nm范围内的称软X射线。X射线具有很强的穿透力,医学上常用作透视检查,工业中用来探伤。长期受X射线辐射对人体有伤害。X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。晶体的点阵结构对X射线可产生显著的衍射作用,X 射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。特点  X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。  X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构 。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。  X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。  放出的X射线分为两类:  (1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。  (2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。X射线的危害x射线和其他辐射线,一般对人的伤害分为两种,一是通过能量传递,对人体细胞的DNA进行破坏,称为物理效应,还有一种是,由射线对人体组织内水发生电离,产生自由基,这些自由基再和生物大分子发生作用,导致不可逆损伤,称为生物效应。x射线以生物效应为主。辐射作用于生物体时能造成电离辐射,这种电离作用能造成生物体的细胞、组织、器官等损伤,引起病理反应,称为辐射生物效应。辐射对生物体的作用是一个非常复杂的过程,生物体从吸收辐射能量开始到产生辐射生物效应,要经历许多不同性质的变化,一般认为将经历四个阶段的变化: ①物理变化阶段:持续约10-16秒,细胞被电离; ②物理-化学变化阶段:持续约10-6秒,离子与水分子作用,形成新产物; ③化学变化阶段:持续约几秒,反应产物与细胞分子作用,可能破坏复杂分子;④生物变化阶段:持续时间可以是几十分钟至几十年,上述的化学变化可能破坏细胞或其功能。辐射生物效应可以表现在受照者本身,也可以出现在受照者的后代。表现在受照者本身的称为躯体效应(按照显现的时间早晚又分为近

  • X射线荧光光谱仪

    波长色散X射线荧光光谱仪分析对象主要有各种磁性材料(NdFeB、SmCo合金、FeTbDy)、钛镍记忆合金、混合稀土分量、贵金属饰品和合金等,以及各种形态样品的无标半定量分析,对于均匀的颗粒度较小的粉末或合金,结果接近于定量分析的准确度。X荧光分析快速,某些样品当天就可以得到分析结果。适合课题研究和生产监控。 波长色散X射线荧光光谱仪采用晶体或人工拟晶体根据Bragg定律将不同能量的谱线分开,然后进行测量。波长色散X射线荧光光谱一般采用X射线管作激发源,可分为顺序式(或称单道式或扫描式)、同时式(或称多道式)谱仪、和顺序式与同时式相结合的谱仪三种类型。顺序式通过扫描方法逐个测量元素,因此测量速度通常比同时式慢,适用于科研及多用途的工作。同时式则适用于相对固定组成,对测量速度要求高和批量试样分析, 顺序式与同时式相结合的谱仪结合了两者的优点。 美国Cianflone公司扫描型X射线荧光光谱仪(波长色散型)2501XBT型号是ASTM金属基层处理涂层测厚检验标准(D5723-95)、ASTM1306-07和D6906-03中唯一推荐检测仪器。X射线荧光光谱仪是表面金属元素成分分析的理想工具。 Portaspec2501XRF可以试验如下金属和矿物的全定量分析: 铬、钴、铜、金、铁、铅、锂、锰、汞、钼、镍、、铂、银、钍、钛、钨、铀、钒、锌、锆? Portaspec以安全的辐射标准(CRF标准)耐用的光学系统,简便的元素选择操作,强大灵活的测量功能、成为金属元素定量定性的最好分析工具。 PortaspecX系列色散型X射线荧光光谱仪用于质量控制和研究,高效、功能强大,包括触摸屏笔记本电脑。X射线管冷却水浴、真空泵,高压电源于一体,完全实现低成本运行。 PortaspecX系列色散型X射线荧光光谱仪主要特点: XSEBT单一元素; XBT分析从钛到银、从钡到铀的单一或多金属顺序测量; XLT分析AI、Si 、P、S、Cl、K、Ca、Zr 系统设置与样品分析耗时短 移动式测量探头,可实现无损在线检测 符合CRF辐射安全 包括触摸屏笔记本电脑 快速调角开关电源 密封、高效耐用的光学系统实验高精度高可靠性的测量请不要注明出处。否则广告论处。

