当前位置: 仪器信息网 > 行业主题 > >

地下金属脉冲探测器

仪器信息网地下金属脉冲探测器专题为您提供2024年最新地下金属脉冲探测器价格报价、厂家品牌的相关信息, 包括地下金属脉冲探测器参数、型号等,不管是国产,还是进口品牌的地下金属脉冲探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地下金属脉冲探测器相关的耗材配件、试剂标物,还有地下金属脉冲探测器相关的最新资讯、资料,以及地下金属脉冲探测器相关的解决方案。

地下金属脉冲探测器相关的资讯

  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 光谱学技术获最新突破,利用阿秒激光爆发作为泵浦和探测脉冲
    近日,柏林的Max Born研究所、伦敦大学学院和匈牙利的ELI-ALPS研究所在共同参与的一个项目中,展示了一种利用阿秒激光爆发作为泵浦和探测脉冲的新型光谱学技术。据介绍,在正常运行的光谱学平台上使用这种短脉冲有助于研究复杂的光学过程,而该项目则主要是利用它来研究原子的非线性多光子电离过程。近日,相关成果发表在光学和光子学专业期刊Optica上。飞秒(1飞秒= 10-15秒)泵浦探针光谱技术彻底改变了人们对极快过程的理解。例如,如果一个分子的解离是由飞秒泵脉冲引发的,它可以使用延时飞秒探针脉冲来实时进行观察,捕捉分子的演化状态,从而得到记录分子解离细节过程的动态图像。1999年,这项强大的技术甚至被授予了诺贝尔化学奖。然而,自然界中的一些过程甚至更快,并且发生在阿秒的时间尺度上(1阿秒= 10-18秒)。到目前为止,阿秒泵浦阿秒探针光谱学已经被证明用于涉及两个光子吸收的相对简单的过程。然而,由于全阿秒泵浦-探测光谱非常具有挑战性,目前大多数得到实际应用的方法只使用一个阿秒脉冲泵(或探针),而另一个步骤则会使用飞秒脉冲。而在最新进展中,研究人员成功演示了一个泵-探针实验。在这个实验中,复杂的多光子电离过程使用了两个阿秒脉冲序列。这个实验需要产生非常强的阿秒脉冲,为此需要使用一个大型激光系统。同时,两个阿秒脉冲必须与阿秒时间和纳米空间稳定性重叠。考虑到这样大的挑战性,研究人员选择在马克斯波恩研究所(Max Born Institute)最大的实验室进行了上述这项实验。“原子和分子中的多电子动力学经常在亚秒至几飞秒的时间尺度上发生,”发表在Optica杂志上的论文中指出,“以前极端紫外(XUV)光子阿秒脉冲的可用强度允许对双光子、双电子相互作用进行时间分辨的研究。而最新的进展中,我们研究了氩原子的双电离和三电离,包括了多达5个XUV光子的吸收。”在以往的场景中,产生所需的强阿秒脉冲通常需要使用大型和强大的激光系统,幸而每个项目合作伙伴都在这一方面颇具优势。其中,极光基础设施阿秒光脉冲源(ELI-ALPS)研究中心正在开发一种价值600万欧元的激光器,旨在以1千赫兹的重复频率提供超过15太瓦的峰值功率,脉冲持续时间小于8飞秒。在新的研究中,两个阿秒脉冲串(APTs)与一个氩原子相互作用,吸收了四个光子,从而从原子中去除三个电子。根据该项目,有许多可能的方式来发生这种多光子吸收,要详细地找出电子是如何从原子中去除的,则需要改变两个阿秒脉冲之间的时间延迟,并观察产生了多少离子。结果表明,多光子吸收是分三步进行的:在前两步中,每一步都吸收一个光子;而在第三步中,两个光子同时被吸收。这些结果已经被计算机模拟所证实,并证明了强APTs的应用能够更好地理解复杂的多光子电离途径。据介绍,这项已开发的实验技术未来不仅可以用于研究原子中的复杂过程,还可以用于研究分子、固体和纳米结构。该项目还希望能进一步回答有关几个电子如何相互作用的问题,这有助于在最短的时间内理解最基本的过程。
