当前位置: 仪器信息网 > 行业主题 > >

导热油导热系数检测

仪器信息网导热油导热系数检测专题为您提供2024年最新导热油导热系数检测价格报价、厂家品牌的相关信息, 包括导热油导热系数检测参数、型号等,不管是国产,还是进口品牌的导热油导热系数检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导热油导热系数检测相关的耗材配件、试剂标物,还有导热油导热系数检测相关的最新资讯、资料,以及导热油导热系数检测相关的解决方案。

导热油导热系数检测相关的仪器

  • 耐高温导热油流量计—江苏奥科仪表有限公司一、产品概述是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,对各种测量有不错的效果,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。一:导热油流量计简介:节流装置又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成广泛应用于气体.蒸汽和液体的流量测量.具有结构简单,维修方便,性能稳定,使用可靠等特点.孔板节流装置是标准节流件可不需标定直接依照国家标准生产,1.国家标准GB2624-81流量测量节流装置的设计安装和使用 2.国际标准ISO5167国际标准组织规定的各种节流装置3.化工部标准GJ516-87-HK06二、导热油流量计产品特点:1、标准节流件是全用的,并得到了国际标准组织的认可,无需实流校 准,即可投用,在流量传感器中也是的;2、结构易于复制,简单、牢固、性能稳定可靠、价格低廉;3、应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生 产过程的管径、工作状态(温度、压力)皆可以测量;4、检测件和差压显示仪表可分开不同厂家生产,便于专业化规模生产。三、导热油流量计工作原理:充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其基本公式如下:c-流出系数  无量纲d-工作条件下节流件的节流孔或喉部直径D-工作条件下上游管道内径qm-质量流量 Kg/sqv-体积流量 m3/s?-直径比d/D 无量纲流体的密度Kg/m3可膨胀性系数  无量纲四:耐高温导热油流量计厂家外形结构图:1、导热油流量计节流装置组成:节流件:标准孔板、标准喷嘴、长径喷嘴、1/4圆孔板、双重孔板、偏心孔板、圆缺孔板、锥形入口孔板等2、导热油流量计取压装置:环室、取压法兰、夹持环、导压管等连接法兰(国家标准、各种标准及其它设计部门的法兰) 、紧固件。测量管五、导热油流量计技术参数:1、导热油流量计基本参数:节流件名称适用管道(DN mm)适用直径比B(d/D)应用特点流出系数不确定度Ec%设计标准角接取压标准孔板环室式50-50050-5000.2-0.750.2-0.75适用于清洁介质其中GD结构适合高温高压条件下流量的测量0.6-0.75%ISO5167GB/T2624-93夹紧环式50-5000.2-0.75易于清除污物,可用于不太清洁流体流量的测量斜钻孔式450-1000(3000)0.2-0.75法兰取压标准孔板50-10000.2-0.75易于清除污物,适用于各种介质0.6-0.75%ISO5167GB/T2624-93径距取压标准孔板50-10000.2-0.75角接取压标准喷嘴(ISA1932喷嘴)50-5000.3-0.8压损小,寿命长,尤其适用于蒸汽流量测量0.8-1.2%ISO5167GB/T2624-93长径喷嘴50-6300.2-0.8压损小寿命长,LGP型长径喷嘴组件适合高参数水和蒸汽流量测量2.0%ISO5167GB/T2624-93经典文丘利管机械加工式100-8000.2-0.8压力损失小,所需直管段小于孔板、喷嘴1.0%ISO5167GB/T2624-93粗焊铁板式200-1200(2000)0.4-0.71.5%文丘利喷嘴65-5000.316-0.77同上1.2-1.75%ISO5167GB/T2624-931/4圆孔板25-1500.245-0.6适用于低雷诺数2.0-2.5%DIN BS锥形入口孔板25-2500.1-0.316同上2.0%BS圆缺孔板50-15000.32-0.8适用于赃污,有气泡析出或含有固体微粒的流体测量。1.5%DIN偏心孔板100-10000.46-0.841-2%ASME小孔板12.5-400.2-0.75适用于小管道流量测量0.75%ASME透镜式孔板12.5-1500.2-0.75适用于高压常温小管道流量测量0.6-0.75%ISO5167ASME端头孔板大于等于150.2-0.621.5-2.0%双重孔板25-4000.2-0.8适用于大流量测量限流孔板2、导热油流量计选型表:型号江苏奥科仪表有限公司选型参数说 明节流装置(孔板流量计)代号按其结构特征的两大基本分类K孔板P喷嘴等代号公称压力(105Pa)2.52.51010161625256464100100200200代号口径(mm)10~160010~1600mm代号按其结构形式细分H标准孔板(环室)Y标准孔板(法兰)K标准孔板(钻孔)IISA 1932喷嘴L长径喷嘴W文丘利喷嘴G经典文丘利管S双重孔板Q圆缺孔板Z锥形入口孔板R1/4圆孔板P偏心孔板N整体(内藏)孔板X楔形孔板T不在上述之列的特殊节流装置代号介质1液体2气体3蒸汽4高温液体代号补偿形式N不带压力、温度补偿P带压力补偿输出T带温度补偿输出Q带压力、温度补偿输出代号变送器差压量程范围0微差压量程1低差压量程2中差压量程3高差压量程代号是否带现场显示W节流装置传感器X智能节流装置(流量计)六:导热油流量计产品展示图:1、导热油流量计现场安装图:2、导热油流量计成品图:订货须知 :订货时请详细提供以下数据:(1)被测介质(2)常用、最小流量。(3)工作压力、工作温度(4)介质密度、粘度(5)管道材质、内径、外径(6)允许压力损失(7)取压方式(8)现场管道敷设情况和局部阻力件形式。
    留言咨询
  • 导热油炉在使用工业中,主要用于原油、天然气的加热及矿物油的加工、储存、运输等。炼油厂利用导热油预热冷物料,并已成功地用于润滑油制造过程中溶剂和萃取剂蒸发装置的加热。由于利用导热油加热与利用蒸汽加热相比较既有加热均匀、操作简单、安全环保、节约能源、控温精度高、操作压力低等优点,在现代工业生产中已被作为传热介质得到广泛的应用。在化学工业中,主要用于蒸馏、蒸发、聚合、缩合/脱乳、脂化、干燥、熔融、脱氢、强制保温以及农药、中间体、防老剂、表面活性剂、香料等合成装置的加热。功能特点 1、导热油电加热器具有低压、高温、安全、高效节能的特点。  2、导热油电加热器具有完备的运行控制和安全监测装置,可以精密地控制工作温度。  3、导热油电加热器的结构合理、配套齐全、安装周期短,运行和维修方便,便于锅炉布置。  4、由于电加热有机热载体炉采用先进的防爆结构,可应用于工厂ⅱ区防爆,防爆等级可达c级。