  • 【转帖】便携全反射X射线荧光分析仪

    转录 请自己 google 搜索 便携全反射X射线荧光分析仪 全反射X射线荧光分析仪 等文章全反射X荧儿(TXRF)分析技术是十多年前才发展起来的多元素同时分析技术,它突出的优点是检出限低(pg、ng/mL 级以下)、用样量少(Μl、ng级)、准确高度(可用内标法)、简便、快速,而且要进行无损分析,成为一种不可替代的全亲的元素分析方法。国际上每两年召开一次TXRF分析技术国际讨论会。该技术被誉为在分析领域是最具有竞争力的分析手段,在原子谱仪领域内处于领先地位。从整个分析领域看,与质谱仪中的ICP-MS和GDMS、原子吸收谱仪中的ETAAS和EAAS以及中子活化分析NAA等方法相比较,TXRF分析在检出限低、定量性好、用样量少、快速、简便、经济、多元素同时分析等方面有着综合优势。在X荧光谱仪范围内,能谱仪(XRF)和波谱仪(WXRF)在最低检出限、定量性、简便性、准确性、经济性等方面,都明显比TXRF差。在表面分析领域内,尤其在微电子工业的大面积硅片表面质量控制中,TXRF已在国际上得到广泛应用。1. TXRF分析仪工作原理:TXRF利用全反射技术,会使样品荧光的杂散本底比XRF降低约四个量级,从而大大提高了能量分辨率和灵敏率,避免了XRF和WXRF测量中通常遇到的木底增强或减北效应,大大缩减了定量分析的工作量和工作时间,同时提高了测量的精确度。测量系统的最低探测限(MDL)可由公式计算: (2)这里, 是木底计数率,t为测量计数时间,M为被测量元素质量,l代表被测量元素产生的特征峰净计数率,S=I/M就是系统灵敏度,由公式可以看出,提高灵敏底、降低木底计数率、增加计数时间是降低MDL的有效办法。木氏低、灵敏度高正是TXRF方法的长处,因而MDL很低。

