当前位置: 仪器信息网 > 行业主题 > >

水中油份浓度分析仪

仪器信息网水中油份浓度分析仪专题为您提供2024年最新水中油份浓度分析仪价格报价、厂家品牌的相关信息, 包括水中油份浓度分析仪参数、型号等,不管是国产,还是进口品牌的水中油份浓度分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水中油份浓度分析仪相关的耗材配件、试剂标物,还有水中油份浓度分析仪相关的最新资讯、资料,以及水中油份浓度分析仪相关的解决方案。

水中油份浓度分析仪相关的资讯

  • FP360 sc 水中油分析仪在地表水水质监测的应用
    随着工业的规模的不断扩大和发展,国家对地表水的污染越来越重视,其中,石油类是地表水必测项目之一,国内不少地区环监部门对河流、湖泊、排污河渠都采取在线监测的方式来监控油类污染物。工业的矿物油污染是地表水油类污染的来源之一,紫外荧光法的FP360sc水中油可以有效监测矿物油的污染。上海某环境监测中心对石油类污染指标纳入了地表水在线监测的范畴,在多个地区的不同地表水水质自动监测站均采用FP360 sc在线水中油分析仪。应用情况主要仪器:FP360 sc在线分析仪,SC1000 控制器。如图 1 和图 2 所示。FP360 sc体积小,对于占地面积小岸边监测站安装方便;客户认可紫外荧光法测量原理,认为FP360 sc测量值能够比较好的反应监测指标的趋势。FP360 sc与SC1000控制器兼容,降低了成本,且FP360 sc水中油分析仪维护简单,不需要使用试剂,维护成本非常低。当前用户主要用于趋势测量,在没有做校准的情况下水中油含量为几十个ppb,能够达到监测水中油含量的变化趋势的要求。 总结 随着国内污染状况的日趋严重,随着环保监测要求的日益提升,地表水石油类在线监测会被越来越多地区的环保局所采纳,FP360 sc分辨率低,检出限仅1.2ppb PAH,是一款几乎免维护的水中油分析仪,不需要消耗试剂,只需每2年返厂一次,清洗维护有需要时才执行,特别适用于地表水水质自动监测站。
  • 发布HH-Portable Meter便携水中油分析仪新品
    HH-Portable MeterHH-Portable Meter便携水中油分析仪凭借在石油和天然气行业数十年的创新经验,Inov8 Systems开发了当今先进的便携式水中油测量设备 特征• 多合一手持式便携式台式设备• 内置充电电池• 集成的7英寸触摸屏彩色显示屏• 基于Windows的PC操作• 简单直观的界面,用于设置和控制• 小于1KG的重量• 数据记录和图形表示 • 灵活耐用的测量探头• 用于实验室操作的可选扩展坞• 结果可与官方实验室方法(USEPA 1664A和ISO 9377-1)相关联• 用于测量和分析的全实时光谱法• 连续实时测量并立即获得结果• 12个月标准保修 技术参数:光源:固态连续波3mW激光测量方法:紫外荧光光谱法范围:PPB-5,000 ppm精度:+/- 1%采样率:1秒重复性:+/- 1%尺寸:170mm x 105mm x 38mm 探头长度:100mm电缆长度:2.0m重量:1KG材质:316L SS标准外壳/探头IP65电源:内置可充电电池充电 端口:Micro USB环境温度:-20 至60摄氏度 处理温度:-20 至200摄氏度 创新点:激光诱导光谱法便携式水中油分析仪器HH-Portable Meter便携水中油分析仪
  • 翟家骥介绍水中油分检测方法及仪器选型
    仪器信息网讯 2013年11月7日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会、中国仪器仪表学会环境与安全检测仪器分会共同主办,北京雄鹰国际展览有限公司承办的&ldquo 第六届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2013)&rdquo 在北京国际会议中心拉开帷幕。据大会主办方介绍,本次论坛吸引了700多名观众报名参加,近50家在线分析仪器厂商参展。仪器信息网(http://www.instrument.com.cn/)作为战略合作媒体参加了本次论坛。北京城市排水集团检测中心翟家骥报告题目:水中油在线监测技术在低浓度石油废水中的应用  翟家骥在报告中主要介绍了紫外吸收光度、紫外荧光法、浊度法、间接法CODCr和TOC等水中油检测方法的优缺点,以及水中油分测定仪的选用原则。  溶剂萃取-红外比色法、溶剂萃取-称重法是实验室方法,有相关的国家标准或行业标准。  气体吹出/FID法可以检测挥发性有机组分,灵敏度高,检测仪器可以是在线色谱,也可以采用FID检测器的专用仪器,但此类仪器装置及配置复杂,且依赖公用工程条件。  紫外吸收光度既是一种实验室方法,也是一种在线检测方法,有相关国家标准,分析时间短,但灵敏度不高。同时,因水中可能存在其他有紫外吸收的物质,因此在线监测有局限性,仅针对矿物油样品,对饱和烃和小分子量烃无响应。  紫外荧光法可在线检测水中油分,有相关行业标准,灵敏度高、适应性强,可对溶解态、悬浮态、乳化态样品进行测定,多用于检测较重的石油及石油产品,但对饱和烃则无明显响应。  浊度法是目前在线分析仪采用较多的一种检测方法,尚无相关参考标准,只能用于测量悬浮态的油分,对多数矿物油测定灵敏度可达ppb级,但对溶解态和乳化态样品不能测定。  间接分析法包括COD、TOC,在线CODCr测定采用强酸性K2Cr2O7快速消解-比色测定法,对于低油含量的污废水监测,如无专用在线油分测定仪,亦可由在线CODCr的测定值推算石油类物质的含量;TOC直接测定污水中有积碳的含量,亦可通过其推算石油类物质的含量。  对于如何选用水中油分测定仪,翟家骥总结到,因油分化合物的结构中主要以-C-H为主,一般宜采用紫外荧光或紫外吸收法;但在线测定废水中油分的方法可以选择直接法-紫外分光光度法和紫外荧光法、折射光(浊度)测量法,以及间接法-CODCr和TOC。
  • TD-500D水中油份检测仪中标:上海海洋大学
    美国特纳/Turner Designs公司是一家专业生产水中油监测的专业制造商,公司生产的便携式水中油份检测仪型号:TD-500D是专业为环保行业设计,广泛应用于:环保局、中石油、中石化、化工厂、污水处理厂、环境监测站、渔业局、海事局、大学等行业。 2013年3月份,我公司代理的便携式水中油份检测仪型号:TD-500D中标上海海洋大学。便携式水中油份检测仪型号:TD-500D产品特点:■采用先进的紫外荧光光度法检测技术;■高精确度和高重复性,与红外法具有优良的相关性;■双通道双量程检测技术减少了由于操作而带来的误差,大大提高了浓度检测范围,高浓度测量无需稀释水样;■双通道双量程检测技术: 量道“A”用于低浓度油份和精炼的烃类油的检测。量程“B”可检测含原油、润滑油等高浓度油份的水样(1000mg/L),而不需要稀释;■快速的分析方法。最少的分析步骤,最快可以3分钟完成一个样品的检测;■优良的溶剂兼溶性,适用于大多数常规萃取溶剂,还可以采用最新研究技术:“无需溶剂的测定方法”来检测;■校准简便,CheckPOINT校准器可供野外作业所需的快速校准和重复校准而不需要标准溶液反复标定;■检测不受甲醇等极性物质的干扰;■一次性使用的测量试管,避免样品间重复污染干扰。技术参数:仪器名称:TD-500D便携式水中油分析仪; 原理:紫外荧光法(UV); 检测对象:水中的碳氢化合物:原油、凝析物、柴油、润滑油、燃油、机油、柴油类有机物; 测量方法:溶剂萃取; 适用溶剂:配套试剂正己烷,Vertrel,AK-225,二甲苯,氟利昂,Horiba;5L正己烷;线性范围:0.01ppm ~ 1000ppm,取决于碳氢化合物的种类; 准确性:优于全标度的2%; 重现性:优于全标度的2%; 灵敏度:优于0.1ppm,取决于碳氢化合物的种类; 校准:单点校准; 预热时间:5秒; 响应时间:5秒; 测量时间:4分钟或用户偏好; 尺寸:4.45cm×8.9cm×18.4cm; 重量:0.4kg; 外壳材料:非金属; IP防护级别:符合IP67标准;防尘,防水; 工作环境温度:5oC~40oC (41F~104F); 适用试管:API比重45,微型试管;API比重45,8mm试管,适用于所有溶剂; 电源:四节AAA电池(可连续检测1000个以上样本); 自动断电:被闲置3分钟后; 信号显示:有,液晶显示; 输出信号:无; 警报:电池电量不足、线路故障、高空白样本; 保修期:1年,出厂零件及售后服务。
  • 水中油测试---红外光度测油仪
    供水安全始终是我国经济社会发展的重要问题。疫情过后,水生态安全仍将是我国的长期战略,对我国社会的可持续发展、居民的身体健康等方面起到重要的支撑作用,我们认为国家仍将持续加大对水生态安全各方面(供水、污水、水环境)的基础设施建设力度和资本开支力度,水生态一体化、系统化的保护与治理工作也将持续推进。B1170红外光度测油仪是一款高精度的分析仪器,采用一体化光路系统,光路设计合理,信号强,信噪比高。采用铝合金铸造底座,经自然失效处理,外置电源,注塑外壳,美观大方,体积重量轻,在作为实验室仪器的同时也可以当便携仪器使用。仪器特点1、开关电源供电,电源范围宽2、独创的样品和参比池自动切换机构,精确定位、消除误差、使机械误差影响趋近于零3、余割方式进行波数精确定位扫描,使波数定位精度小于一个波数4、真正三波数,符合国际“HJ 637”不需要作标准曲线,只做一组校正系数5、模拟水中油成份,测定任意组份标油的误差小于百分之五,使仪器真正为实际水样服务6、设有专用餐饮油烟测量菜单,完全按国家饮食油烟排放标准GB18483测量饮食业油烟7、中文菜单操作,配有大屏幕液晶显示器8、不需标样定标,测量结果可以打印输出可脱离计算机单独使用9、可连接计算机系统操作,波数可以自由补偿定位10、既能定量测量,也能定性分析;谱图清晰,能够分辨出各种干扰物质技术参数波数扫描范围:3400cm-1~2400cm-1波数重复性:±1cm-1波数准确度:±1cm-1谱图分辨率:1 cm-1吸光度线性范围:0.0000~1.9999相关系数:r0.999(红外非分散方法)基本测量范围:0.02~800mg/L检出浓度:0.0001mg/L检出浓度:80000mg/L(稀释测量)检出限3SD:0.2mg/L基线漂移度:1%/4h不同配比测量误差:5%(配比不同比例混合烃模拟实际水样)电 源:220V±10V 50HZ±1HZ湿 度:80%温 度:5~35℃外形尺寸:500×250×150(mm)重 量:5.5kg
  • QP1680 – TOC (总有机碳)分析仪 海水中的总有机碳分析
    qp1680 – toc (总有机碳)分析仪 海水中的总有机碳分析哈希公司 6.29海水中有机碳的监控水平已成为了解全球碳循环的一个重要参数。因此,对海水中 toc 浓度的精确测定至关重要。因海水中包括了水、盐和其他含有溶解无机及有机物的物质,因此总有机碳分析更具挑战性。qp1680-toc(总有机碳)分析仪的设计目的旨在对含有不同大小颗粒和浓度范围广泛的复杂混合物进行分析,且无需使用任何附加套件或配件。此应用说明中所用的海水样品均采集于荷兰北海沿岸。qp1680-toc 高温催化氧化燃烧分析仪是按照国际标准 iso 8245 进行校准的。经分析的海水样品证明了标准偏差系数 rsd 小于 2%。在分析过程中,qp1680-toc 直接进样技术证明了其可对复杂的海水样品进行很好的处理,且无需额外的用户维护。qp1680-toc 分析仪procat 燃烧管qp1680-toc 自带一个集成 65 位自动进样器,并为每个瓶位配备了一个瓶搅拌器。在进行npoc 分析时,将自动加酸对样品进行预处理,随后对样品进行净化以去除无机碳。在提取样品前 , 会对进样器针进行 清洗 , 并对样品进行均匀搅 拌 。通过内置注射器将样品吸入样品管,避免与任何阀门或内置注射器接触。 样品被直接引入温度维持在 720°c 的高温炉中。海水样品将不通过任何阀门或机械滑块直接进入燃烧炉,因此不会发生盐磨损,也可避免进样口堵塞。载气将不断流经高温炉。通过 procat 燃烧管将所有有机碳转化为二氧化碳。燃烧气体将不断流经冷凝器,在此进行水蒸气冷凝和气体干燥。下一个调节步骤为去除由洗涤器吸附的卤素和酸雾。最后,气体在进入检测器之前将流经一个 5µm 过滤器以捕获所有气溶胶或颗粒物。 样品流中的二氧化碳气体将被引导流经一个非色散红外检测器(ndir)进行定量。来自检测器的综合信号响应与二氧化碳浓度直接成线性关系。通过使用分析软件,可轻松进行样品报告并将其转移至可用的 lims 环境中。 校准曲线根据标准溶液生成,而标准溶液则由 100 mg/l 的单一储备标准溶液制备而成。将无水邻苯二甲酸氢钾溶解于超纯水中,进行储备标准溶液的制备。将储备标准溶液进一步稀释以生成所需标准溶液。对每个校准液位进行 5 次分析。表 2 列出了每个校准液位的平均面积。 end哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 全新首发|水中总有机碳分析仪采用嵌入式系统
    水中总有机碳分析仪是一种专门用于测量水中总有机碳的仪器。总有机碳是指水中所有有机物质的总和,包括有机酸、醇类、酮类、酯类等。 产品链接https://www.instrument.com.cn/netshow/SH104275/C519691.htm该仪器的主要用途有以下几点: 1.水质监测:水中总有机碳分析仪可以用于监测水体的水质状况。由于有机物质是水体中普遍存在的污染物质,因此测量水中总有机碳的含量可以反映水体的污染程度。这对于环境监测和水质管理具有重要意义。 2.过程控制:水中总有机碳分析仪可以用于工业生产过程中的水质控制。例如,在制药、化工、造纸等行业中,需要严格控制工艺用水中的有机物含量,以保证生产质量和效率。使用水中总有机碳分析仪可以实现对水质的有效监控和控制。 3.科学研究:水中总有机碳分析仪还可以用于环境科学、生物学、地球科学等领域的科学研究。例如,在环境科学研究中,可以用来研究水体中有机物的来源、转化和归趋等;在生物学研究中,可以用来研究生物体内的代谢过程和有机物质的生成等;在地球科学研究中,可以用来研究地质演化过程中有机物质的沉积和演变等。 综上所述,水中总有机碳分析仪在水质监测、过程控制和科学研究等领域都有着广泛的应用。通过使用该仪器,我们可以更好地了解水中有机物的含量和分布情况,为水质保护和管理提供科学依据和技术支持。
  • 德国元素+仪器信息网 | 废污水中总有机碳(TOC)分析解决方案
    德国元素+仪器信息网 | 废污水中总有机碳(TOC)分析解决方案废水中有机成分的监测是废水处理过程的重要组成部分,监测废水中有机含量的方法有生物需氧量(BOD)、化学需氧量(COD)和总有机碳(TOC)。TOC测量相较于其他两种方法,具有一些独特优势,特别是在废水监测方面。高温TOC分析仪可实现在几分钟内获得快速的结果,而非需4小时的COD和5天的BOD,使其成为理想的连续监测废水的方法。废水TOC分析面临诸多挑战。通常水会有高的颗粒负荷和高的元素浓度。这就给出了几种可能影响TOC测量和数据可靠性的干扰。为此,德国元素携手仪器信息网,将于5月19日召开“废污水分析检测技术”系列主题网络研讨会。德国元素产品专家-潘婷女士也会与大家一同探讨废污水中总有机碳(TOC)分析解决方案。长按并扫描下面的图片,识别二维码,开始报名,期待您的参与!