    留言咨询
  • 导热油加热器在使用工业中,主要用于原油、天然气的加热及矿物油的加工、储存、运输等。炼油厂利用导热油预热冷物料,并已成功地用于润滑油制造过程中溶剂和萃取剂蒸发装置的加热。由于利用导热油加热与利用蒸汽加热相比较既有加热均匀、操作简单、安全环保、节约能源、控温精度高、操作压力低等优点,在现代工业生产中已被作为传热介质得到广泛的应用。在化学工业中,主要用于蒸馏、蒸发、聚合、缩合/脱乳、脂化、干燥、熔融、脱氢、强制保温以及农药、中间体、防老剂、表面活性剂、香料等合成装置的加热。功能特点 1、导热油电加热器具有低压、高温、安全、高效节能的特点。  2、导热油电加热器具有完备的运行控制和安全监测装置,可以精密地控制工作温度。  3、导热油电加热器的结构合理、配套齐全、安装周期短,运行和维修方便,便于锅炉布置。  4、由于电加热有机热载体炉采用先进的防爆结构,可应用于工厂ⅱ区防爆,防爆等级可达c级。
    留言咨询
  • 燃气导热油炉自动化程度高,起停迅速,运行;热,出力稳定,负荷适应性强;结构紧凑,体积小,占地面积少;配套辅机少,安装简单方便,安装周期短;燃料燃烧充分,污染物排放少,可以达到较高的环保指标。因此,是一种理想的,低耗,低污染的绿色环保产品。燃气导热油炉结构新颖,性能,其特点如下:1,燃气导热油炉本体及管束全部采用焊接结构,性高,维修费用低。2,燃气导热油炉采用波形炉胆结构,既增加了传热面积,强化了传热,也满足了炉胆受热后的自由膨胀,同时也增强了炉胆的稳定性。3,烟管采用螺纹结构,强化了传热效果,减少了对流受热面积的布置,使得锅炉结构紧凑。4,采用自控性能良好的燃烧器,实现全自动化操作。5,适用燃料广泛,可燃用各种液体或气体燃料。燃气导热油炉参数表,供参考,具体内容请咨询在线客服
    留言咨询
  • 燃油导热油炉自动化程度高,起停迅速,运行;热,出力稳定,负荷适应性强;结构紧凑,体积小,占地面积少;配套辅机少,安装简单方便,安装周期短;燃料燃烧充分,污染物排放少,可以达到较高的环保指标。因此,是一种理想的,低耗,低污染的绿色环保产品。燃油导热油炉结构新颖,性能,其特点如下:1,燃油导热油炉本体及管束全部采用焊接结构,性高,维修费用低。2,燃油导热油炉采用波形炉胆结构,既增加了传热面积,强化了传热,也满足了炉胆受热后的自由膨胀,同时也增强了炉胆的稳定性。3,烟管采用螺纹结构,强化了传热效果,减少了对流受热面积的布置,使得锅炉结构紧凑。4,采用自控性能良好的燃烧器,实现全自动化操作。5,适用燃料广泛,可燃用各种液体或气体燃料。燃油导热油炉参数表,供参考,具体内容请咨询在线客服
    留言咨询
  • 岩征仪器生产销售各种型号规格的高压反应釜、加氢反应釜、催化反应釜、化学反应釜、聚合反应釜、防爆反应釜、真空蒸馏反应釜、内循环反应釜、高分子合成反应釜、导热油加热反应釜等多个系列产品。如导热油加热反应釜利用循环油泵强制液相循环,将热能输送给用热设备后,继而返回重新加热的反应釜内。 产品特点:1、加热速度快,传热效率高,不易结垢。2、可对油品定量加热,需要多少加热多少。3、油品不会出现局部高温、炭化,保证了油品质量及传热效率。4、出油口温度zui高,保证了倒出油品流动性。5、避免了反复对釜内油品进行加热,保证了油品色度、降低了油品处理的成本。6、使用寿命长,耐腐蚀、耐高温、耐高压、防结垢功能,极大的提高了导热整体性能。7、相对于电加热方式,更安全,加热更温和,对油品品质影响更小。 设计参数:开合方式KF 快拧式密封方式O 型圈自紧密封换热方式油浴加热功率1.5~2.5KW设计温度250℃使用温度RT~200℃控温精度±1℃设计压力150bar/25bar爆破压力125bar/22bar使用压力≤100bar /≤10bar(注 1)标准材质316L+石英/蓝宝石晶体 (注 2)搅拌功率80W搅拌扭矩0.6NM搅拌速度150~1000r/min操作系统7 寸电容触摸系统注 1使用负压时应特殊说明,另装负压表和更换负压传感器,石英材质zui高使用压力 20bar,蓝宝石材质zui高使用压力 100bar注 2釜盖和下法兰有哈氏合金,蒙乃尔合金,锆材,因科镍,钛材等特殊材质可订制
    留言咨询
  • 导热油灌电磁加热器 汇凯电磁加热节能器导热油采用电磁加热器优势(1)电磁感应加热导热油炉是一种新型、安全、高效、节能,比传统式电加热导热油炉升温快,温控精度高。热效率高达95%以上,同等条件下,比电阻式加热方式节电30%以上,预热时间缩短一半。电磁感应加热导热油炉系统由防爆电磁感应加热圈、变频感应加热机芯、有机热载体炉、换热器(选配)、现场操作箱、热油泵、膨胀槽等组成一个撬块,用户只仅需要接入电源、介质的进出口管道及一些电气接口即可使用。(也可在原导热油炉上进行改造) (2)电磁感应加热油炉,热量是由桶体整体发热传输的,以导热油为介质,利用循环泵,强制导热油进行液体循环,将热量传递给用一个或多种用热设备,经用热设备卸载后,重新通过循环泵,回到加热器,再吸收热量。传递给用热设备,如此周而复始,实现热量的连续传递,使被加热物体温度升高,达到加热的工艺要求。(3)导热油炉系统采用智能全自动控制、自动温度显示、恒温保护、超温报警。加热温度控制在±1℃,且加热功率可从20%到100百分百任调,从而保证该装置完全达到用户要求。并具有先进的多重保护和可靠监控装置、并可与计算机连网,实现人机对话。导热油灌电磁加热器 汇凯电磁加热节能器
    留言咨询
  • 秦川热工如何为绚丽西安打call这个五一,陕西西安有点炫。大雁塔光影秀震撼上演,千架无人机飞越西安城墙。万人空巷,荡气回肠。作为陕西本土企业,又怎能辜负这么赋有诗意的劳动节呢。两套高空火炬放散系统集成节前被送往山东。秦川热工在二十多年的发展前进中,已经有这种成套燃烧设备系统集成的配套能力。非标设计自然成了秦川热工的一大特色。被送往山西的大型火炬头,配备一个长明灯。这是一家老客户的产品。因为信任,所以客户只需提出要求。其他的事情,由我们来做。导热油炉燃烧器及点火控制系统已经到达她的目的地,现场调试安装人员正在努力让她尽快进入正常工作状态。无论是前期的技术沟通还是非标设计燃烧器的问世,用户始终表示赞赏。一对脱硫脱硝燃烧器姐妹花也已经踏上了她们的征程。窑炉脱硫脱硝改造,秦川热工一直在路上。这几个又能拼颜值又能拼实力的代表作,是秦川热工欢度五一劳动佳节的门面担当。
    留言咨询