  • 时间相关光子计数探测器研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="109"p style="line-height: 1.75em "成果名称/p/tdtd width="549" colspan="3"p style="line-height: 1.75em "时间相关拉曼-荧光光谱仪关键部件--时间相关光子计数探测器/p/td/trtrtd width="109"p style="line-height: 1.75em "单位名称/p/tdtd width="549" colspan="3"p style="line-height: 1.75em "北京师范大学/p/td/trtrtd width="109"p style="line-height: 1.75em "联系人/p/tdtd width="132"p style="line-height: 1.75em "韩德俊/p/tdtd width="95"p style="line-height: 1.75em "联系邮箱/p/tdtd width="322"p style="line-height: 1.75em "djhan@bnu.edu.cn/p/td/trtrtd width="109"p style="line-height: 1.75em "成果成熟度/p/tdtd width="549" colspan="3"p style="line-height: 1.75em "□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="109"p style="line-height: 1.75em "合作方式/p/tdtd width="549" colspan="3"p style="line-height: 1.75em "√技术转让 □技术入股 □合作开发 □其他/p/td/trtrtd width="658" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/d2651cc2-003a-47d8-8c21-0404be413e72.jpg" title="样机图片 时间相关拉曼-荧光光谱仪关键部件--时间相关光子计数探测器.jpg" width="350" height="229" border="0" hspace="0" vspace="0" style="width: 350px height: 229px "//pp style="line-height: 1.75em " 本项目研究了基于独创的外延层体电阻淬灭硅光电倍增器(SiPM)的时间相关光子计数探测器技术,验证以这种探测器为关键部件的一种新的光谱仪--时间相关拉曼-荧光谱仪的可行性和先进性。 br/ 采用我们独创的外延层体电阻淬灭SiPM作为光子计数探测器,能够在较宽光强范围内对光脉冲进行光子计数测量,其时间分辨率高于CCD(包括ICCD)或光电倍增管(PMT)。 br/ 采用我们提出基于SiPM的时间相关光子计数(TCPC)法,既能测量一个脉冲仅包含一个光子的情况,也能测量一个脉冲包含多个光子的情况。能够克服一般时间相关单光子计数(TCSPC)法测量效率较低、测量速度较慢的问题。 br/ 研制出基于条形SiPM的时间相关光子计数探测器(TCPC)样机。其时间分辨率优于100皮秒,暗计数率低于200kHz,峰值探测效率大于15%。验证该新型光谱仪能够克服一般拉曼光谱仪存在荧光背底干扰以及一般荧光光谱仪不能测量荧光寿命的问题。 br//p/td/trtrtd width="658" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 一台以本项目研制的探测器为关键部件的低成本时间相关拉曼-荧光光谱仪的功能和应用范围好于或相当于现有拉曼光谱仪、荧光光谱仪以及荧光寿命测量仪三台仪器之和,而其制造成本只与这三种仪器中的一种相当。并且,能够克服一般拉曼光谱仪存在荧光背底或高温样品存在热辐射干扰以及一般荧光光谱仪不能测量荧光寿命的问题。预期在环境监测、食品安全及公共安全等领域,乃至单分子光谱、激光测距以及飞行时间(TOF)测量等方面都将有重要的应用。/p/td/trtrtd width="658" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 开发研制出时间相关光子计数探测器(TCPC)样机,由条形SiPM探测器和前置放大器组成的探头,以及给SiPM和前放供电的电源组成。 br/ 韩德俊、王慎远、苗泉龙,“拉曼散射光谱的测量装置及拉曼散射光谱仪”,专利申请号:201510394150.X,申请日:2015年7月7日。/p/td/tr/tbody/tablepbr//p