  • 【分享】(德国)X射线实时成像检测系统检测金属铸件橡胶轮胎内部分层裂纹

    http://simg.instrument.com.cn/bbs/images/brow/em0816.gif X射线检测系统点激此处链接X射线实时成像系统:对于批量大、要求检测效率高的零件,是一种非常实用有效的检测手段,它具有动态观察、形态真实、检测效率高的特点,并可采用计算机图像处理装置对射线图像进行处理,使检测灵敏度进一步提高。 主要应用领域,金属铸件,塑料橡胶等。本系列产品对于不同形状和大小,钢、铝、陶瓷、复合材料或橡胶等不同材料的工件均可提供高质量的实时监测内部裂纹、分层等。 用于非金属、轻金属、铸造件、各种合金、压力容器等进行X射线无损检测。主要检测焊接缺陷(裂纹、气孔、夹渣、未溶合、未焊透等)以及腐蚀和装配缺陷。XRAY微焦点工作原理和发展:在伦琴先生发现X-Ray后的不久,他就认识到X-Ray可以用于材料检测。但直到上世纪70年代,X-Ray才开始被用于工业领域。由于当时电子产品的微小化以及对元部件可靠性要求的提高,人们极其关注在微米范围内的材料缺陷分析。如今微米焦点X-Ray检测已经稳定地被应用于无损害材料检测,并且通过不断的技术革新将在更广泛的工业领域中被使用.  基本原理 在微米焦点X-Ray检测的过程中,扇形的X-Ray穿过待检样品,然后在图像接收器(现在大多使用X-Ray图像增强器)上形成一个放大的X光图。该图像的质量主要由以下三点决定:放大率、分辨率及对比度。图像分辨率(清晰度)主要由X射线源的大小决定,微米焦点X-Ray放射管的射线源只有几个微米。图像的几何放大率由X光路的几何性质决定(图1),在实际应用中可达到1000至2500倍。 具体物体的微小部分在图片上的表现力主要是由该部分的本身属性在X光图上产生的对比度决定。对比度主要由物体内部的不同厚度,及不同材料(如印制线路板上的铜印制导线),对光线的不同程度吸收而引起的。举例来说,样品A和B拥有相同的厚度,如果A的原子序数较B大,则它对射线的吸收性能较B强。C与B的组成物质相同,若C比B薄,则其对射线的吸收性能比较弱。对比度除与X-ray本征特性有关外,在技术上的局限是由X射线探测器的性质决定的。对图像增强器而言,只有吸收差别达到至2%,才能在X光图中清晰地呈现出来。   X射线管当高速带电粒子突然被减速时,X-Ray就产生了。在简单的X射线管中,电子从热阴极中出来,通过一个电场,向阳极加速。在撞到阳极时停止,同时释放出X射线。碰撞区域的大小就是X射线源的大小,它以毫米为单位,在这种情况下我们只能得到很不清晰的画面。通过微焦点X射线管的使用,就能改变这种状况。电子通过阳极上的一个小孔进入磁电子透镜,该透镜中的磁场力使电子束聚焦在阴极靶上一个直径只有几微米的焦点上。通过这种方式X射线源变得很小,在高放大率的情况下能得到分辨率在微米范围内的清晰图像。新研制的纳米射线管通过多个透镜的使用分辨率将达到500nm。  X射线探测器 传统的X-Ray探测器是一个射线照相胶卷,它拥有良好的空间分辨率(在10μm内)和对比度(0.5%)和可以保存的检测结果等特点。它的缺点是曝光和冲洗都需要好几分钟的时间。针对这种情况,人们在图像增强器上装了拍摄被检测样品动感画面的影像链接,可是仍然只能得到比较粗糙的分辨率。在物体细节显微检测中,可以通过微焦点X光技术消除这个缺点。在足够大的几何放大率的情况下,图像清晰度只同X射线源的大小有关,因此最小的细节也能被清晰地拍摄下来。新研制的数码X射线探测器在理想状态下将两种图像接受方式合为一体:既能提供动态图像,又能拥有完美的对比度。   应用领域 如今微米X光技术主要应用于电子工业中的过程控制和缺陷分析。在元件组装中首先是隐藏焊点的检测,如:BGA封装中的气孔,浸润缺陷,焊桥,及其它的性质,如:焊料的多少,焊点的位移等。在半导体工业中,X光系统作为稳定的工具被应用于集成电路封装中内部连接的无损害检测。因此,在高分辨率的基础上可以检测到直径只有25微米的焊接连线上的最小坏点(图2),及芯片粘接上的气孔在温度降低时晶体的粘合反应等。在多层印制电路板的的制造中,各个板面的排列将被连续地监控。在这里X光系统能精确地测量特别是处于内层位置的结构及焊环宽度,是制造过程优化的基础。此外,如在层间电路金属连通过程中,通过该技术还可以在X光图上清晰地辨认短路及断路,确定它们的位置并作出分析.

  • 【技术@创新】X射线散射技术 能分析溶液中金属离子相互作用

    physorg.com网站2007年4月13日报道:来自美国能源部Argonne国家实验室以及Notre Dame大学的科学家们最近成功的利用X射线散射技术找到了溶液中的金属离子是如何发生相互作用的。详细结果发表在最新的《Inorganic Chemistry》上。这些发现有着重要意义,因为它能帮助科学家更好了解核废料以及其它工业产物中的金属离子是如何影响环境的。  Argonne实验室的Suntharalingam Skanthakumar表示:“科学家长期以来一直有一个疑问,那就是溶液中金属离子的行为。对于这些金属相互作用的直接测量显示,在溶液体系结构和固态环境之间存在长程的交互作用和强相关性。”  而Argonne实验室的另一位科学家Lynda Soderholm则说:“我们已经掌握了关于四价水解锕类金属的详细结构和化学信息,结果表明原子相互作用细节和我们之前想象的很不一样。金属离子水解是水化学中最基本也是最重要的反应之一。”  此项研究的实验是在Argonne的APS进行的。周长1104米的APS加速器足够容纳一个棒球场,其中的复杂仪器设备能加速并储存一束电子,这作为APS的X射线源。在科学家的实验中,一束细的高能X射线来轰击溶液中的离子,当X射线被散射出来,特殊的CCD就能探测出二维的散射模式。  博士后Richard E. Wilson说:“下一步我们将分析周期表中的钍等金属,最终目标是预言金属污染物的反应状况,并确定它们对于环境的影响。”此项研究结合了多个学科的学者,包括物理学家、化学家和地质学家。来源:教育部科技发展中心网站