  • 不锈钢导热油加热搅拌罐的用途: 不锈钢搅拌罐广泛应用于涂料、医药、建材、化工、颜料、树脂、 食品、科研等行业。该设备可根据用户产品的工艺要求选用304或316L等材料制作,以及设置加热、冷却、保温装置,以满足不同的工艺和生产需要。该设备结构设计合理、工艺先进、经久耐用,并具有操作简单、使用方便等特点是理想的投资少、投产快、收益高的化工设备。 适用范围1.化妆品行业:护肤霜,剃须膏,防晒霜,洗面奶,营养蜜,染膏,离子烫,双氧奶等,精华液,保湿霜,护手霜等。2.日化行业:洗涤剂,洗发水,沐浴露,护发素,洗衣液,洗手液,洁厕净,汽车玻璃水,洗洁精,轮胎蜡,清洁膏等。3.制药工业:乳胶,乳剂,各式药膏(油膏),抗生物质,注射液,口服糖浆,口服液,凝胶等。4.食品工业:果酱,辣椒酱,食品浆料,调味品,乳酪,营养液,婴儿食品,巧克力,糖类等。5.化学工业:乳胶,皂化产品,油漆,涂料,树脂,胶粘剂等。6.综合:树脂涂料、油漆、鞋油、化学纤维等多种液体产品生产设备,支持多种液体技术,机器外形美观,噪音低,移动方便。机器可以按要求定做,可以加热恒温,搅拌叶片多种款式选择。
    留言咨询
  • 导热系数测量 400-860-5168转2932
    1、服务范围温度范围:-30 ℃~250 ℃;压力范围:0.1~25 MPa;各类液体及气体。2、导热系数测量方法及标准测量方法:瞬态法参考标准:ASTM D2717 - 05 Standard Test Method for Thermal Conductivity of Liquids ASTM D7896 - 14 Standard Test Method for Thermal Conductivity, Thermal Diffusivity and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method3、样品种类可进行导热系数测量的液体种类包括各种极性和非极性流体的纯质及混合物:纳米流体:氧化铝纳米流体、石墨纳米流体、Fe3O4纳米流体、ZrO2纳米流体;冷冻液:乙二醇、丙三醇、四氯化碳、少数碳氢化合物;制冷剂:R134a、R12、R22、R123、二甲醚等;油品:导热油、汽油、煤油、柴油、润滑油、压缩机油、冷冻机油、硅油等;粘稠液体:粘稠溶剂、果汁、牛奶等;化学试剂:水、甲苯、醇类、离子液体等。可测量的气体包括各种纯质或者气体混合物:天然气体:空气、CH4、N2、CO2、CO;新型推进剂等。4、典型测试 以下列出某煤油的导热系数测量结果。 利用TC3100L导热系数仪和TC3200L导热系数仪,研究了某煤油在0.1 MPa ~26 MPa压力范围内的导热系数,获得如下实验结果。从中可以看到,随着温度的升高,煤油的导热性能时降低的;随着压力的升高,煤油的导热性能增大的。 图1:某煤油导热系数随压力变化曲线更多测量案例,详见解决方案。
    留言咨询
  • 提供-30 ℃~250 ℃、0.1~20 MPa 范围内各种极性和非极性流体的导热系数测量服务,可测量的样品包括各种油品、制冷剂、溶液、纯质及混合物等。XIATECH 液体导热系数测试-基本介绍 针对液体的导热系数测量,采用国际上公认的测试流体导热系数的方法—瞬态热线法,国际纯粹与应用化学联合会(IUPAC)发布的流体物理化学性质推荐表中,液体导热系数一级数据来源均以热线法获得,准确度高达 0.5%,适合各种极性或非极性流体。 XIATECH 液体导热系数测试-测试范围 测量范围:0.001~5.0 W/(m• K) 温度范围:-30 ℃~250 ℃ 压力范围:0.1~20 MPa 样品种类:各种极性和非极性流体; 样品用量:不少于 25mL XIATECH 液体导热系数测试-样品种类 可测量的液体种类包括各种极性和非极性流体的纯质及混合物 纳米流体:氧化铝、石墨、Fe3O4、ZrO2 等纳米流体; 冷冻液:乙二醇、丙三醇、四氯化碳、少数碳氢化合物; 制冷剂:R134a、R12、R22、R123、二甲醚等 油品:导热油、汽油、煤油、柴油、润滑油、压缩机油、冷冻机油等 其他:粘稠溶剂、果汁、血液、牛奶、水、甲苯、醇类、离子液体等 XIATECH 液体导热系数测试-参考标准 ASTM D2717 Standard Test Method for Thermal Conductivity of Liquids ASTM D7896 Standard Test Method for Thermal Conductivity, Thermal Diffusivity and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method
    留言咨询
  • 1、产品介绍 TC3200L液体导热系数仪是TC3000L系列液体导热系数中的高温款,充分发挥了热线法的准确度高(3%)、测试速度快(2s)的优点; XIATECH的专业设计,使其具有足够的抗震性和耐用性,且只需要很少的样品用量(>40mL),即可获得准确的导热系数数据。2、主要特点 ★ 测量快速:2 s内获得数据,很大程度避免自然对流的影响; ★ 测量准确:采用标准试样甲苯和纯水进行检验,准确度可达0.5 %,全量程范围内优于3 %; ★ 适用广泛:适用广泛:可用于室温~200 ℃、0.1~15 MPa内各种极性和非极性流体; ★ 样品用量少:样品用量少:只需要40 mL就可以获得准确的测量结果; ★ 操作简单:操作简单:自动化程度高,无需专业人员即可操作设备; ★ 符合ASTM D2717 ASTM D7896标准。3、适用范围 广泛适用于不同温度条件下各种极性或非极性液体,可测试的样品包括纳米流体、液体燃料、制冷剂、冷冻液、润滑油、离子液体等。4、技术参数TC 3100LTC 3200L测量原理瞬态热线法瞬态热线法温度范围-30~100 ℃室温~200 ℃测量范围0.0005~5 W/(m K)0.0005~5 W/(mK)分 辨 率0.0001 W/(mK)0.0001 W/(mK)准 确 度± 2 %± 3 %重 复 性± 2 %± 3 %耐压范围15 MPa压力控制可选(0.1~15 MPa)测量时间≤ 2 s样品用量≥ 40 mL适用范围各种极性或非极性液体((包含但不限于各类油品、制冷剂、纳米流体、冷冻液、无机盐溶液、各类化学液体试剂等))数据传输USB操作系统Windows参考标准ASTM D2717 ASTM D78965、典型应用 ★ 纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、ZrO2纳米流体等; ★ 液体燃料:如汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等; ★ 制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等; ★ 其它:如冷冻液、润滑油、导热油、离子液体等各种极性、非极性液体。