  • 食品金属探测器国家标准通过审定
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了李沧区青岛电子仪器厂主持制定的《食品金属探测器》国家标准,并上报国家标准化管理委员会,建议作为推荐性国家标准批准、发布。  审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 激光波形探测器作采用9V电池供电,使仪器轻巧便携
    激光波形探测器/激光波形探测仪型号:BGS-141 BGS-141 型激光波形探测器是针对脉冲激光波形测试而设计的。使用该探测器接收激光,结合速示波器可以准确测量激光脉冲的波形、脉冲宽度。再配合激光能量计测量激光的输出能量可以获得峰值率等参数。探测器选用了速的PIN光电管,具有很好的稳定性。仪器作采用9V电池供电,使仪器轻巧便携。光谱范围有400 ~ 1100nm 或者800 ~ 1600 nm 两种, 用户根据被测激光波长选择其中种响应时间1ns响应度0.8mA/mW (1.3mm处)电源DC 9V 积层电池作环境0 ~ 40 ℃, 相对湿度≤ 80 %
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 赛默飞发布新型UltraDry硅漂移(电制冷)探测器
    -- 为NORAN System 7微区分析系统提供最优的探测器尺寸、分析速度和分辨率中国上海,2012年8月10日 &mdash &mdash 7月30日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2012显微镜学和微区分析大会上发布新型赛默飞UltraDry硅漂移(电制冷)X射线探测器。该探测器为同类最优,为金属和矿物、先进材料和半导体等行业应用提供更快速、准确的(微区)X射线分析。它进一步提升了广受赞誉的赛默飞NORAN System 7 X射线微区分析系统的性能。赛默飞副总裁兼分子光谱和微区分析产品总经理John Sos指出:&ldquo 我们的UltraDry硅漂移(电制冷)探测器在超高的采集速率下具有优异的分辨率,这在当今的纳米技术和先进材料应用分析中是至关重要的!我们对该探测器的卓越改进使我们NORAN System 7系统整体能以最快的速度获得最多的数据。加之使用我们独有的高级数据处理工具 &mdash &mdash COMPASS软件和直接倒相软件,用户可以满怀信心地将其EDS分析结果提升至全新的水平。&rdquo UltraDry硅漂移(电制冷)探测器性能的提升是其设计和技术工艺改进的直接成果。该探测器提升了能量分辨率的界限,在Mn-K&alpha 的能谱谱峰分辨率高达123eV。采用尺寸较小先进的场效应晶体管(FET)与晶体一体化的卓越设计在最大程度上减小了导致电噪声的分布电容。UltraDry探测器能够高效地操控脉冲堆积处理,使其在高速处理中具有最佳的分辨率和最小的死时间比率。无需外部附属设备或液氮制冷。新型的UltraDry探测器提供宽范围的晶体有效面积选择(10mm2,30mm2,60mm2 和100mm2),并具有先进的窗口工艺技术和独一无二的可分析至元素铍的轻元素完整的分析算法。其他关键特征包括:&bull 旨在使样品至探测器距离最小化和探测器立体角最大化的用户定制设计&bull 独有的旨在创造最大工作距离范围的垂直开槽的准直器&bull 操作环境温度至35° CNORAN System 7是非常适用于金属和采矿、先进材料、学术研究、半导体和微电子、失效分析、缺陷审查等材料电子显微微区应用分析的卓越平台!欲了解更多有关NORAN System 7和UltraDry(电制冷)探测器的信息,请访问网站www.thermoscientific.com。关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 近红外双模式单光子探测器----单光子探测主力量子通讯
