当前位置: 仪器信息网 > 行业主题 > >

超高精度温度传感器

仪器信息网超高精度温度传感器专题为您提供2024年最新超高精度温度传感器价格报价、厂家品牌的相关信息, 包括超高精度温度传感器参数、型号等,不管是国产,还是进口品牌的超高精度温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高精度温度传感器相关的耗材配件、试剂标物,还有超高精度温度传感器相关的最新资讯、资料,以及超高精度温度传感器相关的解决方案。

超高精度温度传感器相关的论坛

  • 具有备份传感器功能的超高精度PID调节器以保证控制过程的安全性

    具有备份传感器功能的超高精度PID调节器以保证控制过程的安全性

    [size=14px][color=#990000]摘要:为了保证科研生产中的安全运行和控制,针对一些对可靠性、安全性和产品价值要求较高的控制对象,往往要求传感器具有冗余设计。本文介绍了VPC 2021-1系列多功能超高精度PID控制器,主要介绍了此控制器的双传感器冗余功能及其使用方法。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~[/align][size=14px] 在各种工业和科研领域中,会采用大量各种传感器进行相应的过程参数测量和控制。在一些使用环境比较恶劣的条件下,如高低温、高压力、腐蚀、侵蚀、振动和强磁场等,传感器往往会受到损伤而发生故障,由此会在使用过程中给测量和控制带来严重影响,从而造成测量和控制效果降低,甚至造成产品报废和试验失败,更严重的还会造成控制失控而引发事故。特别是在一些高价值产品的长时间生产控制过程中,绝不允许期间出现中断而造成控制参数巨变造成高价值产品报废现象。[/size][size=14px] 为了解决上述运行过程中传感器损坏而带来的控制失效问题,最好的解决方法是进行冗余设计,即对工作用传感器进行备份。如图1所示,在被控对象中布置至少两个传感器,一个作为主传感器,另一个为备份传感器。当主传感器出现故障时,特别是主传感器出现断路时,控制器自动切换到备份传感器。[/size][align=center][size=14px][color=#990000][img=双传感器冗余示意图,500,294]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161612313860_2879_3221506_3.jpg!w690x407.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#990000]图1 冗余设计的双传感器(主传感器和备份传感器)[/color][/align][size=14px] 在控制过程和运行设备中配备双传感器比较容易实现,条件是主传感器和备份传感器的规格型号和量程要完全一致,但发挥这种冗余设计功效的关键是要求相应的PID控制器具有传感器断路自动监测能力,并同时要求能将控制回路自动切换到备份传感器。[/size][size=14px] 为了满足安全生产和控制需要,VPC2021-1系列多功能超高精度PID控制器配备这种双传感器冗余功能。如图2所示,此系列PID控制器具备万能型传感器输入功能,可连接的47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压。在备份传感器的具体使用中,可以将两只完全相同的传感器分别接入主输入端和辅助输入端,并将辅助输入通道设置为双传感器冗余功能。开始运行后,控制器同时采集两只传感器信号,但采用主传感器信号进行控制。当主传感器开路时,当前测量自动转入辅助输入端(备份传感器)的测量值并继续进行控制。[/size][align=center][size=14px][color=#990000][img=具有双传感器冗余功能的多功能超高精度PID控制器,350,388]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161614314227_180_3221506_3.jpg!w496x551.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#990000]图2 具有双传感器冗余功能的PID控制器[/color][/align][size=14px] 这种双端口输入信号的功能还可以进行扩展,可以通过相应的设置用来进行加热器断丝报警、阀位反馈、远程设定、不同量程双传感器切换。[/size][size=14px] 总之,这种具体双传感器冗余功能的PID调节器完全可以满足安全控制的需要,功能十分强大,同时还保持了超高精度的测量控制能力。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 超低温、高精度型温度传感器

    超低温、高精度型温度传感器

    超低温、高精度型温度传感器是我们的强项,欢迎来电咨询,13585791751 .[sub]?[url=WWW.SENMATIC.COM]点击打开链接[/url][/sub][img=,268,232]https://ng1.17img.cn/bbsfiles/images/2022/01/202201121337188777_532_5521199_3.png!w268x232.jpg[/img]

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    [size=16px][color=#339999]摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸、高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/color][/size][size=16px][color=#339999][/color][/size][align=center][size=16px][img=TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用,550,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141513442750_3958_3221506_3.jpg!w690x388.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 石英晶体微天平(Quartz Crystal Microbalance,QCM)作为一种超高灵敏的质量检测装置,其测量精度可达纳克级,并广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度及粘弹性结构检测等。石英晶体微天平实际上是一种压电传感器,它利用了石英晶体的压电效应,将石英晶体电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的测量结果。石英晶体微天平除了具有高灵敏度高和高精度之外,最大特点是结构简单和成本低,它由一薄的石英片组成,两侧金属化,提供电接触。QCM的工作原理类似于用于时间和频率控制的晶体振荡器,但QCM表面常暴露在周围环境中,且对环境温度变化非常敏感,QCM的一个重要技术指标就是频率温度特性。在QCM的具体应用中,温度变化会严重影响QCM测量结果,因此准确测量频率温度特性是表征评价QCM的一项重要内容。但在目前的各种频率温度特性测试装置中,特别是高精度温度控制装置,还存在以下问题:[/size][size=16px] (1)在常用的-10~+70℃的温度范围内需要对QCM进行多个设定点的高精度温度控制和频率测量,而目前常用温控技术往往控制精度偏低,若提高控制精度又带来测试时间过长的问题。[/size][size=16px] (2)专门用于压电晶体频率温度特性测试的恒温装置往往体积普遍偏大,内部温度均匀性较差,同样会带来温控精度差的问题,仅能用于批量压电晶体较低精度的频率温度特性测试。[/size][size=16px] (3)尽管采用了TEC半导体制冷技术可实现QCM的高精度温度控制,实现了小型化和快速温控和频率测量,但存在的问题是多个温度点的自动化程序控制能力差,无法实现全温度区间内多个温度点的自动控制和频率测量。[/size][size=16px] 为了解决QCM这类压电传感器频率温度特性全自动测量中存在的上述问题,本文在TEC半导体制冷技术基础上,提出了高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了进行石英精度微天平(QCM)的频率温度特性测量,需要将QCM放置在一个受控的热环境中。为了提高热环境的温度控制精度,热环境的尺寸空间较小,并采用TEC模组进行加热和制冷,整个热控装置的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=压电传感器频率温度测量温控系统示意图,690,209]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141516237559_7391_3221506_3.jpg!w690x209.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 石英精度微天平频率温度特性温控装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC被放置在铝制均热套和散热器之间,铝制均热套作为热稳定工作的密闭腔体,为整个腔体提供均匀的温度环境。散热器直接浸泡在水浴中使得TEC的工作表面达到较低的负温度,散热器也可以直接采用水冷板,水冷板内通循环冷却水。[/size][size=16px] 另外,在频率温度特性测试过程中,TEC要提供高低温范围内温度控制,那么在高低温运行时,TEC工作表面和散热器之间存在较大差异,因此,在TEC周围布置隔热材料以减少其两侧之间的热流,从而增加TEC工作面的温度均匀性。[/size][size=16px] 铝制均热套放置在TEC工作表面的顶部,在均热套与TEC之间采用银胶以减小均热套与TEC工作表面之间的接触热阻,铝制均热套被隔热材料包裹以减少与环境的热交换。[/size][size=16px] 在铝制均热套内布置了两只电阻型温度传感器,其中一只安装在铝制均热套的侧壁上作为控温传感器,此温度信号提供给超高精度的PID控制器进行温度自动控制。另一只用来测量固定在铝制支架上的QCM组件温度。