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
  • 新疆某地水中油现场应急演练,LUMEX荧光测油仪大放异彩
    由于新疆地处中哈交界,河流多为跨境河流,如一旦发生石油泄漏事件,很容易造成河流污染,不能及时发现、检测和控制的话,将会酿成国际事故,所以新疆环保举行了一次水中油泄漏应急演练,确保以后遇到这类应急事故能够迅速反应和处理。邀请了相关行业的老师和专家现场学习,各部门进行有条不紊的配合,除油和检测紧张有序的进行。在这次新疆环保的石油泄漏应急演练中,LUMEX的荧光测油仪和在线油膜仪能为实验室和现场应急检测提供了快速准确的方法和有效的应急监测手段。 LUMEX公司于1991年开始潜心研究水中油技术,开发紫外及荧光系列产品,主导并参与多项俄联邦水中油国家标准制定,为环境领域、海洋、石油化工等行业用户提供系列解决方案和方法参考。Fluorat系列和Panaroma系列荧光测油仪检测快速准确,用正己烷进行萃取,检出限低,可达ppb级,样品处理及检测时间短,可以检测超低含量的石油烃类,稳定性和重现性好,既可以进行实验室的检测,也可以用于环境应急监测。适用于湖泊、水库、近岸海域流域水库、河口、入海口、排污口等地表水、地下水、饮用水石油类监控及预警。 LUMEX的在线油膜监测系统还可以为环保系统提供有效的在线油膜监测方法及方案,有效应对流域及水质溢油应急事故和调查取证的能力。可实现多组在线监测器架构设计,满足水面及海面油污及油膜联网监控需求;有效监测油膜及油污事故及泄露事故的影响范围及扩散程度。灵敏精确监测泄油漏油事故产生实时数据传送保证数据精准传送遥感在线监测、无需采样抗干扰性较强:极大的减小风浪和背景光影响先进的光强调节技术降低光散射对监测的影响数据存储传送防止数据丢失及缺失 来源:LUMEX分析仪器
  • 水质与水质分析仪器——在线水质分析仪器篇
    p class="F24 Fw L40 G2"  a href="http://www.instrument.com.cn/news/20171220/236150.shtml" target="_blank" title="" style="font-size: 16px text-decoration: underline "span style="font-size: 16px "水质与水质分析仪器之水质指标篇/span/a/pp  上回讲到了水质指标,现在来说说获取水质指标数据的工具:水质分析仪器。/pp  目前,有三种形式的水质分析仪器,分别是:实验室分析仪器、便携式分析仪器以及在线水质分析仪器 /pp  在线水质分析仪器,出现的时间最晚,但是成长迅速,特别是最近几年,备受关注,曝光率远超其他两种,成了炙手可热的网红-传说中的“后发优势”?/pp  一起来看看:最近,在电视、报纸、网络、微博、微信等传统和非传统媒体上,凡是涉及到环境保护和水安全的场合,“自动监测”、“在线监测”这类字眼几乎都会现身。前段时间环保部召开关于国家地表水环境质量监测的会议,也明确提出来了“要加快推进水质自动站建设。逐步建立起以自动监测为主,手动监测为辅的监测模式?”(据说,这次会议的成果之一就是在2018年,政府会投资在全国范围内建设1200个地表水水质自动监测站,惊不惊喜?)/pp  即将在2018年1月1日正式实施的“中华人民共和国环境保护税法”,在第十条的条文中更是明确规定:/pp  i“应税大气污染物、水污染物、固体废物的排放量和噪声的分贝数,按照下列方法和顺序计算:/i/ppi  (一) 纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算 /i/ppi  (二) 纳税人未安装使用污染物自动监测设备的,按照监测机构出具的符合国家有关规定和监测规范的监测数据计算 ”/i/pp  解释一下:目前中国水污染物的自动监测设备分为流量监测设备和浓度监测设备两种(浓度与流量的乘积就是污染物总量),浓度监测设备就是通常所说的在线水质分析仪器。/pp  更重要的是:根据这部法律,环境税应税污染物排放量数据的取得,首先采用自动监测设备的数据,其次才是“监测机构出具的数据”-目前监测机构采用的分析仪器多是实验室或者少数便携式分析仪器(针对必须在现场测试的个别指标)。/pp  可以说,这部环境税法正式以法律条文的形式确立了在线分析仪器的地位。/pp  那么,这么“高端大气上档次”的在线水质分析仪器到底是何方神圣?为什么这样受追捧呢?/pp  权威的定义是:按照国际标准化组织(ISO)代号为ISO15839《水质-在线传感器/分析设备的规范及性能检验》标准中的定义:在线分析传感器/设备(on-linesensor/analyzingequipment) ,是一种自动测量设备,可以连续(或以给定频率)输出与溶液中测量到的一种或多种被测物的数值成比例的信号。/pp  听起来很高深的样子(权威总是这样的?),有没有通俗点的说法呢?/pp  有问题,找百度。/pp  万万没想到,这一次度娘居然让我失望了,寻了半天,没找到一个比较令人信服的说法。/pp  “求之不得,辗转反侧”。想来想去,似乎自己十年前在2007年“第二届在线分析仪器应用与发展国际论坛”大会发言时的非权威说法还比较容易理解:/pp  “在线水质分析仪器是一类专门的自动化在线分析仪表,仪器通过实时、现场操作,实现从水样采集到(水质指标)数据输出的快速分析 在线水质分析仪器一般具有自动诊断、自动校准、自动清洗、故障报警等功能,在保证分析结果准确度的同时,可以实现无人值守自动运行。”/pp  结合权威和非权威的说法,可以发现在线水质分析仪器最重要的特征有三个:自动、连续、实时 /pp  手段是为目的服务的。作为获取水质指标数据的工具,对照上回讲到的获取水质指标的四种目的:span style="text-decoration: underline "了解杂质浓度 预测水质变化 控制和优化水处理工艺 评估水质安全 以及六大类水质指标:物理指标、成分指标、评估性综合指标、水质转化潜能指标、工艺指标、替代指标/span 我们来看看作为一种新技术出现的在线水质分析仪器,当年最先的应用突破点选择了哪里?/pp  毋容置疑, 在“控制和优化水处理工艺”方面,凭借“实时、连续”的特点,在线水质分析仪器有着不可替代的作用。首先实现在线测量的是pH、浊度、溶解氧、ORP等重要的工艺指标 遇到有些工艺指标分析方法复杂或者测量周期长,不能满足流程工业自动控制要求的挑战,就轮到了替代指标的闪亮登场。/pp  (现在很难考证第一台在线水质分析仪器具体出现在哪个年代、哪种场合了,个人猜测,第一台很可能是在线Ph计,用于酸碱调节的工艺控制)/pp  从全球范围来看,目前在线水质分析仪器应用最多的细分领域还是水处理工艺过程控制。/pp  在线水质分析仪器“自动、连续、实时”的特点,,除了应用于控制和优化水处理工艺过程,在了解特定污染物浓度和评估水质安全方面,相对于实验室和便携式分析仪器,也有着很大的优势。/pp  自动化对于减少分析人员人力劳动的好处不言自明,更重要的是,由于仪器分析过程不用人工干预,人为误差也减少了。(这些年中国政府和环境管理部门一直都在努力消除各种人为因素对污染物排放数据的干扰(参见《环境监测数据弄虚作假行为判定及处理办法》等法规文件,以及环境数据造假入刑的各种新闻)。中国目前是全球采用在线水质分析仪器对污水排放进行自动监测最为普遍的市场,在线水质分析仪器又将成为环境保护税法规定的污染物(主要是氨氮、重金属、总磷/总氮等成分指标和COD等评估性综合指标)排放量计税工具之一,/pp  估计很大一个原因就有作为自动化仪表的在线水质分析仪器在分析过程中无需人工干预这个特点)/pp  同时,“连续、实时”的特点也使得在线水质分析仪器不仅可以连续提供水质指标的即时数据,还常常作为报警设备,水质指标一旦超过某个给定的安全值,仪器就会输出报警信号(在评估水质安全方面,实时报警的作用是非常重要的)。/pp  优点还不止于此,再啰嗦两句关于操作人员健康安全的好处:/pp  有些水样,比如含有较多有毒挥发性化学物质,人工分析时可能危害到分析人员的身体健康 又有些工作场所,在生产装置运行时,分析人员无法进入现场采取水样。最极端的例子是:在核电厂的一回路,由于较强的辐射,即使是穿戴有重型防护设备的操作人员,也只能短暂停留 但是核电厂运行过程中有些重要的水质指标数据(如溶解氧、溶解氢、电导率等)又必须及时获取。/pp  这时,作为自动化设备的在线水质分析仪器的优势就更能体现出来了。/pp  不过,虽然有着这样多的优点,无论从技术进步还是市场发展来看,在线水质分析仪器还是和其他任何新技术的发展历程一样,并不是一帆风顺的。/pp  在初期,受制于相对过低的水资源费、水价以及废水排放需要支付的费用,当时在线分析仪器的投资和运行成本都比较高 而且那时在线水质分析仪器的稳定性、可靠性等还不一定能完全满足实际工作的要求 可以实现在线分析的水质指标也不是很多。/pp  这两种因素造成了当时水工业行业的运行管理者和水处理工程师对采用在线水质分析仪器持有一种谨慎的态度,从而严重制约了在线水质分析仪器的发展和应用。(1973年,在英国伦敦召开的第一届水处理行业ICA(Instrumentation(仪表)、Control(控制)、Automation(自动化))专家会议上,当时与会专家达成的第一个共识就是:仪器数量不足是自动控制的主要障碍。大家认为根据当时仪器的发展程度,仅有浊度、溶解氧和电导率三种指标的测量较为可靠)。/pp  “天生我才必有用”。随着人们对水质安全的重视、环保法规的更加严格,水资源费的不断上升,特别是在线水质分析技术和计算机信息技术的发展,在线水质分析仪器逐渐表现出成本性能优势(举例:相对于最初的模拟电路,数字电路技术在水质分析仪器中的采用,使得仪器的可靠性有了很大的提升,仪器设计和批量生产的成本得以大幅下降),在水环境监测、水处理工艺过程过程控制、饮用水水质安全预警等诸多领域都得到越来越广泛的应用,也迅速在废水污染物排放的浓度监测与超标报警领域得到了应用。/pp  前面谈了市场和应用,让我们回到在线水质分析仪器,扒一扒这种技术自身的发展与面临的挑战:/pp  根据前文ISO标准的定义,有两种形式的在线水质分析仪器:在线分析传感器和比较复杂的自动化分析设备或者装置。/pp  先来说说span style="color: rgb(0, 112, 192) "strong在线水质分析传感器/strong/span:/pp  国家标准GB/T7665《传感器通用术语》对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。在线水质分析传感器通常结构比较简单,通过直接和被测水样接触获得水质指标的数据。/pp  在线分析传感器,最初可以测量的水质指标,主要是一些简单的物理指标和成分指标,如电导率、Ph、ORP、溶解氧等 接着是浊度、悬浮物浓度等光学原理的传感器 后来,出现了UV254等替代性指标的传感器 最近几年,随着仪器计算能力的提高、新材料的应用,离子选择电极法(测量污水中的氨氮、硝氮等重要工艺指标)、紫外荧光(测量水中油等)以及全光谱扫描原理(传感器一次可间接测量COD、BOD、TOC等多种有机物指标、浊度、硝氮、亚硝氮等多种水质指标)的传感器开始大量应用。/pp  在线水质分析传感器在实际使用中主要面临两个方面的挑战:/pp  传感器直接同水样接触,缺少了实验室人工分析时样品预处理及去除样品中干扰物质的过程,水质不同的水(含油、硫化物、重金属、悬浮物、高盐度、腐蚀性气体等各种杂质),对传感器材质和结构的要求也是千差万别的,在仪器设计制造时必须充分考虑这些因素,才能保证获取准确的测量数据和保证仪器长时间的正常工作,所有这些,都会增加仪器的成本。/pp  其次,由于传感器长时间同各种水质情况的水接触,仪器需要一定的维护量,特别是应用于各种工业废水等水质条件恶劣的样品时,仪器需要的维护量和维护费用会比较高。/pp  个人看法:随着新的分析原理、方法的出现和应用,以及各种新材料的采用(几年前荧光化学法在溶解氧分析仪的应用就是非常好的一个例子),传感器对复杂水质的适应性会得到提高 同时,物联网技术的应用,可以对传感器自身寿命及运行状态进行远程实时监测、管理以提高维护效率、降低维护成本。/pp  还有,根据所检测水样的不同水质情况,进行差异化设计、制造也是一个有效的办法 比如:饮用水和海水、工业废水,即使是测量同一个水质指标,也选用不同材质、结构和制造工艺来生产传感器,以满足不同水质条件的要求。/pp  更重要的是,和所有电子产品一样,传感器的成本必然会随着物联网时代大规模的应用出现超出想象力的下降。这时,免维护的一次性在线水质传感器将不再只是梦想。/pp  接下来看看比较复杂的span style="color: rgb(0, 112, 192) "strong水质自动化分析设备或者装置/strong/span:/pp  许多水质指标数据的获得,都需要有一整套的装置来自动实现原来实验室人工分析的流程,比如:过滤、加热、加显色剂、混合、测量等等 另外,为了保证长时间连续运行的准确度,还需要定时对仪器进行校准(当然,也是自动的),以及定期的人工维护。当下,在中国,可能在线COD分析仪是这种仪器中名气最大的一款。/pp  这一类在线水质分析仪器结构复杂,多用于成分指标(TOC、SiO2、总磷、总氮、重金属等)和评估性综合指标(COD、碱度、硬度、生物毒性等)。这类仪器的发展也非常迅速,最近,市场出现了三维荧光原理的仪器,可以间接测量水中油、BOD、CDOM等等一系列的水质指标 流式细胞原理的在线水质分析仪也开始被用于连续监测饮用水中的细菌总数以及水源地、海水中的藻类分类及计数 还有包括X射线荧光、激光诱导击穿光谱(LIBS)等新原理的仪器,也开始在水中重金属的在线监测方面崭露头角。/pp  一般来说,这类仪器的成本和价格要高于在线分析传感器(还记得以前做销售,向客户推荐在线COD分析仪时,客户说的话:买你这么小一台仪器,我一辆“帕萨特”就没有了)。/pp  strong发展到今天,先进的在线水质分析仪器早已是“硬件+材料+软件+算法”四位一体的强大组合了。/strong/pp  和传感器一样,这类仪器的成本问题也将会随着大规模的应用得到降低 而维护问题也可以通过设计的优化、新材料以及耐用元器件的采用得到改进,特别是,工业物联网技术的进步,可以实现这种精密设备的远程管理和诊断,通过有针对性的预维护等手段降低维护量及维护费用。/pp  同样,再来说说面临的挑战:/pp  今天的中国市场,大量的在线水质分析仪器被用于企业废水污染物排放自动监测,明年还将成为环境税的计税工具。这类在线水质分析仪器在实际应用中面临的主要挑战是数据的可靠性和准确度问题,造成问题的主要原因是:/pp  在线水质分析仪器采用的测量原理和测量方法和实验室标准分析方法不太可能完全一致,存在方法误差 表现出来的现象是:仪器可以准确测量标准溶液(常常是单一化合物的水溶液)的浓度 但是对于实际水样,衡量是否准确的标准是和实验室人工方法的测量值比对,除了方法误差,还有可能存在人为误差的影响。/pp  以COD(化学需氧量)为例,COD本来是一个条件参数,其定义是:在一定的条件下,水中的各种有机物质与外加的强氧化剂(如K2Cr2O7、KMnO4等)作用时所消耗的氧量 按照HJ828-2017《水质化学需氧量的测定重铬酸钾法》(标准取代了国标GB11914-1989),标准的测量条件是:“水样加入试剂后,保持微沸2小时”等等 采用在线COD分析仪器,测量条件很难完全和标准要求的条件一致,这样,就有可能影响COD这个条件参数的在线分析仪器的准确度。/pp  其次,对样品预处理的方法与流程和实验室标准方法不一致:受仪器连续运行及安装环境等一系列条件的限制,在线分析仪器采用的样品预处理系统很可能和相应水质参数对应的标准分析方法要求的预处理条件不一致,这样,也有可能对最终的测试结果带来影响。/pp  针对这些问题,环境管理部门的技术人员开展了大量的“在线水质分析仪器适用性”研究和比对测试工作,并根据不同水质指标,制定了有十分严格而有针对性的比对测试流程和规范,希望可以找到一个好的解决办法。/pp  需要说明的是:不是所有的在线分析仪器都需要面临如此严格的测量准确度要求。不同的使用目的,对仪器性能的要求也不尽相同。/pp  根据应用目的的不同,在线水质分析仪器又可以分为监测型和过程型两类,监测型分析仪器用于单纯的水质监测,以测量成分指标和评估性综合指标为主,用来判断水质是否达到法规的要求,以及环境水质(地表水,地下水)和饮用水水质的报警和预警性监测,不参与水处理工艺过程控制 这类仪器对测量数据的准确度(精度、误差)要求较高,数据可以作为有关部门进行执法管理的依据 /pp  过程型分析仪器主要用于水处理工艺过程监测,以测量工艺指标、替代指标为主,所测量的水质指标参与过程控制,以优化水处理工艺,提升水处理效率,实现水处理过程节能降耗 过程型仪器对仪器的可靠性和稳定性(具体的仪器指标是漂移和线性度、重复性)要求较高,要求仪器能够可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。/pp  除开法规执行带来的挑战,更大的挑战来自公众的需求:“人民群众日益增长的美好生活需要”/pp  一般公众的想法是:既然有了在线水质分析仪器这种先进、“高大上”的自动化设备,特别是有了生物毒性分析仪这类评价性综合指标的分析仪器,了解我们身边的水质状况,回答诸如饮用水是否安全(能直接饮用)?工厂排出的废水是否对环境无害?门外那条小河、还有游泳池是否适合孩子们去玩耍?等等,应该是分分钟的事儿,再容易不过了吧?/pp  “理想是丰满的,而现实是骨感的”/pp  能实时回答这些问题场景也许会发生在不太久的将来,但是在现实的今天,许多都还做不到。/pp  上面这些问题通通都涉及到了人们了解水质指标的终极目标-“评估水质安全”,非常复杂,复杂问题的讨论总是需要太多时间,这次留下悬念,如果有缘,这个问题我们下次再聊。/pp style="text-align: right "strong(供稿:重庆昕晟环保科技有限公司 总经理程立)/strong/p
