超临界流体石油分析

仪器信息网超临界流体石油分析专题为您提供2024年最新超临界流体石油分析价格报价、厂家品牌的相关信息, 包括超临界流体石油分析参数、型号等,不管是国产,还是进口品牌的超临界流体石油分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超临界流体石油分析相关的耗材配件、试剂标物,还有超临界流体石油分析相关的最新资讯、资料,以及超临界流体石油分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超临界流体石油分析相关的厂商

  • 专业设计、生产,石油仪器、超临界萃取装置、石油科研仪器、超临界萃取设备、超临界CO2流体、超临界水氧化装置、超临界相平衡反应装置、超临界染色装置、超临界细微粒子制备、岩心夹持器、恒速恒压泵、岩心钻取机、岩心渗透率测定、岩心孔隙度测定、采样器、二维平面模型、三维模型、SAGD驱油装置、SAGD模型、边底水模型、智能井模拟装置、岩心流动实验仪、岩心驱替装置、岩心驱油装置、微观驱油装置、CO2泡沫驱油装置、N2泡沫驱油装置、微生物驱油装置、化学驱油装置、油水计量装置、高温油水相对渗透率装置、岩石声波测定装置、岩石电阻率测定装置、岩心洗油仪、岩心剖切机、切片机、磨片机、岩心破碎机、高压中间容器、活塞容器、导流能力测试仪、酸岩反应旋转岩盘仪、酸蚀岩板导流能力测试仪、过过滤因子测定仪、岩石碳酸盐含量测定仪、油水饱和度测定仪、高温高压配样器、深井取样器、实验室仪器、脱水器、填砂模型管、等实验室仪器设备的高新技术企业。
    留言咨询
  • 400-860-5168转0264
    环球分析测试仪器有限公司(UATIL)成立于1982年,总部设在香港,是国外多家知名的高新科技仪器生产制造商在中国的独家总代理。主要产品电化学仪器:电化学工作站、光电化学测试设备 化学合成仪器:全自动反应系统、反应量热仪、超声波结晶系统、平行合成仪、高温高压釜、流动化学系统 萃取及纯化仪器:超临界萃取仪、快速制备色谱、固相萃取、溶剂蒸发仪、气体纯化系统 生命科学仪器:生物反应器、发酵罐、冷冻干燥机、移液工作站、离心浓缩仪 乳品分析仪器:乳品成分分析仪、体细胞计数器、奶牛生产性能测试仪 材料测试仪器:网格应变测试仪、杯凸试验机 惰性环境仪器:手套箱 微流控仪器:单细胞测序、细胞包裹、微流控芯片、微流泵、液滴微流控系统、3D芯片打印机
    留言咨询
  • 适安佳(北京)生物科技有限公司,是具有自主知识产权的高科技企业,旗下拥有适安佳(天津)生物科技有限公司,北京仪灿科技有限公司,工厂位于天津北辰区经济开发区。 专注于实验室仪器开发和应用领域,主营业务板块有:超临界干燥和萃取仪、二氧化碳高压泵、高压输液泵、分子蒸馏仪、喷金仪,精密冷水机等仪器设备的研发、生产和销售,业务遍及全球多个国家和地区。经过多年的发展,逐步成为国内超临界流体技术设备领域的领先企业。 自行研发制造的SCD/SFE系列超临界干燥仪/超临界萃取仪,为国内知名品牌,经过多年的不断研发创新,性能达到国际先进水平,其中多款仪器填补国内空白。 获得国高新技术企业,ISO9001认证企业,3A认证企业等资质,已拥有发明专利2项,实用新型专利多项。
    留言咨询