[/size][size=16px] 在图1所示的温控装置中,为满足不同尺寸和结构的TEC温控装置,采用了独立的TEC换向电源以满足不同加热功率的需要。在温控器方面,则采用了超高精度的PID控制器,可直接对TEC进行加热制冷双向控制,其中AD为24位,DA为16位,最小输出百分比为0.01%,PID参数自整定,可编程程序控制,由此可实现高精度的温度控制。[/size][size=16px] 对于图1所示结构的温控装置,在全温区范围内设定点从-10变化到+70℃,步进5℃,其温度控制可实现±12mK的温度稳定性和±15mK的设定值精度。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述压电传感器频率温度特性测试的温控解决方案,主要具备以下几个特点:[/size][size=16px] (1)采用了TEC半导体制冷组件,可低成本的实现压电传感器频率温度特性测试过程中的精密温度控制,并使得整个频率温度特性测试装置的体积非常小巧。[/size][size=16px] (2)整个温控结构的设计简便,但可以实现0.02℃以内的控制精度和重复性,完全能满足各种压电传感器的频率温度特性测试需要。[/size][size=16px] (3)由于采用了目前最高精度的工业级可编程PID控制器,具有24位AD、16位DA和0.01%的最小输出百分比,这是实现高精度TEC温度控制的必要条件。[/size][size=16px] (4)高精度的可编程PID控制器可按照设定程序进行全测试过程的温度自动控制,设定程序可通过随机的计算机软件进行编辑和修改,控制过程参数可自动进行显示和存储。[/size][size=16px] 总之,本文为实现高精度、简便小巧和低价格的压电传感器频率温度特性测试中的温度控制提供了切实可行的解决方案,为单个或少量压电传感器稳频特性评价提供了有效的技术途径。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    [size=14px][color=#ff0000]摘要:超低重力仪器中要求液氦池温度恒定,为实现小于0.1mK的波动度,气压控制的波动度要小于10Pa。为此本文提出了相应技术方案,核心内容是实现缓冲罐的气压精密控制,采用了双向控制模式,并使用了万分之一精度的气压传感器、电动针阀和PID控制器。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#ff0000]一、问题的提出[/color][size=14px]超导重力仪器有超导重力仪和超导重力梯度仪,都是用来对重力信号进行精密测量的仪器。超导重力仪器需要在低温条件对极微弱信号进行测量,所以对低温温度恒定有很高的要求,即要求液氦池温度波动在0.1mK以内。[/size]对于液氦池温度的精密控制可以通过控制液氦池内的气压来实现,这就要求气压的测量和控制达到极高水平。本文将针对超导重力仪器中液氦池内气压的高精密控制问题,提出相应的解决方案。此方案的优势是液氦池温度的控制精度主要受压力传感器精度的影响,选择超高精度的压力传感器,并通过精密数控针阀和高精度PID控制器,采用下游抽气流量控制模式,可使液氦温度的波动稳定控制在0.1mK以内。[size=14px][color=#ff0000]二、技术方案[/color][/size]液氦温度的精密控制原理是基于液氦饱和蒸气压与对应温度的关系。根据液氦饱和蒸气压与温度的对应关系,液氦温度要控制在4K左右,并要求温度波动小于0.1mK,则要求液氦上部气压控制在100kPa左右时,气压的波动要小于10Pa以内。[size=14px]为了实现上述气压控制精度,本文提出的技术方案具体包括以下几方面的内容:[/size][size=14px](1)液氦池上部的气压控制可以抽象为一个密闭容器内的压力控制。对于密闭容器的压力控制需要增加一个缓冲罐,通过缓冲罐的压力控制实现液氦池的压力控制,结构如图1所示。[/size][align=center][size=14px][img=气压控制,550,490]https://ng1.17img.cn/bbsfiles/images/2022/05/202205230927573218_8908_3384_3.png!w690x615.jpg[/img][/size][/align][align=center][size=14px]图1 高精度气压控制系统结构示意图[/size][/align][size=14px][/size][size=14px](2)缓冲罐的压力控制采用了上下游双向控制模式,通过调节进气和抽气流量进行控制。[/size](3)整个控制系统包括缓冲罐、气压传感器、PID控制器、数字针阀和真空泵。[size=14px](4)如果气压控制在100kPa并要求波动小于10Pa,则要求气压的测量和控制要有10/100k=0.0001(万分之一)的精度,由此需要配备万分之一精度的气压计和PID控制器。[/size]总之,本文所述的技术方案,其控制精度主要受气压传感器和PID控制器精度的限制,结合步进电机驱动的小流量电动针阀,通过高精度传感器和控制器,可以实现超导重力仪液氦温度的精密控制,温度波动可以控制在0.1mK以内,且不受外部环境温度变化影响。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    [color=#990000]摘要:为大幅度提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文提出了升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在现有电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]在半导体制造过程中,化学机械抛光(CMP)是在半导体晶片上产生光滑、平坦表面的关键工艺。CMP工艺中的压力控制是决定最终产品质量的关键因素。如果压力过高,会损坏半导体材料;如果压力太低,会导致表面不平整。CMP系统中需要配置专用的压力调节装置,以确保压力保持在安全范围内。通过将压力保持在安全范围内,压力调节装置有助于确保半导体晶片在CMP过程中不被损坏。目前的CMP系统中普遍采用电气比例阀作为压力调节器,其典型结构如图1所示。在CMP中采用比例阀来控制抛光过程中施加在晶圆上的压力。由于比例阀是电子控制和压力值的模拟信号输出,因此可以通过控制系统(如PLC)对其进行动态编程和压力监控,这意味可以根据被抛光的特定晶片准确改变施加的压力。此外,由于电气比例阀作为压力调节器是一个闭环控制,即使在下游压力发生变化期间,施加在抛光垫上的压力也会保持不变,由此实现压力的自动调节。[align=center][img=常规研磨机电气比例阀压力控制系统结构,600,280]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150917534790_1434_3221506_3.png!w690x322.jpg[/img][/align][align=center]图1 常规CMP系统中电气比例阀压力控制装置结构示意图[/align]在一些CMP工艺的实际应用中,要求抛光压力具有很高的稳定性,图1所示的常规压力调节装置则无法满足使用要求,这主要体现在以下几方面的不足:(1)电气比例阀的整体控制精度明显不足,其整体精度(包含线性度、迟滞和重复性)往往在1~2%范围内。这种精度水平主要受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约,而且进一步提高的空间非常有限。(2)电气比例阀安装位置与气缸有一定的距离,由此造成比例阀所检测到的压力值并不是气缸的真实压力,而且比例阀处压力与气缸压力之间有一定的时间滞后。为解决上述存在的问题,进一步提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文将提出升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[size=18px][color=#990000][b]二、CMP设备压力控制的串级PID控制方案[/b][/color][/size]在传统的CMP设备压力调节过程中,采用电气比例阀进行压力调节的稳定性完全受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约。为了提高压力控制的稳定性,并充分发挥电气比例阀的自身优势,我们采用了一种串级控制技术,即在作为第一回路的电气比例阀中增加第二控制回路,其中第二控制回路由更高精度的压力传感器和PID控制器构成。串级PID控制方案的整体结构如图2所示。[align=center][img=03.超高精密研磨机电气比例阀压力串级控制系统结构,600,333]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150918245058_1534_3221506_3.png!w690x384.jpg[/img][/align][align=center]图2 串级控制法CMP系统压力控制装置结构示意图[/align]在图2所示的串级控制法压力调节装置中,安装了一个外置压力传感器用于直接监测气缸内的气压,压力传感器检测到的气缸压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节高速电磁阀的动作,使得电气比例阀输出到气缸的气体气压与设定值始终保持一致。从上述串级控制过程可以看出,串级控制是一个双控制回路,是两个独立的PID控制回路,电气比例阀起到的是一个执行器的作用。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:[color=#990000]第二回路的传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比第一回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。[/color]为了实现更高稳定性的CMP系统压力控制,我们推荐的实施方案是采用0.05%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。此实施方案我们已经进行过大量考核试验,压力稳定性可以轻松达到0.1%。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高精度测量气象六要素传感器