  • 水质检测-水体中有机物质分析方法
    水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。一、化学需氧量(COD)化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。(一)重铬酸钾法(CODcI)在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下:测定过程见图2&mdash 35。水样20mL(原样或经稀释)于锥形瓶中&darr &larr H8S0&lsquo 0.48(消除口&mdash 干扰)混匀&larr 0.25m01/L(1/6K2Cr20?)100mL&darr &larr 沸石数粒混匀,接上回流装置&darr &larr 自冷凝管上口加入A82S04&mdash H2S0&lsquo 溶液30mL(催化剂)混匀&darr 回流加热2h&darr 冷却&darr &larr 自冷凝管上口加入80mL水于反应液中取下锥形瓶&darr &larr 加试铁灵指示剂3摘用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。图2&mdash 35 CoDcr测定过程重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。测定结果按下式计算:式中:V。&mdash &mdash 滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5&mdash Vl&mdash &mdash 滴定水样消耗硫酸亚铁铵标准溶液体积(mL);V&mdash &mdash 水样体积(mL); &lsquo c&mdash &mdash 硫酸亚铁铵标准溶液浓度(m01儿)t38&mdash &mdash 氧(1/20)的摩尔质量(8/m01)。用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5&mdash 50m8/L的COD值,但准确度较差。(二)恒电流库仑滴定法恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为:式中:W&mdash &mdash 电极反应物的质量(8);I&mdash &mdash 电解电流(A);t&mdash &mdash 电解时间(s);96500&mdash &mdash 法拉第常数(C);M&mdash &mdash 电极反应物的摩尔质量(8);n&mdash &mdash 每克分子反应物的电子转移数。库仑式COD测定仪的工作原理示于图2&mdash 36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe&rdquo 在工作阴极上还原为Fe&rdquo (滴定剂)去滴定(还原)CrzOv2&mdash 。库仑滴定空白溶液中CrzOv&rdquo 得到的结果为加入重铬酸钾的总氧化量(以O 2计);库仑滴定样品溶液中CrzO v&rdquo 得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为&lsquo o,后者需&lsquo ,则据法拉第电解定律可得:式中:1r&mdash &mdash 被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数;I=&mdash 电解电流;M&mdash &mdash 氧的分子量(32);n&mdash &mdash 氧的得失电子数(4);96500&mdash &mdash 法拉第常数。设水样coD值为c5(mg儿);水样体积为v(mL),则1y· c2,代入上式,经整理后得:本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI&lsquo o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。二、高锰酸盐指数,以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2&mdash 37所示。取水样100mL(原样或经稀释)于锥形瓶中&darr &larr (1十3)H:SO&lsquo 5mL &lsquo 混匀&darr &larr o.olmoI儿高锰玻钾标液(十KMn04)10.omL沸水浴30min&darr &larr o.olo omot儿草酸钠标液(专Nasc20&lsquo )lo.oomL退色 &lsquo &darr &larr o.01m01儿高锗酸钾标液回滴终点微红色 :图2&mdash 37 高锗酸盐指数测定过程测定结果按下式计算:1.水样不经稀释高锰酸盐指数式中:Vl&mdash &mdash 滴定水样消耗高锰酸钾标液量(mL);K&mdash &mdash 校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数);M&mdash &mdash 草酸钠标液(1/.2Na2C20d)浓度(nt01从);8&mdash &mdash 氧(1/20)的摩尔质量(8/m01);100&mdash &mdash 取水样体积(mL)。2.水样经稀释高锰酸盐指数式中2V。&mdash &mdash 空白试验中高锰酸钾标液消耗量(mL)Vz&mdash &mdash 分取水样体积(mL);f&mdash &mdash 稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l其他项同水样不经稀释计算式。化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。三、生化需氧量(BOD)生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5&mdash 7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。(一)五天培养法(20℃)也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。1.稀释水对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2&mdash 8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。高锰酸盐指数 (mg/L)系 数< 55 &mdash 1010 &mdash 20> 200 . 2 、 0 . 30 . 4 、 0 . 60 . 5 、 0 . 7 、1 . 0如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1&mdash 10mL,或表层土壤浸出液20&mdash 30mL,或河水、湖水10&mdash 100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180&mdash 230m8儿之间,否则,应检查原因,予以纠正。2.水样稀释倍数水样稀释倍数应根据实践经验进行估算。表2&mdash 13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2&mdash 13 由高锰酸盐指数估算稀释倍数乘以的系数3.测定结果计算对不经稀释直接培养的水样:式中Icl&mdash &mdash 水样在培养前溶解氧的浓度(m8儿);&lsquo :&mdash &mdash 水样经5天培养后,剩余溶解氧浓度(m8儿)。对稀释后培养的水样:式中:Bl&mdash &mdash 稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿);Bz&mdash &mdash 稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿);f1&mdash &mdash 稀释水(或接种稀释水)在培养液中所占比例;f2&mdash &mdash 水样在培养液中所占比例。水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1&mdash 2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。(二)其他方法1.检压库仑式BOD测定仪检压库仑式肋D测定仪的原理示于图2&mdash 38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。2.测压法在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖&mdash 谷氨酸溶液的BOD值和相应的压差作关系曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。3.微生物电极法微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2&mdash 39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。微生物膜电极BOD测定仪的工作原理示于图2&mdash 40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag&mdash A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A&mdash D转换电路,改A&mdash V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的&rsquo BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。四、总有机碳(TOC)总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳(TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:&lsquo 依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2&mdash 41。该方法最低检出浓度为o.5mg/I。五、总需氧量(TOD)总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02&hellip 所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1&mdash 0,6;CoD/TOD=0.5&mdash 0.9,具体比值取决于废水的性质。TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。六、挥发酚类根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4&mdash 氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。(一)4&mdash 氨基安替比林分光光度法酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4&mdash 氨基安替比林(4&mdash AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下:显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4&mdash 氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4&mdash 氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4&mdash 氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4&mdash 氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。(二)溴化滴定法在含过量溴(由溴酸钾和溴化钾产生)的溶液中,酚与镇反应生成三溴酚,并进一步生成溴代三溴酚。剩余的溴与碘化钾作用释放出游离碘,与此同时溴代三溴酚也与碘化钾反应置换出游离碘。用硫代硫酸钠标准溶液涵定释出的游离碘,并根据其消耗计算出以苯酚计曲捅发酚含量。反应式如下:结果按下式计算:挥发酚式中:认&mdash &mdash 空白(以蒸馏水代替水样加D同体积溴酸钾&mdash 溴化钾溶液)试验滴定时硫代硫酸钠标、&mdash 液用量(mL)6y2&mdash &mdash 水样滴定时硫代硫酸钠标液用量(mL);&mdash c&mdash &mdash 硫代硫酸钠标液的浓度(tpol儿)一V&mdash &mdash 水样体积(mL);15.68&mdash &mdash 苯酚(1/6C eHsOH)摩尔质量(8/m01)。七、矿物油.水中的矿物油来自工业废水和生活污水;工业废水中石油类(各种烃类的混合物)污染物主要来自原油开采、加工及各种炼制油的使用部门。矿物油漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水中的油可被微生物氧化分解,消耗水中的溶解氧,使水质恶化。矿物油中还含有毒性大的芳烃类。测定矿物油的方法有重量法、非色散红外法、紫外分光光度法、荧光法、比浊法等。(一)重量法重量法是常用的方法,它不受油品种的限制,但操作繁琐,灵敏度低,只适用于测定10m8儿以上的含油水样。方法测定原理是以硫酸酸化水样,用石油醚萃取矿物油,然后蒸发除去石油醚,称量残渣重,计算矿物油含量。该法是指水中可被石油醚萃取的物质总量,可能含有较重的石油成分不能被萃取。蒸发除去溶剂时,也会造成轻质油的损失。(二)非色散红外法本法系利用石油类物质的甲基(&mdash CH:)、亚甲基(&mdash 吧Hz一)在近红外区(3.4f4m)有特征吸收,作为测定水样中油含量的基础。标准油可采用受污染地点水中石油醚萃取物。根据我国原油组分特点,也可采用混合石油烃作为标准油;其组成为:十六烷:异辛烷:苯z 65:25:10(y/y)。测定时,先用硫酸将水样酸化,加氯化钠破乳化,再用三氯三氟乙烷萃取,萃取液经无水硫酸钠层过滤、定容,注入红外分析仪测其含量。所有含甲基、亚甲基的有机物质都将产生干扰。如水样中有动、植物性油脂以及脂肪酸物质应预先将其分离。此外,石油中有些较重的组分不镕于三氯三氟乙烷,致使测定结果偏低(三)紫外分光光度法石油及其产品在紫外光区有特征吸收。带有苯环的芳香族化合物的主要吸收波长为250一260nm;带有共扼双键的化合物主要吸收波长为215&mdash 230ngl。一般原油的两个吸收峰波长为225nm和254nm;轻质油及炼油厂的油品可选225nm。水样用硫酸酸化,加氯化纳破乳化,然后用石油醚萃取,脱水,定容后测定。标准油用受污染地点水样石油醚萃取物。 不同油品特征吸收峰不同,如难以确定测定波长时,可用标准油样在波长215&mdash 300nm之间的吸收光谱,采用其最大吸收峰的位置。一般在220一225nm之间。八、其他有机污染物质根据水体污染的不同情况,常常还需要测定阴离子洗涤剂、有机磷农药、有机氯农药、苯系物、氯苯类化合物、苯并(a)花、多环芳烃、甲醛、三氯乙醛、苯胺类、硝基苯类等。· 这些物质除阴离子洗涤剂外。其他均为主要环境优先污染物,其监测方法多用气相色谱法和分光光度法。对于大分子量的多环芳烃、苯并(a)芘等要用液相色谱法或荧光分光光度法。其详细内容参阅本教材后附的有关水质分析方面的文献。