  • 【转帖】X射线防护原则

    X射线防护原则 第一节 X线防护的目的   一般来讲。X线的医用给人类带来的利益远远大其其危害。但若用之不当。亦可造成潜在性危险,X线防护的基本任务就是保障X线工作者和公众及其后代的健康和安全。提高x线防护的效益,促进x线工作的发展。 ICRF将辐射损伤分为随机性效应和非随机效应,并假定随机效应的发生率和剂量之间存在着线性无阈的关系;非随机性效应可能存在着剂量的阈值,只要将接受剂量控制在阈剂量以下,即可避免非随机效应的发生。因此,辐射防护的目的,在于防止发生有害的非随机性效应,并将随机效应的发生率限制到认为可以接受的水平。 第二节 X线防护原则   一、剂量限制体系   剂量限制体系,是ICRP在1977年提出的,它包括辐射实践的正当化,防护水平最优化,个人剂量限值三条原则,它是一切电离辐射的基本防护原则,同样也适用于X线。 (一)辐射实践的正当化   任何电离辐射照射的实践,都要经过论证,认为该项实践是必要的,其经济效益和社会效益同实践所致放射危害相比是合理的。也就是说,凡是不能带来纯利益的照射就不能进行,这称之为正当化。   为了实现X线实践的正当化,在对每一病人确定X线检查及治疗时,应综合分析、权衡利弊,避免一切不必要的照射。 (二)辐射防护的最优化   由ICRP所建议的剂量限制体系的基本内容之一,就是在考虑到经济效益和社会效益因素的条件下,要求所有的照射应当保持在合理做到的尽可能低的水平。这个要求包括增加防护水平达到达样的程度:即进一步改善条件,所能降低的照射与所需需作出的进一步努力相比是没多大意义的。这种要求通常被称为防护水平的最优化。   一般纯利益公式可写成: B=(V—P)-(x十Y) 式中, B——辐射实践的纯利益; V——辐射实践的毛利益; P——该实践的基本成本; X——某防护水平(w)的防护代价; Y——某防护水平实践代来的危害代价。 最优化就是以最小的代价,获得最大的纯利益。由于V、P是一定值,所以(V—P)为一常数。而防护代价和危害的代价均为防护水平w的函数。 正当化要求纯利益B>o。最优化要求纯利益达到最大,即: X(w)十Y(w)=最小 式中, X(w)——防护水平为w时的防护代价; Y(w)——防护水平为w时的辐射实践代来危害的代价; w——代表某一防护水平,如屏蔽厚度,可供选择的防护设备方案等等。 当由w所表示的防护水平,对任何满意的水平可能连续变化时,上式所表示的最小值可以通过微分而得到: dX/dw= -dY/dw (3.4.3) 因为当X、Y和w都与集体剂量S有关,所以最优化问题可被表示为: dX/ds= -dY/ds (3.4.4) 公式(34.4)表示,当减少单位集体剂量当量所花的防护代价与减少单位集体剂量当量所减少的危害代价相等时,防护就达到了最优水平。这就是所谓把剂量保持在可以合理做到的最低水平。如果不加分析地片面追求降低剂量,不满足最优化条件,不能使纯利益达到最大,就不能认为是合理的了。因此,在许多最优化的实际评价中,防护水平的提高是有一定限度的,只有当由防护水平A提高到防护水平B满足下式要求时才可进行。 XB—XA/WB—WA≦YB—YA/WB—WA 例如,在某些检查中,可用中速稀钻荧光屏来代替标准钨酸盐荧光屏。假若危害的代价可用Y=aS来表示,这里a是给单位集体剂量当量所指定的货币值。最优化评价进行如下: 假设荧光屏有一确定的寿命,并且知道集体剂量的减少量(检查次数×每次检查减少的剂量),那么,减少一个希的代价即可被确定。