    高精度测量气象六要素传感器

    高精度测量气象六要素传感器气象观测是一项十分严谨又相当繁琐的工作,气象六要素传感器是基础的工作之一,但却是相当重要的,因为气象六要素传感器的质量直接影响气象预报的准确程度。对一定范围内的气象状况及变化进行观察和测定,然后把观测得到的数据结果进行采集和上传,为天气预 报、气候分析及气象研究提供依据,观测工作要系统和连续 地进行,对测得的数据要及时、准确上报。气象六要素传感器服务于多种生态和自然资源环境领域,可以监测和记录气象学、水文学和土壤与建筑活动、以及人为活动对自然的影响。传感器包括但不仅限于风速、风向、太阳辐射、空气温度、水温、土壤温度、相对湿度、降水、雪深、大气压力、土壤含水量、土壤电导率,以及土壤热通量。还可测量水环境因子,和空气环境因子。气象六要素传感器可观测温度、湿度、气压、风速、风向、降水等气象要素,并可获取实景观测图像。采用4G/LoRa/WiFi多种通信方式,保证气象与实景观测数据高频次上传云端。可通过手机APP、dashboard、API接口等方式提供多种形式的气象服务。可实现多设备组网联动,提供稳定可靠的气象数据采集及预报服务。[img=气象六要素传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204280917012954_9705_4136176_3.jpg!w690x690.jpg[/img]气象六要素传感器是专门为农业、水文、气象、生态考察研究等开发生产的多要素气象六要素传感器。可测量雨量、风向、风速、温度、大气压力、湿度等常规气象要素,也可根据用户需求定制其它测量要素。气象六要素传感器系统特点:具有性能稳定,检测精度高,无人值守等特点。测量精度高,无须人工参与。节能设计,可选配太阳能电池板,适合无市电地区常年使用。监测要素:环境温度、相对湿度、风速、降水量、光照强度、土壤温度、土壤墒情、水面蒸发、大气压力、风向、太阳辐射。气象站信息处理软件介绍,气象六要素传感器信息处理软件,操作简单、管理方便、集成度高、实时显示,支持数据查询、曲线查询、校正时间等极大方便用户使用,使自动气象信息管理变的方便可靠。[img=气象六要素传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204280917260421_6672_4136176_3.jpg!w690x690.jpg[/img]

  • 食品快检设备如何校准高精度的传感器

    食品快检设备如何校准高精度的传感器

    [size=16px]  食品快检设备如何校准高精度的传感器  食品快检设备校准高精度的传感器的方法包括以下步骤:  准备标准溶液:选择合适的标准溶液,如已知浓度的食品样品溶液或标准物质,用于校准高精度的传感器。  插入电极:将用纯化水清洗过的电极插入标准溶液中,等待读数稳定。  定位标定:在读数稳定后,按“定位”键(此时pH指示灯慢闪烁,表明仪器在定位标定状态),使读数为该溶液当时温度下的pH值。  确认标定:按“确认”键,仪器进入测量状态,pH指示灯停止闪烁。  斜率标定(如果需要):如果标准溶液的pH值不在仪器可测范围内,需要使用斜率标定功能。将电极插入另一个标准溶液中,待读数稳定后,按“斜率”键(此时pH指示灯闪烁,表明仪器在斜率标定状态),使读数为该溶液当时温度下的pH值。然后按“确认”键,完成斜率标定。  重复标定:根据需要,可以重复以上步骤,对多个标准溶液进行标定,以验证传感器的准确性和稳定性。  数据记录与分析:记录每个标准溶液的标定结果,包括读数、温度和时间等信息。根据记录的数据进行分析,如计算误差、偏差等指标,以评估传感器的准确性和可靠性。  校准证书:根据标定结果,可以生成校准证书或报告,用于记录传感器的校准结果和性能指标。  维护与保养:定期对传感器进行维护和保养,如清洗、更换部件等,以保持其良好的性能和准确性。  需要注意的是,具体的校准方法和步骤可能会因食品快检设备的型号、品牌和用途而有所不同。因此,在进行校准时,应遵循设备说明书或相关操作规程,以确保准确性和可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311201015280285_6173_6098850_3.jpg!w690x690.jpg[/img][/size]

  • TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    [align=center][size=18px][color=#990000]TEC温控器:半导体制冷片新型超高精度温度程序PID控制器[/color][/size][/align][align=center][color=#666666]TEC Thermostat: A New Type of Ultra-high Precision Temperature Program PID Controller for Semiconductor Refrigerator[/color][/align][color=#990000]摘要:针对目前国内外市场上TEC温控器控温精度差、无法进行程序控温、电流换向模块体积大以及造价高的现状,本文介绍了低成本的超高精度PID控制器。24位模数采集保证了数据采集的超高精度,正反双向控制功能及其小体积大功率电流换向模块可用于半导体制冷、液体加热制冷循环器和真空压力的正反向控制,程序控制功能可实现按照设定曲线进行准确控制,可进行PID参数自整定并可存储多组PID参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、TEC温控器国内外现状[/color][/size]半导体致冷片(Thermo Electric Cooler)是利用半导体材料的珀尔帖效应制成的一种片状器件,可通过改变电流方向来实现加热和制冷,在室温附近的温度范围内可作为冷源和热源使用,是目前温度控制精度最高的一种温控器件。在采用半导体制冷片进行控温时,需配合温度传感器、控制器和驱动电源一起使用,它们的选择决定了控温效果和成本。温度传感器可根据精度要求选择热电偶和热电阻传感器,控制器也是如此,但在高精度控制和电源换向模块方面,国内外TEC温控器普遍存在以下问题:(1)目前市场上二千元人民币以下的国内外温控器,普遍特征是数据采集精度不高,大多是12位模数转换,无法充分发挥TEC的加热制冷优势,无法满足高精度温度控制要求。(2)绝大多数低价的TEC温控器基本都没有程序控制功能,只能用于定点控制,无法进行程序升温。(3)极个别厂家具有高精度24位采集精度的TEC温控器,但没有相应的配套软件,用户只能手动面板操作,复杂操作要求的计算机通讯需要用户自己编程,使用门槛较高,而且价格普遍很高。(4)目前国内外在TEC控温上的另一个严重问题是电源驱动模块。在具有加热制冷功能的高档温控器中,TEC控温是配套使用了4个固态继电器进行电流换向,如果再考虑用于固态继电器的散热组件,这使得仅一个电流换向模块往往就会占用较大体积,且同时增加成本。[size=18px][color=#990000]二、国产24位高精度可编程TEC温控器[/color][/size]为充分发挥TEC制冷片的强大功能,并解决上述TEC温控器中存在的问题,控制器的数据采集至少需要16位以上的模数转换器,而且具有编程功能。目前我们已经开发出VPC-2021系列24位高精度可编程通用性PID控制器,如图1所示。此系列PID控制器功能十分强大,配套小体积大功率的电流换向器,可以完全可以满足TEC制冷片的各种应用场合,且性价比非常高。[align=center][color=#990000][img=TEC温控器,650,338]https://ng1.17img.cn/bbsfiles/images/2021/12/202112232210356263_6759_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图1 国产VPC-2021系列可编程PID温度控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)多通道:独立1通道或2通道。可实现双传感器同时测量及控制。(3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。(4)多功能:正向、反向、正反双向控制、加热/制冷控制。(5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(7)软件:通过软件计算机可实现对控制器的操作和数据采集存储。可选各种功率大小的集成式电流换向模块,只需一个模块就可以完成控制电流的自动换向,减小体积和降低成本。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高精度电涡流传感器工作

    [b]  高精度电涡流传感器,[/b]电涡流传感器是一种经典的传感器类型,具有非接触、宽带宽、灵敏度高、可靠性好等优点,并且可以工作在恶劣的环境,具有广泛的应用需求。 [align=center][img=高精度电涡流传感器]https://www.cxyqyb.cn/uploads/191015/1-191015153151515.jpg[/img][/align]https://www.cxyqyb.cn  根据目标导体厚度的不同,电涡流传感器可以划分为两种传感器类型:电涡流位移传感器和电涡流厚度传感器。这两种传感器是应用电涡流效应的自然产物,已经存在并发展了几十年,市场上有各种型号的产品。然而,这两种传感器仍然有大量的应用需求和难题需要去满足和攻克。  工作原理  高精度电涡流传感器系统中的前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。  通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ,ξ,б,D,I,ω)函数来表示。  通常我们能做到控制τ,ξ,б,I,ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化,输出信号的大小随探头到被测体表面之间的间距而变化,高精度电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。

  • 采用超高精度PID控制器进行探测器线性化处理的具体方法

    采用超高精度PID控制器进行探测器线性化处理的具体方法

    [color=#339999][b][size=16px]摘要:在测量和控制领域内大量应用的各种传感器普遍存在非线性输出特性,需要进行线性化处理才能准确和可靠使用,而出于技术复杂度、应用需求和成本等因素的考虑,目前还是有很多传感器并未进行完备的线性化处理。为了解决这些传感器在实际应用中由非线性带来的测量和控制误差,本文介绍了具有八点拟合线性化处理功能的超高精度多功能[/size][size=16px]PID[/size][size=16px]控制器,线性化处理操作简单,适用于绝大多数非线性传感器的准确测量以及相应的准确控制。[/size][/b][/color][align=center][size=16px] [img=传感器线性化处理,600,320]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160927474959_4333_3221506_3.jpg!w690x368.jpg[/img][/size][/align][size=16px][/size][size=18px][color=#339999][b]1. 背景介绍[/b][/color][/size][size=16px] 在工农业生产、军事以及科研领域内的众多控制设备中,会使用到各种传感器,例如电容的、电阻的、电感的、阻抗的、电流计的、电化学的、化学/生物场效应晶体管、表面声波等。通常,传感器的响应可以是电压或电流、频率或时间信号。在大多数情况下,传感器的输出信号随着被测参量的变化而非线性变化。此外,在许多情况下,温度、湿度或压力等环境因素也会非线性地影响传感器特性,有时,这些环境因素会改变传感器的输入-输出关系。作为一个典型例子,图1显示了陶瓷湿度传感器的非线性阻抗响应,图中还显示了所需的线性响应。[/size][size=16px] 从图1所示的响应曲线可以看出,此湿度传感器具有29%的非线性度,如果直接将此非线性严重的传感器直接接入用于湿度控制的PID控制器上,势必给线性控制的PID控制器带来很大误差,为此势必要对传感器进行线性化处理。[/size][align=center][size=16px][color=#339999][b][img=陶瓷湿度传感器的非线性阻抗响应,500,256]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160929549200_391_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 陶瓷湿度传感器的非线性阻抗响应[/b][/color][/size][/align][size=16px] 由于不同传感器的非线性千差万别,对传感器是否进行以及如何进行线性化处理的选择取决于传感器的非线性复杂度、处理能力、所需精度、执行速度、应用需求和成本,由此目前还存在大量未经线性化处理的传感器。[/size][size=16px] 在各种应用领域中的PID控制,绝大多数PID控制器或PID调节器往往都是线性控制,如果直接在控制过程中直接使用这些非线性传感器作为测量信号进行闭环控制,这些传感器的非线性势必会给控制过程带来很大误差和影响控制效果。为了解决此问题并保障PID控制精度,而且解决方法还需要满足大多数非线性传感器的需要,就势必需要从PID控制器着手,需要PID控制器需要具备传感器信号的线性化处理功能。[/size][size=16px] 在传感器线性化处理方面,有硬件电路线性化和软件数字线性化两种技术。显然,为了适应众多不同非线性响应的传感器,PID控制器中的非线性功能只能采用软件数字线性化技术,且这种技术已经在绝大多数PID控制器中的温度传感器线性化处理中得到应用,对应用最为广泛且非线性特性严重的各种标准规格的热电偶、热电阻、热敏电阻等温度传感器,PID控制器中已经集成了软件数字线性处理功能,但对其他非线性传感器的软件数字线性化处理还是无能为力。[/size][size=16px] 为了解决上述问题,本文将介绍如图2所示的采用了更高端微处理器的超高精度PID控制器,在实现超高精度24位AD模数转换和16位DA数模转换的同时,还充分发挥了微处理器的速度和数据处理能力,在现有各种温度传感器线性化处理的基础上,增加了八点拟合线性化处理功能,通过相应的面板按键操作或所配软件的设置,可满足绝大多数现有非线性传感器的线性化处理需要,并能保证PID控制精度和可靠性。[/size][align=center][size=16px][color=#339999][b][img=VPC-2021系列超高精度PID控制器,500,264]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160930189941_1562_3221506_3.jpg!w690x365.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC-2021系列超高精度PID控制器[/b][/color][/size][/align][size=18px][color=#339999][b]2. PID控制器8点线性化处理功能[/b][/color][/size][size=16px] PID控制器8点线性化处理功能是通过8组数据组成线性化表,将输入值经过最小二乘法拟合计算产生输出值和显示值。如图3所示,在使用此功能时,所选的输入值(X轴,代表传感器输出的电压或电流值)必须是递增形式,而对应的测量值或显示值则可以是递增或递减关系。[/size][align=center][size=16px][color=#339999][b][img=PID控制器8点线性化处理功能示意图,550,337]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160930437614_4725_3221506_3.jpg!w690x423.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 八点线性化处理功能示意图[/b][/color][/size][/align][size=16px] 自定义传感器非线性输入支持以下三种输入类型和对应量程:[/size][size=16px] (1) 20mV、100mV;(LSB:0.01mV)。[/size][size=16px] (2) 0-10mA、0-20mA、4-20mA;(LSB:0.001mA)。[/size][size=16px] (3) 0-1V、0-2V、0-5V、1-5V、0-10V、2-10V;(LSB:1mV)。[/size][size=16px] 在PID控制器面板上的按键操作以及对应菜单及说明,如图4所示。在计算机软件上的操作以及界面,如图5所示。[/size][align=center][size=16px][color=#339999][b][img=分菜单操作说明,650,332]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160931045609_98_3221506_3.jpg!w690x353.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 八点线性化处理面板按键操作说明[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][img=软件操作设置图,650,250]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160931323954_3958_3221506_3.jpg!w690x266.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图5 八点线性化处理计算机软件操作界面[/b][/color][/size][/align][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文所介绍的超高精度PID控制器,除了具有超高的测量精度和控制精度之外,更具有强大的各种辅助功能,共具备47种信号输入类型,在集成热电偶、热电阻、热敏电阻这些典型常用的温度传感器线性化处理功能的基础上,可对各种其他传感器的非线性输出信号(电压和电流)进行8点拟合处理,可有效保障非线性传感器在各种控制仪器和设备中的准确使用。[/size][size=16px] 本文所介绍的超高精度PID控制器,具有单通道和双通道两个型号,其中双通道PID控制器也同样具有8点线性化处理功能,两个独立控制通道可各自选择是否进行线性化处理并进行相应的设置操作。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【分享】ES008高精度钳形电流传感器

    ES008高精度钳形电流传感器一、特性ES008钳形电流传感器是一种高精度交流电流变换器,采用夹钳形结构设计,使用时可快速、容易的自由取放,小巧的体积更易于携带、使用上更加方便。适用于交流电流、漏电流、高次谐波电流、相位、电能、功率、功率因数等检测。ES008它可配合多种测量仪器,如:电能表现场校验仪、多功能电能表、示波器、数字万用表、电缆识别仪、电缆故障检测仪、双钳式接地电阻测试仪、双钳式相位伏安表、三相数字相位伏安表等,可在不断电的状态下,对多种电参量进行测量和比对。广泛用于变电站﹑发电厂﹑工矿企业以及检测站﹑电工维修部门进行电流检测和野外电工作业等。二、技术规格特点便携式的CT夹钳形结构、使用安全、方便钳口尺寸Φ7.5mm量程AC 0~30A分辨率AC 0.01mA精度±0.2%FS(50Hz/60Hz;23℃±2℃)相位误差≤2°(50Hz/60Hz;23℃±2℃)匝比2500:1(选购2000:1;1000:1)参考负载RL:0~300mA≤100Ω;0~3A≤10Ω;0~30A≤5Ω外形尺寸长42mm×厚20mm×高137mm输出接口3.5mm音频插头输出线长2m质量180g输出方式电流感应输出外壳材料ABS 树脂,阻燃等级94V0线路电压在600Vac(绝缘导线)30Vac(裸露导线)测试工作温度-25o C to +55o C绝缘电阻100 MΩ @ 500Vdc介质强度AC3700V/rms (铁心与外壳之间)电流频率45Hz~65Hz(被测电流频率)频率特性10Hz~100kHz

