当前位置: 仪器信息网 > 行业主题 > >

大气三维分布监测仪

仪器信息网大气三维分布监测仪专题为您提供2024年最新大气三维分布监测仪价格报价、厂家品牌的相关信息, 包括大气三维分布监测仪参数、型号等,不管是国产,还是进口品牌的大气三维分布监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大气三维分布监测仪相关的耗材配件、试剂标物,还有大气三维分布监测仪相关的最新资讯、资料,以及大气三维分布监测仪相关的解决方案。

大气三维分布监测仪相关的资讯

  • 三维荧光光谱技术 海洋、大气污染监测好帮手
    近日,珠海首次大规模入海污染通量监测分析项目已完成阶段性任务,任务包括开展70条入海河涌排洪渠、断面和31个入海排污口的入海污染通量以及水质指纹(三维荧光光谱)监测和评估,主要监测指标包括盐度、pH值、溶解氧、化学需氧量、高锰酸盐指数、总氮、无机氮、总磷、石油类、流量、三维荧光光谱等。在开展监测过程中,监测单位运用多普勒流速流量无人走航船、三维荧光光谱仪等先进仪器获取水体水文信息和水质指纹,在摸清入海污染通量的同时,建立可供海洋污染溯源的水质指纹库和溯源模型。“水中的污染物组分不同,呈现出来的三维荧光光谱就随之不同,这些特征光谱就是水质的指纹。”市西部生态环境监测中心工程师杨锡明介绍,“本项目就是基于三维荧光光谱测定结果,建立谱库分析模型,分析入海河涌、入海排污口水质指纹特征,确定其污染类型,然后追溯水中污染物的排放来源。”对于三维荧光光谱技术,今年2月,标准《在线水质荧光指纹污染预警溯源仪技术要求》正式实施,具体可查看:三维荧光光谱方法识别判定水污染排放源。该项标准即采用三维荧光光谱方法识别判定水污染排放源的技术。三维荧光光谱技术除了检测水质外,还可以检测气体,应用于大气环境防治及污染处理。在第十一届光谱网路会议(iCS2022)上,陕西科技大学陈庆彩教授将讲解“三维荧光光谱在大气污染科学研究和控制中的应用”,报告将讲述三维荧光光谱法在大气污染形成机制和来源鉴定中的应用案例和理论技术、关键技术,以及应用范围,从检测设备的设计和搭建,到数据处理和实际应用过程。》》》点击报名》》》
  • 安徽光机所AGHJ-LIF-I水质有机污染三维荧光监测仪亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院安徽光学精密机械研究所研制的AGHJ-LIF-I水质有机污染三维荧光监测仪、TEMO大气颗粒物分析仪亮相国家“十一五”重大科技成就展。AGHJ-LIF-I水质有机污染三维荧光监测仪TEMO大气颗粒物分析仪  关于中国科学院安徽光学精密机械研究所:  中国科学院安徽光学精密机械研究所成立于1970年12月。位于安徽省合肥市西郊,占地面积约600余亩。现设大气光学研究中心、环境光学研究中心、应用激光技术研究中心和光学工程技术中心以及一批高科技公司。安徽光机所具有光机电技术研究开发综合优势和配套的生产制造能力,并已获得了GB/T19001-2000和GJB9001A-2001质量体系认证证书。 安徽光机所在激光大气传输和激光大气探测、激光光谱学、环境光学和环境监测技术、遥感和辐射定标与校正、新型激光器和晶体材料、医学光电子学和激光医疗仪器、光电子学和光电工程等学科领域,承担着国家重点科技攻关、国家"八六三"计划、国家自然科学基金、国家部委预研、中科院重大以及地方攻关等项目。在和企业合作研发环境监测技术、工业和医用激光技术、激光晶体材料等方面已开发出一系列高技术产品。研制成功的空气质量长程差分吸收监测系统、便携式大气探测激光雷达和测污激光雷达设备,已在我国环境污染监测中发挥着重要作用。
  • 35800公里外为地球大气做“CT”:静止轨道红外干涉大气三维探测载荷技术|上海市科学技术奖
    项目名称:静止轨道红外干涉大气三维探测载荷技术完成单位:中国科学院上海技术物理研究所完 成 人:丁 雷 等奖励等级:技术发明奖一等奖天气变化影响着人们穿衣、出行,乃至生活的方方面面,对气象开展准确监测是世界科学家们孜孜以求的目标。地球静止轨道气象卫星,相对地球静止不动,可以全天候获取我国所在区域的连续动态观测数据,犹如坚守岗位的“哨兵”。因此,发展静止轨道先进大气探测载荷技术是世界各国科技竞争制高点之一。由中国科学院上海技术物理研究所历经20年研究的静止轨道红外干涉大气三维探测载荷技术在国际上率先取得突破,该所研制的干涉式大气垂直探测仪(GIIRS)装载于我国第二代地球静止轨道气象卫星——风云四号卫星上,在国际上首次实现了静止轨道大气温度、湿度垂直三维探测,有效提高了长期数值预报精度,对我国和“一带一路”沿线国家和地区的天气预报和灾害预警具有重要意义。在35800公里外为地球大气做“CT”,是我国气象预报当之无愧的“独门秘笈”之一。2018年台风玛利亚内部温湿度信息探测01群雄逐鹿 拔得头筹大气在空间分布上是三维的,其温度、湿度和压强会随时间而变化,大气的运动和变化便是天气现象的本质。摸清大气垂直运动的“脉搏”,就能及时预报天气的发生与发展。如果能获取一幅动态大气三维“全息”影像,就能表征天气现象动态演变过程,为数值预报提供强有力的“诊断”依据,及时出具应急响应的“处方”。然而,在35800公里的地球静止轨道监测如同针尖大小地面上空大气层的变化,谈何容易,可谓差之毫厘、谬以千里!在国际上,静止轨道红外干涉大气三维探测载荷技术的研究起源于20世纪90年代,美国、欧洲和中国先后开展了本项技术研究。由于技术难度大、不成熟等问题,原计划在美国GOES系列、欧洲MTG-S项目上实施的载荷至今尚未在轨实现。而本获奖项目科研团队研制出的两台GIIRS仪器已经在2016年和2021年先后进入静止轨道工作,连续为全球提供高时效大气三维探测数据超过5年,我国已成为全球的唯一数据源。“GIIRS实现了好几个‘世界首次’,在预报服务中发挥了很好的作用!”中国气象局数值预报中心模式研发室副主任、风云四号卫星数值预报应用攻关团队首席专家韩威,给出如上评价。02自主创新 攻坚克难静止轨道红外干涉大气三维探测载荷技术究竟包含了哪些“法宝”和“绝招”,解决了哪些关键核心技术难题呢?看得细——大气目标精细光谱探测。实现大气温度和湿度参数的三维垂直结构观测需解析不同高度大气的红外吸收光谱,要求光谱分辨率达到0.625波数,在35800千米距离上进行大气光谱探测,需要建立新的精细光谱测量技术体制。看得准——低能量的高探测灵敏度。由于对地观测距离超过35800公里,到达轨道上的地球辐射能量值仅为低轨道的数千分之一;同时探测大气要求的高光谱分辨率,使得目标的辐射能量减小1.5个数量级以上,研制出更加灵敏的“视网膜”,即高性能新型红外探测器来提高探测转换效率、降低测量噪声。看得远——载荷极高指向观测稳定性。针对远距离观测,提出了二维扫描镜扩大仪器的视场,离轴主望远光学系统收集大气能量、动镜式傅立叶干涉仪进行探测、通过机械制冷机冷却面阵探测器和辐射制冷器冷却后光路、高性能探测器进行光电转换的高光谱载荷总体技术方案,并研制了集成化的载荷系统,系统解决了地球静止轨道进行高光谱、高灵敏度、高稳定大气三维探测的三大技术难题。看得清——复杂空间环境下高稳定探测。由于地球自转与公转带来的载荷温度变化超过210℃与载荷光学系统温度稳定度要求小于0.2℃的矛盾,突破多温区的高稳定度控制技术,达到“身处水深火热,内心平静如水”的状态。03气象灾害 尽收眼底静止轨道红外干涉大气三维探测载荷技术在台风等灾害天气预报和建党100周年活动等重大气象服务中发挥了重要作用。据相关统计显示,预报台风登陆地点的路径误差每减少1公里可避免直接经济损失约1亿元人民币,仅在2019年,GIIRS对台风“利奇马”的24小时路径预报误差从75公里降到50公里,直接减损效益估计超20亿元。此外,GIIRS在GRAPES数值预报中的成功应用,促进了全球静止卫星高光谱观测系统发展。在2019年美国召开的联合卫星大会上,美国天气局(NWS)局长指出:静止轨道高光谱探测将是下一步最大的进步;美国国家环境卫星信息资料中心NESDIS主任评价该载荷技术:促进了全球静止轨道卫星大气高光谱探测系统发展和卫星观测同化应用。在学术贡献上,国际和国内气象应用专家还利用GIIRS高频次、高光谱数据,针对NH3、四维风场等探测要素开展研究。面向国家战略亟需,中国科学院上海技术物理研究所创建了静止轨道大气三维探测全新技术体制,发明了具有完全自主知识产权的高光谱载荷技术,国际上率先实现了高频次的地球静止轨道大气三维结构精细探测,推动了风云四号卫星处于国际领先地位,获得了重大的应用价值和社会效益,得到各方的高度评价。站在时代的潮头回望历史,我们的科研人员心中仍谨记着周恩来总理1969年1月29日的重要指示:应该搞我们自己的气象卫星。五十多年来,风云系列气象卫星走出了从无到有、从小到大、从弱到强的成功之路。回首风雨,展望未来,上海技术物理研究所科研团队将接续奋进,紧密围绕气象领域和我国大气探测的战略要求,瞄准国际竞争制高点,为我国大气探测技术实现升级换代和逐步超越国际水平作出更多新的贡献!