超临界流体石油分析相关的仪器

  • 岛津制备型超临界萃取单元SFE-40P是专为制备规模开发,用于对样品的自动化萃取,支持Online和Offline两种组合方式:即与岛津半制备超临界流体色谱仪Nexera UC Prep组成在线SFE-SFC系统,完成自动化在线品萃取、分离和馏分收集;以及独立组成离线超临界流体前处理系统,完成对样品的萃取和馏分收集。产品特点:①支持对单个萃取容器的温度控制;②支持“静态”和“动态”两种萃取方式,以实现高效萃取;③搭配换架器(选配),实现多样品自动化连续萃取处理(最多48个样品);
    留言咨询
  • Nexera UC 能够方便用户对多组分进行同时分析,从样品的前处理、到样品分离直至样品分析步骤均可实现在线自动化。Nexera UC 将实际应用于需要对多种样品进行快速且可靠分析的领域,诸如食品中农药残留检测,或对疾病标记物的研究探索。该系统以超临界流体CO2 作为流动相,可最多同时放置48 个样品,通过自动萃取单元进行前处理、通过色谱进行分离以及通过质谱进行检测,所有步骤均可实现自动化操作。因此,不需要复杂的样品前处理操作。同时,该系统还可对某些可能因接触空气而氧化或者降解的不稳定化合物实现稳定可靠的分析。此外,以食品中农药残留的分析为例,仅仅在预处理阶段,该系统就可将传统方法需要的35 分钟缩短至5 分钟。与传统的人工操作方法相比,可在提高产效率的同时减少人为误差,因此农药残留分析可以在更少的时间完成。该系统由日本岛津公司、大阪大学、神户大学和宫崎县农业研究所共同研究开发,并在JST(日本科学技术振兴机构)的研究成果发展计划中被列为“先进分析测量技术和设备的开发方案”。
    留言咨询
  • 传统LC/MS及GC/MS分析技术面临的挑战...Nexera UC 提供以上问题的稳妥解决方案全自动在线样品前处理及分析自动萃取目标化合物并分析杜绝不稳定化合物的降解在避光及无氧环境下实现样品萃取,防止不稳定化合物的氧化和降解分析速度、灵敏度及分离度的高度统一超临界流体实现样品的高效分离和高灵敏度分析,因此极大地提高检测灵敏度与分析通量特立独行的色谱技术,您所需要的唯一选择!Nexera UC通过全新的分离技术优化您的分析流程,将样品制备、分析及多种分离模式集于一体,提供高灵敏度的检测结果。 Nexera UC提供解决方案 农药残留分析过程中QuEChERS方法与NexeraUC方法对比QuEChERS作为样品前处理的典型方法,需要诸多人工操作,并且耗费大概35分钟的时间。而Nexera UC,同样的样品使用在线SFE/SFC分析方法仅需要大约5分钟时间用于样品前处理,且人工操作步骤大大减少。使用Nexera UC对上百种化合物进行同时分析。相比常规的LC及LC/MS和GC/MS等方法,Nexera UC可对不同极性的化合物进行分析。 不同极性的农药同时分析
    留言咨询