  • “快、准、稳”的在线水中油监测设备——访北京华夏谱创仪器有限公司总经理陈莹莹
    仪器信息网讯 华夏谱创始建于2001年,一直专注于做科学仪器的开发、设计、生产、制造、销售以及技术咨询服务,不仅是仪器仪表行业协会的理事单位,也是中国测试分析协会的会员单位。二十二载风雨兼程,华夏谱创一直迈着坚定的步伐,不断成长与进步,那么,在发展的过程中,华夏谱创产品有哪些技术创新?产品的市场优势体现在哪里?未来的工作重点……在BCEIA2023期间,仪器信息网现场采访了北京华夏谱创仪器有限公司总经理陈莹莹,请她向我们介绍公司产品研发技术、应用现状、市场优势以及未来发展规划。北京华夏谱创仪器有限公司总经理 陈莹莹在线水中油监测设备,无需试剂也无需人工华夏谱创坚持以技术为导向,目前,团队人数的50%为研发和技术人员,主推的两款产品分别是水质监测分析仪器和油品分析仪器。陈莹莹向我们介绍道,此次在BCEIA 2023,华夏谱创带来的是水质分析仪器设备,主要为水中油监测仪器。公司从创立以来,不断进行着水中油监测设备的创新研发,从最初实验室的半自动分析,到全自动分析,再到目前的在线分析,逐步实现了监测过程无需人工操作,解决了接触化学试剂会对人体产生伤害的问题。在线水中油监测设备,目前主要应用于石油化工、供排水以及其它污染源的企业。她表示:“在线水中油监测设备在石油化工行业的应用最为广泛,相比测样需要十几分钟的传统方法,它的测样速度非常快,一个样品约5秒钟就可以出数,真正的能够实现测样快、准、稳。不仅如此,环保系统还可以应用于监测车,在解决应急任务时,这台设备就可以到达污染源现场,实施在线监测,并且无需试剂,采用荧光分析方法也不会对环境产生二次污染。”顺应市场需求,解决用户痛点据陈莹莹介绍,华夏谱创水中油的监测技术从开始的非分散方法、红外分光法,到现在的紫外分光法、荧光分光法,都紧紧跟随着监测技术标准的变化而去研发设计产品。华夏谱创的核心竞争力在于其产品不仅能够顺应市场的需求,又可以解决用户的痛点。陈莹莹感慨道,“公司经营了22年,期间离不开上万家用户对我们的信赖、认可和支持,我们能够获得用户的广泛赞誉,源于团队每位成员对产品的用心打磨和努力付出。我们始终追求以客户为中心的服务理念,来得以良好的经营公司。她还预计,华夏谱创2023年的业绩会将与2022年持平”积极推进技术自动化、信息化、在线化发展采访的最后,陈莹莹再一次强调,在未来,华夏谱创还是继续会以顺应市场需求、解决用户痛点为核心目标进行产品的研发,将围绕自动化、信息化、在线化的发展方向推进技术创新。华夏谱创立志为用户提供先进的、专业的、高效的、最优质的产品服务,希望能为中国科学仪器的发展和进步贡献一份绵薄之力。完整采访视频如下:
  • 水中油检测新标准或带来仪器市场巨变
    仪器信息网讯 仪器信息网(www.instrument.com.cn)获知,水中油检测标准将发生较大变化,将由目前的红外分光光度法向分子荧光方法转变。  目前,我国水中油的测定方法以四氯化碳萃取+红外分光光度法为主。四氯化碳的使用对臭氧层形成极大破坏,且对人体有一定毒害,世界各国已先后禁止使用四氯化碳。我国于1991年签署加入《关于消耗臭氧层物质的蒙特利尔议定书》,议定书要求除了原料和必要用途之外,我国应在2010年1月1日之前淘汰四氯化碳和三氯乙烷的生产和使用。我国已于2003年禁止以四氯化碳作为清洗剂和干洗剂,但在水中油分析检测中,由于现行标准方法仍为《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),因此四氯化碳仍被使用。  为完成四氯化碳的淘汰,我国一直在研究替代的萃取剂和水中油测定方法。2012-2013年,湖南环境监测中心站、天津环境监测中心站等多家单位和机构举办了水中油检测方法改进及替代技术研讨会、交流会。而环保部于2013年1月,就水中油测定的方法替代及标准修订项目进行了招标,计划修订现行水中油测定国家标准《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),据悉,新标准可能在今年发布,2015年开始实施。  就水中油的新检测方法,仪器信息网编辑咨询了多位环境监测、水务等行业的水质分析专家。相关专家认为,目前对水中油的测定存在气相色谱法、荧光分光光度法、紫外荧光法、紫外吸收光度法、浊度法等多种方法,各有其优缺点。如气相色谱法,有一定可行性,并能与国外一些标准方法接轨,但水中油类往往是混合物,并不都适合以气相色谱法进行检测,而且气相色谱法不易在基层普及,因此成为新标准方法的可能性较小。分子荧光检测方法(荧光分光光度法/紫外荧光分光光度法)被相关专家认为是新标准最可能采用的方法。  而在溶剂方面,专家认为四氯化碳的被取代已成定局,而由于S316和H997等溶剂价格非常高,普及的可能性极小,专家认为正己烷和环己烷将取代四氯化碳。  另据相关专家表示,水利部已在推广正己烷/环己烷萃取及分子荧光分析方法,环保部也将发布新标准方法并进行推广。目前,我国实验室型水中油测定仪年需求千余台/套,产值超亿元,而使用四氯化碳和红外分光光度法的仪器设备在其中有着相当大的比例,将要到来的新标准或将给这一市场带来剧变。撰稿:魏昕  声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654077-8032。
  • 水中有机挥发物在线采样-气相色谱分析装置研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="132"p style="line-height: 1.75em "成果名称/p/tdtd width="516" colspan="3"p style="line-height: 1.75em "strong水中有机挥发物在线采样-气相色谱分析装置/strong/p/td/trtrtd width="132"p style="line-height: 1.75em "单位名称/p/tdtd width="516" colspan="3"p style="line-height: 1.75em "中国科学院大连化学物理研究所/p/td/trtrtd width="132"p style="line-height: 1.75em "联系人/p/tdtd width="168"p style="line-height: 1.75em "关亚风/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "guanyafeng@dicp.ac.cn/p/td/trtrtd width="132"p style="line-height: 1.75em "成果成熟度/p/tdtd width="516" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="132"p style="line-height: 1.75em "合作方式/p/tdtd width="516" colspan="3"p style="line-height: 1.75em "√技术转让 □技术入股 □合作开发 □其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介:/strong/pp style="line-height: 1.75em "/pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201604/insimg/a7bda886-6144-4e85-8444-a349249e51ed.jpg" title="水中VOC.png" width="350" height="297" border="0" hspace="0" vspace="0" style="width: 350px height: 297px "/span style="line-height: 1.75em " /span/pp style="line-height: 1.75em " 水中有机物在线采样-气相色谱分析装置能够连续采集地表或地下水体中的沸点不高于180℃的有机污染物,富集并解析沸点(bp) -20° C≤ bp≤180 ° C的有机污染物,分离分析芳烃、酚、卤代烃和烃类有机污染物。 br/ strong主要技术指标: /strongbr/ 采样体积:100 mL br/ 最低检测限:0.01 mg/L苯(水) br/ 线性范围:不小于4个数量级 br/ 分析周期:不大于30 minbr/ strong技术特点: /strongbr/ 水中挥发性有机物通过膜渗透汽化,被吹扫气携带至吸附柱上富集;加热吸附柱使有机物解吸,并反吹至气相色谱进行分析。吸附柱可在载气下老化清洁,重复使用。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 用于环境领域在线水质监测,具有广阔的推广应用前景。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 授权发明专利1件:基于复合膜的水中挥发性有机物的分离装置,201120501703.4/p/td/tr/tbody/tablepbr//p
  • 蛋白质样品清洁验证中TOC分析仪的比较
    总有机碳TOC一般理论所有TOC分析仪都具备两种功能:将水中有机碳氧化成二氧化碳CO2,并测量所产生的CO2。TOC可用于对未正确清洁的设备中的杂质和残留物进行定量,以及检测所有含碳化合物:药物活性成分 (Active Pharmaceutical Ingredients, API)、清洁剂、蛋白质和中间产物。用来测量TOC的分析技术有着相同的目标:把有机分子完全氧化成CO2,检测所生成的CO2,并以碳浓度表示。所有方法都必须区分无机碳和有机碳,无机碳可能来自水中溶解的CO2和重碳酸盐,而有机碳则是由样品中有机分子氧化而成的。总碳(TC)是有机碳与无机碳之和,因此测得的总碳(TC)减去测得的无机碳(IC)的值就是TOC:TOC=TC–IC。各种TOC测定仪的不同之处在于氧化样品水中有机物的方法,以及检测样品中所生成CO2浓度的方法。不同的检测方法对样品分析的准确度有很大影响,进而影响清洁验证检测程序。TOC氧化技术市面上所有TOC测定仪都使用以下两种方法之一来氧化有机化合物并将之转换为CO2气体:燃烧法,或紫外(UV)+过硫酸盐法。燃烧技术使用氮气、氧气或空气流,温度在600°C以上。燃烧方法在氧化步骤中也使用催化剂。该类方法中常用的催化剂有氧化铜、氧化钻或铂。UV过硫酸盐氧化方法利用UV光使有机物完全氧化为CO2。将样品暴露在设备内汞蒸汽灯的UV光之下,将样品内的有机物转化为CO2气体。对于浓度大于1 ppm的样品或化合物 ,则在样品流中加入过硫酸盐并混合均匀,从而利用接受照射的样品生成的负价氢氧(HO-)基来确保氧化过程顺利进行。过硫酸盐是一种强氧化剂,在UV辐射下生成硫酸盐和氢氧基,可将有机化合物完全氧化为CO2。TOC检测方法为检测CO2浓度,分析仪器需要使用检测方法以区分样品中的CO2和其他分子。现有两种检测方法:非色散红外(Non-Dispersive Infrared, NDIR)或电导检测。用于气体测量的NDIR技术依靠各种气体在红外光谱范围内的能量吸收特征来判别分子类型。运用NDIR技术的TOC测定仪使红外线穿过两根完全相同的导管射入检测器。第一个导管作为参比池,充满无红外吸收的气体,如氮气。第二个导管(池)用于气体样品的测量。电导检测方法使用电导传感器,通过计算电导率确定CO2的浓度。为计算TOC,水溶液通过两个电导传感器,其中一个检测总碳(TC)浓度而另一个检测无机碳(IC)浓度。根据检测结果,计算出样品的TOC浓度。NDIR方法可对含碳范围在0.004–50,000 ppm的样品进行定量,而电导率法可以进行十亿分之一(part per billion, ppb)级的定量。总体而言,NDIR和电导率检测器对于低浓度的TOC有足够的灵敏度,但会受到离子干扰。使用只允许CO2选择性透过的半透膜可减轻此因素的影响。Sievers TOC技术与众不同的特点结合使用UV过硫酸盐氧化与独特的选择性CO2膜技术,是Sievers系列TOC分析仪优于常规TOC技术(如燃烧 NDIR技术)的众多要素之一。Sievers技术能持续为用户提供更为精确的TOC读数。在Sievers基于选择性膜的电导方法中,CO2传送模块中的选择性CO2膜可阻止离子进入,在使CO2无阻通过的同时,排除了干扰化合物和氧化副产物。选择性CO2膜消除了背景干扰,并防止非碳基化合物和副产物聚集。清洁验证是一项充满挑战的工作,因为各种样品的TOC浓度有时是未知的,因此很难达到最佳分析条件。以下几个优点确保了UV过硫酸盐+膜电导技术在清洁验证应用中无可比拟的分析结果。试剂自适应功能保证完全氧化为使清洁验证样品完全氧化,Sievers M系列TOC分析仪具有试剂自适应功能,可优化酸和过硫酸盐氧化剂的流量。非催化燃烧方法非催化燃烧方法消除了向燃烧反应器中添加催化剂的定量(根据样品中碳浓度而定)时的人为误差。燃烧氧化方法会产生毒性气体。若清洁验证样品中含氯化物,燃烧可能生成对人体有潜在危害的气体,某些TOC分析仪不吸收这类气体。无需NDIR检测器NDIR检测器需要一定的时间来预热 (30到45分钟),因此造成更多的停工时间和样品积压。NDIR技术需要经常进行校正(每小时或每天),具体时间由清洁验证样品的碳浓度决定。这类检测器经常出现校正漂移现象。校正时间占NDIR仪器运行时间的6%到10%。不用载气NDIR检测器的载气价格不菲,并且泄漏和不稳定的校正经常会引起高TOC背景。载气污染也可能造成检测困难和引起碳的高背景。出色的灵敏度和高回收率Sievers TOC分析仪的电导池由高纯度石英制成,提供更佳的稳定性和0.03 ppb级别的检测。图1和表1从灵敏度和TOC回收率两个方面,就牛血清蛋白(Bovine Serum Albumin, BSA)对Sievers TOC技术与传统燃烧-NDIR TOC技术进行比较。图1. 牛血清蛋白 (BSA) TOC回收百分比对比研究表1. 牛血清蛋白 (BSA) TOC回收百分比对比研究****该对比研究使用完全校准后的仪器。分析之前,先进行并通过系统适应性测试。对两种仪器,制备并使用同一BSA储各溶液。研究在可控的环境中进行;分析期间,仪器未出现偏差。为什么说现在正是改用Sievers TOC分析仪进行清洁验证的时候?HPLC分析很漫长,增加了实验室清洁验证分析所需时间。使用HPLC将导致数小时或数天的停工,造成高额成本并减少提供给患者的产品数量。有例子表明,某些制药企业单日停工损失超过100万美元。表2将Sievers TOC分析仪与燃烧/催化-NDIR和燃烧-NDIR TOC分析仪进行了详细比较,其中包括估算的月运行成本。TOC是一种用于低浓度级别有机化合物检测的、简单快速的分析方法,并且可用于检测无法使用HPLC检测的污染物。与常规方法相比,TOC已被证明可减少75%以上的停工时间和方法验证时间。FDA出台的指导方针——21世纪现行药物生产质量管理规范 (cGMP' s for the 21st Century),旨在加强和更新药物制造规则,使用TOC分析进行清洁验证,与专属性分析方法相比 (如HPLC)在质量和效率上的优势已引发越来越多的关注。表2. TOC方法比较◆ ◆ ◆联系我们,了解更多!