  • 高精度温湿度传感器,露点仪的

    请问有厂家需要高精度温湿度传感器,温湿度变送器,温湿度计,温湿度记录仪,露点仪,露点变送器的吗?维萨拉,罗卓尼克,密希儿都有在做,有意请留下你的联系方式吧

  • 地面高精度气压传感器让气象预报更精准

    导读:我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    近些年来,我国气候异常事件频发,如南方冰冻雨雪极端低温,南方持续干旱后的集中降雨引起的洪水,还有部分地区的高温天气。2008年奥运会开幕前每隔1小时的天气预报,让人们对天气的精准预报有了更高的期待。    我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。目前我国应对突发性自然灾害侧重在事后应急机制,对事前防范、强化气象预测和预警的力度不够。尽管,我们现在具备很多现代化的技术手段进行气象预报,如卫星、雷达等监控措施,但是由于在极端天气下设备的稳定性能差,边远地区通讯障碍等局限因素,直接导致我国的气象预报精度不够。    地质灾害催熟气象智能化    目前我国气象监控预测技术还比较落后,集中暴露出预警不精确、人为干扰大、自动化水平低下等问题。在这种情况下,就对气象智能化的发展提出了更高要求。    在信息化社会,任何气象智能化技术的发展和应用都离不开传感器和信号探测技术的支持。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    将物联网技术应用到自然灾害的监控领域是必然之举,与传统气象预测相比,无线化、智能化的气象预测监控系统之所以倍受青睐,就在于其畅通、快速、精确稳定的通信信道。    地面高精度气压传感器让气象预报不再“爽约”    频频发生的自然灾害并不是不可控的,更重要的是要提高气象预测的精准度,真正实现灾害提前预警,从而将灾害损失减到最低。    传统的气象预测精度差有多方面的因素,我国地形复杂、技术设备在极端天气下的稳定性能差、边远地区通讯信号差等。这些都制约着气象预测数据的精准度和及时性。地面高精度气压传感器是以无线遥感网络来测量边远和恶劣地区的环境情况,将监测数据借助通讯产品进行传输,反馈到地面自动气象站,利用监控软件对数据进行分析处理,实施气象预警的分级告警。这一监控预警系统为自然灾害的及时检测和预警预报提供了畅通、快速、精准可靠的信号通道,让气象预报不再“爽约”,全面提升气象预测的信息化和智能化水平。    责任重于泰山,技术造福人类    面对国内日益频发的自然灾害,北京市科学技术委员会推出“地面高精度气压传感器产业化关键技术攻关”科技计划项目,进行利用物联网传感技术预测自然灾害的研究。昆仑海岸作为物联网技术应用领域内的骨干企业,承接了本次研究项目的关键技术攻关和传感器芯片的批量化生产关键技术的研发。    作为中国物联网行业传感器领域快速前进的参与者、见证者和领跑者,北京昆仑海岸一直紧贴物联网行业应用的脉搏,深入研究物联网技术在各行各业的应用。凭着对物联网行业的专注和默默耕耘,公司始终以技术创新为发展动力,重视研发新产品和新技术,同时积极开展与相关机构的科研合作和技术交流。北京昆仑海岸在压力、湿度、流量、风向等传感器(变送器)以及相应的仪器仪表研发方面具备很好的研究经验和研发能力。凭着丰富的行业经验、领先的技术优势,北京昆仑海岸一定会成为气象智能监测预警的先导。

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 数字高精度太阳净辐射传感器

    数字高精度太阳净辐射传感器

    数字高精度太阳净辐射传感器太阳辐射是地球一大气系统重要的能量来源,也是产生大气运动的主要动力,它从根本上决定着地球一大气的热状况。太阳辐射在地球上的分布和变化,在气候变化及气候模式研究中有重要意义。太阳辐射的计算方法之一就是利用有限的地面辐射观测站资料与影响太阳辐射的各类因子建立统计模型来实现的。太阳总辐射与大气组成、气体吸收、分子和粒子散射以及辐射传输理论研究密切相关。世界气象组织《气象仪器和观测方法指南》给出了6种太阳净辐射传感器灵敏度的校准方法,用太阳或用实验室辐射源校准太阳净辐射传感器:①在直接太阳光束下,与标准直接辐射表(简称标准直表)比对和与有遮挡的总表进行散射部分的比较(简称成分和法);②用太阳作为太阳净辐射传感器辐射源,与标准直表比对,此时太阳净辐射传感器应有一可移动的遮光盘(简称遮/不遮法);③用太阳作为辐射源,使用标准直表和2台被校准的总表交替测量总辐射和散射辐射(简称迭代法);[img=太阳净辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211150923452770_8442_4136176_3.jpg!w690x690.jpg[/img]④用太阳作为辐射源,在其他的自然的暴露状态下(例如,均匀的多云天空),与标准太阳净辐射传感器比较(简称平行比对法);⑤在实验室中,在人造光源光台上,以垂直入射方式或以某特定的方位角和高度角入射的方式,与预先在室外检定过的相似的太阳净辐射传感器比对(简称太阳模拟器法);⑥在实验室中,借助于一个模拟天空散射辐射的积分球腔体,与预先在室外检定过的相似的太阳净辐射传感器比对(简称积分球法)。太阳净辐射传感器的校准包括确定其灵敏度系数及其对环境条件的依从关系,如:温度、辐照度的强弱、光谱分布、角度分布、时间变化、仪器倾斜等。随着科学技术的发展,对太阳辐射测量数据准确度的要求也更加多样化,也就是说,不同的目的,对应着使用不同级别的太阳净辐射传感器,也就需要不同的量值传递方法。[img=太阳净辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211150924064203_4797_4136176_3.jpg!w690x690.jpg[/img]

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

  • TEC半导体高精度可编程温度控制技术在红外目标模拟器中的应用

    TEC半导体高精度可编程温度控制技术在红外目标模拟器中的应用

    [b][color=#339999][font='微软雅黑',sans-serif]摘要:针对红外目标模拟器的高精度可编程温度控制功能,本文介绍了实现高精度温控的温控装置,给出了温控方案。温控装置主要包括[/font]TEC[font='微软雅黑',sans-serif]半导体制冷加热模组、电源自动换向器、传感器和超高精度[/font]PID[font='微软雅黑',sans-serif]控制器。从超高精度温度控制,关键是[/font]PID[font='微软雅黑',sans-serif]控制器具有[/font]24[font='微软雅黑',sans-serif]位[/font]AD[font='微软雅黑',sans-serif]、[/font]16[font='微软雅黑',sans-serif]位[/font]DA[font='微软雅黑',sans-serif]和[/font]0.01%[font='微软雅黑',sans-serif]最小输出百分比的高性能指标,同时还具有可手动和通讯软件编程功能。[/font][/color][/b][align=center][img=常温黑体中TEC半导体可编程高精度温度控制解决方案,600,337]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220435170646_2129_3221506_3.jpg!w690x388.jpg[/img][/align][align=center][color=#339999]~~~~~~~~~~~~~~~[/color][/align][b][size=18px][color=#339999]1. [font='微软雅黑',sans-serif]红外目标模拟器工作原理[/font][/color][/size][/b][font='微软雅黑',sans-serif] 红外目标模拟器([/font]Infrared Target Simulator[font='微软雅黑',sans-serif])广泛应用于红外探测器和红外热像仪整机的工艺测试和评价测试,它为被测装置提供标准的红外测试图像,用于测试关键指标,如[/font]NETD[font='微软雅黑',sans-serif](噪声等效温差)、[/font]MRTD[font='微软雅黑',sans-serif](最小可分辨温差)、[/font]MDRD[font='微软雅黑',sans-serif](最小可探测温差)、[/font]SiTF[font='微软雅黑',sans-serif](信号传递函数)等,以及整个系统的性能评估。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]红外目标模拟器的重要指标包括发射率、辐射均匀性、温度控制精度、温度稳定性和响应速度等,其中前两个指标取决于所用黑体的结构、辐射面材质和黑漆喷涂技术,其余指标则取决于温控系统的性能。红外目标模拟器一般通过单黑体或双黑体实现,但无论采用哪一种黑体结构,高精度的温控技术都是其中的技术关键,它直接关系到红外目标模拟器的性能,是实现红外系统指标测试的关键因素。红外目标模拟器的工作原理如图[/font]1[font='微软雅黑',sans-serif]所示。[/font][align=center][size=14px][b][color=#339999][img=红外目标模拟器原理示意图,500,365]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220437236876_9226_3221506_3.jpg!w690x505.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][color=#339999][/color][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]红外目标模拟器工作原理示意图[/font][/b][/align][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]如图[/font]1[font='微软雅黑',sans-serif]所示,目标位于准直器反射器焦平面上。热辐射图样将由热辐射表面和目标之间的温差产生,并由准直器转换成平行光以模拟无限远的红外目标,供被测红外系统的成像探测器使用。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]温控系统由温度传感器、[/font]TEC[font='微软雅黑',sans-serif]半导体模组、散热器、风扇、[/font]PID [font='微软雅黑',sans-serif]控制器、自动电源换向器等组成。温度传感器[/font]A[font='微软雅黑',sans-serif]检测的是目标温度,温度传感器[/font]B[font='微软雅黑',sans-serif]检测的是辐射表面温度。根据目标的设定温度,控制器通过[/font]PID[font='微软雅黑',sans-serif]控制算法计算加热或制冷的控制量并驱动电源换向器工作电流的方向和大小,使得[/font]TEC[font='微软雅黑',sans-serif]半导体模组进行加热或制冷输出。[/font][b][size=18px][color=#339999]2. TEC[font='微软雅黑',sans-serif]半导体高精度温度控制标准装置[/font][/color][/size][/b][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]根据红外测试设备的检测指标,要求红外目标模拟器的工作温度范围为[/font]0~50[font='微软雅黑',sans-serif]℃,温度分辨率为[/font]0.001[font='微软雅黑',sans-serif]℃,控温精度为[/font]0.03[font='微软雅黑',sans-serif]℃。要实现此技术指标,温度控制系统需包括加热装置、温度传感器、执行器和[/font]PID[font='微软雅黑',sans-serif]控制器这几部分内容,而且需要满足相应的技术指标。为此,专门针对温控系统本文设计了相应的解决方案,具体结构如图[/font]2[font='微软雅黑',sans-serif]所示。以下为图[/font]2[font='微软雅黑',sans-serif]所示温控方案的详细描述:[/font][align=center][size=14px][b][color=#339999][img=温度控制系统方案示意图,550,559]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220437516841_6377_3221506_3.jpg!w690x702.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][color=#339999][/color][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]红外目标模拟器温度控制系统方案示意图[/font][/b][/align][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]1[font='微软雅黑',sans-serif])加热方式:有很多种加热方式可供选择,如电加热、循环水加热和[/font]TEC[font='微软雅黑',sans-serif]半导体制冷加热等,但考虑到红外目标模拟器对工作温度范围和超高精度温度控制的要求,目前也只有[/font]TEC[font='微软雅黑',sans-serif]热电半导体制冷加热方式比较适用。[/font]TEC[font='微软雅黑',sans-serif]用于红外目标模拟器的温度控制除能满足温度范围之外,与其他加热方式相比具有更高的控温精度、更快的冷热变化控制速度、结构简单以及造价低的突出特点。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]2[font='微软雅黑',sans-serif])执行机构:为了实现[/font]TEC[font='微软雅黑',sans-serif]的加热制冷功能,除了需要对[/font]TEC[font='微软雅黑',sans-serif]模组的加载电流进行自动调节之外,还需在调节过程中能自动改变电流方向,为此,[/font]TEC[font='微软雅黑',sans-serif]执行机构配备了电源自动换向器。换向器接收加热和制冷控制信号,并根据控制信号大小和方向输出相应的工作电流。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]3[font='微软雅黑',sans-serif])温度传感器:温度传感器是决定温度控制精度的关键因素之一,因此本方案中配置了高等级的铂电阻温度计(如标准铂电阻温度计)或高等级热敏电阻温度传感器,使得温度传感器的温度分辨率能达到[/font]0.001[font='微软雅黑',sans-serif]℃以及测温精度能达到[/font]0.01~0.02[font='微软雅黑',sans-serif]℃。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]4[font='微软雅黑',sans-serif])超高精度[/font]PID[font='微软雅黑',sans-serif]控制器:决定温度控制精度的另一个关键因素是温度控制器的数据采集精度、控制算法和控制输出精度。为此,在本解决方案中采用了目前控制精度最高的[/font]VPC2021-1[font='微软雅黑',sans-serif]系列的工业用[/font]PID[font='微软雅黑',sans-serif]程序调节器,除具有不超过[/font]96mm[font='微软雅黑',sans-serif]×[/font]96mm[font='微软雅黑',sans-serif]×[/font]87mm[font='微软雅黑',sans-serif]的小巧尺寸外,关键是此[/font]PID[font='微软雅黑',sans-serif]调节器的模数转换[/font]AD[font='微软雅黑',sans-serif]为[/font]24[font='微软雅黑',sans-serif]位、数模转换[/font]DA[font='微软雅黑',sans-serif]为[/font]16[font='微软雅黑',sans-serif]位、双精度浮点运行运算以及[/font]0.01%[font='微软雅黑',sans-serif]的最小输出百分比,并可对控制程序进行编辑设计,适合红外目标模拟器在全温度量程内多个设定点的自动温度恒定控制。同时,此调节器采用了高级无超调[/font]PID[font='微软雅黑',sans-serif]控制模式,并具有[/font]PID[font='微软雅黑',sans-serif]参数自整定功能,结合超高精度的数据采集和控制输出,可实现十分精细的温度变化调节和控制。另外,此调节器附带功能强大的计算机软件,通过计算机运行此软件可快速进行[/font]PID[font='微软雅黑',sans-serif]控制器的远程设置和运行操作,同时能图形化的显示和记录所有设置参数、控制程序曲线和温度控制变化曲线。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]总之,本文所述的采用[/font]TEC[font='微软雅黑',sans-serif]模组进行的温度控制系统,已经成为超高精度可编程温度控制的一种标准和通用性方案,完全适用于红外目标模拟器的高精度温度控制。[/font][align=center][color=#339999]~~~~~~~~~~~~~~~[/color][/align]