    留言咨询
  • TC 3000L系列Jthermo液体专用导热仪,基于瞬态热线法,具有测量准确度高(2%)、测试速度快(2s)、操作简单等优点,且只需要很少的样品用量(30mL),即可获得可靠的导热系数数据。可广泛应用于润滑油、冷冻机油、冷冻液、纳米流体、纯水等流体导热系数的检测、标定、计量、科学研究等。 Jthermo液体专用导热仪主要特点★ 测量快速:2秒钟获得结果; ★ 测量准确:专门针对液体导热系数的测量,标准样品的测量准确度优于1%; ★ 适用广泛:适用于各种极性和非极性流体; ★ 可拓展应用:可配备-30℃到250℃温区温度模块,0~15MPa压力模块。 Jthermo液体专用导热仪技术参数 测量原理:瞬态热线法 温度范围:-30~250 ℃(不同型号)测量范围:0.0005~5 W/(mK) 分 辨 率:0.0001 W/(mK) 准 确 度:± 2 % 重 复 性:± 2 % 耐压范围:15 MPa压力控制:可选(0.1~15 MPa)测量时间:≤ 2 s样品用量:≥ 30 mL适用范围:各种极性或非极性液体数据传输:USB参考标准:ASTM D2717 ASTM D7896 Jthermo液体专用导热仪适用范围纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、Zr O2纳米流体等;液体燃料:汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等;制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等;其他:如冷冻液、润滑油、导热油、血液、离子液体等各种极性、非极性液体。售后服务1、培训计划a) 供方负责免费培训最终用户的操作人员,达到对仪器的性能、特点的全面了解,并且提供安装调试中所需有关技术资料,直至最终用户的操作人员能独立操作及掌握日常维护仪器的能力;b) 培训的内容为安装仪器的结构、原理、日常操作和维护;c) 培训方式为现场讲解、演示、操作指导和答疑;d) 培训场地安排为实验室现场;e) 培训教材安排为仪器的说明书及操作手册;f) 培训时间安排操作者熟练掌握仪器的操作及日常维护为准;2、售后维修a) 对所有提供的设备提供壹年的保质期,保修期从设备验收合格签字之日起计算;b) 在保修期间,用户所购产品享受免费硬件升级和软件升级服务;如产品出现问题,用户将货物办理返厂维修,其中发生的运输费用由我公司承担;c) 在保修期内仪器如出现任何故障,将在收到故障通知后及时提供详细的解决方案,如仍无法排除故障我公司将在7日内派工程师上门维修;d) 保质期满后提供终身维修,所需备件按成本核收;
    留言咨询
  • 产品介绍:导热系数检测仪是一种测量样品(固体、液体或粉末)的导热系数随温度的函数关系的仪器。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能特点:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;4.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;5.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;6.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;7.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;8.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 1、产品介绍 TC3000L系列充分发挥了热线法的准确度高(2%)、测试速度快(2s)的优点; XIATECH的专业设计,使其具有足够的抗震性和耐用性,且只需要很少的样品用量(40mL),即可获得准确的导热系数数据。2、主要特点 ★ 测量快速:2 s内获得数据,很大程度避免自然对流的影响; ★ 测量准确:采用标准试样甲苯和纯水进行检验,准确度可达0.5 %,全量程范围内优于3 %; ★ 适用广泛:适用广泛:可用于-30~200 ℃、0.1~15 MPa内各种极性和非极性流体; ★ 样品用量少:只需要40 mL以上就可以获得准确的测量结果; ★ 操作简单:操作简单:自动化程度高,无需专业人员即可操作设备; ★ 符合ASTM D2717 ASTM D7896标准。3、适用范围 广泛适用于不同温度条件下各种极性或非极性液体,可测试的样品包括纳米流体、液体燃料、制冷剂、冷冻液、润滑油、离子液体等。4、技术参数TC 3100LTC 3200L测量原理瞬态热线法瞬态热线法温度范围-30~100 ℃室温~200 ℃测量范围0.0005~5 W/(m K)0.0005~5 W/(mK)分 辨 率0.0001 W/(mK)0.0001 W/(mK)准 确 度± 2 %± 3 %重 复 性± 2 %± 3 %耐压范围15 MPa压力控制可选(0.1~15 MPa)测量时间≤ 2 s样品用量≥ 40 mL适用范围各种极性或非极性液体((包含但不限于各类油品、制冷剂、纳米流体、冷冻液、无机盐溶液、各类化学液体试剂等))数据传输USB操作系统Windows参考标准ASTM D2717 ASTM D78965、典型应用 ★ 纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、ZrO2纳米流体等; ★ 液体燃料:如汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等; ★ 制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等; ★ 其它:如冷冻液、润滑油、导热油、离子液体等各种极性、非极性液体。
    留言咨询
  • 测试条件 测试准确度:±2~3 % 测量范围:0.0005~5.0 W/(mK) 温度范围:-30 ℃~250 ℃ 压力范围:0.1~15 MPa 测量方法及标准 测量方法:瞬态热线法 参考标准:ASTM D2717-05测试种类 可测量的液体种类包括各种极性和非极性流体的纯质及混合物: 纳米流体:氧化铝纳米流体、石墨纳米流体、Fe3O4纳米流体、ZrO2纳米流体; 冷冻液:乙二醇、丙三醇、乙醚、四氯化碳、少数碳氢化合物; 制冷剂:R134a、R12、R22、R123、二甲醚等; 油品:导热油、汽油、煤油、柴油、润滑油、压缩机油、冷冻机油、硅油等; 粘稠液体:粘稠溶剂、果汁、牛奶等; 化学试剂:水、甲苯、醇类、离子液体等。 可测量的气体包括各种纯质或者气体混合物: 天然气体:空气、CH4、N2、CO2、CO; 制冷剂:R134a、R12、R22、R123、二甲醚等。 样品用量 不少于30mL。