  • 能“看”到水中颗粒物的“火眼金睛” ——Bettersize C400光学颗粒计数分析仪
    水是生命之源。我们日常看到的纯净水、矿泉水、自来水、井水、河水等各种各样的不同的水。那么,它们是不是真的干净,能不能直接饮用呢?肉眼很难分辨。其实,关于水质检测有严格的标准,其中很重要的一项就是水中不溶性颗粒物的检测。让我们用Bettersize C400来检测一下。右图. BettersizeC400光学颗粒计数器BettersizeC400采用国际先进的光阻与角散射结合技术,配合高灵敏度检测器和高速信号采集与传输系统,可准确的检测出0.5-400μm的颗粒数量和粒度分布。当水从毛细管测量区流过时,如果水中有颗粒,激光会因为颗粒的遮挡和散射产生瞬间变化信号,这个信号的大小与颗粒大小成正比,通过传感器将这些信号收集起来,再用专门的软件处理,就能得到颗粒个数和粒度分布信息。我们用Bettersize C400对某地河水样品进行不溶性颗粒测试,结果如下表和下图所示。从上表和图中可以看到,看起来与瓶装水没有什么差异的河水,每毫升居然有超过3000个不溶性颗粒,这些颗粒有泥沙、金属氧化物、盐类、矿物质、胶体、有机物、微生物等,它们有的对人体有益,有的对人体有害,有的对人体影响不大,但从饮用水安全角度看,即使看上去是清清的河水,也不宜直接饮用。在万不得已时要饮用河水,最好先用净水器去除其中的颗粒物。从上表和图中可以看出,经过过滤后的河水颗粒物去除率超过90%,安全性将大大提升。我们再用Bettersize C400分别对5种常见品牌的纯净水进行不溶性颗粒物含量测试,结果如下:从上表和图可以看出,市面上5种常见品牌的纯净水中,每毫升中所含的不溶性颗粒物很少,而且大于10微米的颗粒物几乎没有,与河水相比简直是天壤之别。可见,常见品牌的纯净水可以放心饮用。但纯净水中缺少微量元素,因此它不能替代最常用的自来水。通过上述试验可知,Bettersize C400光学颗粒计数分析仪能“看”到水中粒径很小、数量又很少的不溶性颗粒物,在水质检测方面将发挥着重要作用。
  • EZ硫酸盐分析仪在垃圾焚烧厂中的应用
    EZ硫酸盐分析仪在垃圾焚烧厂中的应用哈希公司 Yesterday背景介绍Attero 是荷兰的一家大型生活垃圾焚烧厂,在了解到Hach的EZ1036硫酸盐分析仪后, 他们主动联系了Hach公司了解硫酸盐分析仪的情况。该公司的污水处理厂一直在使用Hach在线和实验室设备。在荷兰南部的Moerdijk,Attero运营着一家具有烟气净化设施的生活垃圾焚化厂,通过石灰洗涤和由此产生的石膏沉积来去除烟气中的硫酸盐。在这一工艺过程的出水中,需要实时监测向地表水排放的硫酸盐。当地环保部门对硫酸盐有严格的监控标准,必须使用在线仪表监测硫酸盐浓度。 EZ1036 硫酸盐分析仪应用情况到目前为止,Attero一直在使用EZ系列的硫酸盐分析仪,但在使用过程中,客户发现由于废水中石膏浓度较高,硫酸盐分析仪在使用过程中管路很容易堵塞。Hach公司根据客户的现场实际情况,提供了新的解决方案,方案由内部稀释的EZ1036硫酸盐分析仪和EZ9250过滤单元组成,能够改进分析仪正常运行时间,减少人工干预。改进后,现场的EZ1036硫酸盐分析仪持续运行了6周不需要任何维护,而在以前,每 2 天就需要维护一次。EZ1036硫酸盐分析仪的标准量程是10-40mg/L, 丰富的内部稀释装置可以帮助客户拓展测量范围,不仅能够测量低浓度硫酸盐,也可以测量高浓度的水样。图1 Attero垃圾焚烧厂总结EZ硫酸盐分析仪的测量量程范围丰富,可以配置内部稀释装置,极大地丰富了硫酸盐可测量的浓度范围。在垃圾焚烧厂硫酸盐监测中,配套EZ9250预处理器,可以稳定的在含有石膏浆液的废水中监测硫酸盐,同时提高仪器的在线时间,减少客户维护量与维护成本。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 开创重油四组分分析新时代—-橙达仪器-中国石油石化院 重油四组分自动分析仪荣获2023BCEIA金奖
    9月6日分析测试行业盛会——第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)隆重开幕,北京橙达仪器有限公司和中国石油天然气股份有限公司石油化工研究院联合自主研发生产的SARAlyzer Elite重油四组分自动分析仪斩获了2023年BCEIA金奖。重油四组分分析对于原油评价与价值评估、重油加工原料优化、沥青产品使用性能等具有重要意义:(1)重油四组分是原油评价的必做项目,对原油中重组分的价值评估和加工路线选择具有重要的指导意义;(2)重油四组分的测定结果还是工艺优化和装置运行监控的必要指标。以催化裂化装置为例,可以通过四组分数据预测脱沥青油、常压渣油、回炼油等原料的结焦倾向,还能通过测定进料和出料的四组分来考察催化剂的效果和监控装置运行的情况;(3)重油四组分也是沥青产品的重要指标,四组分的比例不同对沥青的物理性质有很大的影响。 目前测定重油四组分采用的是NB/SH/T 0509-2010 《石油沥青四组分测定法》,该标准方法最初发布于1992年,目前在应用中主要存在以下问题:(1)分析步骤繁琐,分析时间过长,一个样品需要两天,消耗大量人工;(2)分析结果准确性和精密度差,不同人、不同实验室得到结果差异非常大,无法进行比对;(3)消耗大量正庚烷、甲苯等挥发性有机溶剂,对操作人员的健康和实验室的安全环保都带来很多隐患。因此对简单、自动化程度高、速度快、溶剂用量少、重复性再现性好的重油四组分方法及相关仪器的需求十分迫切。SARAlyzer Elite重油四组分自动分析仪和配套方法是具有自主知识产权的专利技术(授权专利号:CN116371032A、CN306581932S、CN112730636B、CN212417980U),和原方法相比,该技术在以下几个方面具有明显优势(如下表1),能为炼厂实现精细化、现代化的管理提供技术支撑,还能起到节约人力成本,降低HSE风险的效果,具有显著的经济效益和社会效益。同时,SARAlyzer Elite重油四组分自动分析仪也拓展到了SY/T 7550-2012 原油中蜡胶质沥青质含量的测定应用中。SH/T 0509SARAlyzer Elite分析时间大于30小时分析时间:4通道 6 h(含溶剂挥发恒重时间;实际上机分离时间 2h)需熟练操作人员全程看守、操作沥青质分离、色谱分离、接收、恒重全自动进行人工误差、称量误差大减少误差环节,重复性更优一个落地通风橱和一个台面通风橱1米左右长度带有通风罩的台面敞开式操作,人员直接接触溶剂;加热无防爆设计密封体系,配有防爆设计;可选配有机溶剂蒸汽处理系统关于2023BCEIA金奖今年的金奖申报通知在2023年3月22日发出,截止2023年5月20日。原有的BCEIA金奖评奖规定,只有国产的分析仪器整机才可以申报BCEIA金奖。但是,国家科学仪器专项支持的重点从 “十二五”开始,已经逐步从整机转向关键零部件,现行的评奖范围只限于分析测试仪器整机的规定,已经不适应当前分析测试仪器的研制和生产,国内一些分析仪器企业也希望他们研制生产的一些分析仪器的零部件能够参与BCEIA金奖的评审。故2023年度BCEIA金奖的申报将分析仪器的零部件列入申报范围,进行试点。今年共有42个单位申报了44个整机产品;18个单位申报了15个零部件产品。2023年5月26日将42个单位申报的44个整机产品和18个单位申报的15个零部件产品及其厂家信息在中国分析测试协会网站http://www.caia.org.cn和BCEIA网站http://www.bceia.cn上公示(公示期为2周),以了解这些产品的知识产权是否有争议,公示期间没有争议提出。中国分析测试协会于5月底成立了以王海舟院士为组长,10位专家参加的2023BCEIA金奖评审组,负责评审工作。我们按产品的创新性、产品的性能指标、产品的社会效益和产品的销售情况设计了打分表,并给出了打分的参考标准,由评审专家独立打分。在评审专家独立打分的基础上,于6月27日召开了2023BCEIA金奖评审专家组第一次会议,提出了需要进一步进行现场考察的产品名单。在7月13日—8月15日评审组组织了专家对这些产品的生产企业和产品进行了考察,考察了产品的生产线、实际样品的测试、了解了产品的销售情况及用户的反映。8月28 金奖评审组召开了最后一次会议,听取了考察汇报,进行了无记名投票,按照BCEIA金奖评选办法中的规定,得票数超过投票专家数三分之二的产品获得BCEIA金奖,今年共有13个整机产品和5个零部件产品获得2023BCEIA金奖(获得金奖产品的名单见后),我们对获得金奖产品单位表示祝贺。今年获得整机金奖产品的数量只有申报数量的29.5%;获得零部件金奖产品的数量只有申报数量的33.3%。从产品的外观、性能指标、可靠性、稳定性、耐用性、软件功能等方面来看,国产仪器的水平有了很大的提高,与国外同类产品的差距明显缩小;获得金奖的产品中有些达到了国外高档产品的水平,改变了国产分析仪器只有中、低档产品的局面;获得金奖的产品中有很多是根据国家的需要,开发研制的专用仪器,这是发展有中国特色分析仪器,并向国际市场进军的有效途径。这些都说明了我国分析仪器产业,实现了科技部提出的:“九五”起步,“十五”打基础,“十一五”全面发展的战略部署,在国家的大力支持和中国分析仪器研发人员和企业家的坚持不懈努力下,中国分析仪器产业开始了新的腾飞。
  • 用TOC分析仪进行海水TOC分析的最佳操作方法
    简介海水中的总溶解性固体含量较高,而且氯化物会消耗氧化剂,因此对海水样品(氯化物含量为3.5-5%)进行总有机碳TOC分析时就会面临很大挑战。在传统的湿化学系统上运行分析时,由于氯化物干扰,海水样品显示极低的TOC回收率。相比之下,燃烧系统在分析海水样品时显示较高的TOC回收率,但燃烧系统的维护周期短,运行成本高,信号有漂移,且需要进行频繁的重新校准。Sievers InnovOx实验室TOC分析仪采用专利的超临界水氧化(SCWO,Super Critical Water Oxidation)技术,能消除氯化物干扰,在提供一流分析性能的同时减少了昂贵且费时的分析仪维护工作,从而成为对海水样品进行TOC分析的理想设备。本文概述了如何正确设置和配置Sievers InnovOx实验室分析仪,在分析海水样品时发挥最佳性能。操作模式 建议用“不可吹除有机碳(NPOC,Non-Purgeable Organic Carbon)”模式来代替TOC模式进行海水分析,除非还需要测量可吹扫或挥发性的有机物。在大多数海水样品中,可吹扫或挥发性有机物的含量极小,因此NPOC约等于TOC。在NPOC模式下,测量结果并非是由2项单独的测量数据计算而来【TOC=总碳(TC)–无机碳(IC)】,因此NPOC模式运行得更快、测量得更准确。用NPOC模式代替TOC模式是行业中常见的做法,是几乎所有市面上出售的TOC分析仪的标准操作模式。只有当样品中含有挥发性化合物或者需要测量IC浓度时,才采用TOC模式。测量范围和校准海水样品中的TOC浓度较低,通常小于1 ppm。理论上来说,Sievers InnovOx实验室分析仪可以在最小测量范围(0-100 ppm)内运行海水样品,但由于海水样品的基质复杂,在最小测量范围内运行海水样品时可能会产生较大的测量偏差。因此,建议在0-1000 ppm范围内运行海水样品。Sievers InnovOx实验室分析仪的内部设置能够在不降低测量的准确性和精确性的前提下,对0-1000 ppm范围基质效应的补偿优于对0-100 ppm范围基质效应的补偿,因此最佳操作是采用0-1000 ppm范围。当采用0-1000 ppm范围分析低浓度样品时,无需将分析仪校准到测量范围的最高点。校准点只需覆盖样品的预期TOC浓度范围即可。例如,如果样品的最高预期结果是1 ppm左右,可以将校准的最高点设为5 ppm。校准前,必须彻底冲洗分析仪。请运行高质量的去离子(DI)水(最好是18MΩ-cm的去离子水),直到达到0.45 µg或更低的稳定碳质量响应为止(见下图)。在冲洗过程中,只需注意峰值窗口中的碳质量响应,可以忽略实际NPOC结果。可能需要几个小时的连续测量才能达到此目的,具体时间取决于仪器状况和之前分析过的样品。酸剂:海水样品中含有大量的钙和镁,因此建议对所有海水分析使用3N HCl。盐酸产生的氯化物不会干扰样品中的化合物。如果用6M H3PO4,则会产生不溶性磷酸钙和磷酸镁,堵塞甚至损坏反应器。对于海水分析,建议采用“添加5%酸剂”这一默认值。氧化剂:请用30%(质量浓度)过硫酸钠作为氧化剂。请勿使用Sievers M系列TOC分析仪配置的15%(质量浓度)过硫酸铵氧化剂,因为超临界条件下,铵会消耗掉一部分添加的氧化剂,被氧化形成硝酸盐,从而降低总氧化剂的氧化强度。对于海水分析,建议添加25%的氧化剂。尽管0-1000 ppm或更大范围的默认氧化剂设置通常为15%,但这个比例对海水分析来说不够。在加热阶段,海水中的一部分氯化物在达到超临界状态之前就被氧化,从而降低了总氧化剂的氧化强度。如果氧化剂配量不足,或者使用过期的或失效的氧化剂,就会导致反应器管破裂,特别是对2020年之前生产的配备老式钛反应器管的Sievers InnovOx实验室分析仪来说,情况更严重。新款的Sievers InnovOx实验室分析仪采用钽反应器管,可以降低管子破裂的风险,但氧化剂配量不足仍不利于回收有机物。吹扫时间:海水中有大量的无机碳(IC),而0.8分钟的默认喷除时间不足以去除大部分无机碳。海水样品中的无机碳浓度比TOC浓度高数倍,未被去除的无机碳会严重影响NPOC测量结果。建议将无机碳喷除时间延长到2.0分钟。较长的喷除时间不仅能彻底去除无机碳,还能将样品和试剂混合得更均匀。但在校准时,只需分析KHP或蔗糖标准品即可,因此可以保留0.8分钟的默认喷除时间。冲洗:为了最大程度清除样品残留,并防止气/液界面结晶,建议在每次样品分析之后,用去离子水冲洗分析仪。冲洗分析仪的最方便的做法是,对去离子水样品运行无机碳测量。只需运行1次重复测量即可。在工作日结束后,应彻底冲洗分析仪,清除系统中的残留样品。请用装有去离子水的40 mL样品瓶运行以下冲洗任务:载气供应:大多数Sievers InnovOx实验室分析仪都配备内置的气泵和空气过滤器,能够提供不含CO2的载气。此配置能够在整个测量范围内获得准确结果。如需测量低浓度TOC(即在分析仪的定量限附近进行测量),建议将分析仪连接到高规格的氮气供气源。取样:对于海水分析,建议使用外部吸管或带冲洗站选件的Sievers InnovOx自动进样器,以实现最佳取样效果。请勿使用样品瓶端口,因为样品瓶端口难以被清洗干净,残留的样品会腐蚀设备。如要用HCl来预酸化样品瓶中的海水样品,建议用塑料部件来替换不锈钢材质的取样口和自动进样器管接头(见下图)。需要以下更换件:注意:上述部件不在标配的附件包中,请另行购买。★分析仪位置和废液处理★在海水分析过程中,废液容器和分析仪内都会有微量的卤素气体。为了防止卤素危害人体健康,建议将分析仪、试剂、废液容器放在通风橱中进行操作。如果没有通风橱,请将分析仪放在通风良好的工作台上,将废液容器放在台下的地板上。为了帮助通风,建议在分析海水样品时卸下分析仪流体组件的盖子。为了防止废液容器中产生卤素气体,请在开始分析之前,向废液容器中投放大量的固体氢氧化钠或氢氧化钾,以中和未反应的样品和试剂,避免产生卤素气体。请勿使用碳酸氢盐或碳酸盐来中和废液容器中的液体,以免产生CO2气体,或将产生的卤素气体扩散到周围环境中。请确保在工作日结束时清空废液容器,在第二天开始分析之前重新投放中和剂。★海水分析的方法摘要★以下是用Sievers InnovOx实验室TOC分析仪进行海水分析时的建议的分析方法设置。◆ ◆ ◆联系我们,了解更多!