    一. 近红外双模式单光子探测器介绍SPD_NIR为900nm至1700 nm的近红外范围内的单光子检测带来了重大突破。 SPD_NIR建立在冷却的InGaAs / InP盖革模式单光子雪崩光电二极管技术上,是NIR单光子检测器的第一代产品,可同时执行同步“门控”(GM)和异步“自由运行”(FR )检测模式。 用户通过提供的软件界面选择检测模式。冠jun级别的器件具有低至800 cps的超低噪声,高达30%的高校准量子效率,100 ns最小死区,100 MHz外部触发,150 ps的快速成帧分辨率和极低的脉冲 。 当需要光子耦合时,标准等级可提供非常有价值且经济高效的解决方案。基于工业设计,该设备齐全的探测器不需要任何额外的笨重的冷却系统和控制单元。 经过精心设计的紧凑性及其现代接口使SPD_NIR非常易于集成到最苛刻的分析仪器和Quantum系统中。OEM紧凑型 多通道控制器软件界面二. 近红外双模式单光子探测器原理TPS_1550_type_II是基于远程波长自发下变频的双光子源。TPS_1550_type_II采用波导周期性极化铌酸锂(WG-ppln)晶体,用于产生光子对。波导- ppln的转换效率比任何块状晶体都高2到3个数量级,并确保与单模光纤的高效耦合。0型和II型双光子的产生三. 近红外双模式单光子探测器应用特点特点: ▪ 自由模式 & 门模式▪ 集成电子计数▪ 校准后 QE可达 30%▪ TTL和NIM信号兼容▪ 暗记数 800 cps▪ 软件可远程控制▪ 最小死时间 100 ns▪ 冷却板兼容欧盟/美国▪ 外部触发频率:可达100 MHz▪ DLL 文件库 : Python, C++, LabVIEW应用方向:▪ 量子通信▪ 盖革模式激光雷达▪ 量子密钥分发▪ 高分辨率OTDR▪ 光子源特性▪ FLIM 成像▪ 符合测试▪ 光纤传感四. 近红外双模式单光子探测器技术规格五. Aura 介绍AUREA Technology是法国一家知名的探测器供应商,公司致力于尖端技术的研发,基于先进的单光子雪崩光电二极管,超快激光二极管和快速定时电子设备,设计和制造了新一代高性能,功能齐全的近红外探测器。作为全球技术领导者之一,AUREA技术提供盖革模式单光子计数,皮秒激光源,快速时间关联和光纤传感仪器。此外,AUREA Technology直接或通过其在北美,欧洲和亚洲的专业分销渠道为200多个全球客户提供一流的专业支持。并与客户紧密合作,以应对当今和未来在量子安全,生命科学,纳米技术,汽车,医疗和国防领域的挑战。昊量光电作为法国AUREA公司在中国区域的独家代理商,全权负责法国Aurea公司在中国的销售、售后与技术支持工作。AUREA技术提供了新一代的光学仪器,使科学家和工程师实现卓越的测量结果。奥瑞亚科技与全球的客户和合作伙伴紧密合作,共同应对量子光学、生命科学、纳米技术、化学、生物医学、航空和半导体等行业的当前和未来挑战双光子是展示量子物理原理的关键元素,并实现新的量子应用。例如,双光子使量子密钥分发技术得以发展,以确保数百公里范围内的数据网络安全。在生物成像应用中,双光子光源产生原始的无色散测量。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 线阵CCD探测器 激光粒度仪降本增效的新希望