  • 分布式光纤应变监测仪取得重要进展
    p style="text-align: justify text-indent: 2em " 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。/pp style="text-align: justify text-indent: 2em "该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。 /p
  • 微纳级半导体光/电特性三维检测仪研制
    table border="1" cellspacing="0" cellpadding="0"tbodytrtd width="89"p style="line-height: 1.75em "成果名称/p/tdtd width="532" colspan="3" style="word-break: break-all "p style="text-align: center line-height: 1.75em "strong微纳级半导体光/电特性三维检测仪 /strong/p/td/trtrtd width="97"p style="line-height: 1.75em "单位名称/p/tdtd width="532" colspan="3"p style="line-height: 1.75em "高动态导航技术北京市重点实验室/p/td/trtrtd width="97"p style="line-height: 1.75em "联系人/p/tdtd width="164"p style="line-height: 1.75em "付国栋/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "fuguodd@163.com/p/td/trtrtd width="97"p style="line-height: 1.75em "成果成熟度/p/tdtd width="529" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="97"p style="line-height: 1.75em "合作方式/p/tdtd width="529" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 √合作开发 □其他/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong成果简介: /strong/pp style="text-align:center"span style="line-height: 1.75em " /spanstrongimg src="http://img1.17img.cn/17img/images/201604/insimg/14804d5d-d9d4-4206-bde5-fb75196465c9.jpg" title="1.jpg"//strong/pp style="line-height: 1.75em " 半导体光电探测器晶圆向大直径、高密度发展,检测要求呈多样化趋势,迫切需求大行程(≥300mm)、高定位精度(0.5μm)、能够提供高/低温、光/暗等环境的光/电特性检测仪器。针对上述需求,突破高精度直驱控制、微弱信号提取及处理、低温无霜测试控制、单光子信号源等关键技术,形成大行程、高精度半导体光/电特性检测仪及三维平台精准定位技术,在大面阵、高精度定位,长时高可靠控制,微纳级信号检测与处理,高精度低温无霜测试等方面达到国际先进水平。主要性能指标:(1)轴系:XYZR四轴(2)行程:300mm;(3)位移精度:1μm(4)温度范围:-60℃~200℃。成果已在核高基项目中获得应用。/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong应用前景: /strongbr/ 成果主要用于半导体晶圆设计和生产过程中的IV/CV/脉冲、暗电流、暗计数、单光子探测效率、温度特性、噪声等效功率测试及数据采集、分析。 br/ 成果适用于开展半导体晶圆及芯片设计、生产的高校、科研院所及企业。 br/ 预计国内市场年需求量在1800~2000台,市场规模约30亿元。/p/td/trtrtd width="648" colspan="4" style="word-break: break-all "p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 具有核心技术,受理发明专利2项: br/ (1)专利名称:一种三维多曲面融合敏感结构微纳振幅电容检测系统(申请号:CN201410512345.5); br/ (2)专利名称:一种基于模糊控制的小型数字舵机系统(申请号:CN201410233762.6)。/p/td/tr/tbody/tablepbr//p
  • 大气颗粒物检测遇难题?三维荧光光谱来助力!【在线讲座| 5月29日】
    三维荧光光谱法(EEM)是鉴定环境中发色团物质的重要仪器分析方法,近年来已被频频应用到大气气溶胶研究领域中。然而,因为多数情况下样品的EEM谱图具有非常相似的形貌,限制了EEM方法的广泛应用,当前EEM方法在大气领域的应用也进入瓶颈期。前不久,我们曾报道过陕西科技大学陈庆彩研究团队利用三维荧光光谱(EEM),对大气颗粒物中发色物质的种类和来源进行了分析。这项工作突破了一定的方法瓶颈,对于EEM方法在气溶胶研究领域的应用起到了关键推动作用。那么,EEM法是如何应用于大气颗粒物中发色团的化学组成、来源分析的呢?在这一研究中还有哪些技术问题亟待解决?如何突破现有EEM方法在大气领域的应用瓶颈?为解答这些疑问,5月29日,HORIBA 2020在线讲座第6课,我们邀请了陕西科技大学环境学院——陈庆彩副教授,为大家详细介绍EEM法研究大气颗粒物的具体应用案例、当前待解决的技术难点,以及他所在研究团队的新科研成果。前往微信公众号“HORIBA 科学仪器事业部”,查看历史文章即可报名!精彩内容不止一个!除了陈庆彩副教授的精彩报告外,本次讲座还将为大家介绍三维荧光光谱在食品、生化检验等领域的应用。HORIBA 资深技术顾问周磊博士,将以红酒、橄榄油、胰岛素、细胞培养基等为例,详细介绍HORIBA新稳态技术——A-TEEM技术在复杂样品定性和定量分析中的作用。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着201年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 雾霾在线监测仪助力大气污染治理
    四川鼎林信息技术有限公司日前成功研发出雾霾在线监测仪。目前,中科院光电所产业园内的计算机正在不间断地运算其采集回的数据。  该公司负责人杨宁表示,当下环保部门采用空气质量指数监测体系预报污染情况,主要是分项监测PM10、PM2.5等6种污染气体,而雾霾在线监测仪通过实时的能见度、湿度等数据在线监测雾霾,并对空气中的各种污染气体和悬浮物进行总体监测。&ldquo 两种监测方式不同,可有效互补。&rdquo   &ldquo 总体监测的最大好处是既能量化反映雾霾严重程度,又能定位雾霾污染分布和污染源。&rdquo 据该公司总工程师甘志介绍,雾霾的严重程度和大气中污染颗粒物浓度成正比,而颗粒物浓度和大气消光系数成正比。雾霾在线监测仪正是基于透射式原理研发而成,通过监测大气的消光系数,包括散射和吸收效应,进而推算出雾霾严重程度,并最终反映总的污染物浓度水平。同时,当一个地区有多种污染源时,雾霾在线监测仪可定位污染源的分布与位置,有效监测不定期偷排现象。
  • 中国复眼成功“开眼” 拍摄世界首张基于分布式雷达的三维月面图
    位于重庆市两江新区的超大分布孔径雷达高分辨率深空域主动观测设施,也就是中国复眼,近日完成一期工程的安装调试和开机观测工作,成功拍摄出世界首张基于分布式雷达的三维成像月面图。据了解,超大分布孔径雷达类似于很多小天线合成一个大天线,虽然单一雷达功率有限,但是由于雷达和雷达之间的功率叠加,因此可以实现超远程探测功能。据介绍,与中国天眼不同的是,中国复眼可以自己发射电磁波,并能接收回波,从而对太阳系内的小行星和类地行星进行观测。中国复眼项目由北京理工大学重庆创新中心牵头建设,一期工程通过实现对月的高分辨率成像观测,验证了大系统分布式的工作模式,为后续的二期和三期工程奠定了基础。计划三期工程建成后,由上百台雷达组成的大科学装置探测距离能达到1.5亿公里,实现我国在深空探测雷达领域保持50年的领先优势。
  • PM2.5空气自动监测仪极大增强大气污染监测水平
    p  “这是PM2.5空气自动监测仪,可以24小时实时监测气象参数和PM2.5浓度等内容。”3月16日上午10点多,浙江绍兴上虞区环保局楼顶,记者看到一台外形如家用电热水器的空气监测仪器正在运行中。 /pp style="TEXT-ALIGN: center" img title="PM2.5.jpg" src="http://img1.17img.cn/17img/images/201703/insimg/41941a2f-d4e1-4478-ba87-f1fa6cacbef6.jpg"//pp style="TEXT-ALIGN: center" span style="FONT-SIZE: 14px"工作人员介绍正在运行中的一台空气监测仪器/span/pp  通过这台仪器的监测,“PM2.5浓度:19微克/立方米 空气质量:优”一组实时监测数据,出现在PM2.5自动监测系统页面上。上虞区环保局监测站工作人员介绍,目前上虞区20个乡镇(街道)都建有自动监测站点,实现环境空气自动监测全覆盖,而这些自动监测点出具的数据都将实时上网,纳入绍兴市空气质量数据管理平台。/pp  “通过此系统,我们可以实时掌握各乡镇(街道)的PM2.5浓度变化情况,大大增强大气质量监测、预警能力和大气污染监测水平。”上虞区环保局相关工作人员介绍,所有监测点都是无人值守,对周边空气进行24小时不间断检测,上虞区监测站将会定点从各监测点收集实时数据,获得当日的空气质量情况。值得一提的是,PM2.5自动监测系统支持与手机APP信息共享,普通市民打开“绍兴空气质量”APP就能实时查看自己所在区域的空气质量了。/pp  据介绍,早在2007年,上虞区在百官城区和盖北镇设立空气监测点,实时监测PM10、SOsub2/sub、NOsub2/sub数据,并向省环保厅上传自动监测数据。2013年,上虞区完成对原有的空气监测站设备进行全面升级,从分析3个参数升级到了6个参数,增加PM2.5、Osub3/sub、CO三项监测能力,更加全面反映空气质量现状。随后又相继在梁湖镇、曹娥街道建立空气自动监测站。/pp  为了更直观地监测空气质量,去年以来,上虞区环保局积极开展PM2.5空气自动监测系统建设,在原有4个监测点位基础上,新增11个乡镇(街道)的PM2.5空气自动监测站。今年3月初,随着剩余5个乡镇的PM2.5自动监测站点建设完成,上虞区环境空气自动监测系统实现全覆盖。/pp  “在点位设置、实际选点时,我们充分考虑城市功能区划、发展总体规划、污染源分布等多种因素,使环境空气监测的代表性、科学性得到明显增强,监测点位的分布更加合理。”上虞区环保局监测站工作人员表示,通过对区域空气质量的在线自动监测,能及时、准确地反映区域环境空气质量状况及变化规律,为环境管理、污染防治等提供翔实的数据资料和科学依据。/p
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p  近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。/pp  作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。/pp  在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。/pp  中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title="LKsd-fyqtwzv2273554.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "与会专家合影/p
  • 先临三维发布先临三维全自动桌面检测三维扫描仪AutoScan Inspec新品