  • ASD丨ASD Fieldspec 3地物光谱仪在矿井水中煤浓度探测方面的应用
    随着我国经济的发展和能源结构的调整,煤炭仍然是我国主要的能源来源之一。但是,煤炭生产和消费过程中所产生的污染问题也越来越受到关注。其中,煤矿污水排放问题是其中之一。图片来源于网络,如有侵权请联系删除煤矿污水中含有大量的有害物质,会对环境、生态和人体健康造成严重的影响。因此,治理煤矿污水排放问题是一个备受关注的议题。今天给大家推荐的文章,是关于研究人员在矿井水质的检测的中,建立光谱反演模型,以助力高光谱技术在水污染监测中的应用。该方法的出现对于解决煤矿废水治理问题具有重要的意义。矿井水中的煤炭污染主要来自煤矸石的富集和浸出、洗煤废水、煤矿渗水灾害等,主要表现为水中煤浓度过高,这种矿井水用于农田灌溉时会使土壤累积形成“黑土”,从而导致土壤硬化,进而导致植被退化、作物枯萎、产量下降等。矿井水渗入地下水或下水道直接进入河流,一方面,其导致水资源浪费和河流污染,另一方面,因为矿井水中有很多煤粉,岩粉和细菌,长期排放也会严重影响当地居民的饮用水健康。在土壤中,煤源碳不同于植物源有机碳,其元素组成缺乏植物和土壤微生物所需的氮、磷、钾等矿质营养物质,它稳定性较强,不仅使生物体的分解和利用变得极其困难,而且还干扰土壤有机碳的识别。并且矿井水中的煤浓度是矿井排水的主要指标,煤浓度的准确测定对矿井水的净化和二次利用具有重要意义。图片来源于网络,如有侵权请联系删除然而目前,凝结沉淀+过滤工艺被广泛用于去除矿井水中的煤,其在处理过程中加入大量活性剂、絮凝剂等化学物质,由于对化学试剂的数量并没有严格的控因此,如果不能准确测量矿井水中的煤浓度,在处理过程中仍会形成二次污染。随着高光谱技术的快速发展,其低成本、高效的优点使其成为水污染监测的重要手段,对叶绿素、重金属离子和水中可溶性有机物等光学活性物质浓度的遥感反演研究相对成熟,对这些指标参数建立了许多反演模型,但在矿井水质参数的反演过程中,水中煤浓度的反演模型尚未得到研究。基于此,在本研究中,为了实现矿井水中煤浓度的准确测量,来自河南理工大学测绘与土地信息工程学院的一组研究团队,首先制备了不同煤浓度的样品(0mg/L-1000mg/L),并利用ASD Fieldspec 3便携式地物光谱仪测量不同煤浓度矿水的可见-近红外光谱数据,再使用CARS算法(竞争自适应重加权采样)提取敏感波段,最后利用卷积神经网络方法(CNN)建立矿水煤浓度光谱反演模型(CKCNN模型),并采用k倍交叉验证对模型进行优化,以预测矿井水中的煤浓度,控制化学试剂的量,减少二次污染的影响,实现煤浓度的反演。并同时使用均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(R)等评估指标评价模型。样品煤浓度【结果】不同煤浓度水平下的光谱曲线由CARS选择的敏感波段反演模型精度评价六种模型的反演结果【结论】本研究以焦煤集团中马煤矿的煤样为研究对象,利用便携式地物光谱仪ASD FieldSpec3测量了不同煤浓度的矿井水样可见-近红外的光谱数据,研究了矿井水中煤浓度的光谱特性,基于CKCNN煤浓度估算模型(模型反演精度为R2=0.9994,RMSE=6.1401,RPD=41.9692),反演矿井水中煤浓度,得出以下结论:● 水样的光谱反射率集中在可见光波段,而在近红外波段几乎为0;光谱反射率随煤浓度的增加而减小;在500~550nm和760nm左右分别形成了一个反射峰和一个吸收谷,并随着煤浓度的增加而逐渐减弱。● 与SPA+BF、CARS+BF、SPA+CNN、All Band +CNN、CARS+CNN五种建模方法相比,CKCNN浓度估计模型的反演效果最好,反演误差为0.17mg/L,反演结果符合GB11901-1989中实验室测量的要求;基于高光谱数据的CKCNN模型可作为预测矿井水中煤浓度的方法。总之,研究结果表明,在可见光-近红外波段的高光谱遥感可以快速探测到矿井水中的煤浓度,CKCNN模型为测定矿井水中的煤浓度提供了一种新的方法,在推进矿井水中煤浓度对可见-近红外光谱的影响研究方面具有重要意义。
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • 用实验室TOC分析仪进行盐水TOC分析的最佳操作方法
    简介 盐水中的总溶解性固体含量较高,而且氯化物能够消耗氧化剂,因此对盐水样品(氯化物含量为3.5%-30%)进行总有机碳(TOC)分析会面临很大挑战。在传统的湿化学系统上运行分析时,由于氯化物的干扰,盐水样品显示较低的TOC回收率。相比之下,燃烧系统在分析盐水样品时显示较高的TOC回收率,但燃烧系统的维护周期短,运行成本高,信号有漂移,且需要进行频繁的重新校准。Sievers InnovOx实验室TOC分析仪采用专利的超临界水氧化(SCWO,Super Critical Water Oxidation)技术,能够消除氯化物的干扰,在提供一流分析性能的同时减少了昂贵且费时的分析仪维护工作,从而成为对盐水样品进行TOC分析的理想设备。本文介绍了如何正确设置和配置Sievers InnovOx实验室分析仪,以便在分析盐水样品时发挥最佳性能。操作模式建议用“不可吹除有机碳(NPOC,Non-Purgeable Organic Carbon)”模式来代替TOC模式进行盐水分析,除非还需要测量可吹扫或挥发性的有机物。在大多数盐水样品中,可吹扫或挥发性有机物的含量极小,因此NPOC约等于TOC。在NPOC模式下,测量结果并非是由2项单独的测量数据计算而来【TOC=总碳(TC)–无机碳(IC)】,因此NPOC模式运行得更快、测量得更准确。用NPOC模式代替TOC模式是行业中常见的做法,是几乎所有市面上出售的TOC分析仪的标准操作模式。只有当样品中含有挥发性化合物或者需要测量IC浓度时,才采用TOC模式。测量范围和校准盐水样品的TOC浓度较低,通常小于10 ppm。理论上来说,Sievers InnovOx实验室分析仪可以在最小测量范围(0-100 ppm)内运行盐水样品,但由于盐水样品的基质复杂,在最小测量范围内运行盐水样品时可能会产生较大的测量偏差。因此,建议在更大范围内运行盐水样品,例如0-1000 ppm或0-5000 ppm。Sievers InnovOx实验室分析仪的内部设置能够在不降低测量的准确性和精确性的前提下,对0-5000 ppm范围基质效应的补偿优于对0-1000 ppm范围基质效应的补偿,因此最佳操作是采用0-5000 ppm范围。当采用0-1000 ppm或0-5000 ppm范围分析低浓度样品时,无需将分析仪校准到测量范围的最高点。校准点只需覆盖样品的预期TOC浓度范围即可。例如,如果样品的最高预期结果是5 ppm左右,可以将校准的最高点设为10 ppm。校准前,必须彻底冲洗分析仪。请运行高质量的去离子(DI)水(最好是18 MΩ-cm的去离子水),直到达到0.45 µg或更低的稳定碳质量响应为止(见下图)。在冲洗过程中,只需注意峰值窗口中的碳质量响应,可以忽略实际NPOC结果。可能需要几个小时的连续测量才能达到此目的,具体时间取决于仪器状况和之前分析过的样品。酸剂根据要分析的样品的硬度(即钙和镁的浓度)来选择酸剂。如果CaCO3浓度低于100 ppm,建议用6M H3PO4。如果CaCO3浓度高于100 ppm,应当用3N HCl,以免在分析仪内形成沉淀。对于盐水分析,建议采用“添加5%酸剂”这一默认值。氧化剂请用30%(质量浓度)过硫酸钠作为氧化剂。请勿使用Sievers M系列TOC分析仪配置的15%(质量浓度)过硫酸铵氧化剂,因为超临界条件下,铵会消耗掉一部分添加的氧化剂,被氧化形成硝酸盐,从而降低总氧化剂的氧化强度。对于盐水分析,建议添加30%的氧化剂。尽管0-1000 ppm或更大范围的默认氧化剂设置通常为15%,但这个比例对盐水分析来说不够。在加热阶段,盐水中的一部分氯化物在达到超临界状态之前就被氧化,从而降低了总氧化剂的氧化强度。如果氧化剂配量不足,或者使用过期的或失效的氧化剂,就会导致反应器管破裂,特别是对2020年之前生产的配备老式钛反应器管的Sievers InnovOx实验室分析仪来说,情况更严重。新款的Sievers InnovOx实验室分析仪采用钽反应器管,可以降低管子破裂的风险,但氧化剂配量不足仍不利于回收有机物。吹扫时间盐水中有大量的无机碳(IC),而0.8分钟的默认喷除时间不足以去除大部分无机碳。盐水样品中的无机碳浓度比TOC浓度高数倍,未被去除的无机碳会严重影响NPOC测量结果。建议将无机碳喷除时间延长到2.0分钟。较长的喷除时间不仅能彻底去除无机碳,还能将样品和试剂混合得更均匀。但在校准时,只需分析KHP或蔗糖标准品即可,因此可以保留0.8分钟的默认喷除时间。冲洗为了最大程度清除样品残留,并防止气/液界面结晶,建议在每次样品分析之后,用去离子水冲洗分析仪。冲洗分析仪的最方便的做法是,对去离子水样品运行无机碳测量。只需运行1次重复测量即可。在工作日结束后,应彻底冲洗分析仪,清除系统中的残留样品。请用装有去离子水的40 mL样品瓶运行以下冲洗任务: 载气供应大多数Sievers InnovOx实验室分析仪都配备内置的气泵和空气过滤器,能够提供不含CO2的载气。此配置能够在整个测量范围内获得准确结果。如需测量低浓度TOC(即在分析仪的定量限附近进行测量),建议将分析仪连接到高规格的氮气供气源。取样对于盐水分析,建议使用外部吸管或带冲洗站选件的Sievers InnovOx自动进样器,以实现最佳取样效果。请勿使用样品瓶端口,因为样品瓶端口难以被清洗干净,残留的样品会腐蚀设备。如要用HCl来预酸化样品瓶中的盐水样品,建议用塑料部件来替换不锈钢材质的样品端口和自动进样器管接头(见下图)。需要以下更换件:注意:上述部件不在标配的附件包中,请另行购买。分析仪位置和废液处理在盐水分析过程中,废液容器和分析仪内都会有微量的卤素气体。为了防止卤素危害人体健康,建议将分析仪、试剂、废液容器放在通风橱中进行操作。如果没有通风橱,请将分析仪放在通风良好的工作台上,将废液容器放在台下的地板上。为了帮助通风,建议在分析盐水样品时卸下分析仪流体组件的盖子。为了防止废液容器中产生卤素气体,请在开始分析之前,向废液容器中投放大量的固体氢氧化钠或氢氧化钾,以中和未反应的样品和试剂,避免产生卤素气体。请勿使用碳酸氢盐或碳酸盐来中和废液容器中的液体,以免产生CO2气体,或将产生的卤素气体扩散到周围环境中。请确保在工作日结束时清空废液容器,在第二天开始分析之前重新投放中和剂。盐水分析的方法摘要以下是用Sievers InnovOx实验室TOC分析仪进行盐水分析时的建议的分析方法设置。◆ ◆ ◆联系我们,了解更多!
  • 水中油的测定标准修订 或对仪器厂商产生影响
    p  近日,环保部制定了《水质 石油类和动植物油类的测定 红外分光光度法 》和《土壤 pH值的测定 电位法》两项国家环境保护标准。目前,标准编制单位已完成征求意见稿,并予以发布。《水质 石油类和动植物油类的测定 红外分光光度法 》是第二次修订,《土壤 pH值的测定 电位法》为首次发布。/pp  我国现行标准《 水质 石油类和动植物油类的测定 红外分光光度法》(HJ 637-2012) 是 1996 年颁布的标准,2012年进行了第1次修订,该方法是目前我国环保行业测定水中油的唯一标准方法,采用四氯化碳作为萃取剂。/pp  红外分光光度法是我国环保行业测定水中油的现行唯一标准方法,其灵敏度高,检出限低,测定不受油品的影响,能较全面检测水中油含量,但所使用的萃取剂四氯化碳被蒙特利尔公约列为禁用试剂,我国承诺于2014年12月31日前停止使用。因此修订本标准的核心在于寻找四氯化碳的替代品。/pp  在对《水质 石油类和动植物油类的测定 红外分光光度法 》(HJ 637-2012)的修订中,修改萃取剂为四氯乙烯代替了原标准中的四氯化碳 增加了自动萃取方式 增加了线性校正方法等。/pp  四氯乙烯,又称全氯乙烯, 是乙烯中全部氢原子被氯取代而生成的化合物,具有不易燃易爆, 毒性较低,沸点高( 121.1℃) 而挥发性较低等优点,也不受蒙特利尔公约限制,但它也具有一些缺点,一是四氯乙烯稳定性差,易光解,与臭氧反应生成光气和三氯乙酰氯 二是四氯乙烯提纯困难。因此,萃取剂的选择也是标准修订过程中的难点。/pp  由于红外分光光度法是我国环保行业测定水中油的现行唯一标准方法,我国市场上测定水中油的红外分光光度计均采用四氯化碳为萃取剂,新标准的发布或将对相关仪器厂商带来影响。/pp  以下为标准具体内容:/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/7d3913c9-806f-4e99-b191-17a563228bdb.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 石油类和动植物油类的测定 红外分光光度法 (征求意见稿).pdf/span/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/065b1f6c-a2ed-46b8-80c3-1f63cda09c62.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 石油类和动植物油类的测定 红外分光光度法 (征求意见稿)》编制说明.pdf/span/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/1f0eea07-7ec5-430d-a297-2e6a3102f7c0.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "土壤 pH值的测定 电位法(征求意见稿).pdf/span/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/bda61600-0d0e-40ca-9c41-0c6ae81e626a.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《土壤 pH值的测定 电位法(征求意见稿)》编制说明.pdf/span/a/p
  • 水中碳14分析方法征求意见 涉TOC和液闪仪
    环保部于近日发布了《水中14C分析方法—湿法氧化法(征求意见稿)》。历时五年,经过广泛调研和实验室认证,标准编制单位环境保护部核与辐射安全中心最终确定了湿法氧化和液体闪烁技术法进行水中碳14的测定,分析方法适用于核设施液态流出物中碳14的测定,环境水体中碳14分析可参考使用。  方法原理为:通过酸解洗气、加过硫酸盐氧化剂(根据需要,也可适当增加催化剂)对样品进行处理,将样品中所含的无机碳和有机碳转化为二氧化碳,通过载气(氮气)吹扫后用无机碱液或有机碱液吸收,吸收液加闪烁液制样后,在液体闪烁计数器上进行碳14的活度测量。  根据目前市场上的仪器,此标准中所用的氧化装置可选用TOC分析仪,也可自行搭建 分析装置为低本底液体闪烁仪。  附件:水中14C分析方法—湿法氧化法(征求意见稿).pdf