    p style="text-indent: 2em "CCD兴起于20世纪70年代,是由一组规则排列的金属-氧化物-半导体( MOS)电容器阵列和输入、输出电路组成。它能够利用时钟脉冲电压来产生和控制半导体势阱的变化,完成对光的探测。不同于普通固态电子器件,CCD器件中信息的存在和表达方式为电荷,而不是电流或电压,因此对信息的表达具有更高的灵敏度。按照感光单元的排列方式来划分,CCD器件可以分为线阵CCD和面阵CCD。/pp style="text-indent: 2em "传统激光粒度仪采用环形光电二极管阵列作为探测器,但一般探测器只有 32 环,较低的空间分辨率限制了其在颗粒测量中的应用。并且由于应用量少,导致其成本非常高。近些年来,以面阵 CCD 为探测器的激光粒度仪得到了一定的发展,但在室温条件下,面阵 CCD 容易受到暗电流的影响,动态范围一般只有 20~30dB,且面阵CCD 存在价格高,尺寸小,采集电路设计复杂等缺陷。相比于面阵 CCD 探测器,线阵 CCD 具有分辨率高,动态响应范围宽等特点,并且可以对像素点进行直接操作,具有更大的灵活性,因此能够满足不同环境条件下的颗粒粒度测量要求。目前,在不同工业领域,线阵 CCD 已经得到广泛应用,如高性能文件打印、光谱扫描、光学字符识别等。由于应用范围广,使得线阵 CCD 成本较低。所以采用线阵 CCD 探测器替代传统探测器可以有效降低激光粒度仪的制造成本。/pp style="text-indent: 2em "目前,激光粒度仪的光学结构主要有前置式傅里叶透镜光学结构和后置式傅里叶透镜光学结构两种,目前,依然采用前置式傅里叶透镜光学结构的激光粒度仪制造商有丹东百特、辽宁仪表研究所、成都精新以及国外的 Shimadzu、Sympatec 等公司。并且由于干法测量要求的特殊性,一般干法激光粒度仪也采用前置式傅里叶透镜光学结构。因此,本文主要对前置式傅里叶透镜光学结构进行探讨。线阵 CCD 具有 7450 个像素点,单位像素点的尺寸为 4.7× 4.7μm,采用精度为8bit,采样数据率为 30MHz。基于线阵 CCD 的前置式傅里叶光学结构的激光粒度仪系统结构如下图所示。/pp style="text-indent: 0em "img src="http://img1.17img.cn/17img/images/201807/insimg/ff47e6ea-83ad-496d-bcc6-49c8703f9433.jpg" title="基于线阵 CCD 的前置式激光粒度仪系统结构示意图.png"//pp style="text-indent: 0em text-align: center "span style="text-indent: 2em "(基于线阵 CCD 的前置式激光粒度仪系统结构示意图)/span/pp style="text-indent: 2em "随着工业生产实践的不断进步,针对小粒径颗粒、不规则形状颗粒和特殊材料颗粒的研究越来越深入。基于线阵 CCD 探测器的激光粒度仪测量性能需要从颗粒的散射光学模型、仪器的光学结构和采集数据的反演算法三个方面来进一步提高。/pp style="text-indent: 2em "不管是 Mie 氏光散射理论还是夫琅禾费衍射理论,其前提条件都是假设被测样品为球形颗粒。而在实际社会生产过程中,颗粒的形状往往是不规则的,采用传统光散射理论描述颗粒的散射光强分布是不合适宜的,容易造成反演粒度分布偏离真实粒度分布。因此,建立更普适性的颗粒散射光学模型是提高激光粒度测量准确性的关键。使用近似非负约束 Chin-Shifrin 算法是一种获得准确性更高的颗粒粒度分布的方法。/pp style="text-indent: 2em "为了提高颗粒测量粒度范围,扩大线阵 CCD 的可测量散射角,建议采用渐变滤光片系统对中心艾里斑光强进行滤光处理,获取颗粒小角度散射光强信息,同时为了扩大有效测量散射角,设计组合线阵 CCD 探测器,对大角度散射光进行有效采集。另外,为了满足不同社会生产需求,例如在线颗粒测量、超细颗粒粒度测量等。引入更高效的数据反演算法也迫在眉睫。/p
  • 拉曼主导市场|2027全球手持化学和金属探测器市场将达41亿美元