    AutoScan Inspec全自动桌面三维检测系统将快速准确的三维扫描测量和功能齐全的三维全尺寸检测进行创新性结合,专注于小尺寸精密工件扫描,一体式外观设计,直观的用户界面,引导式操作方式,融合AI智能补扫算法;全自动高效扫描、工业级高精度、出色的数据细节、全尺寸检测流程,保证三维测量和质量控制快速完成,可广泛应用于塑料零部件、叶轮叶片、小尺寸铸件等逆向设计、批量化检测及质量控制等工业场景。● 计量级高精度高性能硬件搭配强劲的3D视觉算法,精度≤10μm,满足工业检测、质量控制等应用要求。● 全自动高效扫描一体式机身搭载三轴设计,自动亮度调节功能,一键快速获取扫描数据。支持多件扫描,数据自动分别存储,快速高效。●出色的数据细节得益于500万像素工业相机,高分辨率展示数据细节。●智能软件支持AI智能补扫算法,智能规划补扫路径,同时兼具路径存储功能,针对重复样品可以导入路径智能扫描。可轻松导出数据至CAD/CAM软件,对接Geomagic Control X、PolyWorks|Inspector、Geomagic Design X 等检测和逆向软件。●应用非接触测量质量检测逆向工程产品设计创新点:1.AutoScan Inspec全自动桌面三维检测系统将快速精准的三维扫描测量和功能齐全的三维全尺寸检测进行创新性结合;2.计量级高精度:高性能硬件搭配强劲的3D视觉算法,精度≤ 10μ m,满足工业检测、质量控制等应用要求;3.500万像素工业相机,高分辨率展示数据细节。先临三维全自动桌面检测三维扫描仪AutoScan Inspec
  • 首幅大气氨气柱全球分布图发布 风云卫星具备定量探测全球氨气浓度能力
    日前,我国科研人员通过分析风云气象极轨卫星上搭载的红外高光谱大气探测仪观测光谱的特点,探索建立了一套适用于风云卫星氨气柱浓度的全物理反演算法,并成功获得风云卫星首幅大气氨气柱全球分布图。这意味着风云卫星已具备定量探测全球氨气浓度的能力。氨气是大气中重要的碱性气体,与酸性气体快速反应后生成的硫酸铵和硝酸铵等二次气溶胶,是雾和霾期间大气细颗粒物PM2.5的主要污染成分。铵盐气溶胶还会通过散射影响太阳辐射,破坏地球辐射收支平衡,引起地球气候变化。因此,对氨气进行全球监测非常有必要。然而,传统的氨气浓度获取主要依赖于地面原位观测,很难满足实际需求,尤其是极地、沙漠、海洋、森林等的数据获取困难。我国风云三号系列气象极轨卫星从第四颗星开始(风云三号D星、E星、F星),搭载了红外高光谱大气探测仪,为实现氨气全球探测提供了可能。中国科学院大气物理研究所副研究员周敏强和中国气象局研究员张兴赢合作攻关,建立了适用于风云卫星氨气柱浓度的全物理反演算法。该算法在反演氨气时,可进行臭氧、二氧化碳、水汽、地表温度等干扰参数的同步反演。研究发现,风云卫星上的红外高光谱大气探测仪可以很好地捕捉全球氨气高值区,获得大气氨气柱分布图。周敏强指出,这次研究建立的反演算法虽已论证风云卫星的全球氨气定量遥感观测能力,但目前在海洋和高纬度地区反演精度较低。未来,研究团队将进一步改进反演算法,引入神经网络算法,提升反演精度,提高海洋和高纬度地区有效观测数据的质量。
  • 赛默飞GM-5000微型环境空气质量监测仪助力大气污染精细化管控
    作为环境空气质量监测领域的领军企业,赛默飞世尔科技具有超过40年的专业技术和服务经验,为客户提供多种不同污染物及应用需求的监测设备以及全面的空气质量监测解决方案。根据不同的监测目的和精度要求,赛默飞庞大的空气监测产品线能够满足客户对不同监测技术和精度等级的需求,在区域内形成有机的、高效的空气监测网络;监测数据能够实时上传,并以“一张图”的方式呈现在客户面前,区域空气质量状况以及监测网络运行状态尽在掌控。赛默飞丰富的空气质量监测产品赛默飞环境空气质量监测方案GM-5000微型空气质量监测仪Thermo ScientificTM GM-5000微型空气质量监测仪是赛默飞基于大气污染精细化管控的应用而开发的一款适用于室外的小型化,高性价比,多参数连续空气质量监测系统。凭借科学的设计,专业的品质,稳定可靠的数据,一经问世便受到广泛关注。其与赛默飞多种空气质量监测设备的有机结合,为不同用户实现全方位立体科学的监测网络构建和大气污染精细化监管提供了有力工具,帮助客户实现更有效的大气污染防治计划和监管目标。Thermo ScientificTM GM-5000微型空气质量监测仪 GM-5000的主要技术特点01. 一台监测仪器实现多种污染物的监测GM-5000微型空气质量监测仪内部集成了不同电化学传感器、光学粒子计数器和PID传感器,能够实现SO2、NO、NO2、CO、O3、PM10、PM2.5、TVOC等多达8种污染物的同时监测,也可根据实际需求进行多种不同参数配置。GM-5000微型空气质量监测仪传感器位置02. 传感器在最佳环境条件下运行众所周知,电化学传感器需要在一定的温湿度范围内运行,光学粒子计数器对颗粒物的测量受湿度变化的影响较大,因此在仪器设计上应给予充分考虑来实现不同地域和季节的户外应用。GM-5000采用加热采样和冷却循环气路设计,加热采样能够去除高湿对颗粒物测量的影响,提高低温环境下样气温度;冷却循环气路通过控制风扇调节循环气体流速,从而使得仪器内传感器在最佳环境条件下运行。GM-5000微型空气质量监测仪内部气路03. 丰富的用户界面功能虽然基于传感器技术的微型空气监测仪设计通常较为简单,但对于空气监测设备而言,用户交互界面是十分必要的,其可以直观的反映仪器监测数据和运行状态,且便于现场维护。鉴于微型空气监测仪安装方式多样的特点,GM-5000并未标配显示屏,而是采用了一种更为方面的方式。用户的个人设备,如笔记本电脑、平板电脑、智能手机等可连接GM-5000内置Wi-Fi信号而登录用户界面,实现数据、校准和维护等操作。GM-5000微型空气质量监测仪用户界面04. 完备的质控程序尽管传感器技术有着运行成本低、应用简单等优势,但在数据精度和准确度方面也有着一定的局限性。要想获得有效的监测数据,仪器的质量控制必不可少。GM-5000微型空气质量监测仪设计了多级校准模式,确保监测数据的可靠性。除了基本的传感器筛选外,GM-5000在出厂前进行严格专业的校准操作,确定每一台仪器每一个传感器的零点、跨度、温湿度系数、交叉干扰系数。当GM-5000运送至安装现场,可结合标气校准、初始校准、月度自动校准和季度抽检等多种现场质控程序,保证其稳定运行。GM-5000微型空气质量监测仪出厂前校准程序GM-5000微型空气质量监测仪现场质控程序GM-5000的主要应用场景GM-5000微型空气质量监测仪是针对中国大气污染防治任务及网格监管的需求,结合传感器技术的发展和对其应用方向的理解,特别设计开发的空气监测产品,适用于环境空气质量的加密监测。基于仪器级别的科学设计可为实现监管的精细化,准确化及分析研究污染物来源及趋势提供稳定可靠的数据支撑。主要应用场景包括:城市空气质量监测网络加密网格监测;常规空气质量评价敏感区加密监测;道路交通空气质量加密监测;建筑施工场所扬尘颗粒物监测;工业园区及企业集群边界预警监测;科研院所污染分布及空气质量变化趋势研究。互动福利扫描二维码,免费下载GM-5000微型环境空气质量监测仪产品手册结语赛默飞世尔科技始终致力于以高品质的产品来服务于空气质量监测行业,并将一如既往走在行业前列,倾听用户声音,提供更为丰富的技术、产品和服务。赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 赛默飞GM-5000微型环境空气质量监测仪助力大气污染精细化管控
    作为环境空气质量监测领域的领军企业,赛默飞世尔科技具有超过40年的专业技术和服务经验,为客户提供多种不同污染物及应用需求的监测设备以及全面的空气质量监测解决方案。根据不同的监测目的和精度要求,赛默飞庞大的空气监测产品线能够满足客户对不同监测技术和精度等级的需求,在区域内形成有机的、高效的空气监测网络;监测数据能够实时上传,并以“一张图”的方式呈现在客户面前,区域空气质量状况以及监测网络运行状态尽在掌控。赛默飞丰富的空气质量监测产品赛默飞环境空气质量监测方案GM-5000微型空气质量监测仪Thermo ScientificTM GM-5000微型空气质量监测仪是赛默飞基于大气污染精细化管控的应用而开发的一款适用于室外的小型化,高性价比,多参数连续空气质量监测系统。凭借科学的设计,专业的品质,稳定可靠的数据,一经问世便受到广泛关注。其与赛默飞多种空气质量监测设备的有机结合,为不同用户实现全方位立体科学的监测网络构建和大气污染精细化监管提供了有力工具,帮助客户实现更有效的大气污染防治计划和监管目标。Thermo ScientificTM GM-5000微型空气质量监测仪 GM-5000的主要技术特点01. 一台监测仪器实现多种污染物的监测GM-5000微型空气质量监测仪内部集成了不同电化学传感器、光学粒子计数器和PID传感器,能够实现SO2、NO、NO2、CO、O3、PM10、PM2.5、TVOC等多达8种污染物的同时监测,也可根据实际需求进行多种不同参数配置。GM-5000微型空气质量监测仪传感器位置02. 传感器在最佳环境条件下运行众所周知,电化学传感器需要在一定的温湿度范围内运行,光学粒子计数器对颗粒物的测量受湿度变化的影响较大,因此在仪器设计上应给予充分考虑来实现不同地域和季节的户外应用。GM-5000采用加热采样和冷却循环气路设计,加热采样能够去除高湿对颗粒物测量的影响,提高低温环境下样气温度;冷却循环气路通过控制风扇调节循环气体流速,从而使得仪器内传感器在最佳环境条件下运行。GM-5000微型空气质量监测仪内部气路03. 丰富的用户界面功能虽然基于传感器技术的微型空气监测仪设计通常较为简单,但对于空气监测设备而言,用户交互界面是十分必要的,其可以直观的反映仪器监测数据和运行状态,且便于现场维护。鉴于微型空气监测仪安装方式多样的特点,GM-5000并未标配显示屏,而是采用了一种更为方面的方式。用户的个人设备,如笔记本电脑、平板电脑、智能手机等可连接GM-5000内置Wi-Fi信号而登录用户界面,实现数据、校准和维护等操作。GM-5000微型空气质量监测仪用户界面04. 完备的质控程序尽管传感器技术有着运行成本低、应用简单等优势,但在数据精度和准确度方面也有着一定的局限性。要想获得有效的监测数据,仪器的质量控制必不可少。GM-5000微型空气质量监测仪设计了多级校准模式,确保监测数据的可靠性。除了基本的传感器筛选外,GM-5000在出厂前进行严格专业的校准操作,确定每一台仪器每一个传感器的零点、跨度、温湿度系数、交叉干扰系数。当GM-5000运送至安装现场,可结合标气校准、初始校准、月度自动校准和季度抽检等多种现场质控程序,保证其稳定运行。GM-5000微型空气质量监测仪出厂前校准程序GM-5000微型空气质量监测仪现场质控程序GM-5000的主要应用场景GM-5000微型空气质量监测仪是针对中国大气污染防治任务及网格监管的需求,结合传感器技术的发展和对其应用方向的理解,特别设计开发的空气监测产品,适用于环境空气质量的加密监测。基于仪器级别的科学设计可为实现监管的精细化,准确化及分析研究污染物来源及趋势提供稳定可靠的数据支撑。主要应用场景包括:城市空气质量监测网络加密网格监测;常规空气质量评价敏感区加密监测;道路交通空气质量加密监测;建筑施工场所扬尘颗粒物监测;工业园区及企业集群边界预警监测;科研院所污染分布及空气质量变化趋势研究。互动福利扫描二维码,免费下载GM-5000微型环境空气质量监测仪产品手册结语赛默飞世尔科技始终致力于以高品质的产品来服务于空气质量监测行业,并将一如既往走在行业前列,倾听用户声音,提供更为丰富的技术、产品和服务。赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 陕科大陈庆彩团队: 三维荧光光谱法(EEM)鉴定大气颗粒物中发色团物质的种类和来源 |前沿用户报道