  • 分析仪器制造商纷纷“转战”诊断市场
    新闻专题:  美国时间2012年5月17日,安捷伦科技宣布以22亿美元现金从瑞典私募股权集团EQT手中收购癌症诊断公司Dako。此前在诊断市场,安捷伦“只是脚趾浸入到水中”,但是缺乏一个巨大的推动力。如今,安捷伦收购Dako给了安捷伦进入到诊断市场的一个重要推动力。  笔者发现,近两年来,越来越多的分析仪器制造商开始“转战”及布局诊断市场。在2011年全球仪器公司TOP25排行榜中排名前10的公司中有5家都涉及诊断业务,而安捷伦、赛默飞世尔、丹纳赫及PerkinElmer新近通过收购都大大地扩展了诊断业务的规模。  此前,安捷伦一直在低调地布局其进军诊断市场的计划。早在2007年,安捷伦收购Stratagene公司,这项交易给安捷伦带来了PCR和分子诊断相关的试剂和技术。而从2011年开始,安捷伦进军诊断市场的计划似乎更加密集:2011年6月,安捷伦位于德州Cedar Creek的80000平方英尺的试剂工厂在美国食品和药品监督管理局注册成为医疗器械生产基地 2012年1月,安捷伦公司1200 Infinity系列液相色谱系统和 6000 系列液质联用系统获得美国食品和药品管理局(FDA)的一类医疗器械认证 同月,安捷伦和Integrated Diagnostics宣布成为战略合作伙伴,共同开发人类主要疾病的早期检测技术 2012年5月,安捷伦22亿美元收购癌症诊断公司Dako……安捷伦以其历史上最大的收购交易表明了开拓诊断市场的决心与能力。  对于诊断市场,TOP25中排名第1及2的丹纳赫、赛默飞世尔同样觊觎。2011年,丹纳赫集团以68亿美元收购了贝克曼库尔特,进一步扩大了其生命科学与诊断业务的规模。目前,丹纳赫生命科学与诊断业务旗下拥有贝克曼库尔特、徕卡、AB SCIEX、RADIOMETER、Molecular Devices 5家子公司,2011年年销售额达64亿美元。  2011年5月,赛默飞世尔以35亿美元的价格从私募股权投资公司Cinven手中收购瑞典血检系统供应商Phadia, 扩大公司“过敏症及自身免疫病测试”的产品组合。“随着收购Phadia之后,赛默飞的专业诊断业务已具有相当规模的 (收入超过20亿美元),”2011年10月,赛默飞在其财报中新增“专业诊断”部分。  此外,TOP25中排名第8的PerkinElmer在2011年也通过收购扩大了其诊断业务。PerkinElmer的诊断业务隶属于其人类健康部门下,其产前诊断和新生儿筛查相关产品和业务近几年都保持着很高的增长率,特别是在中国。2011年9月,PerkinElmer以6亿美元收购了Caliper Life Sciences 公司,Caliper的加入,使PerkinElmer的产品组合中增加了创新的分子成像和检测技术,拓宽PerkinElmer在分子成像和基因检测技术领域的涉猎范围。  为何分析仪器制造商纷纷“转战”诊断市场?究其原因,生命科学乃至诊断市场规模巨大,庞大的市场吸引着更多的公司加入竞争。据安捷伦总裁兼首席执行官Bill Sullivan先生估计,生命科学市场规模在210亿美元左右,年增长率为4-6%,而安捷伦目前在此领域的收入是18亿美元。此外,解剖病理学市场规模122亿美元,年增产率8-10% 分子诊断市场规模45亿美元,年增长率10-15%。  另一方面,对于分析仪器制造商而言,特别是排名前列的分析仪器制造商,在已有的市场竞争日益激烈并且增长放缓的情况下,他们需要寻找新的机会及新的增长点,而诊断市场正好符合这样的诉求。同时,欧美经济低迷为各分析仪器制造商进入诊断市场提供了机会,并购成为各大公司进入诊断市场或扩大诊断市场份额的重要途径。可以预见,未来也许会有更多的分析仪器制造商进入诊断市场!撰稿编辑:杨娟
  • 我国在线分析仪器行业盛会在京拉开帷幕
    仪器信息网讯 2013年11月7日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会、中国仪器仪表学会环境与安全检测仪器分会共同主办,北京雄鹰国际展览有限公司承办的&ldquo 第六届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2013)&rdquo 在北京国际会议中心拉开帷幕。据大会主办方介绍,本次论坛吸引了700多名观众报名参加,近50家在线分析仪器厂商参展。仪器信息网(http://www.instrument.com.cn/)作为战略合作媒体参加了本次论坛。开幕式现场  本届论坛为期两天,围绕&ldquo 高效· 优质· 低耗· 安全· 环保&rdquo 的主题,继承发扬了前五届的专业特色和学术风格,全面展示国内外在线分析仪器的研发、制造、应用等方面所取得的进展与成就,积极推动在线分析仪器和环境监测仪的应用与发展,提高在线过程分析仪器和环境检测仪器的科技水平,促进相关技术在各行业中的应用,加强仪器使用者和仪器生产企业之间的交流与合作。开幕式由中国仪器仪表行业协会分析仪器分会秘书长曹乃玉主持  开幕式上,在线分析仪器专业委员会主任委员黄步余、中国仪器仪表行业协会副理事长李跃光、中国仪器仪表学会副秘书长秦雄文、北京雪迪龙科技股份有限公司副总经理缑冬青分别上台致辞,预祝大会取得圆满成功。黄步余、李跃光、秦雄文、缑冬青分别致辞  根据会议主题,CIOAE组委会特别邀请了中国环境监测总站魏复盛院士、中国环境监测总站齐文启、北京城市排水集团检测中心翟家骥、重庆科技学院电气与信息工程学院王森、天津大学精密仪器与光电子工程学院赵友全等近20位国内外知名专家学者、企业代表分别做了大会报告,和与会观众分享了当前在线分析技术/仪器研发及应用新成果。中国环境监测总站魏复盛院士报告题目:我国环境监测技术的现状与发展中国石化工程建设公司孙磊报告题目:在线分析仪系统与精益管理西门子(中国)有限公司杨飞报告题目:Maxum II色谱仪-性能升级与时俱进仕富梅亚太业务中心张文富报告题目:近红外分析技术在轻烃分析中的应用中国科学院安徽光学精密机械研究所张玉钧报告题目:大气监测技术的进展与趋势哈希公司陈泽武报告题目:低功率单色波长色散X射线荧光重金属在线分析仪通力分析自控技术有限公司罗海涛报告题目:国产在线分析仪在炼油过程中的典型应用案例及效益分析中石化扬子石化有限公司杨金城报告题目:基于在线质谱仪的环氧反应器操作与控制技术聚光科技(杭州)股份有限公司李鹰报告题目:激光吸收光谱技术和MEMS色谱技术在天然气在线分析中的应用中国环境监测总站、国家环境应急专家组副组长齐文启报告题目:现场仪器在环境应急监测中的应用Endress+Hauser China公司潘峰报告题目:Memosens&Liquiline:水质分析测量新标准重庆科技学院电气与信息工程学院王森报告题目:长庆油田、塔里木油田在线分析仪器调研情况江苏天瑞仪器股份有限公司杭怡春报告题目:智能环境监测与预警系统赛默飞世尔科技(中国)有限公司Pete Traynor报告题目:在线质谱仪@大气中有毒气体监测北京城市排水集团检测中心翟家骥报告题目:水中油在线监测技术在低浓度石油废水中的应用美国博纯有限责任公司李峰与徐州国华电厂孙晓峰报告题目:GASS样气预处理系统在SCR CEMS上的应用研究天津大学精密仪器与光电子工程学院赵友全报告题目:石油品质分类鉴别方法研究上海赛科石油化工有限责任公司江明强(由横河电机(中国)有限公司王继付代讲)报告题目:在线分析小屋风险与安全保护探讨
  • 在线水质分析仪器—技术、应用与市场(一)
    p  span style="color: rgb(0, 176, 240) "strong1、前言/strong/span/pp  在线水质分析仪器是一类专门的自动化在线分析仪表,仪器通过实时、现场操作,可在无需人工操作的情况下实现从水样采集到数据输出的快速分析 许多结构复杂的在线水质分析仪器已经具有了自动诊断、自动校准、自动清洗、故障报警等功能,以保证分析结果可靠性和仪器的长时间无故障运行。/pp  目前有两种不同结构和形式的在线水质分析仪器:“在线分析传感器和比较复杂的自动化分析设备或者装置”。按照国际标准化组织(ISO)代号ISO15839《水质-在线传感器/分析设备的规范及性能检验》标准的定义:“在线分析传感器/设备(on-line sensor/analyzing equipment) ,是一种自动测量设备,可以连续(或以给定频率)输出与溶液中测量到的一种或多种被测物的数值成比例的信号。”/pp  随着全球范围内对环境保护、水资源可持续利用以及水安全的日益重视,为满足世界各国日趋严格的环保法规要求和不断发展的水处理工业市场的需求,作为获取水质信息的源头技术,在线水质分析仪器及其应用技术得到了巨大的发展机会。同时,计算机科学、分析化学、材料科学等相关科学技术的进步,也为在线水质分析仪器技术的发展提供了可靠的技术支撑。国际水协会(IWA)的前身国际水污染研究协会(IAWPR)自1973年就开始了组织主题为ICA(Instrumentation-仪表,Control-控制and Automation-自动化)的专题会议,专门推广和研究水处理领域的在线水质分析仪器及过程控制的应用。近来,世界卫生组织(WHO)也在其发布的《再生水饮用回用:安全饮用水生产指南》中指出需要在再生水饮用回用系统全流程的关键控制点实施运行监测,并建议尽量采用在线监测仪器进行数据实时监测和记录。在技术进步和法规的推动下,越来越多的在线水质分析仪器被应用到环境监测、废水排放监测,以及各种水处理工艺的过程控制系统中了。/pp  在中国,伴随着改革开放40年经济高速发展的城镇化与工业化进程,无论是在城镇化过程中大量的自来水水厂和污水处理厂建设,还是工业化进程中各种火力发电厂、石油化工厂、大型冶金企业、食品酿造厂等高耗水工业企业的兴建,都给予了在线水质分析仪器巨大的市场空间,在此基础上,中国的在线水质分析仪器行业获得了空前的成长机会,中国的在线水质分析仪器技术有了显著的发展和长足的进步,在线水质分析仪器的可靠性得到了市场和权威机构的广泛认可。/pp  随着政府和公众对水环境保护和饮用水安全的高度重视,以及政府逐年增加的巨额环保资金,特别是在具有中国特色的“自动监测为主,手动监测为辅的监测模式”的环境监测技术路线的框架下,中国已经逐渐发展成为了在线水质分析仪器全球最大的地表水水质自动监测和废水污染源排放自动监测领域的单一市场。/pp  中国环境保护部门于2001年6月4号发布并同日实施了HBC 6-2001《环保产品认定技术要求 化学需氧量(CODCr)水质在线自动监测仪》行业标准,这是中国第一部用于废水污染源排放自动监测的在线水质分析仪器标准,在接下来的几年中,各个相关政府部门还陆续发布了多部在线水质分析仪器的国家和行业标准。标准的发布实施,加上在线水质分析仪器在实际水质监测中的成功应用,有力地推动了中国水质在线分析仪器市场的发展和技术的进步。/pp  随着中国环境保护事业和环保市场的持续发展,国务院办公厅于2015年7月印发了《生态环境监测网络建设方案》,提出例如“到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。”的目标,方案还要求“完善重点排污单位污染排放自动监测与异常报警机制,提高污染物超标排放、在线监测设备运行和重要核设施流出物异常等信息追踪、捕获与报警能力以及企业排污状况智能化监控水平”。在2018年1月1日正式实施的“中华人民共和国环境保护税法”第十条中还明确规定了应税污染物的计算方法,“纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算”,通过法律条文的形式进一步确定了在线分析仪器的地位。/pp  span style="color: rgb(0, 176, 240) "strong2、在线水质分析仪器的检测技术简介/strong/span/pp  strong2.1在线水质分析仪器的技术发展/strong/pp  一直以来,在线水质分析仪器技术都是沿着在线分析仪器研发制造技术和在线水质分析仪器应用技术两个方面同时发展的。/pp  根据ISO标准的定义,有两种形式的在线水质分析仪器:在线分析传感器和比较复杂的自动化分析设备或者装置。/pp  第一代的在线水质分析仪器常常是以在线分析传感器+显示控制器的形式出现的,仪器通常结构都比较简单,通过传感器直接和被测水样接触获得水质指标的数据。最初可以测量的水质指标,主要是一些简单的物理指标和成分指标,如水温、电导率、PH、ORP、溶解氧等 接着是浊度、悬浮物浓度等光学原理的传感器 随着电化学分析技术的发展,氟离子、铵离子、硝酸盐等多种离子选择电极法原理的在线水质分析传感器也开始进入市场。由于传感器和水样直接接触,无法像实验室人工分析时进行样品预处理及去除样品中干扰物质,在面对水质复杂的水样(高温、高压、含油、硫化物、重金属、悬浮物、高盐度、腐蚀性气体等各种杂质)时的适用性受到很大局限,最初的测量对象主要是地表水、饮用水、市政污水以及工业纯水等水质情况较为简单的水体。/pp  为了解决传感器测量复杂水样的适用性问题,也为了实现一些实验室人工分析方法步骤比较繁琐或者测试条件要求较高的水质参数的自动分析,随着自动控制技术的采用,结构比较复杂的在线水质分析仪器-水质自动化分析设备或装置开始出现:仪器通过控制一整套的设备或装置的自动运行来完成以前实验室人工分析的步骤,比如:过滤、加热、加显色剂、混合、测量等等 另外,为了保证长时间连续运行的准确度,还需要定时对仪器进行自动校准,以及定期的人工维护。这一类在线水质分析仪器结构复杂,多用于水质成分指标(TOC、SiO2、总磷、总氮、重金属等)和评估性水质综合指标(COD、碱度、硬度、生物毒性等)。/pp  随着现代科学技术的发展,特别是分析化学、材料科学、电子科学以及包括计算机技术和通讯技术、自动控制技术在内的系统工程成套自动化技术的发展, 再加上水质科学自身的发展与进步,从以下介绍的多个维度共同推动了在线水质分析仪器技术的发展。/pp  首先,在测量原理方面,除了传统的电化学、光学、光电比色法原理,激光诱导击穿光谱、混合多光谱分析、X射线荧光分析、三维荧光光谱、生物技术等各种新的测量原理被应用到了在线水质分析仪器 同时,流动注射分析技术的发展和应用,使得仪器分析时间大大缩短,增强了在线分析技术实时性的优点。/pp  其次,水质科学的发展,提出了“替代参数”的概念,为在线水质分析仪器的开发和应用开拓了新的空间。水质替代参数是指一类特定的水质参数,可以综合反映水体的某一类别的水污染情况或水处理过程中某些不能实现在线监测而且实验室分析也非常繁琐水质参数的变化。目前,对饮用水水质安全来讲,反应有机物总量及某些特定成分变化的综合性指标UV254是目前非常重要的水质替代参数,可以通过UV254的实时测量,获得和水中有机物污染相关的其他参数(如,COD、BOD、TOC等)的信息。由于能实时反映水质的变化,测量“替代参数”的在线水质分析仪器在水处理工艺过程控制中有着非常重要的价值。目前其他重要的在线水质替代参数分析仪器还有:浊度、颗粒物、SDI(污染指数)等。