超临界流体石油分析相关的资讯

  • 复杂样品自动化分析中的在线前处理技术② | 超临界流体色谱(SFC)技术
    岛津中国创新中心在Nexera UC基础上,将超临界流体色谱(SFC)应用到二维柱切换系统的第一维,开发了脂溶性成分自动前处理分析系统,实现了油脂样品的在线净化和自动化分析(图2)。 图2 脂溶性成分自动前处理分析系统构成图 超临界流体是温度和压力超过临界点的一种流体状态。处于超临界状态的流体兼具气体的高扩散性和液体良好的溶解能力。特别是超临界二氧化碳流体,由于其临界温度和压力相对容易控制(31°C,74bar),并且和有机溶剂相比更加环保,因此被广泛使用(图3)。 图3 纯物质相图 由于超临界二氧化碳流体的极性和正己烷相近,因此经常被用来替代正己烷进行正相提取,或者作为流动相替代正相色谱进行分离。同时由于超临界二氧化碳流体和油类样品的相溶性好,可以实现该类样品的直接进样,因此被广泛应用在石油化工行业进行柴油中芳烃1和汽油中烯烃的检测2。 本创新中心利用超临界二氧化碳流体色谱可以直接分析油类样品,并且和反相液相系统兼容性好的这一特点,搭建了一套全新的二维色谱系统(图4)。油类样品进行简单稀释后,就可以注入第一维的SFC,在线去除油脂后,再切换到第二维的反相色谱中进行分离和检测。 图4 SFC-LC二维色谱系统流路图 使用该系统,已经成功实现了维生素D滴剂定量分析3和植物油中苯并芘的快速检测。将原来数小时甚至数天的前处理过程简化为仅用1分钟,显著提高分析效率和自动化程度(图5)。并且由于前处理步骤大大减少,分析结果的准确度也得到明显提高。 图5 油脂样品分析传统前处理法和超临界流体在线法对比 应用该方法对超市中常见的23种食用植物油进行了苯并芘的检测,在不到30min就完成了所有样品的调制上样。并以未检测到苯并芘的橄榄油为空白基质,对回收率进行了考察。对不同浓度加标样品,使用该方法,均得到了良好的回收率结果。 图6 超市采购23种食用植物油中苯并芘检测结果(纵坐标单位μg/kg) 参考文献1.ASTM D5186-19Standard Test Method for Determination of Aromatic Content and PolynuclearAromatic Content of Diesel Fuels by Supercritical Fluid Chromatography2.ASTM D6550-15Standard Test Method for Determination of Olefin Content of Gasolines bySupercritical-Fluid Chromatography3.Determination ofVitamin D in Oily Drops Using a Column-Switching System with an On-lineClean-up by Supercritical Fluid Chromatography. Talanta 190 (2018) 9-14.
  • 沃特世树立分析型超临界流体色谱性能标杆
    中国上海 - 2015年11月11日 –沃特世公司(Waters)近日参加了上海2015国际超临界流体色谱会议(SFC China 2015)。超临界流体色谱(SFC)已逐渐成为一个以环保方式提高分离效率的关键技术,本次国际超临界流体色谱会议汇聚了150位世界级制药公司和研究单位的分离科学家们,成为全球和中国的行业人士讨论新技术发展和应用的论坛。会上来自沃特世公司美国总部的SFC首席科学家Abhijit Tarafder博士做了题为“控制SFC有效放大因素”的报告。Tarafder博士介绍了ACQUITY UPC2放大到SFC制备的流程,系统背压、温度、辅助溶剂等关键因素对SFC放大的影响,以及SFC分析到制备的放大与LC分析到制备的放大的异同点。沃特世中国SFC应用工程师桑磊在之后的报告中详细介绍了ACQUITY UPC2的简易性、相似性和正交性在大戟、葫芦巴和牛樟芝等天然产物分析中的应用。沃特世公司SFC首席科学家Abhijit Tarafder博士做现场报告 沃特世中国SFC应用工程师桑磊做现场报告 沃特世作为分离科学的行业领导者,于2012年推出了以SFC为技术原理但完全革新的硬件设计的超高效的超临界流体色谱分析仪UPC2。其突破了传统超临界流体色谱仪稳定性、精确度、重现性等不佳的瓶颈,让SFC技术在分析领域得到更加广泛的应用。为解决手性和非手性分离中的难题,沃特世在2014年又相继推出采用了2.5 μ m粒径的ACQUITY UPC2 Trefoil和1.7 μ m粒径的ACQUITY UPC2 Torus技术色谱柱。ACQUITY UPC2系统与新型色谱柱相结合,可为色谱实验室提供强大、稳定和可靠的分析平台,从而进一步提高其开发分析方法的速度、提升选择性并缩短运行时间。同时,转换为更加环保的技术后,系统将有效降低碳排放量。沃特世SFC技术这一绿色科技,因在分离和纯化手性化合物、脂溶性化合物和天然产物等方面表现出众,已被越来越多的研究人员和工业界关注并得以应用。自2012年推出以来,各国使用UPC2系统的科学家们已撰写并发表了129篇科学期刊文章。2015版中国药典附录也收录了SFC技术。Waters超临界流体色谱分析仪UPC2 此次会议的几位行业专家也在报告中谈到沃特世SFC技术在相关研究工作中的应用。武田制药美国研发中心的分析化学总监Lu Zeng博士就谈到UPC2分析制备与ACQUITY UPLC和自动纯化系统联用技术在药物化学化合物高通量筛选中的应用;北京化工大学分析测试中心的杜振霞教授介绍了用UPC2与质谱联用技术分析聚合物、表面活性剂以及有机发光材料;另外还有来自国际知名药企科学家也都在报告中提到UPC2在其药物开发和生产过程的应用。沃特世超临界流体色谱技术从发布以来,在稳定性和可靠性方面树立了新的性能标杆,满足了科学家们对分析型SFC的期望。点击链接,了解更多SFC技术:http://www.waters.com/waters/zh_CN/Supercritical-Fluid-Chromatography/nav.htm?cid=10145739&locale=zh_CN UPC2技术发表期刊文章:http://www.waters.com/waters/library.htm?lid=134768463 关于沃特世中国(www.waters.com)沃特世公司创始于1958年,是全球分析实验室解决方案的行业领导者。沃特世为科学家提供一系列分析系统解决方案、软件和服务,包括液相色谱、质谱和化学品。自上世纪80年代进入中国以来,沃特世目前在内地及香港设有五个运营中心拥有四百多名员工,在上海、北京、广州、成都设立实验中心和培训中心。在中国,沃特世的业务范围涉及生物制药、健康科学、食品健康、环境保护和化学等多个领域,为小分子化学和中药研究、生物制药理化分析、农兽药筛查、代谢产物鉴定、组学平台、临床检测、乳制品检测等提供多种解决方案,服务工业生产的关键环节。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已经成为沃特世全球仅次于美国的第二大市场。沃特世中国始终坚持提高本地技术能力、培育本地技术人才,推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善,力求满足人们日益增长的健康需求,创造更美好的生活。2014年沃特世公司拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。