    大气发色团是气溶胶中可以吸收太阳光的一类有机物质,可能对全球气候产生影响。大气发色团也可能通过形成三线态进而催化产生活性氧物质,因此对大气气溶胶的老化过程也具有重要潜在贡献。充分的了解大气发色团的理化性质和来源是掌握它们对环境的影响的本质要求。三维荧光光谱法(EEM)是鉴定环境中发色团物质的重要仪器分析方法,近年来已被频频的应用到大气气溶胶研究领域中。然而,当前EEM方法应用于大气领域进入了瓶颈时期。随着EEM方法广泛应用和深入研究,研究者们开始怀疑EEM方法是否具有区别气溶胶来源和物质种类的能力,因为多数情况下发现样品的EEM谱图具有非常相似的形貌。这样就限制了EEM方法更加广泛的应用于研究大气发色团来源、形成和消去过程。可喜的是,近日陕西科技大学陈庆彩研究团队,利用三维荧光光谱(EEM)研究,对大气颗粒物化学结构和来源进行了分析。在该项工作中,陈庆彩等人演示了EEM方法是有能力分辨大气颗粒物中不同类型发色团以及来源的,并构建了大气发色团与其来源、化学种类的对应关系。这项工作突破了一定的方法瓶颈,对于EEM方法在气溶胶研究领域的应用起到了关键推动的作用,或将促进大气发色团来源和大气化学过程的研究。研究过程1. EMM助力大气颗粒物来源和组成的初步分析研究团队分别采集了城市、一次燃烧源和二次气溶胶样品,利用EMM方法和 PARAFAC模型调查了不同发色团在不同种类气溶胶样品中的含量,讨论了EEM方法在分辨发色团类型以及样品来源的能力。通过对实际大气颗粒物样品进行分析,从整体轮廓分析,确实发现实际样品具有相似的EEM光谱外貌特征。这个结果也是当前研究者们担心的事情:到底EEM方法是否可以区分不同来源和组成的大气颗粒物样品?图1(a)为大气颗粒物萃取样品WSM和MSM的平均EEM光谱图以及它们的差光谱 (b)和(c)表示样品EEM光谱之间相关系数的四分位图和频率分布图针对这个值得怀疑的问题,团队人员研究了不同来源大气颗粒物样品,包括各种燃烧源样品(生物质燃烧、煤炭燃烧、汽车排放和做饭排放样品)和二次气溶胶样品。研究发现,不同种类样品的荧光性能是不同的,其中:生物质燃烧和煤炭燃烧样品的荧光效率是大的而汽车尾气样品和二次气溶胶样品相对较小另外发现,鉴定出的不同种类发色团,在不同来源样品中的相对含量也是不同的这些结果直接解答了上述疑问,确认:EEM方法可以用来区别不同气溶胶来源。图2 依据不同发色团(C1-C8)在不同污染物上的相对载荷鉴定出发色团来源,以及不同来源发色团在WSM和MSM样品中的相对含量2. PARAFAC 模型:一种系统的来源和成份分析图谱进一步,研究人员基于改进的PARAFAC 模型对大气气溶胶中发色团的来源和化合物的种类归属进行了研究。在这一步骤,该团队开创性的将大气颗粒物化学组分融合进EEM图谱的PARAFAC分析,进而对各种大气发色团的来源进行了鉴定。结果显示有一半左右的发色团来源被鉴定出来了,并发现了几个有意思的结果,比如:发现发色团的沙尘暴一次来源和光化学形成的二次来源,分析了季节变化中沙尘暴发生、光强度变化对发色团类型和含量的影响。该工作还利用优化的PARAFAC分析方法,把几种典型的有机化合物的EEM谱图耦合进了模型解析,进而对发色团的可能化学物质属性进行了归属。结果显示了苯酚类发色团是重要的水溶性发色团,而PAHs是水不溶性发色团的重要类型。图3 EEM区域和对应的大气发色团可能化学结构和来源图中不同彩色区域表示本研究鉴定的大气发色团来源对应区域,不同彩色数字球表示本研究鉴定的大气发色团对应化合物种类区域后研究人员总结了当前人们的认知和该项工作的主要结论,形成了一个可用于发色团化学物种和来源的依据图谱(图3),这个图谱对于今后EEM方法应用与于大气气溶胶的来源和化学转化研究提供了重要参考和研究途径。小结由上述研究可知,本研究工作提供了不同种类大气发色团对应来源以及化合物类别鉴定依据。这其中重点在于演示了不同发色团在不同气溶胶样品中的含量是不同的,从而说明EEM方法是有能力分辨不同类型发色团以及样品类型的。这项研究也构建了大气发色团与其来源、化学种类的对应关系。他们鉴定出了样品中大约一半的荧光物质所对应的来源和化合物种类,结果提供了大气发色团来源以及化合物类别鉴定依据,这将大大促进了EEM方法应用于研究大气发色团来源和大气化学过程,对于EEM方法在气溶胶研究领域应用起到了推动的作用。本研究中的三维荧光光谱法和大量光谱采集采用的是HORIBA Aqualog光谱仪完成,该仪器在EEM图谱快速获取、数据校正等方面的优势,为研究的顺利进行提供了不少便利。tips: 想了解更多荧光光谱仪的解决方案,点击阅读原文提交需求,HORIBA工程师会尽快联系您~论文原文&作者该研究以 Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis 为题,发表在《Science of The Total Environment》上作者:陈庆彩通讯作者:陈庆彩、杜林通讯单位:陕西科技大学环境科学与工程学院、山东大学环境研究院Doi: 10.1016/j.scitotenv.2020.137322文章链接:https://doi.org/10.1016/j.scitotenv.2020.137322 课题组介绍:陈庆彩,男,山东人,博士,副教授,博士生导师。毕业于日本名古屋大学,取得理学博士学位。陕西省“百人计划”,陕西科技大学大气污染控制团队负责人,名古屋大学特邀教员,日本大气化学学会会员。主要研究方向为气溶胶化学,包括有机气溶胶、大气棕碳(BrC)、长寿命自由基(EPFRs)等。参与和主持中国国家自然科学基金等十余项科研项目;已在ES&T等权威期刊一作/通讯发表20余篇学术论文;获得国家和软件注册权10余项。ORCID:http://orcid.org/0000-0001-7450-0073个人主页:https://hj.sust.edu.cn/info/1015/1394.htm 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 青岛将建城市三维地质模型 构建陆海一体地质环境监测网
    p  青岛市自然资源和规划局消息,《青岛市城市地质调查工作方案》于近日印发实施。根据该方案要求,青岛市将建立城市三维地质基础模型,构建陆海一体地质环境监测网,为政府管理决策提供重要基础信息和资料支撑。/pp  青岛市自然资源和规划局副局长刘龙江介绍说,青岛市城市地质调查旨在通过开展“地下空间、资源、环境、灾害”等多要素地质综合调查,建立“一模一网一平台”(即:城市三维地质模型、地质环境监测预警网络和综合地质信息服务与决策支持平台)的城市地质管理与服务体系,综合评价城市地壳稳定性、资源保障承载能力和城市安全性,全面服务于国土空间规划、新旧动能转换、乡村振兴、军民融合、“一带一路”“上合示范区”、海洋强省、“十五个攻势”和新型城镇化建设等重大战略实施,有力保障经济社会高质量发展。/pp  据了解,根据《青岛市城市地质调查工作方案》,青岛市计划利用3年时间,采取“中央和地方共同出资”方式,联合开展城市地质调查工作。聚焦城市规划、建设、管理和生产、生活、生态等方面,统筹部署地上与地下、陆域与海域、资源与环境、地质灾害调查工作,为国土空间规划、重大工程建设、自然资源管理、生态环境保护、防灾减灾提供基础资料支撑和服务。/pp  据介绍,根据方案共有5项任务。一是开展城市地下空间资源地质调查。在市南区、市北区、李沧区、崂山区、黄岛区、青岛高新区等区域,开展环境地质、工程地质调查,摸清地下空间地质资源家底,科学评价地下空间开发利用地质适宜性和资源潜力,补齐城市发展的地质工作短板,拓展城市地下发展空间。在胶州湾东岸及湾内开展断裂构造地质调查,为重大工程规划提供参考 在大沽河、墨水河下游周边区域开展海水入侵状态调查,提出海水入侵机理与防治对策,为海岸带保护与修复提供依据。/pp  二是开展多门类自然资源综合地质调查。推进环境地质调查,在胶州湾、灵山湾、鳌山湾等区域开展陆海统筹海岸带综合地质调查、生态地质调查,重点查明海岸带环境地质条件,为海岸带重大工程规划建设提供基础数据 实施地质资源调查,在黄岛区、即墨区等重点农田、生态区,开展土壤、水体地球化学调查,重点查明富硒等特色土地资源分布、生态地球化学特征与问题成因,分析国土空间开发利用与周边水土环境关系,进一步预测发展趋势,提出对策建议,为发展现代化特色农业提供地质服务 开展地下水应急水源地调查,在白马-吉利河水源地、大沽河水源地等重点区域,完成可采资源量分析评价,提出应急水源地建议方案,为地下水资源保护利用和饮水安全提供保障 开展地热资源潜力和浅层地热能调查,分析评价重点区域地热资源成矿条件,提出开发利用建议 完成全域资源、环境、灾害地质补充调查,查明水文地质、工程地质、环境地质等基础地质条件,实现与资源环境承载能力评价、国土空间开发适宜性评价工作的有机衔接。/pp  三是建立城市三维地质基础模型。以精准支撑城市地下空间资源科学、综合开发利用为目标,构建全市域、重点区、示范区、精品区等四个尺度三维地质模型,实现城市地下空间透明化,有效支撑地下空间资源协同开发利用。/pp  四是构建陆海一体地质环境监测网。对重要的地质灾害隐患点、地下水超采区、海水入侵区、大型化工产业区、大型垃圾填埋场、地热和矿泉水资源、地质遗迹资源、岸滩剖面等,进行自动化监测或定期监测,实现信息数据集成共享,初步构建陆海一体监测预警网。/pp  五是建设城市地质信息服务与决策支持平台。建设“一个中心、两大系统”(即:青岛市地质大数据中心和地质信息辅助决策系统、地质信息公共服务子系统)的城市地质信息服务与决策支持平台,满足不同用户群体需求,为政府管理决策提供重要基础信息和资料支撑,为智慧城市建设、地下空间拓展、新型城镇化发展和推进重大项目建设提供基础地质保障。/pp  刘龙江表示,青岛城市地质调查工作预期形成基础性、理论性、应用性3大类成果,将为国土空间规划和地下空间开发利用提供服务支撑 为海岸带资源开发与保护提供服务支撑 为水土资源开发与保护提供服务支撑 构建城市地质环境监测预警网,为城市地质安全保障提供服务支撑 为重大工程选址建设规划提供服务支撑 为政府部门提供城市地质信息服务与决策支持,为社会公众提供地质科普资料,满足不同群体的城市地质信息需求。/p
  • 环境水的三维荧光检测“三部曲”
    引言不同种类,不同浓度物质的三维荧光信息不同,三维荧光光谱同时表征了发射波长、激发波长、荧光强度三者的关系,信息含量丰富。天然湖泊、河水、生活用水等中含有多种可溶性有机物,在紫外区具有较强的荧光,因此使用三维荧光可以表征这些可溶性有机物的变化。 本文全面介绍了环境水的三维荧光分析步骤,包括三维荧光的采集、光谱校正、平行因子分析。1. 三维荧光采集收集自来水厂各净水工序中的水样品,用0.45μm的滤膜过滤以去除不可溶有机物,使用日立荧光分光光度计F-7100采集三维荧光光谱。图1自来水厂各净水工序在获得的各净水工序中的三维荧光光谱中,用红点标注出所有特征峰,从而直观判断激发/发射峰的变化。图2 各工序的三维荧光光谱2. 三维荧光校正三维荧光信息含量丰富,能够全面描述样品信息,但水样中的胶体等物质在激发光照射时容易产生散射光,因此需要进行三维荧光校正。日立荧光操作软件配备光谱校正功能,能够满足环境水的检测需求。荧光强度标准化样品的荧光强度会受光源亮度变化、室温变化等的影响,使用日立荧光软件FL Solutions中的“荧光强度标准化功能”可以快速进行荧光强度标准化。通过测定标准品的荧光强度,将样品的荧光强度换算为与标准品相对的荧光强度,从而校正荧光强度的时间变化和日间差变化。测定水中的腐殖质时,以硫酸奎宁为基准。本实例中选用1μg/L的硫酸奎宁作为标准品,对自来水厂各净水工序的三维荧光光谱进行荧光强度标准化。有关拉曼散射校正、内滤效应校正的详细信息请点击:https://www.instrument.com.cn/netshow/sh102446/s929202.htm 瑞利散射的去除日立多变量分析软件3D SpectAlyze具有光谱预处理功能,可以直接在光谱中去除不需要的瑞利散射。 图3 瑞利散射的去除3. 三维荧光的多变量解析各个净水处理工序中样品的三维荧光光谱经过校正后,可以通过日立多变量分析软件 3D SpectAlyze实现谱图分离、主成分分析等。使用多变量分析软件中的平行因子分析(PARAFAC)功能,谱图分离为3种成分,通过查阅相关文献,确定了三种成分是富啡酸、腐殖酸和蛋白质。图4 原水的平行因子分析对自来水厂其他净水工序的三维荧光光谱进行平行因子分析,得到每种成分在不同工序中的得分值,通过得分值计算出各成分在不同工序中的残存率。图5 不同净水工序中成分的残存率结果表明,从沉淀过滤到活性炭处理工序,富啡酸和腐殖酸残存率开始减少。从活性炭处理到净水池,蛋白质残存率开始大幅减少。 总结三维荧光技术由于灵敏度高、操作简单,在环境水检测方面得到广泛应用。日立为环境水监测用户可提供硬件和软件的系统性方案,包括三维荧光采集、校正、解析,可以大大提高用户的科研效率。拨打400-630-5821获取更多信息!
  • 17项监测技术及设备入选大气防治先进科技