/pp  第三,随着材料科学的发展,在线水质分析仪器传感器的环境适应性也得到了很大提高,表现为:高温材料的采用,使得传感器的最高工作温度范围不断提高 传感器材质采用惰性的材料,可以耐受水中硫化氢、硫化物、高盐、重金属、油污染的探头,可以耐受高强度核辐射的溶解氧和溶解氢探头应用于核电厂 采用钛合金材料,可长时间应用于海洋监测的传感器等等。/pp  另外,和所有仪器产品一样,在线水质分析仪器中执行数据处理与通讯功能的硬件与软件都采用了电子工业的最新技术。相对于最初的模拟电路,由于数字电路设计要比模拟电路相对简单、自动化程度高,对设计人员的经验水平要求也稍低,数字电路技术的采用和普及,使得仪器设计和批量生产的成本得以大幅下降,仪器的可靠性有了很大的提升。/pp  目前的在线水质分析仪器的控制器普遍具有了自动运算、统计、图形显示、趋势分析等数据处理功能 同时,仪器一般具有自动诊断、故障报警功能,方便仪器运行及维护人员及时发现和解决仪器的问题 仪器生产商采用通用控制器也已经成为共识,同一种型号的控制器可以同数十种传感器连接,由此给仪器生产企业和使用者两方面都带来了好处:仪器制造厂家可以实现控制器的大批量生产,取得规模效益 同时通用控制器降低了仪器技术服务的复杂程度,也降低了仪器生产厂家的服务成本 带给在线分析仪器使用者的好处也是显而易见的:在保证水处理生产正常运行的同时,可以减少水质分析仪器零备件的库存压力 通用控制器也让操作者减少了学习的时间,可以更快更熟练的掌握仪器的使用及维护,提高生产效率 同时,新型的数字化传感器可以被通用控制器自动识别,具有“即插即用”功能,极大的减轻了安装维护人员的劳动强度。在通讯及数据传输方面,RS232、RS485以及Profibus、Modbus等现场总线技术和TCP/IP等网络协议得到了普遍应用,为实现水质监测数据的实时传输及水处理过程的自动控制提供了支持。/pp  最后,标准化进一步支持了在线水质分析仪器技术和行业的发展。国际标准化组织(ISO)在2003年制定的代号为ISO15839-2003的标准《水质在线传感器/分析设备-水质规范和性能测试》,定义了在线水质分析仪器的性能特征,建立了评估及测定性能特征参数的测试程序,这个通用性标准给在线水质分析仪器的研发、生产及验收提供了依据。进入21世纪以来的十多年中, 中国也发布了大量有关在线水质分析仪器的国家标准和一系列的行业标准。这些标准的发布与实施,为在线水质分析仪器的应用与发展提供了技术上的可靠保证。/pp  strong2.2 水质在线分析仪器的主要检测技术/strong/pp  作为一种专用于水质分析的特定仪器分析技术,和其他仪器分析技术一样,水质在线分析仪器检测技术的理论基础也是根据水中待测物质的物理化学或者生物化学性质来测定物质的组成及相对含量。根据测定的方法原理不同,主要可以分为电化学分析、光学分析、色谱分析、其他分析方法等4大类。/pp  电化学分析法(electroanalytical chemistry,也称电分析化学法),是建立在物质在溶液中电化学性质基础上的一类分析方法,它是仪器分析方法中的一个重要分支。电化学分析测量系统是一个由电解质溶液和电极构成的化学电池,通过测量电池的电位、电流、电导等物理量,实现对待测物质的分析。根据测定电化学参数的不同,电化学分析法又分为电位分析法、库仑分析法、伏安分析法(包括极谱分析法)、电导分析法等。/pp  电化学分析法原理的在线水质分析仪器,是出现最早和应用最普遍的一类在线水质分析仪器。其中,既有较为简单的传感器形式的各种Ph/ORP(氧化还原电位)分析仪、电导率分析仪(目前在工业过程分析中应用十分普遍的酸碱盐浓度计,也都大多是采用电导检测原理的在线分析仪器)、极谱法溶解氧分析仪、基于离子选择电极法的氨氮、氯离子、硝酸盐氮、亚硝酸盐氮分析仪 也有结构比较复杂的自动化分析设备,如基于伏安分析法的各种重金属分析仪,采用电位滴定原理的COD分析仪,高锰酸盐指数分析仪,采用电导分析法的纯水TOC(总有机碳)分析仪等。/pp  光学分析法(optical analysis),是以物质发射或吸收电磁辐射以及物质与电磁辐射相互作用(发光、吸收、散射、光电子发射等)来对待测样品进行分析的方法。可以分为光谱法和非光谱法两大类。非光谱分析法,是基于物质引起辐射的方向或物理性质的改变,检测被测物质的某种物理光学性质,进行定量、定性分析的方法,非光谱分析法不考虑物质内部能量的变化,包括了折射法、散射光法等。光谱分析法,是以光辐射能与物质组成和结构之间的内在联系或者以光谱或波谱的测量为基础,利用物质的光谱特征,进行定性、定量及结构分析的方法。按物质能级跃迁的方式,光谱分析法又分为三种基本类型:发光光谱法(包括分子荧光分析法、X射线荧光分析法等)、吸收光谱法(包括紫外可见分光光度法、红外分光光度法等)以及散射光谱法(如最近比较热门的拉曼散射光谱法)。/pp  在线浊度分析仪是目前非光谱分析法在水质在线分析技术最有价值的应用。浊度是水质净化处理最重要的关键性工艺参数,它既可反应水中悬浮物的浓度,同时又是人的感官对水质最直接的评价,全球各国包括世界卫生组织的饮用水标准都把浊度作为了一个必测的指标。浊度的测量原理是利用光的散射原理,当光束接触到水中的悬浮物颗粒表面时,将会散射和吸收通过水样的光线,散射光与入射光成90度直角时,散射光强度与浊度的大小成线性关系,通过检测器测量散射光强度,同标准比较,就能获得水样的浊度值。目前市场上已经有了数十种不同结构、不同量程、不同测试精度、不同安装方式的在线浊度分析仪器产品,可以满足从洁净度极高的膜过滤水到高污染、高悬浮物水样浊度的实时监测。/pp  目前,采用光谱分析法原理的水质在线分析仪器是能够测量水质参数最多的一类仪器,这其中,既有采用经典比色法原理的总磷分析仪、总氮分析仪、氨氮分析仪、SO2分析仪、六价铬、铜等重金属分析仪 也有X射线荧光分析法原理的铅、砷分析仪 还有紫外荧光原理的水中油(多环芳烃)分析仪等。最近,随着化学计量学和光谱学的发展,采用全光谱扫描方法,可一次分析十多种水质参数的多参数在线水质分析仪也得到越来越多的应用。/pp  另外,随着流动注射分析技术的出现和大量应用,也为提高“结构比较复杂的自动化分析设备或者装置”这类在线水质分析仪器的分析速度,实现仪器快速自动完成水样采集、处理,试剂混合,乃至最终检测提供了支撑。流动注射分析(Flow Injection Analysis,缩写FIA),是一种“非平衡态”化学分析技术,1974年由丹麦化学家鲁齐卡(Ruzicka J)和汉森(Hansen E H)提出的一种创新的连续流动分析技术。这种技术是把一定体积的试样溶液注入到一个连续流动的、无空气间隔的试剂溶液(或水)载流中,被注入的试样溶液在反应管中形成一个反应单元,并与载流中的试剂混合、反应后,再进入到流通检测器进行测定分析及记录。整个分析过程中试样溶液都在严格控制的条件下在试剂载流中分散,因此,只要待测水样的注射方法,在管道中存留时间、温度和分散过程等条件相同,不要求反应达到平衡状态就可以按照比较的方法,通过标准溶液所绘制的工作曲线测出试样溶液中被测物质的浓度。/pp  流动注射分析技术的应用,极大的提高了水样分析速度。特别是随着由具有良好耐腐蚀性能的聚乙烯、聚四氟乙烯等材料制成的微型管道系统的出现,仪器对样品以及分析试剂的耐受性大大提高,扩展了仪器对分析方法的适应性,增加了可实现自动分析的水质参数,采用流动注射技术的仪器小型化也成为现实。由于流动注射分析技术具有可以把吸光分析法、荧光分析法、比浊法和离子选择电极分析法等诸多分析方法的流程实现在管道中完成、需要的试剂量小、易于自动连续分析的优点,在水质在线分析仪器领域得到了非常普遍的应用,几乎被所有非传感器形式的在线水质分析仪器所采用。/pp  最近以来,为满足对水中多种微量成分的实时监测,色谱原理的在线水质分析仪器开始出现,在线离子色谱监测系统监测水中高氯酸盐和氯酸盐、在线气相色谱仪监测水中VOCs(挥发性有机物)的都取得了成功的应用。/pp  其他原理的在线水质分析仪器中,生物技术原理的产品占据了很大的份额,其中,发光细菌法生物毒性监测仪、微生物燃料电池监测生化需氧量和毒性,核酸酶重金属特异性反应监测重金属,酶底物法监测大肠杆菌、ALP(碱性磷酸酶)法监测细菌总数等原理和方法的在线水质分析仪器最近几年都开始得到市场的认可。/pp  strong2.3 国内外水质在线检测的技术差距/strong/pp  在中国,由于水质在线分析仪器的主要市场,包括工业水处理过程监测与控制、市政自来水与污水处理、环境自动监测等同欧美和日本等主要发达国家相比,起步都较晚,同时也因为支撑水质在线分析仪器研发制造的电子技术、自动控制、软件等基础技术和精密制造产业在中国也主要是改革开放以后的短短几十年里才开始发展起来的,两方面的原因造成了中国水质在线分析仪器以及检测技术发展的差距。/pp  和其他分析仪器产品一样,可靠性是国内外在线水质分析仪器最大的差距,专门人才的缺乏造成的设计理念和流程的落后、关键元器件的稳定性和供应不足以及在线水质分析仪器行业的制造水平、质量管理水平的差异都是造成可靠性差距的原因。/pp  水质在线检测技术同国内外差距的另外一点是分析原理创新,同发达国家同行不断应用的新分析原理、新材料、新算法等新技术相比,目前中国水质在线检测仪器主要原理还是以传统的电化学、比色法为主,仪器对水质变化的适应性还不能完全满足目前水处理工业过程控制的要求。/pp  在绿色分析的认知和应用上,国内外水质在线分析技术也存在一定的差距,绿色分析要求是在分析过程减少多环境的影响,避免(或大幅度减少)使用化学试剂,减少气体、液体和固体废物的产生,避免使用剧毒(包括生态毒性)的试剂 减少样品分析的所需的人力和能耗。目前国内在线水质分析仪器,特别是结构比较复杂的监测型在线水质分析仪器,在试剂使用量、废液产生量以及有毒试剂的使用和能耗方面,同国外先进仪器还有一定的差距。/pp  最近十多年以来,在“自动监测为主,手动监测为辅的监测模式”的环境监测技术路线的大力推动下,中国监测型水质在线分析仪器技术有了长足的进步和发展。从2002年至今,几乎每年都有上万台/套的在线水质分析仪器及系统实现了安装调试和实际运行。仪器大量的研发制造和实际应用,为行业技术进步提供和积累了宝贵的经验。与此同时,中国发布了数十项在线水质分析仪器及系统的国家标准、行业标准,这些标准的发布和实施,对在线水质分析仪器在中国市场的应用和发展起到了极大的推动作用,有力的支持了中国监测型在线水质分析仪器研发制造技术的发展,多种适应不同水质条件水样的应用技术也得以开发。中国监测型在线水质分析仪器已经有了巨大的进步。总体来看,水污染源排放和水环境自动监测的常规在线水质分析仪器及其应用技术达到了国际领先的水平。/pp  a href="https://www.instrument.com.cn/news/20190701/488018.shtml" target="_blank"strong在线水质分析仪器—技术、应用与市场(二)/strong/a/pp style="text-align: right "strong(供稿:重庆昕晟环保科技有限公司 总经理程立)/strong/p
  • 时代新维发布时代新维硅酸根分析仪国标比色分析法新品
    应用TP306 硅酸根分析仪用于发电厂除盐水、蒸汽冷凝水、炉水及化工、制药、化纤、半导体行业水中可溶性二氧化硅和硅酸盐含量的分析、检测。原理在pH为1.1~1.3条件下,水中的可溶硅与钼酸铵生成黄色硅钼络合物,用1-氨基-2萘酚-4-磺酸(简称1-2-4酸)还原剂把硅钼络合物还原成硅钼蓝,用硅酸根分析仪测定其硅含量。仪器利用光电比色原理进行测量。根据朗伯-比耳定律:当一束单色平行光通过有色的溶液时,一部分光能被溶液吸收,若液层厚度不变,光能被吸收的程度(吸光度A)与溶液中有色物质的浓度成正比。功能特点* 先进贴片工艺及一体化设计,高集成度电路设计稳定耐用。* 先进单片机技术,高性能,低功耗。* 光源采用进口单色冷光源,性能优良,信号稳定,功耗低,寿命长。* 本底补偿功能,减少微量硅测量误差。* 自动计时提醒功能,方便操作者使用,提高工作效率 。* 空白校准,消除零点漂移和电气漂移,提高测量精确度。* 数据循环存储功能(最多256条),自动清除溢出数据,操作简单,查询方便。技术指标显 示: 5.0寸触摸彩色液晶,中文显示测量范围: (0.0~200.0)μg/L或(0.0~2000)μg/L精 确 度: ±2%F.S分 辨 率: 0.1μg/L重 复 性: ≤1%稳 定 性: ±1% F.S/4h环境温度: (5~45)℃环境湿度: ≤90%RH(无冷凝)外形尺寸: 260mm×200mm×180mm供电电源: AC (85~265)V 频率 (45~65)Hz功 率: ≤30W重 量:3.2kg订购指南* 硅酸根标液* 排污管* 电源线* 进样杯注意事项1.配制溶液的Ⅱ级试剂水必须是纯度很高的高纯水,最 好 是高性能混床离子交换装置产生的去离子水。2.所有试剂应保存在专门标识的聚乙烯塑料瓶中。所有试剂的质量等级都必须是分析纯或分析纯以上,且未过保质期。3.每天应对仪器做一次空白校准,每隔两周应对仪器进行一次曲线校准,以消除电气漂移、光学漂移和温度漂移对仪器的影响。创新点:* 先进贴片工艺及一体化设计,高集成度电路设计稳定耐用。* 先进单片机技术,高性能,低功耗。* 光源采用进口单色冷光源,性能优良,信号稳定,功耗低,寿命长。* 本底补偿功能,减少微量硅测量误差。时代新维硅酸根分析仪国标比色分析法
  • QL3580在线总有机碳(TOC)分析仪上市
    QL3580在线总有机碳(TOC)分析仪上市哈希公司 3 days ago产品应用污染源,工业废水,地表水准确测量污染源排口地表水和工业废水中的有机物含量QL3580 在线TOC分析仪采用UV过硫酸盐和羟基自由基相结合的氧化方法(纯氧做载气时),与传统UV过硫酸盐氧化法相比,氧化能力更强,氧化效率更高,提高了TOC测量时的准确度。内置TOC/COD转换功能,满足EPA的管控要求。低维护量低维护费用QL3580 TOC分析仪具有4mm内径的进样管路,可以测量高达2mm内径的软颗粒,且自带流通池,常规样品无需过滤处理。节约预处理成本及减少管路维护。简洁的仪器设计和仪表配备的两点自动校准功能减少操作人员的额外维护量,序批式测量减少试剂的消耗。且因为分析过程不使用碱性试剂,有效的降低了操作人员制备药剂的难度。准确测量水中有机物含量具有TOC/COD转换功能QL3580 TOC分析仪内置TOC/COD转换功能,满足污染源排口监控的需求。分析过程不使用碱性试剂,排除因二氧化碳溶入碱性试剂造成的测量干扰。在使用氧气作为载气时,为羟基自由基提供稳定的来源,提高了水中总有机碳的氧化效率,确保在低浓度时也具有较高的准确度。友好的人机界面QL3580 TOC分析仪配备高清触摸屏,具有人性化的操作界面和仪表接口,可快速便捷进行数据下载和软件更新,多级管理模式方便用户对仪表进行管理。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制