假若这个数值低于所指定的货币值M,使用稀化荧光屏的措施是可以接受的。 为了维持和改进辐射防护水平(例如废片数量的减少),质量保证程序是一重要手段。这样的程序所花费的代价应与集体剂量的减少和设备的寿命的延长相平衡。例如对x线设备防护性能的监测及为安全操作而对技术人员的培训,可使废片减少,设备寿命延长,这些措施所花费的代价,对剂量的降低是值得的。 (三)个人剂量限值 能够满足正当化和最优化两项原则的照射,对x线工作或及公众并不一定提供足够的防护,因此ICRP规定了工作者及公众个人剂量当量限值。 二、防护外照射的一般方法 X线管是一种可控制的外照射源。当X线机工作时,机房内外就成为具有一定照射量的辐射场。场内人员所接受的剂量大小,除取决于辐射场本身的性质外,尚与受照时间、离源的远近及屏蔽的程度有关。欲减少场内人员所受的照射,可尽量缩短受照时间、尽量增大与X线源的距离,在人和X线源之间加屏蔽等方法。因此把时间、距离、屏蔽称之为防护外照射的基本方法。 (一)缩短受照时间 我们知道,个人累积剂显与受照时间有关,所受照射的时间愈长,个人累积的剂量就愈大。在某些情况下,常常通过缩短受照射的时间,来限制个人所接受的剂量。因此,一切人员应尽可能减少在X线场内停留的时间。X线工作者,在进行X线检查时,要作好暗适应,尽量缩短照射时间,拍片时要优选投照条件,不出废片。在进行X线治疗时,要熟练、迅速、准确等。 (二)增大与X线源的距离 当人员与X线管焦点之间的距离近大于焦点大小时,可将X线管焦点视为点光源。若忽略空气对X线的吸收,则可认为照射量与距离平方成反比。因此,若距离增加一倍,则照射量减少到原来的1/4倍。所以,当X线机工作时,应使一切人员(除被检查外)尽量远离X线源。 (三)屏蔽防护 在利用X线进行诊断和治疗,欲减少X线工作者及被检者和患者的受照剂量,单靠时间和距离两个因素的调节。是有一定限度的。例如只能在不影响诊断和治疗目的的前提下,尽可能减少照射时间。离X线源的距离又受到产生X线的设备和使用目的的限制。因此要进一步取得较好的防护效果,需利用屏蔽防护。 屏蔽就是在X线源与人员之间放置一种能有效吸收X线的屏蔽物,从而减弱或消除X线对人体的危害。如X线机荧光屏内的铅玻璃,X线机房墙壁,放射科医生使用的铅橡皮手套、铅橡皮围裙、铅玻璃眼镜、铅防护椅等防护用品,以及隔室透视、隔室照像等等防护设施。 一般在X线防护的实际工作中,时间、距离、屏蔽这三个因素必须根据具体情况灵活运用,合理调节。 三、固有防护为主与个人防护为辅的原则 为了对医用X线进行有效的防护,重点应放在对X线机本身的固有安全防护和X线机房的固定防护设施上,因而对X线工作者和被检查的个人防护用品应作为上述固有安全防护设施的辅助手段。充分发展和使用防护性能好的X线设备。 四、X线工变者和被检者防护兼顾的原则 医用X线是用于医疗目的照射。因此,在X线辐射场中,受到照射的有X线工作者、被检者,有时还有教学实习人员和陪伴人员等。在设计防护设施时,必须全面照顾,不能只有利于X线工作者,而忽视其他人员的防护。例如,在设计透视防护隔离室时,应选择铅当量高、产生散射线少的防护材料。 五、合理降低个体受照剂量与全民检查频度 X线检查时虽然被检查者个体所受照射量一般来说不算高,但检查额度很高,致使全民的剂量负担很大。因此,欲降低X线诊断对全民的辐射危害,应从合理地降低个体受照剂量和减少检查频度(指不必要的照射)两个方面来加以控制。这都要求尽量使用先进x线设备及技术,并避免一切不必要的照射。