    为支撑大气污染防治工作,贯彻落实国务院发布的《大气污染防治行动计划》,科技部、环保部在组织实施《蓝天科技工程&ldquo 十二五&rdquo 专项规划》的基础上,组织相关科研单位和专家,对&ldquo 十一五&rdquo 以来国家科技计划中大气污染防治方面的相关科研成果及应用情况进行了全面梳理和筛选评估,编制形成了《大气污染防治先进技术汇编》,其中,17项大气监测技术及设备入选。  大气挥发性有机物快速在线监测系统  北京大学环境科学与工程学院  项目针对我国大气气态有机物监测的关键问题,在863计划 &ldquo 大气复合污染关键气态污染物的快速在线监测技术&rdquo 课题(No.2006AA06A301)的支持下,自主设计开发了大气中挥发性有机物在线监测系统。该系统采用低温富集浓缩技术,结合气相色谱/质谱法(GC/FID/MS)检测大气中挥发性有机物VOCs(包括含氧挥发性有机物OVOCs)的一体化在线测量技术及设备。已建立在线的大气VOCs分析仪器的研发和生产基地于2009年开始实现量产,已经销售数十台。  大气细粒子及其气态前体物一体化在线监测技术  中国科学院大气物理研究所  大气细粒子快速捕集/离子色谱在线无机盐分析仪通过无膜采集大气细粒子/在线快速离子色谱分析其中的水溶性化学成分,数据时间分辨率比传统膜采样高近100倍,使研究大气二次粒子形成机理和校验模式输出的高时间分辨率结果成为现实。研制仪器性能高于国外类似产品,但价格仅相当于进口产品的 50%(30万元左右) 在线观测结果还可用于校验高分辨率飞行时间气溶胶质谱(350万)的在线观测结果。课题主要创新成果之一大气挥发性有机物在线分析仪已商品化,投入市场,在广东、湖北、南京等地的环境监测中发挥着重要作用。  大气中NOx及其光化产物一体化在线监测仪器及标定技术  中国科学院大气物理研究所  大气NO/NO2/NOx/NOy一体化监测仪利用改进的紫外光分解NO2、化学发光检测和臭氧补偿创新技术研制的一体化大气NO/NO2/NOx/NOy联合观测仪器,克服了市售流行商品仪器对NO2测量偏高而对NOy测量偏低和对NO测量不准的缺陷,准确的测量结果成功地用于大气臭氧产生/消亡与前体物NOx的机理研究。已经推广用于烟雾箱模拟实验的大气化学机理研究,具有进一步产品化和商品化开发价值。大气复合污染关键气态污染物的快速在线监测技术自2006年启动以来,研发了一系列自主知识产权的技术方法和仪器设备,为建立先进的城市群大气污染三维立体监控体系提供技术设备,缩小了与国际水平的差距,并有效推动了国产化。曾获得国家科技进步二等奖。  大气细粒子和超细粒子的快速在线监测技术  中国科学院合肥物质科学研究院安徽光机所  项目在863计划课题(项目编号2009AA06A302)的支撑下,研制了双波长三通道气溶胶探测拉曼激光雷达、细粒子谱分析仪、大气OC/EC测定仪、以及振荡天平颗粒物质量浓度监测仪(PM10、PM2.5)。在宽范围粒径谱的快速分析技术、稳定的场致电离电荷源技术、超高灵敏大气分子拉曼散射信号探测技术、以及OC/EC临界温度的精确选取等关键技术方面取得了突破。本技术自2008年开始,通过技术转让及专利实施许可的方式,不断推进振荡天平颗粒物质量浓度监测仪产业化进程。已经建立振荡天平颗粒物质量浓度监测仪的研发和生产基地,并在安徽、江苏、北京等全国各省安装了300余套大气颗粒物自动监测仪,实现新增产值3300余万元以上。从2011年开始,通过技术转让及专利实施许可的方式,不断推进双波长三通道气溶胶探测拉曼激光雷达、米散射激光雷达的产业化进程。截止目前,销售总额超过2000万元。  臭氧时空分布探测差分吸收激光雷达系统  中国科学院合肥物质科学研究院安徽光机所  目前测量大气臭氧的主要方法有比色定量法、库伦原电池法、光学吸收光谱法、太阳光谱法和差分激光雷达。差分激光雷达是一种主动遥感技术,该技术在20世纪60年代中期激光雷达测量水汽时引进,并在70年代中期得到进一步发展。在 863 计划课题(项目编号2009AA06A311)的支撑下,车载臭氧时空分布探测差分吸收激光雷达系统为我国开展光化学烟雾和细粒子生成机理研究提供了数据基础,为我国城市群大气复合污染中的颗粒物和光化学烟雾污染防治提供了技术保障。本课题研制的大气臭氧激光雷达在吉林省长春市开展了为期一个月的测量实验,提供了大量有效可靠的数据,大大促进了对流层臭氧生成和传输机理的研究。该系统性能稳定性好,自动化程度高,该成果将为我国立体监测提供新的技术手段,大气空气污染预警提供设备支持,对我国环境监测技术的发展起到推动作用。  便携式多组份气体紫外、红外现场分析仪  中国科学院合肥物质科学研究院安徽光机所  项目在 863 计划 &ldquo 工业源多组份气体污染排放现场监测设备&rdquo 课题(No.2009AA063006)的支持下,针对工业源(烟气排放、无组织排放、泄漏等)排放的 SO2、NO2、CO、CO2、NO、硫化物、有机污染物等多种污染气体,自主研发了便携式多组份气体紫外现场分析仪和便携式多组份烟气红外分析仪。在高效紫外吸收光学系统的设计、多组份光谱数据反演算法等方面进行了技术突破 有效解决了应用紫外差分吸收光谱技术满足多种气体测量的仪器小型化难点 研制设计的便携式多组份烟气红外分析仪采用了多次反射池和多波段光学滤波技术结合,实现了多组分气体高灵敏连续自动监测。便携式多组份气体紫外现场分析仪和便携式多组份烟气红外分析仪在安徽省、河北等地进行了外场应用和示范,现已建成一条专业的生产线,通过扩大机械加工车间,增加了大量的检测试验调试设备,形成了年产100套的生产能力。  污染源排放遥测技术系统  中国科学院合肥物质科学研究院安徽光机所  项目在 863 计划&ldquo 工业源多组份气体污染排放现场监测设备&rdquo 课题(No.2009AA063006)的支持下,自主研发了污染源排放遥测技术系统。重点解决了高稳定性、高灵敏的紫外可见遥测系统设计、去除多种大气干扰效应的污染气体光谱精确反演技术以及结合风场数据的污染气体排放通量获取技术等关键技术。系统主要应用于污染源(点源、面源、非组织排放源)污染气体排放的监测,便于环境管理部门开展监督性监测,满足国家环境部门对工业排放污染的监督性监测需求。2011年2月,课题顺利完成验收。目前我国对污染源排放测量主要是采用源排放线监测设备(CEMS)获得污染气体的排放量,其主要适用于对高架点污染源,而对于面源、无组织源以及区域源等,只能通过物料平衡法进行统计计算,无法通达实际测量获得。本系统的成功研制,可应用于污染源的监督性监测,满足国家环境管理部门对工业排放污染的监督性监测需求,同时填补了国内该技术领域的空白。  重点污染物面源排放VOCs及温室气体连续自动监测系统  中国科学院合肥物质科学研究院安徽光机所  项目在 863 计划课题&ldquo 大气多组分污染物及其时空分布连续自动监测技术与设备&rdquo (2007AA061504)、安徽省科技攻关计划项目&mdash 污染源可挥发性有机污染气体浓度及排放通量实时监测技术与设备(09010301016)等支持下,研究了长光程开放光路红外光谱测量与处理技术 设计了双臂扫描干涉光路、基于 He-Ne激光与PSD结合的精确扫描控制电路,研制了波长范围2~15um、分辨率为1cm-1的稳定可靠、高信噪比傅里叶变换红外光谱仪 建立包括350余种VOCs和温室气体的红外光谱定量数据库 研究了背景光谱实时迭代拟合算法及仪器线型修正方法,开发了基于合成校准光谱技术的多组分气体定量分析算法及软件。在开放光路傅里叶变换红外多组分气体分析方法的基础上,研制了具有自主知识产权的重点污染面源排放VOCs及温室气体连续自动监测系统。系统采用收、发分置的双站式配置,整个设备由红外光源发射单元、红外接收单元、傅里叶变换光谱仪、系统自动控制与数据分析等四部分组成。系统具有连续自动光谱测量与处理、定量分析与显示、数据储存与回放等功能,实现了面源排放VOCs及温室气体浓度的非接触、长光程、多组分(可同时分析10~20种气体成分)、高灵敏度(主要成分的检测下限10ppb)连续自动监测。系统可用于重点污染面源,如石化工业区、大型垃圾处理场、大型养殖场以及石油天然气储运站等排放的VOCs及温室气体多组分实时连续自动监测。  大气污染多组分排放通量快速遥测系统  中国科学院合肥物质科学研究院安徽光机所  项目在 863 计划课题&ldquo 大气多组分污染物及其时空分布连续自动监测技术与设备&rdquo (2007AA061504)和安徽省科技攻关计划项目&ldquo 污染源可挥发性有机污染气体浓度及排放通量实时监测技术与设备&rdquo (09010301016)的支持下,开展了针对工业区域(厂界)VOCs等多组分污染气体排放的掩日通量测量新方法研究。研究了基于掩日法的红外光谱测量与处理技术,提出了基于太阳辐射传输和模拟校准算法的区域排放多组分气体垂直柱浓度分布算法,开发了拥有自主知识产权的基于掩日法的污染气体排放通量遥测算法软件。在掩日法傅里叶变换红外气体通量测量方法的基础上,研制了拥有自主知识产权的大气污染多组分排放通量快速遥测系统,实现了工业区域(厂界)VOCs、SO2、NO2、CO、NH3等多组分气体排放通量的车载快速遥感监测。车载系统主要包括太阳自动跟踪器、光谱仪、光路传输单元、气象仪以及GPS。系统以太阳的红外辐射作为光源,车载快速移动扫描测量污染排放区域,测量其周界大气中污染气体的柱浓度分布,并结合风速、风向等气象参数,计算区域污染气体排放通量。系统污染气体垂直柱浓度测量下限:1~15ppm· m,通量探测下限:0.03~0.1kg/h。该系统可以用于工业区域(电厂,钢铁厂,炼油厂,石化厂,原油储存厂等)多组分污染气体排放通量的监测。  区域大气污染源识别与动态源清单技术  清华大学环境学院大气污染控制教研所  我国目前已有的区域源排放方面的研究工作大多独立而分散,综合、规范、动态的区域排放信息极度缺乏,一方面不能全面反映污染源的排放状况和时空特征,另一方面不能满足预测预警、区域调控、污染控制效果评估的要求。项目针对上述问题,在 863 计划&ldquo 区域大气污染源识别与动态源清单技术及应用&rdquo 课题(No.2006AA06A305)的支持下,建立了基于技术的动态源清单编制技术,覆盖电力、供热、工业、民用、交通、农业等主要人为源,并涵盖一次颗粒物(包括PM10、PM2.5、BC、OC)和主要气态污染物(包括SO2、NOx、NMVOCs、CO、NH3)。动态源清单技术基于完整的源分类体系建立能源统计到源分类的映射关系和生产工艺/污染控制技术的动态更替曲线,充分考虑了技术演进对排放量变化的影响,全面构建了反映我国复杂排放源特征和排放变化趋势的大气污染物排放定量方法。本项目总投资约200万元,清单产品被国内外90多家机构采用,包括政府部门、科研机构、高校院所等,广泛应用于污染特征模拟、污染源解析和控制规划评估等。用户均给出了很高评价。  区域敏感源筛选识别技术  北京工业大学环境与能源工程学院  项目在前期承担科技部973计划课题&ldquo 城市生命体能源代谢与大气污染互动机理研究&rdquo (课题编号:2005CB724201)、北京市科委绿色奥运重大项目&ldquo 区域源排放清单及校验&rdquo (课题编号:HB200504-3)、863计划课题&ldquo 城市群大气复合污染关键污染物的来源识别技术&rdquo (课题编号:2006AA06A305)等支持下,采用气象流场诊断分析与环境数值模拟相结合的方法,在区域污染诊断识别、敏感源筛选等方面取得新突破。开发了气象-轨迹耦合模式(MM5-HYSPLIT)与K 均值聚类相结合的污染物输送轨迹聚类分析技术,可确定影响目标城市空气质量的污染物输送路径及出现频率。基于 MM5-CAMQ 耦合模式系统建立了污染物输送通道通量梯度识别技术,可确定区域典型污染输送通道最易出现的方位、时段,对输送通道进行自动识别并实现输送通道的三维立体输出。目前该技术已在北京、唐山、广州等多个地区进行了示范应用,并计划在全国其他城市进行进一步推广。  空气质量多模式集成预报系统  中国科学院大气物理研究所  近年来,在国家科技部、环保部等有关部门在政策、项目和资金的大力支持下,特别是&ldquo 十一五&rdquo 以来,在国家863计划重大项目&ldquo 重点城市群大气复合污染综合防治技术与集成示范&rdquo 资助下,我国在自主模式研发、大气化学资料同化技术、模式共性技术等多方面取得突破,率先构建了国际上首个空气质量多模式集成业务预报系统。该系统以自主研发的嵌套网格空气质量预报模式NAQPMS为核心,集成最优插值及集合卡尔曼滤波等大气化学资料同化技术、大气复合污染化学反应模拟技术、污染源识别与追踪等多项共性技术,结合美国的 CMAQ和CAMx 模式,构建了适合我国的区域大气复合污染多模式集成预报系统。该系统可提供3天短期气象要素和空气质量的精细预报和7天的趋势预报,短期预报的不确定性小于30% 系统可长时间稳定运行,预报时效小于8小时,自动化率100%。该系统可适用于区域、城市空气质量的模拟、预报和预警。该系统整个投资为1200万元,根据设备功耗情况,电、管理等运行费用约为30万元/年,年保修、维修费用约50万元。  城市机动车排放控制决策评估技术  清华大学  机动车排放因子模型一直是国内外许多城市机动车污染控制决策的基础。项目在863 计划课题(2009AA06Z304)和多个城市(例如北京、澳门等)环保局科研课题的支撑下,开发了适用于中国城市特点的机动车排放因子模型。课题开发的城市机动车排放因子模型和城市机动车排放综合控制决策平台两项模型采用当前最先进的软件编程技术和数据库技术,软件图形用户界面友好。是相关政府部门管理人员和相关学术机构研究人员用于城市机动车排放决策的重要工具,在我国其他城市机动车控制中用非常广阔的应用前景。目前课题组开发的相关模型在北京、广州、澳门、南京等大城市进行了示范应用,效果非常好,并计划在西宁、乌鲁木齐、大连等其他城市进行进一步的推广。  多源卫星遥感大气污染综合监测技术  中国科学院遥感与数字地球研究所  在国家科技部、环保部等有关部门的大力支持下,特别是&ldquo 十一五&rdquo 以来,在863计划重大项目&ldquo 重点城市群大气复合污染综合防治技术与集成示范&rdquo 资助下,我国自主研发创建了环境空气质量多源卫星遥感模型与算法,突破了我国重污染环境卫星遥感反演雾霾、气溶胶、可吸入颗粒物、污染气体和温室气体等环境空气质量参数的核心技术,建立了环境空气质量卫星遥感监测技术体系,在国际上首次建立了基于多源卫星数据的环境空气质量卫星监测业务系统,形成了针对国内外主流卫星的气溶胶、灰霾、PM2.5、NO2,SO2等46种国家急需的遥感产品快速生产能力,创建了环境空气质量卫星遥感监测技术规范,发展了&ldquo 多星接收-定量反演-专题制作-简报分析&rdquo 大气环境卫星监测业务化技术体系,填补了我国在大气环境卫星遥感监测领域的空白。