超临界流体石油分析相关的方案

超临界流体石油分析相关的资料

超临界流体石油分析相关的论坛

  • 超临界流体色谱SFC

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 超临界流体色谱

    超临界流体色谱

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 【资料】超临界流体色谱分析番茄红素

    [size=5]超临界流体色谱分析番茄红素[/size] 来源: 作者:齐国鹏,赵锁奇摘 要:以超临界C02作为流动相,在压力15.0~20.0MPa,温度25~50%,携带剂乙醇或正己烷的浓度分别为0~30%和0~20%的范围内考察了番茄红素及其氧化产物在C18色谱柱上的保留值的变化规律,确定了最佳的分离条件。对超临界丙烷萃取的番茄红素原料、萃取产物及萃余物进行了定量分析,考察了重复性及平行性。结果表明:在优化条件下,番茄红索的保留时间在3min以内,定量结果的重复性与平行性好。关键词:超临界流体色谱,番茄红素1 引 言番茄红素属于类胡萝卜素的一种,广泛分布于番茄、西瓜、葡萄等各种植物体中,作为多烯芳香烃,番茄红素是很强的抗氧化剂,可以消除血管中的自由基,淬灭单线态氧,对于抑制癌症有一定的效果。近年来,对番茄红素的分析方法的研究也日益增多。常用的方法是HPLC、TLC和紫外分光光度法等。这些方法各有特点,HPLC准确度较高,但有机溶剂耗费多;TLC设备要求不高,但分析时间长、精密度差;紫外分光光度法比较简单,但由于p.胡萝卜素等的干扰,容易产生较大的误差。利用超临界流体色谱分析胡萝卜素已有报道,LesellierE列和Aubert 利用超临界流体色谱对α-胡萝卜素和β-胡萝卜素进行了分析。但采用超临界流体色谱专门分析番茄红素还未见报道。超临界流体具有高的扩散性和较强的溶解能力,有机溶剂用量少,操作温度低等优点,本文通过考察色谱柱温度、超临界流体的压力、超临界流体的组成及携带剂浓度等因素对番茄红素分离的影响,为研究番茄红素建立一种有力的分析分离方法。2 实验部分2.1 仪器与试剂本实验室自行组装的超临界流体色谱仪,包括:两台ISCO 260DM 型注射泵输送二氧化碳,一台ISCO100DM型注射泵输送携带剂,三台泵由一台控制器控制,可以准确控制柱前压和携带剂的流量;冷冻机(重庆四达实验仪器厂)冷冻二氧化碳到一6℃;恒温箱(海安石油仪器厂);TSP-100高压UV-VIS检测器(美国TSP公司);Rhendyne 7125形六通进样阀配20μL定量管等部分。二氧化碳(北京氦普北分气体工业有限公司,纯度99.99%);无水乙醇(北京化工厂,分析纯);正己烷(北京化工厂,分析纯)。2.2 样品及处理样品包括:番茄红素标准品,β-胡萝卜素,室温下放置半个月后的氧化的番茄红素标准品,加入β-胡萝卜素的氧化番茄红素标准品;超临界丙烷萃取番茄产品,萃取的番茄原料,萃余物。将上述样品分别称取适量溶于正己烷中。2.3 色谱条件Spherisorb Ctg色谱柱(中国科学院大连化学物理研究所,尺寸:250mm×4.5mm,10μm填料);流动相为二氧化碳-乙醇,二氧化碳-正己烷;检测波长:472nm;进样量:20μL;温度、压力、流动相流速及组成以下说明。3 结果与讨论3.1 番茄红素的定性分析本实验所用的番茄红素的样品为超临界丙烷萃取番茄产品,其中主要的杂质为β-胡萝卜素,同时由于番茄红素易于氧化,所以对番茄红素、番茄红素氧化物、胡萝卜素进行了定性分析。