  • 透射电镜TEM有两个问题想各位请教一下!?

    关于TEM,有两个问题想各位讨教一下:1,除了常用的电子枪发射电子射线外,透射电镜还可以使用哪些射线源,或者说具有什么共同特点的射线源?比如说穿透性强等等。2,在观察样品形貌的时候,我发现调节放大倍数的同时,会伴随着样品图像有一个小角度的转动,大约在10度左右,请问这是基于什么原因或原理?谢谢指教。

  • 推荐X射线粉末衍射仪等招标

    X射线粉末衍射仪等招标公告 (权限申请中)1 自动X射线粉末衍射仪 X射线粉末衍射仪主要用于研究物质晶体结构、物相分析、测定点阵参数等。主要技术规格1.高稳定X射线发生器1.1 额定功率:3KW, 最大管电压:60KV, 最大管电流:50mA1.2 稳定度:≤±0.01%(电源电压浮动10%)1.3 管电压和电流升降由计算机自动控制1.4 高压电缆:100KV介电强度,长度2米1.5 保护及报警装置KV过高,KV过低保护 整机过电流保护:20AX射线管功率超限保护 冷却水断水保护整机机柜全部安全防辐射保护,带窗口连锁,在防辐射外罩外射线剂量低于2.5μSv/小时2.X射线管2.1Cu 靶(国产),2.0KW,1×10mm焦点3.测角仪测角仪方式:卧式,水平扫描扫描半径:180mm准确度:±0.01° 狭缝:发散狭缝,接收狭缝,防散射狭缝 滤片:Ni、Fe4.X射线强度测量系统检测器:闪烁计数器 计算机自动控制 线性脉冲放大幅度分析器高压稳压电源5操作控制系统5.1 微型计算机:品牌PC机,17’彩显。5.2 打印机: A4 HP激光打印机5.3 前级控制机,计算机串行接口,RS485通讯6.操作分析系统及应用分析软件(Windows版本)BD2000衍射仪操作系统 BD2000衍射图谱分析系统图谱分析 数据查询6.1 粉末衍射分析应用软件定性物相分析及PDF卡片库(1—89集) 定量物相分析未知衍射图指标化 晶胞参数精密修正6.1.1 多重峰分离(峰形分析)衍射峰Kα2扣除7.冷却水循环系统分体式结构:压缩机壁挂室外 制冷量每小时3200W 1 台 2 光斑分析仪 1. M2因子测量系统光谱范围:250-2400nm • 分析激光束的传输特性,预测激光束的聚焦能力• 可测量脉冲或连续激光• 高精确度、高稳定性、全自动快速测量• 可直观地目视检测不同位置光束外形变化• 直接得到M2因子、光束发散角、束腰半径和位置、光斑分布、对称性等参数• M2-200-ACC-BB2. LBA-710PC-D 光束分析系统• 含图像采集板卡和测试分析软件,齐全的软件功能和强大的数据处理能力• 可测量连续和脉冲激光• 二维/三维显示光束横模(光束轮廓和能量分布)• 峰值功率及峰值位置 光斑大小及光斑椭圆度• 光束发射稳定性和均匀性 与高斯光束匹配情况分析• 光束发散角测量• LBA-710PC-D 附件:1)数字硅CCD-6612摄像仪及数据线光谱范围:190-1100nm 像素数:650×494 像素大小:9.9×9.9μm2)光束采样/分析系统 10位数字采集卡及光束质量分析测试软件3)光采集与可调光束衰减器 石英分束衰减器及不同衰减程度的中性密度滤波片组 工作波长:400-2400nm 1 台 3 单光子计数实验系统 主要技术指标 光谱采集范围: 360-650 nm积分时间:0-30 min(1ms/档,可调) 最大计数:≥107域值电压:0-2.56 V(10mV/档,可调)暗 计 数:≤30CPS/S (探测器CR125 -20℃) 2 套顺祝 商棋刘飞------------------------------------------------------------北京智诚风信网络科技有限公司地址:北京海淀区五道口华清商务会馆1606室邮编:100084电话:86-010-82863476-25 13521383769传真:86-010-82863479Email: liufei@bidchance.com网址: http://www.bidchance.com