本技术可提供灰霾和晴空气溶胶光学厚度,PM10和PM2.5浓度、SO2、NO2、CO、CH4的分子柱浓度等参数的空间分布,工程总投资约600万元。运行费用根据设备功耗情况,电、管理等运行费用约为50万元/年,年保修、维修费用约50万元。广东环境监测中心和环保部环境卫星中心等环保部门已将本项目中的大气遥感监测系统作为区域污染监测的基本手段。  环境空气监测代表性的印痕分析技术  北京大学环境科学与工程学院  印痕分析技术为环境监测结果提供详细的时空代表性信息,为监测站网优化、污染来源分析、源反演、观测实验设计等提供技术手段。项目在科技部863计划课题(2006AA06A306)和北京等城市环保局科研课题的支撑下,开发了实用的印痕分析模型。该技术由两个主要部分组成,分别为拉格朗日粒子扩散模拟方法和印痕分析方法。大气污染印痕分析技术可有效识别区域污染物的来源特征,为深入了解区域污染成因和污染控制决策提供科学依据。项目于2006年启动,2011年通过验收。本课题投资约40万元。印痕分析技术对珠三角区域大气环境监测网站的建设完善起到了重要作用,保证了该区域进行的大型研究项目的顺利完成 对宁波地区监测网站的布局完善也起到了重要参考作用。  大气PM2.5水溶性污染组分及其气态前体物在线监测系统  北京大学环境科学与工程学院  项目针对我国大气气态有机物监测的关键问题,在863计划&ldquo 大气复合污染关键气态污染物的快速在线监测技术&rdquo 课题(No.2006AA06A301)的支持下,开发了首套自主知识产权的适合国内环境应用的大气PM2.5水溶性污染组分及其气态前体物的在线测量仪器(GAC-IC 系统),自主研发了表面磨砂的旋转环形湿式扩散管和冷凝式旋风撞击的气溶胶捕集装置,在自主开发的软件和硬件的控制下,实现了自动连续观测,数据同步传输等功能,该仪器价格便宜,使用成本低,便于维护。本项目自2013年开始,正在推进产业化进程,多台产品化在线仪器已经分别在广州亚运会空气质量评估、北京地区大气复合污染研究、京津冀大气污染防治规划以及东亚地区大气污染物跨界输送等项目中进行了示范和应用。  过氧酰基硝酸酯类(PANs)化合物快速在线监测系统  北京大学环境科学与工程学院  在 863 计划&ldquo 大气复合污染关键气态污染物的快速在线监测技术&rdquo 课题(No.2006AA06A301)的支持下,我国自主设计开发了大气中PANs快速在线监测系统。系统中还包括自主设计研发的在线零气生成和在线标定系统,使用一氧化氮与丙酮在线合成标气,取代了以往仪器中使用的液态标气,降低了仪器使用成本,使得该系统更适用于野外观测以及环境监测站长期监测 且系统全部采用模块化设计,利于使用、维护和推广。该系统采用气相色谱法(GC-ECD)检测大气中过氧酰基硝酸酯类化合物PANs的一体化在线测量技术及设备。本项目自2013年开始,正在推进产业化进程,多台在线仪器已经分别在北京奥运空气质量保障、上海世博会空气质量评估、广州亚运会空气质量评估、北京地区大气复合污染研究等项目中进行了示范和应用。
  • 北京赛克玛携七款国际领先大气环境监测仪器亮相第三届中国国际环境监测仪器展览会
    北京赛克玛携七款国际领先大气环境监测仪器亮相第三届中国国际环境监测仪器展览会。 北京赛克玛展位号: B229/B230 参展样机 1. Belfort Model 6000能见度监测仪(支持杆,校准板 );2. Nephelometer浊度仪 3. Aethalometer黑碳仪(七波段)(现场开机);4. 安光所MPL偏振微脉冲激光雷达 (与两位安光所技术工程师合照)5.AMA 挥发性有机物(VOCs)在线色谱监测系统6. TE-6070 MFC/VFC 大流量颗粒物采样器 TSP/PM10/PM2.5 (1m3/min) (左一)7. 安德森八级撞击采样器 (DC1 deltaCal 和TC5 triCal 大气流量/温度/压力校准器) (上图中一) CIEEMI 2010 欢迎您 第三届中国国际环境监测仪器展览会 The 3rd China International Exhibition on Environmental Monitoring Instrumentation 参展商手册主办单位:中国环境保护产业协会 中国环境监测总站 协办单位:北京瑞利达展览展示有限公司 时 间:2010年11月24日-26日 地 点:北京· 中国国际展览中心1A、1B 第三届中国国际环境监测仪器展览会组委会 地址:北京市朝阳区安外大羊坊 8 号(乙)中国环境监测总站 105 室 100012 电话:(010)84943143 / 3144 传真:(010)84943069 邮箱:zhanlan @cnemc.cn
  • 国产大气监测仪器迎来县级城市采购潮
    近日,德州市环保局市县级空气质量自动监测站建运一体化项目中标结果公布。经济导报记者获悉 ,先河环保作为惟一一家国产监测仪器制造商,中标平原、夏津、齐河、禹城9个监测站的建运营,中标金额为1270万元,第一包和第二包的中标公司均为进口环境监测仪器代理商。[查看详细]  根据&ldquo 大气污染防治国十条&rdquo 以及环保部发布实施的《环境空气质量标准》,到2015年,地级及以上城市将全部建成细颗粒物监测点和国家直管的监测点,大气监测仪器将在县级城市迎来采购潮。  以往进口仪器一统国内监测仪器市场天下的格局,有望随着县级城市采购潮的来临,逐渐打破。  市场规模庞大  今年5月,环保部关于印发《空气质量新标准第三阶段监测实施方案》 的通知显示,按照《大气污染防治行动计划》及国务院批准的空气质量新标准&ldquo 三步走&rdquo 实施方案,环保部已在2012年、2013年完成第一、二阶段监测实施任务。2014年,在巩固第一、二阶段监测实施工作基础上,组织开展空气质量新标准第三阶段监测实施工作。  这意味着,今年我国129个城市将投资建设381个空气质量监测点位。  值得关注的是,环保部着重提到,在同等条件下,要优先选择性价比高的仪器设备,按政府采购有关要求采购国产设备。这一政策信号催生了空气质量监测仪器国产品牌销售的持续井喷。  招商证券研究员侯鹏分析认为,预计2014年国产监测设备的市场份额将达到80%。  在他看来,国产设备性价比高,另外大气监测涉及国家安全层面,因此政府采购对国产设备存在明显的倾向性。未来国外和国内厂商的市场占比将此消彼长,结构将有大的调整。  中投顾问环保行业研究员盘雨宏接受导报记者采访时透露,目前一台国产或进口PM2.5仪器售价在15万至40万元不等,新建大气监测站点,配齐全套仪器,最低则需要130万元左右。&ldquo 十二五&rdquo 期间,国内要新增1500多个PM2.5监测点位,如每个新增站点均配齐全套空气监测仪器,以此推算,前期投入将超过20亿元,其中PM2.5仪器销售市场规模将达到3亿至8亿元。  &ldquo 由于地级及以上城市将全部建成细颗粒物监测点和国家直管的监测点,会引起部分污染企业向县级城市转移以避开监管,因此加快在县级城市布局大气监测仪器,能有效预防县级城市空气质量进一步恶化。&rdquo 盘雨宏说。国内企业动作频频  随着第一、二阶段监测实施任务的完成,第三阶段监测实施工作正成为国内品牌争夺市场的重点。  &ldquo 在国家政策的支持下,国内环境监测仪器行业发展速度非常快,与国外设备之间的差距逐渐缩小,再加上国产设备相比国外设备更具有价格优势,所以受政府部门的青睐度较高。今后国产化替代是重要趋势,有利于国产品牌进入市场。&rdquo 盘雨宏说。  根据上述通知要求,今年本月底前,各省、自治区环境保护主管部门负责完成行政区内第三阶段实施空气质量新标准城市所有监测点位仪器设备招标公示。9月底前,完成所有监测点位仪器设备招标工作。11月底前,完成所有监测点位仪器设备安装并开展试运行,按空气质量新标准要求开展监测并发布数据。  据业内人士透露,以往在空气监测领域,以美国自动精密工程公司、美国MetOne公司、法国苏氏环境公司、美国赛默飞世尔公司等为首的国外公司通常占据国内市场的主导地位,2012年进口设备的占比可达80%左右,但是从2013年下半年开始,国内监测设备的市场份额已经出现超过国外设备的苗头。先河环保、聚光科技、武汉天虹、安徽蓝盾光电等一批国内企业纷纷展开国内检测仪器市场的布局。
  • 三位院士齐聚新国展探讨环境监测发展
    仪器信息网讯 2014年9月24日,&ldquo 第25届中国国际测量控制与仪器仪表展览会科学仪器服务民生学术大会&rdquo --环境与安全检测技术及仪器研讨会在北京国际展览中心(新国展)召开。会议由中国仪器仪表学会、中科院安徽光学精密机械研究所主办,中国仪器仪表学会科学仪器学术工作委员会、中国仪器仪表学会环境与安全检测仪器分会承办,共有13场报告。会议现场 中国环境监测总站魏复盛院士做开题报告。中国科学院生态环境研究中心江桂斌院士介绍了环境污染与健康的关系,并介绍了研究进展。中国科学院安徽光学精密机械研究所刘文清院士介绍了环境在线监测技术的应用。中国环境监测总站 魏复盛院士 魏复盛院士首先介绍了我国的大环境,&ldquo 一是国家经济增长处于换挡期,经济增速变缓;二是国家产业和技术升级处于震荡期,水平不断提高;三是前30年的发展积累了很多环境问题,环境问题突出&rdquo ,因此现在是环境技术发展的机遇期。我们应该齐心协力,抓住机遇,不断改善环境质量。魏院士还提到,GDP的增长不完全是对环境的伤害,应该看到,GDP的增长还为环境技术的发展提供了技术和经济基础,而且环境治理不是一朝一夕就能完成的,估计2030年我国环境能实现达标。针对环境治理,魏院士介绍说,我国正在加快环境治理法律法规的制定,&ldquo 大气十条&rdquo 已发布,&ldquo 水十条&rdquo 、&ldquo 土壤十条&rdquo 已制定完毕,将选择合适时机发布。因此环境监测需求大量增加,环境监测厂商应抓住机遇,努力提高自身业务能力,除了研制出适应需求的监测仪器外,还应该看到,现代服务产业越来越发达,仪器现代服务产业也需要不断加强,仪器厂商还应该具备提供运营、维修、升级服务的能力。中国科学院生态环境研究中心 江桂斌院士 江桂斌院士以&ldquo 环境污染与健康&rdquo 为主题,介绍了我国环境污染与健康现状,污染物健康危害分析以及未来关注重点。江院士介绍说,我国环境污染和健康的现状是&ldquo 总体和缓、局部加重、发病增加&rdquo 。污染物的毒性与致病率关系复杂,有些污染物本身剧毒因此致病率高,有些污染物本身低毒但是进入合适的环境会转化为高毒物质而致病,有些污染物低毒但是潜伏期长而长期暴露导致严重疾病发生。目前,环境与健康的研究刚刚起步,而人工制造的化学品确以平均每天16524种的速度在增加,加上化学品毒性与致病性这种复杂的关系,因此环境污染与健康的研究还有大量工作需要开展。未来关注的重点在于环境暴露组学、转化毒理学和计量毒理学。最后,江院士提到环境污染水平的降低会减少疾病的发病率,但是并不能降低所有疾病的发病率,因此要保持健康,&ldquo 心态很重要、锻炼很重要、食品多样化很重要&rdquo 。中国科学院安徽光学精密机械研究所 刘文清院士 刘文清院士以&ldquo 环境污染与环境安全在线监测技术与应用&rdquo 为主题,从需求背景、技术进展和应用案例三方面介绍了其团队在污染时空分布在线监测、污染区域排放通量监测、交通污染排放在线监测、有毒有害气体泄漏监测取得的进展,并指出未来的环境监测从采样分析向自动化监测发展、从单一监测向高灵敏通量发展、从点式监测向区域监测发展、从地面监测向立体监测发展、从被动监测向主动监测发展,因此环境监测技术设备应该能满足&ldquo 更高精度、更多成分、更大范围、更加实用&rdquo 的要求。 大气监测技术是目前国内发展最快,也是影响范围最大、公众关注度最高的环境技术,此次报告的专家们从采样技术、采样设备、分析技术、源解析、环境监测数据区域化管理等角度对大气监测的技术及进展进行了精彩的演讲。通用电气医疗系统贸易发展(上海)有限公司 卜继国先生报告题目:GE环境监测应用技术新进展聚光科技(杭州)股份有限公司 丁成富总监报告题目:环境监测数据在区域空气质量管理中的智慧应用初探无锡中科光电技术有限公司 王界先生报告题目:基于激光雷达的灰霾污染过程特征研究北京绿林创新数码科技有限公司 许志杰总监报告题目:具有湿度修正功能的PM2.5颗粒物(粉尘)无线监测系统及应用案例中国环境科学研究院 白志鹏研究员报告题目:污染源采样技术在空气质量管理中的支撑作用北京雪迪龙科技股份有限公司 崔厚欣经理报告题目:大气/烟气重金属汞在线监测技术北京市化工研究院 尹洧研究员报告题目:仪器分析在大气颗粒物及其组成监测中的应用 此外,中国科学院生态环境研究中心王子健研究员以&ldquo 工业有毒污染物筛查和风险管理战略思考&rdquo 为主题介绍了如何从众多的化学品中筛选出需要管理的化学品,并如何对其产生的风险进行管理。军事医学科学院高志贤研究员以&ldquo 饮水安全典型有害因子快速生物检测与评估技术研究&ldquo 为主题介绍了水环境监测中的快检技术。中国科学院生态环境研究中心 王子健研究员军事医学科学院 高志贤研究员(编撰:李学雷)