    留言咨询
  • 复合板材导热系数检测防护热板法特点:1、 测试头内测试杆周围增加了防护热装置(此装置可对试样进行热防护),拓展了仪器测试温度范围,减小了环境温度对测试的影响。2、 测试头内测试杆上增加热流测试的温差热电偶堆,提高了热流测试分辨率、准确性和重复性。3、 取消了冰水混合物对热电偶冷端补偿,简化了操作,方便了使用。4、 增加了“老化可靠性测试”、“高导热材料测试”、“试样间接触热阻测试”等实验方法。复合板材导热系数检测防护热板法本仪器主要测试薄的热导体、导热硅胶硅脂、导热树脂、氧化铍瓷、氧化铝瓷等细小材料的热阻以及固体界面处的接触热阻和材料的导热系数。检测材料一般为固态片状,如加围框也可检测粉状态材料及膏状材料。仪器参考标准:MIL-I-49456A(绝缘片材、导热树脂、热导玻纤增强);GB 5598-85(氧化铍瓷导热系数测定方法);ASTM-D5470-12(薄的热导性固体电绝缘材料传热性能的测试标准)等。仪器具有自动加压,自动测厚,全电脑自动测量控制功能。复合板材导热系数检测防护热板法本仪器主要测试薄的热导体、导热硅胶硅脂、导热树脂、氧化铍瓷、氧化铝瓷等细小材料的热阻以及固体界面处的接触热阻和材料的导热系数。检测材料一般为固态片状,如加围框也可检测粉状态材料及膏状材料。复合板材导热系数检测防护热板法仪器参考标准:MIL-I-49456A(绝缘片材、导热树脂、热导玻纤增强);GB 5598-85(氧化铍瓷导热系数测定方法);ASTM-D5470-12(薄的热导性固体电绝缘材料传热性能的测试标准)等。仪器具有自动加压,自动测厚,全电脑自动测量控制功能。复合板材导热系数检测防护热板法主要参数1、试样大小:Φ30mm2、试样厚度:0.02-20mm,3、热极控温范围:室温-99.99℃,分辨率0.01℃, 4、冷极控温范围:0-99.0℃,分辨率0.01℃,5、导热系数测试范围:0.10~45 W/m*k,显示四位小数。6、热阻测试范围:0.05~0.000005m2*K/W,7、压力测量范围:0~1000N,8、位移测量范围:0~30.00mm,9、测试精度:优于3%,10、实验方式:a、试样不同压力下热阻测试。b、材料导热系数测试。c、接触热阻测试。d、铝基板(复合板材)热阻测试。e、老化可靠性测试。11、计算机全自动测试,并实现数据打印输出。12、电压:220V.50HZ.
    留言咨询
  • 液体导热仪 400-860-5168转2932
    1、TC 3000L系列液体导热系数仪产品介绍 TC 3000L系列液体导热系数仪充分发挥了热线法的准确度高(2%)、测试速度快(2s)的优点; XIATECH的专业设计,保证其具有足够的抗震性和耐用性,且只需要很少的样品用量(40 mL),即可获得准确的导热系数数据。2、TC 3000L系列主要特点测量快速:2 s内获得数据,很大程度避免自然对流的影响;测量准确:采用标准试样甲苯和纯水进行检验,准确度可达0.5 %,全量程范围内优于3 %;适用广泛:可用于-30~250 ℃、0.1~15 MPa内各种极性和非极性流体;样品用量少:只需要40 mL就可以获得准确的测量结果;操作简单:自动化程度高,无需专业人员即可操作设备;符合ASTM D2717 ASTM D7896标准。3、TC 3000L系列适用范围TC 3000L系列液体导热系数仪广泛适用于不同温度条件下各种极性和非极性液体,可测试的样品包括纳米流体、液体燃料、制冷剂、冷冻液、润滑油、离子液体等。4、技术参数TC 3000L系列主要技术参数如下:5、典型应用纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、Zr O2纳米流体等;液体燃料:如汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等;制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等;;其它:如冷冻液、润滑油、导热油、离子液体等各种极性、非极性液体。
    留言咨询
  • 1、TC 3000L系列液体导热系数仪产品介绍 TC 3000L系列液体导热系数仪充分发挥了热线法的准确度高(2%)、测试速度快(2s)的优点; XIATECH的专业设计,使其具有足够的抗震性和实用性,且只需要很少的样品用量(30 mL),即可获得准确的导热系数数据。2、TC 3000L系列主要特点测量快速:2 s内获得数据,zui大程度避免自然对流的影响;测量准确:采用标准试样甲苯和纯水进行检验,准确度可达0.5 %,全量程范围内优于3 %;适用广泛:可用于-30~200 ℃、0.1~15 MPa内各种极性和非极性流体;样品用量少:只需要30 mL就可以获得准确的测量结果;操作简单:自动化程度高,无需专业人员即可操作设备;符合ASTM D2717 ASTM D7896标准。3、TC 3000L系列适用范围TC 3000L系列液体导热系数仪广泛适用于不同温度条件下各种极性和非极性液体,可测试的样品包括纳米流体、液体燃料、制冷剂、冷冻液、润滑油、离子液体等。4、技术参数TC 3000L系列主要技术参数如下:05、典型应用纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、Zr O2纳米流体等;液体燃料:如汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等;制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等;;其它:如冷冻液、润滑油、导热油、离子液体等各种极性、非极性液体。
    留言咨询