  • 彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    [size=16px][color=#339999]摘要:针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。[/color][/size][align=center][size=16px][img=彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制,690,290]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071124469579_383_3221506_3.jpg!w690x290.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在晶体生长和CVD等半导体设备领域,普遍要求对反应腔室的真空压力进行快速和准确控制。目前许多半导体工艺设备的真空压力基本在绝对压力10~400Torr的真空度范围内,通过使用下游节流阀(电动球阀或电动蝶阀)的开度自动变化来调节抽气速率基本能达到1%以内的控制精度。但对于有些特殊晶体生长等生产工艺,往往会要求在0.1~10Torr真空度范围内进行控制,并要求实现0.1%的更高精度控制。[/size][size=16px] 最近有用户提出对现有晶体生长炉进行技术升级的要求,希望晶体炉的真空压力控制精度从当前的1%改造升级到0.1%,客户进行改造升级的依据是宁波恒普真空科技股份有限公司的低造价的压力控制系统,且技术指标是“公司研发的压力传感器和控制阀门及配套的自适应算法,可将压力稳定控制在±0.3Pa(设定压力在100~500Pa间)”。[/size][size=16px] 我们分析了宁波恒普在真空压力控制方面的两个相关专利,CN115113660A(一种通过多比例阀进行压力控制的系统及方法)和CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),认为采用所示的专利技术可能无法实现100~500Pa全量程范围内0.1%的长时间稳定的控制精度,最多只可能在个别真空点和个别时间段内勉强内达到。本文将对这两项专利所设计的控制方法进行详细技术分析说明无法达到0.1%控制精度的原因,并提出相应的解决方案。[/size][b][size=18px][color=#339999]2. 专利技术分析[/color][/size][/b][size=16px] 宁波恒普公司申报的发明专利“一种通过多比例阀进行压力控制的系统及方法”,其压力控制系统结构如图1所示,所采用的控制技术是一种真空压力动态平衡控制方法中典型的下游控制模式,即固定进气流量,通过调节排气流量实现真空压力控制。[/size][align=center][size=16px][color=#339999][b][img=01.通过双比例阀进行压力控制的系统的示意图,500,244]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071128351485_5277_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 通过双比例阀进行压力控制的系统的示意图[/b][/color][/size][/align][size=16px] 在动态平衡法控制中,这种下游模式的特点是: (1)非常适用于10~760Torr范围内的高气压精确控制,抽气流量的变化可以很快改变真空腔体内部气压的变化,不存在滞后性,这对于高精度的高压气体控制非常重要,因此这种下游控制模式也是目前国内外绝大多数晶体炉的真空压力控制方法。 (2)并不适用于0.1~10Torr范围内低气压控制,这是因为在低气压控制过程中,抽气速率对低气压变化的影响较为缓慢,存在一定的滞后性,调节抽气速率很难实现低气压范围内的真空度高精度控制。因此,对于低气压高真空的精密控制普遍采用的是上游控制模式,即调节进气流量,利用了低气压对进气流量非常敏感的特性。 宁波恒普公司所申报的发明专利“一种通过多比例阀进行压力控制的系统及方法——CN 115113660A”,如图1所示,所采用的下游控制模式是通过分程(或粗调和细调)形式来具体实现,即通过次控制阀开度改变抽气口径大小后,再用主控制阀开度变化进行细调,本质还是为了解决抽气速率的精细化调节问题。 这种抽气速率分段调节的类似方法在国内用的比较普遍,较典型的如图2所示的浙江晶盛公司专利“一种用于碳化硅炉炉腔压力控制的控压装置——CN210089430U”,采用的就是多个分支管路进行下游模式控制,多个分支管路组合目的就是调节抽气口径大小。[/size][align=center][b][size=16px][color=#339999][img=02.下游控制整体结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071129101289_1324_3221506_3.jpg!w690x621.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图2 下游多支路真空压力控制结构示意图[/color][/size][/b][/align][size=16px] 宁波恒普公司另一个实用新型专利CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),如图3所示,也是采用下游控制模式。[/size][align=center][b][size=16px][color=#339999][img=03.晶体生长炉的压力串级控制系统的结构示意图,450,361]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071132344137_9996_3221506_3.jpg!w690x555.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图3 下游串级控制系统结构示意图[/color][/size][/b][/align][size=16px] 在晶体生长和其他半导体工艺的真空压力控制中,国内外普遍都采用下游控制模式而很少用上游控制模式,主要原因如下:[/size][size=16px] (1)绝大多数工艺对气氛环境的要求是高气压(低真空)范围内控制,如10~500Torr(绝对压力),且控制精度能达到1%即可。这种要求,最适合的控制方法就是下游模式。[/size][size=16px] (2)绝大多数半导体工艺都需要输入多种工作气体,而且各种工作气体还要保持严格的质量和比例,所以进气控制基本都采用气体质量流量计。如果在质量和比例控制之后,再对进气流量进行控制,一是没有必要,二是会增加技术难度和设备成本。[/size][size=16px] (3)在下游控制模式中安装节流阀(电动蝶阀)比较方便,可以在真空泵和腔体之间的真空管路上安装节流阀,而且对节流阀的拆卸和清洗维护也较方便。[/size][size=16px] 国内有些厂家在下游模式中采用上述分程控制方法的动机主要是为了规避使用高速和高精度但价格相对较贵的下游节流阀(电动蝶阀),这种高速高精度下游节流阀主要是具有1秒以内的全程闭合时间,直接使用这种高速蝶阀就可以在高气压范围内实现低真空度控制。而绝大多数国产真空用电动球阀和电动蝶阀尽管价格便宜,但响应速度普遍在几十秒左右,这使得压力控制的波动性很大。所以为了使用国产慢速电动蝶阀,且保证控制精度,只能在下游管路上想办法。[/size][size=16px] 如果采用高速电动球阀或电动蝶阀,且真空计和控制器达到一定精度,则采用任何形式的下游模式控制方式都可以在低气压范围内轻松实现1%的控制精度,但无法达到0.1%的控制精度。而如果采用低速阀门和上述专利所述的控制方法,也有可能达到1%控制精度,但更是无法实现更高精度0.1%的真空压力控制。[/size][b][size=18px][color=#339999]3. 超高精度真空压力控制方法及其技术[/color][/size][/b][size=16px] 晶体生长炉的真空压力控制也是一种典型的闭环PID控制回路,回路中包括真空泵、真空计、电动阀门和PID控制器。其中真空泵提供真空源,真空计作为真空压力测量传感器,电动阀门作为执行器调节进气或出气流量,PID控制器接收传感器信号并与设定值进行比较和PID计算后输出控制信号给执行器。[/size][size=16px] 这里我们重点讨论在0.1~10Torr的低气压(高真空)范围内实现0.1%超高精度的控制方法和相关技术。依据动态平衡法控制理论以及大量的实际控制试验和成功应用经验,如果要实现上述低压范围内(0.1~10Torr)的高精度控制,必须满足以下几个条件,且缺一不可:[/size][size=16px] (1)真空泵要具备覆盖此真空度范围的抽取能力,并尽可能保持较大的抽速,由此在高温加热过程中的气体受热膨胀压力突增时,能及时抽走多余的气体。[/size][size=16px] (2)真空计和PID控制器要具有相应的测量和控制精度。[/size][size=16px] (3)采用上游控制模式,并需采用高速电动针阀自动和快速的调节进气流量大小。[/size][size=16px] 国内外晶体生长炉和半导体工艺的真空压力控制,普遍采用的是薄膜电容真空计,价格在一万元人民币左右的这种进口真空计,测量精度基本在0.25%左右。这种真空计完全可以实现0.5 ~ 1%的控制精度,但无法满足更高精度控制(如0.1%)中的测量要求,更高精度的真空度测量则需要采用0.05%以上精度的昂贵的薄膜电容真空计。[/size][size=16px] 同样,对于PID控制器,也需要相应的测量精度和控制精度。如对于0.25%精度的真空计,采用16位AD、12位DA和0.1%最小输出百分比的PID控制器,可以实现1%以内的控制精度,这在相关研究报告中进行过专门分析和报道。若要进行更高精度的控制,则在采用0.05%精度真空计基础上,还需采用24位AD、16位DA和0.01%最小输出百分比的PID控制器。[/size][size=16px] 宁波恒普公司在其官网的压力控制技术介绍中提到,采用恒普自己研发的压力传感器和控制阀门及配套的自适应算法,在绝对压力100~500Pa范围内可将国内外现有技术的±3Pa压力波动(控制精度在1%左右)提升到±0.3Pa(控制精度在0.1%左右),控制精度提高了一个数量级。我们分析认为:在绝对压力100~500Pa的低压范围内,如果不能同时满足上述的三个条件,基本不太可能实现0.1%的超高精度控制。[/size][b][size=18px][color=#339999]4. 超高精度真空压力控制技术方案[/color][/size][/b][size=16px] 对于超高精度真空压力控制解决方案,我们只关心前述条件的第二和第三点,不再涉及真空泵内容。[/size][b][color=#339999] (1)超高精度真空计的选择[/color][/b][size=16px] 目前国际上能达到0.05%测量精度的薄膜电容真空计有英福康和MKS两个品牌,如图4所示。这类超高精度的真空计都有模拟信号0~10V输出,数模转换是20位。[/size][align=center][b][size=16px][color=#339999][img=04.超高精度薄膜电容真空计,550,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130184466_8776_3221506_3.jpg!w690x302.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 超高精度0.05%薄膜电容真空计 (a)INFICON Cube CDGsci;(b)MKS AA06A[/color][/size][/b][/align][size=16px][b][color=#339999] (2)超高精度PID控制器的选择[/color][/b] 从上述真空计指标可以看出,真空计的DAC输出是20位的0~10V模拟型号,那么真空压力控制器的数据采集精度ADC至少要20位。为此,解决方案选择了目前最高精度的工业用PID控制器,如图5所示,其中24位AD、16位DA和0.01%最小输出百分比。所选控制器具有单通道和双通道两种规格,这样可以分别用来满足不同真空度量程的控制,双通道控制器可以用来同时采集两只不同量程的真空计而分别控制进气阀和抽气阀实现真空压力全量程的覆盖控制。另外PID控制器还具有标准的RS485通讯和随机配套计算机软件。[/size][align=center][b][size=16px][color=#339999][img=05.高速电动阀门和超高精度PID调节器,650,237]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130375986_9640_3221506_3.jpg!w690x252.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图5 超高精度PID真空压力控制器和高速电动阀门[/color][/size][/b][/align][size=16px][b][color=#339999] (3)高速电动阀门选择[/color][/b] 高速电动阀门主要包括了真空用电动针阀和电动球阀,都有极小的漏率。如图5所示,其中电动针阀用于微小进气流量的快速调节,电动球阀用于大排气流量的快速调节,它们的全程开启闭合速度都小于1s,控制电压都为0~10V模拟信号。[b][color=#339999] (4)超高精度0.1%压力控制技术方案[/color][/b] 基于上述关键部件的选择,特别是针对0.1~10Torr范围内的0.1%超高精度真空压力控制,本文提出的控制系统具体技术方案如图6所示。[/size][align=center][b][size=16px][color=#339999][img=06.超高精度真空压力控制系统结构示意图,600,325]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071131004546_6716_3221506_3.jpg!w690x374.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图6 超高精度真空压力控制系统结构示意图[/color][/size][/b][/align][size=16px] 如前所述,在0.1~760Torr的真空压力范围内,分别采用了量程分别为10Torr和1000Torr的两只超高精度真空计,并分别对应上游和下游控制模式来进行覆盖控制,真空源为真空泵。[/size][size=16px] 在10~750Torr范围内,采用下游控制模式,即控制器的第一通道用来控制电动针阀的进气开度保持固定,第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动球阀的开度变化实现准确控制。[/size][size=16px] 在0.1~10Torr范围内,采用上游控制模式,即控制器的第二通道用来控制电动球阀的进气开度保持固定(一般为全开),第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动针阀的开度变化实现准确控制。[/size][size=16px] 由于电动针阀调节的是总进气流量,所以在具体工艺中需要将多种工作气体先进行混合后再流经电动针阀,而且多种工作气体通过相应的气体质量流量计(MFC)来控制各种气体所占比例,然后进入混气罐。在0.1~10Torr范围内的超高精度控制中,进气压力的稳定是个关键因素。为此,解决方案中增加了一个减压恒压罐,并采用正压控制器对混合后的气体进行减压,使恒压罐内的压力略高于一个大气压且恒定不变。[/size][size=16px] 解决方案中的超高精度PID控制器具有RS485接口并采用标准的MODBUS通讯协议,可以通过配套的计算机软件直接对控制器进行各种设置和操作运行,并显示、存储和调用各种控制参数的变化曲线,这非常便于整个工艺控制过程的调试。工艺参数和过程调试完毕后,可连接PLC上位机进行简单的编程就能与工艺设备控制软件进行集成。[/size][size=16px] 综上所述,本文设计的解决方案,结合相应的超高精度和高速的传感器、电动阀门和PID控制器,能够彻底解决超高精度且长时间的真空压力控制难题,可以满足生产工艺需要。[/size][b][size=18px][color=#339999]5. 总结[/color][/size][/b][size=16px] 晶体生长和半导体材料的生产过程往往需要较长的时间,工艺过程中的真空压力控制精度必须还要考虑长时间的控制精度,仅仅某个真空度下或短时间内达到控制精度并不能保证工艺的稳定和产品质量。[/size][size=16px] 在本文的解决方案中,特别强调了一是必须采用相应高精度和高速的传感器、执行器和控制器,二是必须采用相应的上游或下游控制方式,否则,如果仅靠复杂PID控制算法根本无法通过低精度部件实现高精度控制,特别是在温度对真空压力的非规律性严重影响下更是如此,这在太多的温度和正压控制中得到过证明,也是一个常识性概念。[/size][size=16px] 对于超高精度的真空压力控制,本文创新性的提出了稳定进气压力的技术措施,其背后的工程含义也是先粗调后细调,尽可能消除外界波动对控制精度的影响,这在长时间内都要求进行超高精度稳定控制中尤为重要。[/size][size=16px] 这里需要说明的是,实现超高精度控制的代价就是昂贵的硬件装置,如超高精度的电容真空计。尽管在高速电动阀门和超高精度PID控制器上已经取得技术突破并降低了价格,但在薄膜电容真空计方面国内基本还处于空白阶段。除非在超高精度电容真空计上的国内技术取得突破,可以使得造价大幅降低,否则将不可避免使得真空压力控制系统的成本增大很多,而目前在国内还未看到这种迹象。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 超高精度PID控制器的特殊功能(1)——远程设定点功能及其应用