  • 紧随热点 天瑞仪器推出大气全谱走航监测方案
    p  strong仪器信息网讯/strong 一辆搭载质谱仪等先进检测仪器的环境监测车,在路上缓慢绕行一圈,就能给出VOCs等污染物的浓度和种类,还能精准锁定污染源,为污染治理提供有力的数据支撑。这在过去科幻电影中才能出现的场景,如今已真切发生在我们身边。随着相关单位对大气污染物监测提出了更高要求,大气走航监测越来越多地进入公众视野,成为守护蓝天的一项全新“黑科技”,吸引众多企业突出相应解决方案。/pp  近日,江苏天瑞仪器股份有限公司(简称:天瑞仪器)隆重推出全谱走航方案,突破传统走航技术,采用业界高端车载配置,包括PTR-TOFMS(质子转移飞行时间质谱)系统、气象六参数系统、臭氧激光雷达系统、空气质量监测网络数据分析系统等,可快速连续在线测定VOCs、气象五参数、颗粒物等痕量污染物,实时定性定量,准确掌控环境态势,在化工园区排查(某重点园区VOCs排放情况)、城市走航(上海外环和郊环的VOCs排放特征)、应急监测(某县可疑污染物溯源)、颗粒物监测(三维立体空气质量监测)等实际应用中具备明显优势。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/28631d70-cd1c-4acf-9091-e661a07348af.jpg" title="天瑞走航监测1.jpg" alt="天瑞走航监测1.jpg"//pp style="text-align: center "大气全谱走航监测车/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/486a8408-3d3d-41ad-a715-e18341fd1ac8.jpg" title="天瑞走航监测2.jpg" alt="天瑞走航监测2.jpg"//pp style="text-align: center "PTR-TOFMS+气象六参数系统/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/0803a11d-7ddd-45e5-a7d1-8ba93053a61e.jpg" title="天瑞走航监测3.jpg" alt="天瑞走航监测3.jpg"//pp style="text-align: center "臭氧雷达系统/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/7b5be4e8-895f-4aa4-8e4e-836a76a41e1e.jpg" title="2020-11-25_142458.jpg" alt="2020-11-25_142458.jpg"//pp  环境空气移动监测车在不需要接入市电的情况下,可在行驶过程中连续监测,也可停靠路边或污染地带进行定点监测。在固定监测点难以覆盖到的区域,或者不需要长期监测的区域可以采用环境空气移动监测车进行环境常规巡查及应急处理等。采用移动监测点与固定监测点相结合的方式,二者互为补充,扩大了监测区域、提高了时空分辨率,真正做到环境监测“全方位、无死角”,为环境管理提供科学、高效的管理手段。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/32cf6cf5-6e10-4ce5-994e-5058f881f22e.jpg" title="天瑞走航监测4.jpg" alt="天瑞走航监测4.jpg"//pp  此外,车上搭载了天瑞仪器子公司磐合科仪质子转移反应-飞行时间质谱仪(Proton transfer reaction-Time of flight Mass Spectrometer,PTR-TOF),开发出可实现‘边走边测’的大气 VOCs实时监测系统,对大气 VOCs 进行直接快速检测,通过对污染物的种类、浓度、来源及其空间分布、排放规律的获取,实现监测执法,进而落实从城市区域到污染区块,到污染企业再到具体污染设施的精细管理,达到对 VOCs 的快速、准确监测和精准管控。/pp  为满足客户不同需求,监测车还提供了PTR-TOF搭载全在线双冷阱大气预浓缩-气相色谱-飞行时间质谱的双质谱走航监测解决方案,走航速度最高可达100 km/h,可在“城市—多个园区—城市”走航,实现园区内部的“精耕细作”,也可察看城市整体的VOCs排放分布。也可以在一天内在“城市—城市”之间走航,实现城市间VOCs对比,快速高效的走航不仅加强城市环境应急能力和预警水平,同时为环境污染防控提供更为及时有效的决策支持。/pp  全谱走航监测方案可大大提高和完善大气环境综合监管能力,加强重污染天气观测、保障站点数据并对污染进行快速溯源,不仅开创了大气走航监测的新篇章,更为环保监测领域科学监测和科技督查提供了更加有力的武器。/p
  • 国内首台新型大气光化学立体走航监测车在杭州实现首航
    2023年5月15日,杭州大气光化学立体走航监测车在杭州市上城区实现首航。该车为国内首台协同整合臭氧激光雷达与飞行时间质谱的立体走航监测车。采用江铃福特全顺新时代V348车型,车内搭载了质子转移反应飞行时间质谱仪(PTR-TOF-MS)、臭氧激光雷达(第三代激光雷达技术)、环境空气微站、气象监测仪、车载校准及质控系统和复合走航监测分析软件平台,可实现对大气VOCs和O3等污染指标的实时走航监测及数据分析。车内臭氧激光雷达和VOCs质谱组成多尺度协同走航监测体系,臭氧激光雷达关注区域尺度的传输沉降,VOCs质谱关注精细化源排放,二者相互印证与补充,通过三维同化模型,将走航数据进行多元融合,实现时间、空间和污染成分之间的协同监测和分析。以一次污染过程为例,结合空气质量预报结果,臭氧雷达可以快速了解臭氧污染的宏观分布和输送状况,分析人员针对臭氧高值区和传输方向,结合本地污染源情况,确定走航调查的重点方向、重点区域。同时利用VOCs质谱仪器在确定区域内进行精细化(几十米至百米级)、网格化走航,抵近侦查。通过这种多种尺度协同监测,更高效排查污染源排放,微观与宏观相结合,实现源头查的准、排放定位快,问题说得清。本次走航共发现2个VOCs高值点,疑似与沥青铺路、加油站污染排放有关,相关疑似污染点已反馈给属地环保分局。下一步,浙江省杭州生态环境监测中心将充分发挥大气光化学立体走航监测车快速、立体、多尺度的监测优势,加大亚运场馆周边及重点区域、行业、企业等涉VOCs污染源走航排查力度,助力精准执法、科学执法,为杭州亚运保驾护航。
  • 全网开播!第三届大气监测“霸气来临”
    第一篇:温室气体专场的看点有什么?五位专家共同见证!Nature顶刊:共同通讯作者,十余年推动上海颗粒物监测技术2020年,4月27日,国际著名学术期刊《Nature》杂志在线发表了一篇名为Aerodynamic Analysis of SARS-CoV-2 in two Wuhan Hospitals”(武汉两所医院的新冠病毒气溶胶动力学分析)的研究论文。论文的通讯作者为武汉大学病毒学国家重点实验蓝柯教授、上海市环境监测中心伏晴艳、复旦大学阚海东教授和香港中文大学何建辉教授。论文第一作者为武汉大学病毒学国家重点实验室的刘元、陈宇、郭铭以及香港科技大学宁治。伏晴艳,她是谁?(左一:伏晴艳)伏晴艳,现任上海市生态环境监测中心副主任,原总工程师,长期从事环境科研和环境监测工作,先后领衔主持了30余项省部级重大环境科研专项任务,2015年获“全国五一巾帼标兵”荣誉称号。作为大气监测科研领军人,她主动承接PM2.5国家标准、规范的制定工作,创新研发监测技术方法体系,为国家PM2.5监测方法的确定提供确实可靠的数据支持,推动上海成为全国第一批向社会实时发布PM2.5监测数据的城市之一。为此,本届大气监测会议,特别邀请到伏主任做大会开场报告嘉宾,敬请期待。免费参会链接:https://www.instrument.com.cn/webinar/meetings/dqjc2022/中科院安光所:双碳”目标达成,大气环境探测技术是关键大气光学检测技术领域,中科院安徽光机所有着诸多成果。安光所的刘文清院士在接受采访时,曾说“随着碳达峰与碳中和的推进,人类的环境质量将会变得越来越好,这也要求所使用的测量与监测仪器提高灵敏度,使用更好、更新、更专业的环境光学监测技术,能满足“双碳”技术监测方面的需求。为此,本届大气监测会议邀请到中国科学院安徽光学精密机械研究环境光学中心副主任、博士生导师徐亮研究员,从国产红外光谱技术的研究进展及环境监测应用方面,为大家分享课题组的研究成果。免费参会链接:https://www.instrument.com.cn/webinar/meetings/dqjc2022/自动监测:环境空气高精度二氧化碳、甲烷连续自动监测技术通过对温室气体的长期监测,可以科学分析温室气体空间分布和动态变化特征,为温室气体源排放和碳汇储量的估算、比较、验证等奠定基础。上海环境监测中心的杨勇老师,牵头制订了上海市《环境空气非甲烷总烃在线监测技术规范》等地方性标准,参与10余项国标和地标制修订,本届会议将分享环境空气高精度二氧化碳、甲烷连续自动监测技术。免费参会链接:https://www.instrument.com.cn/webinar/meetings/dqjc2022/国产仪器崛起:河北子曰基于CRDS激光光腔衰荡技术的温室气体检测仪双碳目标提出以来,中国环境监测总站围绕着碳监测,相继出台了多部标准,其中包括一项《高精度CO2、CH4、N2O(光腔衰荡法)分析仪操作规程》。国家对此也有推荐标准: 《大气二氧化碳(CO2)光腔衰荡光谱观测系统 》(GB T 34415-2017)。光腔衰荡光谱法(CRDS)是一种非常灵敏的光谱学方法,它可用来探测样品的绝对的光学消光,包括光的散射和吸收。已经被广泛地应用于探测气态样品在特定波长的吸收,并可以在万亿分率的水平上确定样品的摩尔分数。河北子曰正研发的温室气体检测仪,基于CRDS激光光腔衰荡技术,目前已攻克了高稳定腔的光路及调整技术、箱体控温技术、数据采集及分析技术、高稳定激光控温及驱动技术,实现三种气体同时测量。免费参会链接:https://www.instrument.com.cn/webinar/meetings/dqjc2022/若报名失败,可联系13260310733(微信同号)自主研发:海兰达尔高精度温室气体监测系统及其在走航观测上的应用 江苏海兰达尔环境科技有限公司在Picarro温室气体分析仪的基础上,自主研发了配套的预处理系统,组成了高精度温室气体监测系统,该系统目前已在国内多个城市和站点安装使用,助力环境监测与监管。专场二:新技术与智慧监测专场专场三:大气复合污染监测专场一键免费报名三个专场,点此链接:https://www.instrument.com.cn/webinar/meetings/dqjc2022/ 若报名失败,可联系13260310733(微信同号)
  • 各市、县加快配备这些环境监测仪器!低效失效大气污染治理设施排查整治工作方案发布征求意见
    为贯彻落实《中共中央 国务院关于深入打好污染防治攻坚战的意见》《深入打好重污染天气消除、臭氧污染防治和柴油货车污染治理攻坚战行动方案》,深入挖掘大气污染物减排潜力,加快解决当前工业企业大气污染治理存在的突出问题,近日,生态环境部发布了《低效失效大气污染治理设施排查整治工作方案(征求意见稿)》。方案指出,全面开展低效失效大气污染治理设施排查整治工作,建立排查整治清单,“淘汰一批、整治一批、提升一批”。淘汰不成熟、不适用、无法稳定达标排放的治理工艺;整治关键组件缺失、质量低劣、自动化水平低的治理设施;提升治理设施的运行维护水平及管理台账质量;健全监测监控体系,自动监测设备实现应装尽装,全面提升自动监测和手工监测数据质量,有力提升地方大气污染治理能力,深入挖掘多污染协同减排潜力,助力完成“十四五”确定的氮氧化物(NOx)和 VOCs 减排任务,推动环境空气质量持续改善。方案还提到,要加强能力建设。全面提升装备水平。各市、县根据大气环境管理和执法监管需求,加快配备便携式烟气分析仪、便携式颗粒物分析仪、便携式氨监测仪、林格曼烟度仪、便携式挥发性有机物分析仪以及相应保障设备,形成系统化现场检查能力。强化专业队伍能力建设。各级生态环境部门制定专项培训计划,围绕现行法规标准、大气污染防治政策、排查整治任务、现场执法检查要点、监测监控技术规范等,系统开展培训工作,全面提升本地执法人员的专业技术水平。强化第三方服务监管。针对第三方在大气污染治理设施建设、运维,自动监测设备安装、运维,以及污染源手工监测中存在的突出问题公开曝光,整顿和规范环保服务市场秩序,引导第三方治理市场规范发展。企业应强化污染治理的主体责任,强化第三方机构服务质量管理,坚决杜绝“一托了之”。引导公众积极参与对排污企业、第三方治理机构的监督。附:低效失效大气污染治理设施排查整治工作方案( 征求意见稿).pdf
  • 天远三维携手大族机器人,打造国产机器人全自动三维检测系统