在相同的色谱条件下,分别注入番茄红素标准液、氧化后的番茄红素标准溶液、加入β-胡萝卜素的番茄红素标准溶液。结果如图可看出,番茄红素及其氧化物,β-胡萝卜素的保留时间随极性的减小而增加。3.2 最佳条件的确定为了保证番茄红素的定量准确,通过考察压力、温度、流动相组成及浓度对番茄红素与其氧化物分离的影响,确定了番茄红素分离的最佳条件。3.2.1 柱前压的影响 改变柱前压,当柱前压由17.0MPa增加到20.0MPa时,番茄红素及其氧化物的容量因子逐渐减少,两者的保留时间都缩短,但番茄红素与其氧化物可以实现分离。3.2.2 柱后压的影响 当柱前压、温度及携带剂流速不变,将柱后压由15MPa增加到19MPa,番茄红素与其氧化物的容量因子均减小,但番茄红素与其氧化物的相对保留值随柱后压的增加而减小,分离度也有减小的趋势。3.2.3 温度的影响 容量因子随温度增加的变化趋势如图看出,随温度升高,番茄红素与其氧化物的容量因子降低。番茄红素与其氧化物的相对保留值在室温时最大。由图也可看出,分析温度较低时,番茄红素与其氧化物的保留时间较长,但分离度较大,所以,分离的温度可选择室温。3.2.4 携带剂的影响 当乙醇浓度由5%增加到8%时,番茄红素容量因子减小很快,当浓度增大到16%时,番茄红素与其氧化物的相对保留值减小,乙醇合适的浓度为8%~10%。若以正己烷做携带剂,变化趋势与乙醇相同,番茄红素与其氧化物的相对保留值与乙醇作为携带剂时的值相差不大,大约1.2。但在相同的浓度下,正己烷做携带剂分离番茄红素的容量因子比乙醇小。3.3 番茄红素的定量分析3.3.1 绘制番茄红素的标准工作曲线配制一系列浓度的番茄红素标准溶液,分别取20μL的上述标准溶液进色谱,并根据浓度.峰面积作标准曲线,标准曲线方程为Y =一0.049+7.42×0.0000001X(Y的单位为g/L),拟合度为0.9990,线性关系较好。线性范围:3~240mg/L。3.3.2 超临界萃取番茄红素样品色谱图 选好适当的色谱分离条件,取20μL番茄红素产品的正己烷溶液进色谱,将产品中番茄红素的峰面积代入标准曲线,即可求出溶液中番茄红素的浓度,并求出产品中的番茄红素含量。3.3.3 精密度及平行性测定 分别称取适量的同一批番茄产品、原料、萃余物各2份,溶于10mL的正己烷中。取各份上述溶液平行测定4次,结果列入表可以看出,测量结果的相对标准偏差均在6%以内,具有良好的精密度,且结果的平行性也很好。结合含量及总量进行物料恒算可以看出,原料中的番茄红素总量与产品及萃余物中番茄红素的总量较吻合,得到的结果可靠、准确。4 结 论(1)使用超临界流体色谱,在C18色谱柱上定性分析番茄红素,可通过改变温度、压力、携带剂浓度来改善分离条件。本研究确定的优化条件为柱前压20.0 MPa,柱压降在3.0~4.0MPa,分离的温度选择室温,携带剂浓度在8%~10%。番茄红素的保留时间大约3min,分析时间短于HPLC。(2)超临界流体色谱定量番茄红素,相对标准偏差在6%以内,结果的重复性和平行性较好。References1 Cheng Jian(成坚),Zeng Qingxiao(曾庆孝).Food and Fermentation lndustr/ez(食品与发酵工业),1999,26(2):75~782 Wang Qiang(王强),Han Yashan(韩雅珊),Dai Yunqing(戴蕴青).Chinese J.Chromatogr.(色谱),1997,15(6):534~535