    超高精度PID控制器的特殊功能(1)——远程设定点功能及其应用

    [color=#990000]摘要:远程设定点功能是超高精度PID控制器的重要拓展功能之一,其在实际自动控制中有着广泛的应用。本文详细介绍了远程设定点的功能和操作设置过程,同时还介绍了远程设定点功能在跟踪控制、串级控制和比值控制中的具体应用。[/color][align=center]~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][b][size=18px][color=#990000]一、远程设定点的基本概念[/color][/size][/b] PID控制器中的设定点(set point,简称SP)或设定值(set value,简称SV),是指控制对象最终想要达到的状态或目标。PID控制器作用就是不断检测被控对象与设定点之间的偏差,并通过PID算法设法使此偏差快速趋于最小并达到稳定。需要注意的是,这里所说的设定点只是一种泛指,实际上包括了不随时间变化的固定设定点和随时间变化的设定曲线。 PID控制器中的设定点一般分为以下两种: (1)内部设定点。通常也称之为内部给定值或本地给定值,是指PID控制器内部给出的设定点,如通过控制器面板操作或通过通讯方式由上位机软件操作给出的设定点或设定曲线。 (2)外部设定点。通常也称之为远程设定值或遥控设定值,是指独立于PID控制器的外部装置按照输入信号的函数所给出的设定点,如外部传感器、外部电压电流信号源等。远程设定点与PID控制器其他功能的关系如图1所示。[align=center][b][color=#990000][img=01.远程设定点与PID控制器的结构关系图,600,302]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061510414734_8875_3221506_3.jpg!w690x348.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图1 远程设定点功能与PID控制器其他功能的关系图[/color][/b][/align] 在工业生产和一些实际应用中,设定点并不能事先人为的给出,设定点有时需要根据实际过程采取远程控制形式,而这些远程设定点一般会随时间和环境不断发生变化。例如在多回路的复杂控制过程中,回路中被控参数的选取会直接影响控制效果和效率,因此远程设定点主要功能对设定点进行优化和对控制系统进行局部调整和优化。[b][size=18px][color=#990000]二、远程设定点的操作设置[/color][/size][/b] 本文以VPC 2021系列多功能超高精度PID控制器为例,详细说明远程设定点的操作设置值。 带有远程设定值的控制器一般都有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。 VPC 2021系列超高精度PID调节器是一台具有两路输入(主输入和辅助输入)和两路输出(主控输出1和2)的多功能控制器,具有远程设定点功能,在具体使用远程设定值功能时的具体接线如图2所示。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,即在程序控制模式下无法使用远程设定值功能。 图中在主输入通道上连接的压力传感器为过程传感器,在主控输出1通道连接的是作为执行机构的高压比例阀,由此压力传感器、高压比例阀和PID调节器组成标准的闭环控制回路,在一般情况下可以通过内部设定点进行压力控制。[align=center][b][color=#990000][img=02.远程设定点功能使用接线图,690,267]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061511218073_2657_3221506_3.jpg!w690x267.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图2 使用远程设定点功能时的接线图[/color][/b][/align] 如果要使用远程设定点功能,如图1所示,需要在辅助输入通道接入远程设定点源,这里是电压信号发生器。在使用远程设定值功能前,需要对PID控制器的辅助输入通道相关参数进行设置,以满足以下几方面要求: (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。 (2)辅助通道的显示上下限也要与主输入通道完全一致。 (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式: (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。 (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图1中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[b][size=18px][color=#990000]三、远程设定点功能的典型应用[/color][/size][/b] 远程设定点功能的用途十分广泛,在许多控制领域都可以得到应用,典型应用是手动设定点输入的自动跟踪控制,多个被控对象之间的主从自动跟踪控制、串级控制和比值控制中的自动从属调节等。[b][color=#990000]3.1 各种自动跟踪控制[/color][/b] 自动跟踪控制会出现在许多实际应用中,一般是在两个以上被控对象中,要求一个被控对象始终跟随另一个被动对象的变化。一般自动跟踪控制应用中,要求两个或两个以上的被控对象随时间始终同步变化并尽可能的完全相同,最典型的应用场景是多温区的温度跟踪控制,其目的是实现各个温区的温度始终相同,从而起到温度均匀或使被跟踪对象处于绝热状态。 如图3所示,我们以两个被控对象之间的温度跟踪为例,其中物体A是主温度变化对象,物体B为防护温度变化对象,要求物体B的温度始终跟踪物体A并保持相同,从而使物体A始终处于等温绝热状态,这种等温绝热形式常用于绝热量热计。[align=center][b][color=#990000][img=03.自动跟踪控制示意图,690,195]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061511438279_8853_3221506_3.jpg!w690x195.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图3 温度自动跟踪中的传感器形式:(a)温差热电堆,(b)热电阻远程设定点[/color][/b][/align] 图3给出了温度跟踪中的两种温度传感器连接方式,图3(a)是典型的温差热电堆形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 在有些应用场合无法使用热电偶而只能使用热电阻,那么温度跟踪一般会采用图3(b)所示的远程设定点功能。这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。 采用热电阻温度传感器进行温度跟踪控制一直是个技术难点,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将图3(b)中的两只热电阻温度传感器的电阻差转换为电压信号,这样就等同于图3(a)所示的功能。由此可见,采用远程设定点功能简化了热电阻温度跟踪的实现难度和装置的体积及造价。[b][color=#990000]3.2 串级控制(级联控制)[/color][/b] 远程设定点功能最主要的应用是在串级控制系统中。一般串级控制系统由两个或两个以上的控制器串联连接组成,一个控制器的输出作为另一个控制器的设定值。串级控制系统的特点是将两个PID调节器相串联,主调节器的输出作为副调节器的设定,当被控对象的滞后较大,干扰比较剧烈、频繁时,可考虑采用串级控制系统。特别是需要进行超高精度控制,以及跨参数和跨量程控制时,串级控制系统则能重复发挥其优势。 图4所示是一个典型的串级控制在管壳式热交换器温度控制中的应用,其中离开热交换器的液体的温度是最终需要的控制变量,即通过操控蒸汽调节阀,使液体温度恒定在某一个设定值上。进入换热器的蒸汽流量直接影响温度,但只要控制好温度,我们并不关心流量有多少。所需的蒸汽量将取决于工作流体的流速和进口温度与出口温度设定点之间的差异。[align=center][b][color=#990000][img=04.热交换器温度的串级系统结构示意图,690,369]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061512007021_6743_3221506_3.jpg!w690x369.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图4 热交换器温度控制中的串级控制系统[/color][/b][/align] 我们可以用一个PID控制器来控制温度,温度作为输入,输出连接到调节阀。虽然这种安排可以控制温度。但是,在实际控制中存在一些问题: (1)蒸汽集管压力可能发生变化,导致流入换热器的蒸汽流量突然减少。温度控制器将把温度带回它的设定值,但是,由于温度控制器需要缓慢的调谐,校正将花费比预期更长的时间。 (2)温度循环,可能包含多个滞后和死区,是一个更难调优的循环。阀门中的非线性将进一步使调谐复杂化。 如图4所示,使用串级控制方式将纠正这两个问题。在此串级控制系统中,采用了两路控制(或两个PID控制器),其中一个作为主控制器(温度控制器)采集最终需要控制的离开换热器的流体温度,同时根据本地设定点(温度值)进行控制,控制器的输出信号作为作为从控制器(流量控制器)的远程设定点,流量控制器采集流量传感器信号,并根据远程设定点控制调节阀的开度大小。 由此可见,采用串级控制方法,如果管路内压力发生变化而导致流量发生改变,流量测量将检测到这种变化,并立即可以得到反馈和纠正,从而平稳快速的实现温度的最终控制。 这里需要注意的是,主控制器的输出量为电压(或电流值),是作为从控制器的远程设定值,那么此远程设定值的变化范围应与流量传感器的信号类型(电压或电流)和量程保持一致。[b][color=#990000]3.3 比值控制[/color][/b] 远程设定值功能经常在比值控制中得到应用。比值控制,也称之为比率控制,是使得两种或两种以上被控变量的比值保持恒定的一种控制方法。 如图5所示是一个典型的流体混合比值控制应用,通过比值控制方式控制一种流体(受控流体)与另一种流体(自由流体)按照设定的流量比值进行混合。实际上,这也是一种跟踪控制形式,即受控流体的流量按照设定比值自动跟踪自由流体的流量变化。[align=center][b][color=#990000][img=05.两种流体混合时的比值控制系统结构示意图,600,439]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061512224917_4914_3221506_3.jpg!w690x506.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图5 流体混合中的比值控制系统[/color][/b][/align] 在图5中,用流量传感器1测量自由流体的流量,此流量信号乘以比值发生器的设定比值输出远程设定点信号。PID控制器控制分别接收远程设定点信号作为设定值和接收流量传感器2作为测量信号,由此来控制被控流体。 在具体应用过程中,比值发生器可采用以下两种方式实现: (1)从图5可以看出,比值发生器类似于图4所示串级控制系统中的主控制器,控制电动针阀的PID控制器相当于串级控制系统中的从控制器。因此,采用两路PID控制就可实现比值控制。 (2)更简单的方式是直接采用图2所示的PID控制器的远程设定点功能,将流量传感器1和传感器2分别连接到主输入和辅助输入通道,其中辅助输入通道作为远程设定点。而远程设定点的比值大小则可以通过修改辅助通道的显示上下限来进行改变,但需要注意的是辅助输入通道的信号类型和显示小数点位数要与主输入通道保持一致。[b][size=18px][color=#990000]四、总结[/color][/size][/b] 远程设定点功能是超高精度PID控制器的重要拓展功能之一,在实际自动控制中有着广泛的应用,但详细介绍远程设定点功能的具体操作设置和实际应用的资料内容很少。本文重点侧重介绍远程设定点的功能和操作设置过程,以期便于具体操作使用人员的快速设置和投入控制运行。 远程设定点功能在各种复杂PID控制中的应用十分广泛,本文只是列举了远程设定点功能在自动跟踪、串级控制和比率控制中的典型应用,而在实际控制中还可以有更多种的应用演变。[align=center]~~~~~~~~~~~~~[/align]