  • HS-DR-1平板导热系数测试仪采用双热流计检测绝缘板状材料,粘土、混凝土,陶瓷,塑料等的导热系数和热阻方法,连接上位计算机实现全自动检测,自动生成实验报告,全自动数据采集、数据处理、打印报表,数据存储。使用导热系数仪进行测量时,它能快速的趋于稳定,能对样品特性产生快速响应。这有赖于平板温度的精确控制与仪器的双热流传感器配置。对于某些材料,只需短短的几分钟就能准确地得到其热阻值。根据测量要求的不同,用户既可选择在此时终止测量,也可选择进一步延长测量时间。符合:ASTMC518或ISO8301以及GB/T10295标准主要技术指标:1、导热系数范围:0.005~3W/mk;2、热阻范围:0.1---8 m2K/W3、平均温度范围:室温——40℃可变;4、热面温度范围:室温~99.99℃,温度分辩率0.01℃;5、冷面温度范围:-5~60℃,温度分辩率0.01℃;6、精确度: ±3%(25°C环境温度时),重复性: ±1 %;7、仪器结构符合ISO8301,样品对称配置,热板和冷板上各有一个热流计(双热流计对称分布);8、样品厚度自动测量系统10~ 80mm(符合EN1946-3:1999);9、增量线性测量,显示分辨率:0.1mm;10、样品尺寸:300*300mm,厚度:10—80mm;11、采用高数度数显表测温,0.1级精度,分辩率0.01℃;12、计算机控制全自动测试,并具有全自动校验功能;
    留言咨询
  • 一、导热系数测定仪DR3030荣计达仪器产品概述:导热系数是用来衡量耐热材料的导热特性和保温性能的重要参数,导热系数测定仪用于测定材料在不同温度状态下的导热系数。二、导热系数测定仪DR3030荣计达仪器适用标准:GB/T 10294-2008 《绝热材料稳态热阻及有关特性的测定》GB/T 3399-1982 《塑料导热系数试验方法—护热平板法》GB/T 10801.1-2002 《绝热用模塑聚苯乙烯泡沫塑料》GB/T 10801.2-2002 《绝热用挤塑聚苯乙烯泡沫塑料(XPS)》GB/T 3139-2005 《纤维增强塑料导热系数试验方法》GB/T 17794-2008 《柔性泡沫橡塑绝热制品》三、智能型导热系数测定仪型设计原理:在冷板、热板和护板达到稳态热平衡的条件下,按照一维稳态传热方程, 热板加热器产生的热量通过试件传递到冷板,并由冷板的循环水等介质传递到系统外,形成了一个热力循环。 该循环的热力方程式如下:式中: ——加热单元计量部分的平均加热功率,单位为瓦(W);d ——试件平均厚度,单位为米(m); ——试件热面温度平均值,单位为开(K); ——试件冷面温度平均值,单位为开(K); A ——计量面积,单位为平方米(m2)。导热系数测定仪校准规范四、应用领域:该仪器属于建筑材料节能检测类仪器。该仪器可以广泛用于耐热和保温材料的生产企业、相关质量检验部门和单位、高等院校和研究所等科研单位。主要测试的材料有:1、外墙保温材料:硅酸盐保温材料、陶瓷保温材料、胶粉聚苯颗粒、挤塑板XPS、硬泡聚氨酯保温板、发泡水泥板和A级无机防火保温砂浆等。2、屋面材料:陶瓷保温板、XPS挤塑板、EPS泡沫板、珍珠岩及珍珠岩砖、蛭石及蛭石砖和发泡水泥等。3、热力、空调材料:酚醛树脂、聚氨酯防水保温一体化、橡塑海绵、聚乙烯、聚苯乙烯泡沫、玻璃棉和岩棉等。4、钢构材料:聚苯乙烯、挤塑板、聚氨酯板和玻璃棉卷毡等。5、无机保温材料:发泡水泥等。选配仪器:制样机 养护箱 干燥箱 绝热材料导热系数参比板 电子天平导热系数测定仪操作规程五、产品特点:机械结构部分箱体外观:外观质量优异,机械强度高,耐腐蚀。测量准确度高:双试件式设计,避免因系统的误差导致材料的导热系数的偏差。设备灵活性高:箱体底部采用脚轮设计。电子硬件部分控制核心采用进口OMRON(欧姆龙)可编程逻辑控制器CPU单元及其配套温度扩展模块,抗干扰能力强,稳定性高。执行器采用施耐德新型固态无触点开关器件隔离控制,可靠性高、噪音低、开关速度快。数据接口采用计算机标准RS-232串行端口,数据稳定,可靠性高,使用方便。控制方法为PID控制,通过软件自整定调节PID参数,保障了控温精度。软件部分软件界面友好,操作方便。软件控制系统包括自动控制和手动控制两种方式。自动控制方式可以自动控制设备运行、自动检测、自动采集、自动显示试验曲线、自动完成试验,同时还可以自动生成测试结果、自动生成检测报告等。手动控制方式有助于设备的调试功能。应用部分测试主机与制冷设备的独立分离设计,减少干扰,便于维护。在线测量厚度,在恒定的压力状态下,其数值在数显表上直接显示。测试时间短,常规的测量时间为(120-150)min。测量的范围大,量程(0.001-2.000)W/(mK)。全温度测量,可以自行测试温度范围内的任一点温度的导热系数。在线计量校准程序-我公司采用独有的技术,可同时标定温度、标定系统误差,准确、快速,方便计量检定。六、技术参数:试件标准尺寸:300mm×300mm×H(5~40) mm;2、试件平整度:0.1mm;3、导热系数测量范围:(0.001—2.000)W/ (m&bull K);4、热阻测量范围:≥0.02 m2K/W;5、导热系数测量精度:±3%;6、导热系数测量重复性:±1%;7、温度分辨率:0.01℃;8、试验室温度:(15—30)℃,标准温度(23±2)℃;9、试验室湿度:(20—80)%RH,标准(40—60)%RH;10、电源电压:AC 220V±10%, 2.5KW;11、标准厚度:25mm;12、夹紧力:≤2.5kPa;13.常规测试时间:(120-150)min;14.控制核心采用进口欧姆龙PLC;15.控温范围:-5℃—95℃;*16.触摸屏工控机嵌入在仪器上,节省空间。*17.冷板控温采用自制恒温槽,软件自动控制。*18.制冷核心部件采用进口丹弗斯压缩机。*19.电子尺自动读取试件厚度到软件。*20.电路部分控制器采用日本欧姆龙PLC。*21.温度采集模块采用24位高精度模块。*22.热板控温电源功率精度0.00001w。试验室环境要求电源电压:AC 220V±10%, >2.5KW,安全接地线;试验室温度:(15—30)℃,推荐温度(23±2)℃;试验室湿度:(20—80)%RH,推荐(40—60)%RH;试验设备占地空间:2.3m×1m×1.2m;试验室门尺寸:>0.9m。
    留言咨询
  • 导热系数仪 400-801-8116
    产品介绍:DZDR-S导热系数仪是南京大展检测仪器生产一款瞬态热源法导热仪,是一种测量样品(固体、液体或粉末)的导热系数随温度的函数关系的仪器。采用全新的外形设计,简约小巧,具有测量速度快,操作简单,应用范围广等优势。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了很大的方便,可以选配有粉末测试容器、液体杯。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间。2.不会和静态法一样受到接触热阻的影响。3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4.对样品实行无损检测,意味着样品可以重复使用。5.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算。6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确。