  • X射线管道爬行器

    一、产品概述◆ 车内电机采用军品电机 我们的电机同样是采用的军品元器件,提高产品质量,延长了电机的使用寿命◆ 当出现遇水,电池容量不足(小于等于110V),30分钟无信号,这些问题时,爬行器将会自动退回并显示,是智能化操作模式◆ 具有缓启动,低速态定位功能,保证定位准确的同时,延长设备使用寿命15m/min,定位精度高 爬车不是在焊口位置刹车突然停下,而是根据程序设置快接近焊口位置时慢慢减速停下,这样定位更精确◆ 具有穿越电焊机功能,不受电焊机影响,可正常工作◆ 视频监视随身可带,可具有视频监视定位功能,特殊场合可借助视频增加定位精度(大波段),减少废片率,可保证拍片定位准确率100%◆ X射线发生器系统具有KV调节功能,可保证透照的X光胶片黑度一致◆ 电机实现电子调速功能,达到恒转矩、恒电流运转,可节能40%。同时具有电机过流保护功能二、技术参数产品型号MZY-2MZY-3MZY-4MZY-2C适用管径范围(mm)Φ406-1200Φ323-529Φ219-355Φ508-1400爬车外形尺寸(mm)1410×300×1951531×210×1951230×180×1951150×300×260指令控制器尺寸(mm)420×360×160420×360×160420×360×160210×87×170重量(Kg)80(100)6050100爬行速度(m/min)12-1512-1512-1513-16定位误差(mm)±3±3±3±5最大爬坡度0°-25°0°-25°0°-25°0°-25°射线辐射角度360°×25°360°×25°360°×25°360°×25°使用温度-20℃-60℃-20℃-60℃-20℃-60℃-20℃-60℃相对湿度90%90%90%90%[/siz

  • 【原创】X射线脉冲星导航原理

    X射线脉冲星导航系统由X射线成像仪和光子计数器(探测器)、星载原子时钟、星载计算设备、导航模型算法库和脉冲星模型数据库组成。从X射线脉冲星导航原理框图中可以看到,脉冲星导航定位和姿态测量分别在两个环路中实现,前者的输入信息为光子计数器提取的脉冲信号和相位,输出为卫星位置、速度和时间信息 后者的输入信息为X射线成像仪提取的脉冲星角位置,输出为卫星姿态角分量。 1.X射线脉冲星导航定位 基于X射线脉冲星的卫星自主导航定位的实现流程如下: (1)脉冲到达时间测量 星载探测器接收X射线光子,光子计数器输出脉冲信号和相位信息 脉冲信号进入原子时钟的锁相环路,修正本地时钟漂移,标定和输出脉冲到达时间。 (2)脉冲到达时间转换改正 调用基本参数数据库和脉冲星模型数据库,对罗默(Roemer)延迟、歇皮诺(Shapiro)延迟、爱因斯坦(Einstein)延迟、光行差延迟和星际色散效应等误差项进行改正,转换得到在太阳系质心坐标系中的脉冲到达时间测量值。 (3)脉冲到达时间与预报时间对比 调用脉冲星模型数据库,提取标准脉冲轮廓和脉冲计时模型,由脉冲计时模型预报脉冲到达时间 整合测量脉冲轮廓,并与标准轮廓进行相关处理,得到脉冲到达时间差(基本观测量)。 (4)卡尔曼滤波处理 利用多颗脉冲星组成基本观测向量,构造脉冲星导航定位测量方程,调用卫星摄动轨道力学方程、星载时钟系统状态方程和卡尔曼滤波器,得到卫星位置、速度和时间偏差估计。 (5)导航参数预报 利用导航定位偏差估计值,可以修正卫星近似位置、速度和时间等参数 分别采用数值积分方法和星载时钟模型短时预报卫星位置、速度和时间等导航参数,输出到卫星平台控制系统,自主进行轨道控制和钟差修正。 2.X射线脉冲星姿态测量 利用X射线脉冲星信号测定卫星姿态的方法与星体跟踪器类似,区别在于是用X射线代替可见光观测。一旦X射线成像仪提取脉冲星影像,脉冲星在探测器平面和星体坐标系的角位置也就随之确定。由于脉冲星相对于太阳系质心坐标系的位置已精确测定,因此可以进行星体坐标系与太阳系质心坐标系之间的旋转变换。于是,可以直接提取坐标变换的欧拉角信息,或利用姿态四元素方法进行滤波估计,最终获得卫星俯仰、滚动和偏航等姿态信息,并输出到卫星平台控制系统,自主进行飞行姿态控制。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制