    据最新研究报道,到2027年,全球手持式化学和金属探测器市场预计将从2022年的23亿美元增至41亿美元,2022 年至2027年的复合年增长率为12.4%。而推动市场增长的主要因素包括化学和爆炸物恐怖主义的威胁日益增加,以及世界各国政府越来越重视实施严格的法规以确保人类和环境安全。拉曼光谱预计在预测期内以最高复合年增长率增长拉曼光谱是广泛使用的检测技术之一。根据缉获毒品分析科学工作组(SWGDRUG)的说法,基于拉曼光谱的仪器或设备是一种分析技术,对毒品具有最高的潜在检测和鉴别能力(A类分析技术)。此外,基于拉曼光谱的手持式检测器提供快速响应、易于操作,并通过扫描包装材料有效识别化学品、爆炸物和麻醉品,而不会干扰样品,从而最大限度地减少对操作员的暴露——保持第一响应者和社区更安全。由于这些好处,拉曼光谱技术有望在预测期内主导市场。在预测期内,毒品检测应用预计将以最高复合年增长率增长根据联合国毒品和犯罪问题办公室(UNODC)的《2021年世界毒品报告》,在过去的二十年里,大麻的效力在世界某些地区翻了两番。从2010年到2019年,吸毒人数增加了22%,吸食大麻的人数增加了近18%。此外,大多数国家报告说大麻的使用有所增加。预计在预测期内,毒品或麻醉品使用量的增加将增加对用于毒品检测的手持式探测器的需求。到2027年,预计北美将占据整个市场的最大份额北美在2021年占据手持式化学和金属探测器市场的最大份额,预计在预测期内将主导市场。这种主导地位是由于其强大的最终用户基础,包括执法机构和法医部门、海关和边境安全人员、军队和国防军、机场和制药行业。这些最终用户需要手持式化学、爆炸物、麻醉品和金属探测器,以安全检测化学品、爆炸物和优先药物。据NBC新闻报道,加州的国家森林是该国80-85%的非法大麻种植地。毒贩将数百万加仑的水改道种植,并引发了几场大火。此外,在农作物上大量使用杀虫剂正在危及野生动物、供水和人类。手持式探测器可帮助森林官员检测这些危险化学品和药物,并保护森林免受野火的影响。而且,该地区还拥有众多化学、爆炸物、麻醉品和金属探测器制造商,包括OSI Systems, Inc. Teledyne 技术公司 赛默飞世尔科技公司;安捷伦科技公司和908设备公司。
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 向质谱领域进军 滨松重点推广离子源、探测器等新品
    p  第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)已于10月10日-13日在北京国家会议中心举行,科学仪器核心零部件厂商滨松带着众多新产品新技术参展。其中质谱相关器件很是亮眼,就滨松如何看待质谱市场与技术发展趋势等问题,仪器信息网编辑采访了滨松中国分析领域质谱项目推进负责人周旭升先生。/pp style="TEXT-ALIGN: center"img title="滨松展位.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/99fe9b3e-edd1-462e-91ff-07f52812cff1.jpg"//pp style="TEXT-ALIGN: center"滨松展位/pp  滨松用于原子吸收、原子荧光等光谱仪器的光电倍增管盛名已久,其实滨松的质谱相关器件也已经有40多年的历史。不过由于某些原因一直没有“走”出日本,直到这两年,才开始不断在中国等市场宣传推广。/pp  至于为什么选择这个时候进行推广,以及作为零部件供应商,滨松是如何看待质谱市场的前景、以及技术与应用的发展方向,周旭升谈到,如今质谱技术与应用非常“热”,升势迅猛。尤其是中国市场,由于环境大气颗粒物源解析、以及相关的VOC分析等都需要质谱技术。相关标准制定时,涉及了大量的质谱方法。/pp style="TEXT-ALIGN: center"img title="周旭升.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/18c8613b-4cb7-4d54-8d2e-b5576ec8ad72.jpg"//pp style="TEXT-ALIGN: center" 滨松中国分析领域质谱项目推进负责人周旭升/pp  近年来,解读一些大公司财报时都会发现,质谱业务保持着很好的增长。尤其是2008年金融危机后,质谱市场增长趋势越发迅猛,而且中国市场增长情况更加“剧烈”。几乎各大公司财报中都专门提到,中国环境、健康等相关市场中质谱仪器销售额大幅增长。