9.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 1、产品介绍 TC3000L 系列是公司与门针对流体导热系数开发的高精度仪器,采用瞬态热线法技术,测温范围宽、测试速度快,同时配置压力模块可获得被测流体的导热系数-温度数据曲线和导热系数-压力数据曲线(与利号:ZL201720327874.7、ZL201720324616.3)。TC3000L系列充分发挥了热线法的准确度高(2%)、测试速度快(2s)的优点; XIATECH的专业设计,使其具有足够的抗震性和耐用性,且只需要很少的样品用量(30mL),即可获得准确的导热系数数据。2、主要特点 ★ 测量快速:2 s内获得数据,很大程度避免自然对流的影响; ★ 测量准确:对标准样品甲苯和纯水测量的准确度可达 0.5 %,全量程范围内优于 3 %;; ★ 适用广泛:适用广泛:可用于-30~200 ℃、0.1~15 MPa内各种极性和非极性流体; ★ 样品用量少:只需要 40 mL 就可以获得准确的测量结果; ★ 操作简单:操作简单:自动化程度高,无需专业人员即可操作设备; ★ 符合ASTM D2717 ASTM D7896标准。3、适用范围 广泛适用于不同温度条件下各种极性或非极性液体,可测试的样品包括纳米流体、液体燃料、制冷剂、冷冻液、润滑油、离子液体等。4、技术参数TC 3100LTC 3200L测量原理瞬态热线法瞬态热线法温度范围-30~100 ℃室温~200 ℃测量范围0.0005~5 W/(m K)0.0005~5 W/(mK)分 辨 率0.0001 W/(mK)0.0001 W/(mK)准 确 度± 2 %± 3 %重 复 性± 2 %± 3 %耐压范围15 MPa压力控制可选(0.1~15 MPa)测量时间≤ 2 s样品用量≥ 40 mL适用范围各种极性或非极性液体((包含但不限于各类油品、制冷剂、纳米流体、冷冻液、无机盐溶液、各类化学液体试剂等))数据传输USB操作系统Windows参考标准ASTM D2717 ASTM D78965、典型应用 ★ 纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、Zr O2纳米流体等; ★ 液体燃料:如汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等; ★ 制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等; ★ 其它:如冷冻液、润滑油、导热油、离子液体等各种极性、非极性液体。
    留言咨询
  • 1、产品介绍 TC3300低温导热系数仪可以准确测量材料在-150℃下的导热系数、测量快速、操作简单、适用广泛等优点,为科研领域中的材料研究、导热性能改进以及工业中的产品质量检验、生产控制提供了便利。 2、产品主要特点 测温范围宽:最低可以实现-150℃下的测量;测量准确:准确度可达1 %,全量程范围内优于5%;测量快速:1~20 s内采集数据,同时可自动连续多次测量,节省了用户时间;样品要求低:对形状无特殊要求,不规则形状的样品也可直接测量;无损检测:测量速度快、加热功率低,对于成分不稳定材料的导热系数测量具有明显的优势;适用广泛:各种块状、片状、粉末、颗粒、胶体、膏体、液体均可适用,且无需更换探头;符合ASTM C1113 ASTM D5930 GB/T 10297 GB/T 11205标准。 3、适用范围 TC3300低温导热系数仪(-150℃)适用于不同温度条件下保温材料、塑料、橡胶、导热硅脂、岩石土壤、相变材料、动植物体、金属合金等样品的测试,可测试的样品形态包括块状、片状、粉末、膏体、胶体以及不规则形状等。4、主要技术指标 测量原理:热线法 温度范围:-150℃~室温 准 确 度: ±3~5% 重 复 性: ±3% 样品形状:圆形、方形、不规则形均可 样品状态:片状、块状、膏状、颗粒、粉末、胶体、液体 样品尺寸:固体边长>2.5cm
    留言咨询
  • 产品介绍:DZDR-S导热系数分析仪是南京大展检测仪器推出一款采用瞬态法的导热仪,测量速度快,能够在5~160s之内计算出结果,这对液体、固体、金属等材料进行材料,满足不同材料的测量,并且外形设计,简约小巧,操作简单优势。测试范围:DZDR-S导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测量方法:DZDR-S导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1、快速准确。导热系数测定仪通过测量材料两侧的温度差和传热面积,结合精温度传感器和数据采集系统,可以快速准确地计算出材料的导热系数。2、操作简便。采用的是双向操作的系统,配有分析软件,可以在实验的过程中,采集数据处理功能,操作简单方便。3、测试范围广泛。可以适应不同性质和种类的材料测试,包括金属、液体、膏体、胶体、复合材料等。4、无损检测。导热系数测定仪对样品实行无损检测,不会对样品造成损伤,可以重复使用样品。5、良好的耐用性和稳定性:导热系数测定仪采用高品质的材料和制造工艺,具有较长的使用寿命和良好的稳定性,可以满足长期使用的需求。6、广泛的应用领域。这款导热仪的应用范围广,在如材料科学、物理学、化学、机械工程等。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍:DZDR-S导热系数测试仪是南京大展仪器推广一款采用瞬态热源法的热分析仪器,具有测量速度快,能够在5~160s计算出导热系数,并且测量范围广泛,可对液体、固体、金属、粉末、薄膜、膏体和胶体等样品进行测量,双向控制系统,仪器与计算机双向操作,触摸屏显示,清晰度高。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中最新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了极大的方便,可以选配有粉末测试容器、液体杯。测试范围:瞬态法(非稳态法)是一种可测试固体,粉末和流体的导热系数测试方法,金属、陶瓷、合金、矿石、聚合物、复合材料等都是瞬态法的可测试范围。性能优势:1.测试范围广泛,测试性能稳定;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;12.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。DZDR-S 导热系数测试仪的技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可定制)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套DZDR-S 导热系数测试仪的操作步骤:
    留言咨询
  • Tci导热系数仪 400-860-5168转3842
    Tci导热系数仪C-therm公司新代专利技术产品TCi将测量热导率和蓄热系数的功能提高了更高水平。它可以简便、精确、无损地进行热物性测试,为实验室研究、工厂质量控制及生产监测提供了极大的方便。该测试仪使用前不需要标定,并且对试样没有严格的要求,测试时间仅需5秒,不仅具备宽广的温度适用范围( -50℃-200℃),同时具备极大的测试量程( 0-220W/mK)。 Tci导热系数仪可配备1或2个探头,以提高用户的测式效率。仅5秒,就可以实现固体、液体、粉体和胶体的精准测试,这是其他产品无可比拟的。由于测试过程中样品不造成任何损坏,样品在测试后仍旧完好无损且可重复使用。测试环境不受任何限制,可在热处理室、高压容器及手套箱内操作。 工作原理:给仪器的传感器探头一个既定的电流,会产生微小的热量变化。这将会使样品与传感器界面处的温度开高,从而导致传感器元件的电压降出现变化。根据传感器电压升高的速率即可判断样品的热物性。其热物性与电压变化成反比。即样品材料的绝缘性能越好(比如泡沫),电压的升高速率越快。测试结果将在系统自带的牧件上实时展现出来。 工作方法:TCi导热系数仪的应用原理为革新的瞬态平面热源法。其使用一个与样品界面接触的单面热反射探头为样品提供一个瞬态的热源, 然后用其配备的数据模型对样品的热导率及器热系数进行直接的测量和分析,使样品的热物性实现直观的,全面的呈现。 技术参数:导热系数测量范围0 to 500 W/mK测量时间0.8 到 3 秒最小测试样品尺寸0.67" (17mm) 直径最大测试样品尺寸不限最小测试样品厚度通常0.02" (0.5mm),取决于测试物体的热传导性最大测试样品厚度不限温度范围-58o到 392oF (-50oC到 200oC),可拓展至500oC精确度一般优于1%准确度优于 5%额外安装要求无软件Windows环境下直观简易的软件操作界面。测试结果可导入Microsoft Excel。附加功能可提供间接测量如下材料属性:热扩散值比热容密度电源110-230 VAC 50-60 Hz质量认证FCC,CE,CSAASTM标准ASTM D7984-16(改良的瞬态平面热源法-MTPS)
    留言咨询
  • 热流法导热仪-热阻仪-导热系数测定仪一、设备特点这台采用高精度控制电机自动精准加压,自动测厚装置,并连计算机实现全自动控制。仪器采用6点温度梯度检测,提高了测试精度。可检测不同压力下热阻曲线,采用优化的数学模型,可测量材料导热系数和热阻以及界面处接触热阻等多个参数。 广泛应用在高等院校,科研单位,质检部门和生产厂的材料导热分析检测。二、设备用途主要用于测试薄的热导体、固体电绝缘材料、导热硅脂、树脂、橡胶、氧化铍瓷、氧化铝瓷等材料的热阻以及固体界面处的接触热阻和材料的导热系数。检测材料为固态片状,加围框可检测粉状态材料及膏状材料。 仪器参考标准: GB 5598(氧化铍瓷导热系数测定方法);ASTM D5470-2012(薄的热导性固体电绝缘材料传热性能的测试标准)等三、测试说明测试对象: 薄的热导体、固体电绝缘材料、导热硅脂、树脂、橡胶、氧化铍瓷、氧化铝瓷等材料的热阻以及固体界面处的接触热阻和材料四、技术参数1、控制系统:自主研发PLC控制系统。具有高效、可靠、适应性强、数据处理能力强、通信能力强、可扩展性高、稳定性高等特点1.1可靠性高:PLC控制系统采用了大规模集成电路技术,并采用了相应的硬件和软件抗干扰措施,具有很强的抗干扰能力,被公认为最可靠的工业控制设备之一。1.2适应性广:PLC系统已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。硬件配置确定后,可以通过修改用户程序,方便快速地适应工艺条件的变化。1.3数据处理能力强:PLC控制系统可以完成数据采集、传输、处理等复杂的控制任务,实现工业自动化控制。1.4通信能力强:PLC控制系统可以通过各种通信协议和网络连接远程控制、监控和数据交换。1.5可扩展性:PLC控制系统可以通过添加I/O模块、通信模块等实现系统功能的扩展。1.6稳定性高:PLC控制系统采用工业级的高可靠性硬件和软件设计,能够稳定地运行于恶劣的工业环境中。2、操作界面:彩色7寸触摸屏、界面注重易用性、图形化、实时监控、数据记录与分析、多语言支持、安全性和自定义设置等,以满足不同用户的需求和提高工作效率2.1简单易用:操作界面通常设计得简单易用,用户只需要通过少量的操作步骤就能够完成试验。这有助于用户快速掌握操作方法,提高工作效率。2.2图形化界面:操作界面通常配备有图形化界面,以图形的方式展示试验过程和结果。这使得用户可以更直观地了解设备的运行状态和测试结果,便于分析和评估。2.3实时监控:操作界面通常提供实时监控功能,用户可以实时查看试验过程中的各项参数,如摩擦力、磨损量、试验时间等。这有助于用户及时发现和解决问题,保证试验的准确性。2.4数据记录与分析:操作界面通常配备有数据记录和分析功能,用户可以记录每次试验的数据,并对其进行统计和分析。这有助于用户了解材料的耐磨性能,为产品开发和改进提供依据。2.5多语言支持:为了满足不同国家和地区的需求,操作界面通常支持多种语言,用户可以根据需要选择适合自己的语言进行操作。2.6安全性高:操作界面还注重安全性设计,通常配备有紧急停止按钮和安全防护装置,以保障用户的安全操作。2.7自定义设置:操作界面通常还支持自定义设置,用户可以根据自己的需求和偏好设置试验参数、数据记录方式等,提高试验的灵活性和效率。3、 试样大小:Φ30mm。4、 试样厚度: 0.001-50mm(标准配置),典型厚度:0.02-20mm。5、 热极控温范围:室温-100℃(标准配置),室温-299.99℃,控温精度0.01℃。6、 冷极控温范围:0-99.00℃,控温精度0.01℃。7、 导热系数测试范围:0.01~50W/m.k8、 热阻测试范围:0.02~0.000005m2.K/W。9、 压力测量范围:0~1000N,采用控制电机控制,可精准设置保压的压力值,控制精度1N。10、位移测量范围:0~50.00mm,精度0.1um。11、试样数量 : 1块(薄膜多片)。12、测试精度:优于3%。11、实验方式:试样不同压力下热阻测试、材料导热系数测试、接触热阻测试。13、全自动测试,并实现数据打印输出。14、电源: 220V;50Hz;1KW。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制