超临界流体石油分析相关的耗材

  • ASA 超临界流体色谱柱
    产品特性介绍部分ASATM超临界流体色谱适用制备柱管套装适用于手性拆分的SSCTM SFC超临界流体色谱柱:独立于装柱机工作柱内径有25mm,50mm和101mm三种规格任意内径规格定制柱管高度有40cm和70cm两种规格可装填任意厂商的手性填料可装填任意基质的手性填料可任意调节装床高度为5到35cm独特的水浴夹套设计精确控制柱温独特的柱头和柱尾密封设计确保高压不漏液 手性柱装填服务耐压极限345bar/5000psig符合ISO9001质量管理体系2. 柱管架ASATM柱管架的专业设计帮助您很便捷的将柱管竖直放立,除了节省空间以外,也可以提高安全性要求。该柱管架采用轻量化材质,以及先进的氧化喷漆工艺,整个设计既简约实用又美观大方。
  • Golden Gate超临界流体ATR池
    Golden Gate 超临界流体ATR池是世界上一款独一无二的超临界流体研究的FTIR附件,最高压力6000psi(相当于408atm),最高温度为300℃,流体池体积很小,仅为28ul。FTIR谱图是通过单反射ATR得到,信噪比高。该附件可以适合于任何红外光谱仪。
  • 岛津 Shim-pack UC系列 Shim-pack UC-GIS II 超临界流体色谱柱
    Shim- pack UC系列超临界流体色谱柱当使用 Nexera uc超临界流体色谱系统进行分析时,由于样品在流动相中的扩散速度与液相色谱相比较高,所以根所用色谱柱的类型的不同,分离行为会发生明显变化。shim- ack UC-X系列涉及各种固定相,适用于各种化合物的分析。更快速、更高效Shim- pack UC-X系列产品有多种固定相,适用于高扩散和低粘度液体二氧化碳作为流动相的SFC系统。可通过加快流速而减少分析时间,SFC系统可以提升至传统HPLC不能达到的分析速度,并且不降低分离性能多种固定相以满足不同需求Shim- pack uc-X系列有八种类型的固定相和尺寸,以满足不同的研究和开发需求。高耐久性和稳定的重现性Shim- pack UC-X系列具有高惰性,提高分析精度并提高色谱柱耐久性。其均匀的二氧化硅表面和稳定的化学修饰也确保了分析的高重现性。分析应用例生育酚异构体难以分离的异构体和结构相似的化合物可以通过NexeraUC和Shim-packUC-X系列配合实现快速分析。在下面的例子中,通过NexeraUC和Shim-packUC-XSil分析了四种生育酚异构体。如下图所示,分析时间缩短到常规HOLCIM方法所用时间的三分之一,同时分离度提高。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制