    4月1日,深圳,先临三维旗下子公司天远三维与大族机器人联合发布RobotScan UE机器人全自动三维检测系统,在全自动三维检测系统自主品牌的发展中迈出重要一步,降低国外品牌的技术掣肘。 RobotScan UE机器人全自动三维检测系统每项核心组件皆为国内自主研发,包括天远三维自主研发的高精度三维扫描仪、EINSENSE Q 3D数字化全尺寸检测软件以及大族机器人机械臂。该项系统方案可实现机器人全自动、标准化三维扫描并实时进行在线检测与报告传输,同时可根据实际检测场景,进行定制化开发,为国内自动化检测领域提供一项强大的自主品牌解决方案。 RobotScan UE机器人全自动三维检测系统研发背景 随着高精度三维扫描与检测技术的不断成熟发展,三维扫描高效、高精度的应用特征,逐渐为检测行业所认可。天远三维也不断深化三维扫描检测的场景应用,特别是在现代化工厂的检验领域。 传统方式下,以人工进行三维数据获取,扫描角度、过程难以实现标准化,虽然这并不影响后续的检测环节,但是在标准化的生产方式下,数据获取的“随意性”将隐藏部分的数据信息,从而产生数据噪音。随着大数据的发展,数据的真实性以及排躁性愈发重要,自动化扫描检测解决方案因时而生,天远三维在此领域内已进行大量研发创新。为了更好地实现标准化的三维扫描检测,天远三维与大族机器人合作,以机器代替人工,打造高效、标准化的全自动三维扫描检测系统。RobotScan UE机器人全自动三维检测系统优势特点 1.全自动、标准化三维扫描检测,适用现代化工业生产环境2.各核心组件均为国内自主研发,降低国外品牌的技术掣肘3.支持蓝色激光或蓝色结构光,可根据不同的检测场景选择不同光源4.检测软件通过德国PTB认证,数据处理高效可靠,支持定制化开发RobotScan UE机器人全自动三维检测系统首发展示RobotScan UE机器人全自动三维检测系统于2021深圳国际工业零件展览会SIMM(ITES)上进行首次亮相,众多观展人员也在4馆H45展位见证了RobotScan UE机器人全自动三维检测系统的高效、高精度以及标准化检测方式。 RobotScan UE 机器人全自动三维检测系统,搭载EINSENSE Q 工业级高精度检测内核,实现智能检测。 此项合作,是国内机器人和三维扫描领域重点企业的强强联合,大族机器人拥有多年的电机、伺服驱动和运动控制经验,掌握先进的智能机器人的核心关键技术;天远三维专注于高精度3D视觉检测技术,为国家白光三维测量系统行业标准的主要起草单位之一。此次合作,通过国内高新技术的集成,推进了机器人技术在现代工业场景自动化三维检测的应用深化,对于机器人技术普及和三维扫描检测的升级都具有重要意义。 天远三维简介 先临三维旗下子公司天远三维专注于高精度3D视觉检测技术,基于多年计量行业的实践经验与技术积累,研发了激光手持三维扫描检测、高精度三维检测扫描检测、无线跟踪式扫描检测以及多机联动3D视觉检测等一系列高精度3D视觉检测方案,并自主研发3D数字化检测软件,产品广泛应用于:汽车交通、航空航天、铸造模具、电力、军工等专业领域。 大族机器人简介 深圳市大族机器人有限公司,是由上市公司大族激光科技产业集团股份有限公司投资组建,在大族电机机器人研究院100多人的团队基础上孵化而成的国家级高新技术企业。公司总部位于深圳宝安区大族激光全球智能制造产业基地,并于德国、天津设有子公司,团队汇聚了来自世界各个国家的、顶尖的机器人行业专家,助力大族机器人成为世界领先的机器人行业标杆。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 三维扫描仪新品全球发布——思看科技NimbleTrack灵动式三维测量系统
    新品全球首发!思看科技NimbleTrack灵动式三维扫描系统!2024年4月9日,思看科技(SCANTECH) 正式发布NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量,领跑工业计量“无线”新时代!灵动式三维扫描系统NimbleTrack,轻巧身型,自在随行,集全无线、多功能等超凡性能于一身,精准驾驭中小型测量场景,成就绝妙之作。其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。整套系统巧妙融合了思看科技的自研生态圈,多种功能形态随心变幻,万般场景灵活应对,以极致技术成就极致性能。轻装上阵 即开即扫NimbleTrack超轻型机身,以极致细节重构性能想象,解锁性能美学的超然进化实力。跟踪器仅重2.2kg,身长57cm,恣意穿梭于各类场景,轻装上阵;扫描仪仅重1.3kg,单手掌控游刃有余,轻松完成长时间测量任务。标配一体式便携安全防护箱,兼顾轻型化与紧凑型,容纳万象,灵动出鞘,带上它,即开即扫,尽显轻盈畅快之感。一体成型 稳如堡垒扫描仪采用全新的碳纤维框架一体成型技术,兼备轻量化和高强度性能,在加工工艺上颠覆了传统组装式框架的装配技术,实现了超高结构稳定度和超强温度稳定性,使得一次校准即可长时间内保持良好的精度范围,让每一次扫描都尽在掌控。双内置电池 真正全无线全栈无线三维扫描系统,无线数据传输、零线缆供电,可满足无电、用电不便等应用场景,开启工业计量无线新时代。扫描仪隐藏式电池仓设计,优雅无束缚;跟踪器双循环电池仓设计,供电不间断,无线转站更顺畅。双边缘计算 性能狂飙扫描仪和跟踪器均搭载新一代高性能边缘计算模组,运算效率跃升至全新高度,解锁120 FPS高帧率流畅测量体验,每一帧都行云流水,驾驭自如。扫描时无需外接电源、贴点,与市面上现有的手持式三维扫描仪相比,整体扫描流程大幅简化,复杂场景更显从容,是当之无愧的效率担当。计量基因 精益求精 依托思看科技计量级产品成熟强大的系统架构和自研算法,最高精度可达0.025mm,在标准跟踪范围内,体积精度可达0.064 mm,精准有实力,还原肉眼可见的细微处。万般场景 挥洒自如NimbleTrack三维扫描系统小巧灵动,轻盈穿梭。面对狭小空间或视角遮挡处,扫描仪可无线单独使用,实现最高0.020 mm的高精度扫描。面对大范围测量场景,跟踪器即刻化身远距离红外标记点扫描利器,精准把控全局精度。智能边界检测模块可选配智能边界探测模块,利用高性能灰阶边缘算法,自动采集孔、槽、切边等特征的三维数据,快速获取高精度的尺寸和位置度信息。i-Probe500 跟踪式测量光笔面对隐藏点或基准孔等难以触达之处,可选配便携式测量光笔i-Probe,设备支持有线或无线传输,为精密测量提供全方位的数字化解决方案。多台跟踪器级联支持多台跟踪器级联工作,大幅扩展扫描范围,有效应对大型工件扫描场景。搭载自动化设备 搭载全新定制化三维扫描仪,为自动化解决方案量身定制装夹方式,使其更加适配各类型机器人;360度均匀分布的标记点岛结构,实现全方位精准跟踪,打造高效的自动化批量检测系统。拓展应用生态NimbleTrack是工业级三维扫描领域真正实现全无线测量的产品,凭借智能无线、不贴点、高精度、高便携性等优势,适用于各类应用场景,尤其是尺寸在40mm-2000mm之间的中小型工件,如汽车四门两盖、内饰座椅、压铸件以及新能源电池盒等。在航空飞行器检修和文物数字化等不适宜贴点的情况下,NimbleTrack表现出色。此外,它也非常适合于车间现场,特别是那些无法方便连接电源或电缆的环境,比如野外测量石油管道的腐蚀情况以及高空作业等。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 先临三维全新推出的AutoScan Inspec全自动桌面三维检测系统
    您是否在寻找一款精度、细节、效率“三高”的三维扫描产品?您是否在寻找一款体积小、模块化、全智能的三维扫描产品?我们为您凭空想象、“无中生有”了AutoScan Inspec(点击上方播放autoscan inspec新品介绍视频)先临三维全新推出的AutoScan Inspec全自动桌面三维检测系统,简称Inspec,它将快速扫描和精准全尺寸检测功能进行创新性结合,为提高小型精密工件扫描效率而设计。Inspec拥有一体式外观设计,直观的用户界面,以及引导式操作方式。借助于前沿AI智能补扫算法,Inspec将全自动+全尺寸检测从构想转变为现实,扫描数据精度稳定并且细节出色。它可在短时间内完成工件全尺寸扫描,获得工业级高精度数据,数据可与CAD数模对比生成检测报告,并且检测结果可在各大主流软件中共享。Inspec通过科技赋能,提升了用户采集小型样件三维数据的效率,帮助用户节省宝贵的时间成本。系统可广泛应用于塑料零部件、叶轮叶片、小尺寸铸件等逆向设计、批量化检测及质量控制等工业场景。四大亮点:计量级高精度高性能硬件搭配强大的3d视觉算法,扫描精度≤10μm,满足工业检测、质量控制等应用要求。出色的数据细节得益于500万像素工业相机,高分辨率展示数据细节。全自动高效扫描一体式机身搭载三轴设计,自动亮度调节功能,一键快速获取扫描数据。支持多件扫描,数据自动分别存储,快速高效。智能软件支持AI智能补扫算法,智能规划补扫路径,同时兼具路径存储功能,针对重复样品可以导入路径智能扫描。可轻松导出数据至CAD/CAM软件,对接Geomagic Control X、PolyWorks|Inspector、Geomagic Design X 等检测和逆向软件。广泛应用:
  • 无人机监测揭秘PM2.5时空分布
    到底是一楼灰霾重还是30楼重?很多专家认为楼层越高,空气会越清洁,但是在相同水平层面分布是比较均匀的。不过,上海交通大学彭仲仁教授的团队利用无人机监测后发现,在逆温条件下PM2.5楼层分布规律和之前专家的预测并不完全一致。他们将飞机从地面一直往上飞,发现从300多米往上一直到500米,PM2.5的浓度反而越来越高,再继续往上污染浓度又急剧下降。  学生自制PM2.5监测大杀器  目前人们研究PM2.5以及空气中其他污染物在垂直空间的分布情况,主要是依赖在高层建筑物上建设监测站点,条件非常受限,所得到的数据非常少。上海交通大学智能交通与无人机应用研究中心主任彭仲仁教授发明了一个“大杀器”。他直接在不同高度测数据,PM2.5在不同地方、不同高度的分布情况一目了然。  彭仲仁的学生根据需要,组装了一部无人机。考虑到飞机要比较长时间在空中飞行监测,他们选择了可以在空中飞好几个小时、烧汽油的固定翼飞机。因为烧汽油会产生废气,他们将排气管放在飞机尾部,飞机头的位置要搭载监测仪器的平台,这样废气和仪器的距离就比较远了。彭仲仁说,只要不是顺风飞,尾气就不会影响到监测结果,如果是在逆风方向飞行,数据就更可靠了。  此外,监测仪器那么大,无人机怎么能拖得动?仪器在飞机上怎么控制?这个问题比较棘手。不过美国的空气监测设备厂家解决了这个问题,专门为他们的飞机量身定做了一批监测仪器。彭仲仁说,经过比对,这些小型设备和大型设备监测出来的数据基本差不多,于是监测PM 2.5的“大杀器”就完成了。  实测数据显示锻炼还是早上好  到了开始使用大杀器的时候。他们首先确定飞行的区域为一个四公里乘以四公里的正方形范围内,飞行时间分别分布在上午和下午的四个不同时段。飞机起飞之后,让飞机每上升100米就围绕这个正方形盘旋一周然后继续爬升,通过控制装载在飞机上的仪器记录下不同时间,不同位置的PM 2.5浓度。  监测数据显示,PM 2.5的浓度在清晨6:00-7:30左右最低。随着太阳的逐渐升起,辐射量增加、空气温度升高,人们开始外出活动,污染物排放开始积累,PM 2.5的浓度也随之升高。所以,锻炼什么时候好?从空气污染的角度来看早晨更合适。在水平方向,此前有专家认为,非常细小的PM 2.5在空中的分布是比较均匀的。但彭仲仁团队监测到的实测数据显示,相比PM 10的空间分布确实要均匀很多,但PM 2.5同一水平位置的分布没有此前推测的那么均匀。彭仲仁说,这表明即使在小范围内,PM 2.5浓度仍因风向、地面排放、外部传输等原因呈现不均匀分布。  而且有一次实测数据发现,PM 2.5也并不完全遵循高度越高PM 2.5浓度越低的规律。有一次他们将飞机从地面一直往上飞,发现从300多米往上一直到500米,PM 2.5的浓度反而越来越高,再继续往上污染浓度又急剧下降。查看温度才发现,气温也是随着地面升高而升高的,而不是每上升100米下降0 .6℃,因此判断300米到500米的这一高度区间恰好有一个逆温层,导致污染物难以扩散。  链接  广州借助“小蛮腰”研究PM2.5垂直分布规律  此前一篇网络帖子中,自称“退役”售楼部小姐称,千万别买9楼到11楼的房子。因为这三层楼的高度是PM 2.5的最爱,是空气最脏的位置。这篇文章的论断很快就被专家和监测人员用理论和数据证明不靠谱。  在PM2.5的垂直分布规律上,研究的城市并不多。广州借助“小蛮腰”,较早研究了广州PM2.5的垂直分布规律。根据广州市环境监测站的研究,在几十米以下的高度,PM2.5的浓度其实差别不大,越往高处PM2.5浓度越低,空气也就越清洁。但这只是小蛮腰所在位置的监测数据,其它地方是这样吗?中山大学的范绍佳教授曾表示,具体到某栋楼某个楼层,差别是非常大的。因为局部地区的扩散条件、小气候都不一样,一栋楼前面有一口池塘和没有一口池塘情况可能都不一样,根本没办法比较。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制