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    [size=16px][color=#339999]摘要:电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/color][/size][align=center][size=16px][img=电化学热电池性能测试中的TEC半导体制冷片温度控制解决方案,600,379]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171026207841_631_3221506_3.jpg!w690x436.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 温差发电在固体材料与半导体材料的发展上均比较成熟,而近年出现了一种新型的电化学热电池(electrochemical thermcells)拥有更高的塞贝克系数,同时成本较低、能够适应复杂热源表面,因而具有一定的应用前景,成为当前研究的热点方向之一。如图1所示,这种电化学热电池的基本原理是利用电化学体系中的赛贝克效应,将冷热电极之间的温差直接转化为电势差而产生发电效果,因此温差环境是使用和测试评价电化学电池的必要条件。[/size][align=center][size=16px][color=#339999][b][img=01.电化学热电池原理图,450,396]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027053355_4631_3221506_3.jpg!w690x608.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 电化学热电池基本原理[/b][/color][/size][/align][size=16px] 电化学热电池中的电解质、材料和电极受温度的影响,以及整个热电池的相关性能测试评价,对测试过程中的温差形成有十分复杂的要求,具体内容如下:[/size][size=16px] (1)热电池的两个冷热端电极要处于不同温度以形成温差,两个电极温度要具有一定的变化范围以便在不同电极温度和不同温差条件下测试评价热电池的各种性能。[/size][size=16px] (2)对于冷端温度,可采用TEC半导体制冷片进行调节和控制,但热端温度普遍较高,采用制冷片无法实现高温加热,需采用电阻等加热。[/size][size=16px] (3)在热电池性能测试过程中,需要在冷热电极处实现台阶式或周期交变式可编程温度变化。这样一方面是能够测试不同电极温度和不同温差下的热电池性能,得到热电池最佳工作状态时的温度和温差条件,另一方面是测试考核热电池的疲劳衰减特性。[/size][size=16px] (4)新型的电化学热电池往往很薄,如各种可穿戴电子产品用热电池。在实际应用中,这类薄片或薄膜状热电池上形成的温差很小,这就要求热电池性能测量装置需要具备在冷热电极之间提供小温差的能力。[/size][size=16px] 根据上述要求可以看出,一旦电化学热电池形状确定,热电池性能测试装置的结构也基本确定,而测试装置中温度控制的关键是确定合理的加热方式和温控仪表。[/size][size=16px] 对于加热形式,采用电阻加热和TEC半导体制冷片两种形式,可满足绝大多数电化学热电池在任意温度和温差范围内的测试需要,对于温度不高的测试,可仅使用TEC半导体制冷片进行温度控制。电阻加热用于热电极处的高温加热,温度范围为50~150℃以上。TEC半导体制冷片加热用于冷电极处的低温加热和冷却,温度范围为-10~60℃。[/size][size=16px] 对于温控仪表,满足上述温度控制要求的控温仪表需具备以下功能:[/size][size=16px] (1)可对电阻加热和TEC半导体制冷片分别进行控制。[/size][size=16px] (2)可编程控制功能,可控制温度按照编程设定的温度折线进行变化。[/size][size=16px] (3)交变温度控制功能,可控制温度按照设定周期和幅度进行交替变化。[/size][size=16px] (4)带PID自整定功能,避免繁琐的人工调整PID参数,并可存储和调用多组PID参数。[/size][size=16px] (5)测量和控温精度高,特别是要满足薄膜热电池的温差控制,控温精度要达到0.01℃。[/size][size=16px] (6)带通讯功能可与上位机连接,由上位机进行设置、编程、控制运行、显示和存储。[/size][size=16px] (7)带计算机软件,无需编程,可通过计算机进行设置、编程、控制运行、显示和存储。[/size][size=16px] 从上述功能要求中可以看出,电化学热电池性能测试中对温度和温差形成的要求很高,特别是要求温控仪表具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能,而这些很多都是目前电化学热电池性能测试用控温仪无法具备的功能。为此,本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案设计的温控系统典型结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.电化学热电池性能测试温控系统结构示意图,690,343]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027488618_9875_3221506_3.jpg!w690x343.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 电化学热电池性能测试温控系统结构示意图[/b][/color][/size][/align][size=16px] 图2所示的解决方案示意图包含了电化学热电池性能测量装置和温度控制系统两部分。其中的电化学热电池测量装置示出的是对块状、板状或薄膜状热电池的测试结构,电极分别贴服在热电池的顶部和底部,顶部的阴极电极处通过TEC半导体制冷片进行低温控制形成冷电极,底部的阳极电极处通过电阻加热方式(电热膜和电热块)进行高温控制形成热电极,由此在热电池上下两端形成所需温差。需要说明的是,解决方案在冷电极处选择TEC半导体制冷片的主要目的是为了实现高精度的温度控制,这在测试评价薄膜式可穿戴用热电池中实现高精度小温差时非常重要。在热电极出选择电阻加热方式主要是为了满足更高温度的大温差测试需要。[/size][size=16px] 由于半导体制冷片和电阻加热是两种完全不同的发热制冷原理,它们的温度控制方式也完全不同,因此图2所示解决方案设计了两个独立的温控回路,两个温控回路采用的是相同的超高精度PID控制器VPC2021-1。选择使用VPC202-1这种PID控制器,是出于多功能和超高精度的考虑,此控制器可以满足前面所述的对温度控制器的所有要求。[/size][size=16px] 在TEC半导体制冷片温控回路中,使用了VPC2021双向控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动双向电源对TEC制冷片进行加热或制冷控制,由此实现高精度的温度控制。[/size][size=16px] 在电阻加热温控回路中,使用了VPC2021基本的温度控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动固态继电器进行加热,由此实现高精度的温度控制。这里需要注意的是,如果要在电阻加热中实现较高精度的温度控制,除了采用高精度的温度传感器(如铂电阻或热敏电阻)之外,还需要与相应的冷源配合以减小热惯性,如在电阻发热体下面配备冷却装置以便能够形成快速散热。如果是测量薄膜热电池,则无需这些考虑,只需在电阻发热体下面增加绝热层即可,因为热电池和电阻加热膜厚度很小,热惯性自然也小,冷电极的低温可以对热电极进行快速散热,有利于热电极处的温度高精度控制。[/size][size=16px] 为了实现热电池的温度交变试验,解决方案采用了VPC2021控制器的高级功能:远程设定点功能,即在辅助输入通道上接入外部信号发生器以生成各种周期性波形信号作为交变设定值,由此可控制热电极温度按照此设定波形进行周期性变化,从而形成交变温差。如图2所示,此远程设定点功能的选择可以通过一个外置开关进行选择,实现正常控温和交变控温之间的切换。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以满足绝大多数电化学热电池性能测试中的温差环境控制需要,为测试评价热电池性能和优化使用条件提供了便利的试验和考核手段。[/size][size=16px] 更重要的是高精度PID控制器配备了相应的计算机软件,采用了具有标准MODBUS通讯协议的RS485接口,与计算机一起可以组成独立的测控系统,通过计算机可方便的对PID控制器进行远程操控,设置控制器的各种参数,采集、存储和曲线形式显示PID控制器的过程参数,无需再进行任何编程即可进行测试试验,非常适应于实验室研究试验。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现多种物理量和波形的准确控制,更可连接上位机直接与中央控制器进行集成,与整个设备形成很好的配套。[/size][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 新型温度传感器的研究与发展

    温度是一个基本的物理现象,它是生产过程中应用最普通、最重要的工艺参数,无论是工农业生产,还是科学研究和国防现代化,都离不开温度测量及温度传感器。它是现代测试和工业过程控制中应用频率最高的传感器之一。然而,温度的准确测量并非轻而易举,即使有了准确度很高的温度传感器,但是,如果测量方法选择不当或者测量的环境不能满足要求,则都难以得到预期的结果。  温度测量的最新进展  当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。  光纤温度传感器  光导纤维(简称光纤)自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明它具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视。光纤传感器是一种将被测量的状态转变为可测的光信号的装置。它是由光耦合器、传输光纤及光电转换器等三部分组成。目前已有用来测量压力、位移、应变、液面、角速度、线速度、温度、磁场、电流、电压等物理量的光纤传感器问世,解决了传统方式难以解决的测量技术问题。据统计,目前约有百余种不同形式的光纤传感器,用于不同领域进行检测。可以预料,在新技术革命的浪潮中,光纤传感器必将得到广泛的应用,并发挥出更多的作用。  特种测温热敏电缆  热电偶是传统的温度传感器,用途非常广泛。近年来,又发展出了一种新的测温技术,能在火灾事故预警中有独特的应用。这种新型温度传感器称为特种测温热敏电缆,又被称为连续热电偶ConTInuous Thermocouple)或寻热式热电偶(Heating Seeking Thermocouple)。  热敏电缆利用电偶热电效应,但测量的不是偶头部的温度,而是沿热电极长度上最高温度点的温度。由于这种独特功能,最初被发达国家作为高精技术设备铺设在航空母舰、驱逐舰的舰舱以及军用飞机等军事设备中。目前,已被广泛应用到各个领域来预防和减少因“过热”引起的事故和损失。  热敏电缆的主要性能  目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。  材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。  外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。  工作温度 FTLD为-40~200℃,CTTC为-40~899℃。 石英温度计  分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。  弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。   随着生产及科学技术的发展,各部门对温度测量与控制的要求越来越高,尤其对高精度、高分辨率温度传感器的需求越来越强烈,普通的传感器难以满足要求。  石英温度计的特性  高分辨率分辨率达0.001~0.0001℃。  高精度在-50℃~120℃范围内,精度为±0.05℃。普通温度计的精度为±0.1℃。  误差小热滞后误差小,响应时间为1s,可以忽略。  性能稳定它是频率输出型传感器,故不受放大器漂移和电源波动的影响,即使将传感器远距离(如1500m)设置也不受影响,但是抗强冲击性能较差。  石英温度计的应用  石英温度计既可用于高精度、高分辨率的温度测量,又可作为标准温度计进行量值传递,也可以在现场稳态温度场合下进行精密测温或用于恒温槽的精密控温,还可用作远距离多点温度测量等。[/

  • 选择汽车衡五大牢记之传感器精度

    选择汽车衡五大牢记之传感器精度

    http://ng1.17img.cn/bbsfiles/images/2015/06/201506121116_549945_271_3.jpg在汽车衡购买决策过程中,有“五大牢记”能帮助您从眼花缭乱的市场中成为火眼金睛。那么,汽车衡的核心部件——传感器精度与汽车衡最小检定分度值之间的关系是怎样的呢?用一个公式可以说清楚: http://ng1.17img.cn/bbsfiles/images/2015/06/201506121117_549947_271_3.png其中:Emin 指汽车衡的最小检定分度值;Emax 指汽车衡传感器的最大量程;Y指传感器的最小分度数;而n是使用的传感器数量。 从上面那个公式可以看出,同样规格的汽车衡,可能使用同样数量的传感器,甚至同样的传感器最大量程,这时候,最重要的指标就是传感器的最小分度数了。这个Y值,使不同汽车衡有了精度上的真正差异。Y值与Emin 成反比,也就是Y值越大,最后汽车衡可能达到的精度才越大!记住,只有最高精度,最佳设计的传感器,才能生产出最高精度的汽车衡!梅特勒-托利多汽车衡及解决方案:http://cn.mt.com/cn/zh/home/products/Transport_and_Logistics_Solutions/Truck_Scales.html继续阅读《选择汽车衡五大牢记》选择汽车衡五大牢记之轴载:http://bbs.instrument.com.cn/shtml/20150612/5835681/选择汽车衡五大牢记之传感器量程:http://bbs.instrument.com.cn/shtml/20150612/5835686/选择汽车衡五大牢记之传感器防雷能力:http://bbs.instrument.com.cn/shtml/20150612/5835703/选择汽车衡五大牢记之传感器使用温度范围:http://bbs.instrument.com.cn/shtml/20150612/5835710/http://ng1.17img.cn/bbsfiles/images/2015/06/201506121117_549949_271_3.png

  • 什么是超级单体传感器?

    超级单体传感器--超级单体传感器是将一块特种合金在超高速加工中心上进行三维立体加工一次成型的称重传感器。它减少了120多个零部件。是除磁缸和线圈以外的完整的传感器。高度一体化的超级单体传感器使天平具有更高的精度(最高分辨率可达亿分之二)、更快速的响应、更加稳定的示值读数、更加坚固且耐用,并且受环境温度影响极小。 超级单体传感器的加工涉及特种材料、超精细加工、超高速切削、精密在线测量、实时磨损及温度补偿等一系列最新技术。它要求对高精度电子天平进行深入、彻底的基础研究,及对天平性能的不懈追求,更要求将最新的研究成果迅速转化为产品的雄厚技术实力。因此它的制造者只能是具有134年辉煌历史的世界著名企业--德国赛多利斯集团! 超级双杠杆--超级单体传感器是基于电磁力补偿原理设计的,其革新之处在于力传递的双杠杆比例系统,采用双级杠杆,而非传统的单级杠杆,与超级单体传感器一样,超级双杠杆单体传感器也是由一块特种合金材料在超高速加工中心上,采用21世纪的高速加工工艺,一次加工成型,具有无可比拟的优势:它对温度变化的敏感性大大降低,温度漂移更小,从而使得测量结果更准确可靠,响应时间更短;它的应用将使整机的零件数减少70%。故障会更少,产品的质量会更好。 谁能使天平处理更快捷?早在1975年,赛多利斯公司就率先将微处理技术应用于天平,并被评为世界100个最有价值的研究技术成果之一。在该技术领域,赛多利斯一直保持着世界领先的地位。1990年,赛多利斯公司又将40MHz具有层状结构的高速微处理MC1技术应用于电子天平,使分析天平的反应时间降为2秒。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制