/pp  从另一个角度来看,国产质谱企业的数量越来越多,而且除了像东西分析、普析通用、聚光科技、天瑞仪器、广州禾信等,还出现了很多新企业,如宁波华仪宁创、北京清谱、青岛融智等。这些新型公司从MALDI或小型便携质谱开始,这也体现着质谱仪器的两个发展方向。小型便携质谱在环境、执法等领域有着很好的前景。MALDI质谱更专注于医疗、临床,而医疗临床领域也是近年来质谱应用的热点;最早奥巴马提出精准医疗战略,去年习主席在G20公告上承诺减少抗生素滥用,MALDI是鉴定身体里细菌、微生物、血细胞、组织的分析一种很好的手段,可以读取细胞中蛋白质的全面信息,是遗传疾病等诊断的好手段。另外,从利益角度来说,国内的三甲医院有实力、也有意愿配备MALDI等仪器设备展开更多的服务。/pp  “如能将质谱技术用到更多领域或是人们的生活中,那将是对分析技术或仪器市场非常大的革新。”周旭升说到。/pp  “应对这些市场需求,滨松开始大力在中国推广质谱相关器件。”至于滨松推广的手段,周旭升介绍到,国产质谱企业中多数已经是滨松光谱等器件的客户,当知道滨松有这些质谱器件时也都愿意尝试使用。而滨松的产品,如真空器件微通道板(microchannel plate, MCP)产品“身上”有着滨松60多年真空技术的积累,在产品一致性等大批量生产时的品质有很好的保证。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"电子倍增器(electron multiplier, EM)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  MCP是一种可以二维探测和倍增电子的电子倍增器。MCP也对离子、真空紫外射线、X射线和伽马射线等敏感,因此MCP可以应用在这些物质的位置和能量的探测器件中。/span/pp  除了MCP、EM的固有产品,滨松不断进行着革新,几乎在每年的ASMS上都会发布一款最先进的技术信息。周旭升介绍了近两年来推出的几款新技术。如,2016年发布了复合型MCP,由于增加了一个1000倍增的雪崩管使得其使用寿命提升7-10倍。2017年专门针对大分子分析的MALDI质谱推出了另一种复合型MCP,与传统MCP相比其信噪比大幅提高。另外还有一种用于小型化离子阱质谱的检测器CEM(连续式倍增电极,Channel electron multiplier)在真空度低的情况下仍能耐高压;而且器件不含铅对环保或仪器认证方面具有一定优势。不过,周旭升也提到,“这些新技术目前都还处在开发阶段,不过已提供给国内质谱企业试用,进行评估反馈,直到性能稳定下来能达到用户的要求,才会进行批量生产。”/pp  质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。因此,在此次BCEIA 2017上,滨松就重点展出了离子源、检测器相关产品。/pp  如全新光致电离离子源——VUV氘灯 L13301,基于MgF2窗材的VUV氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。它的电离能可达到10.78eV,电离效率提高,且相对于传统PID灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。在VOCs监测等领域有着较好的应用,VUV氘灯最大至10.78ev的电离能可电离绝大多数VOCs。/pp  针对TOF-MS的特点及对MCP探测器的要求,滨松最新的F12396-11、F13446-11、F1094-11作为代表在此次BCEIA中登场。这几款MCP具有响应速度快、极小的后脉冲、鲁棒性\无畸变、漏斗型MCP\保持更高探测效率的特征,其还可结合荧光屏进行电光转换、后端加CCD相机可显图像。/pp  近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,ICP-MS得到更加广泛的应用,ICP-MS面向的是痕量无机元素的测定(检出限ppt级别)。针对ICP-MS的特点及对探测器的需求,本次展会滨松展示了具有大动态范围双模式输出(模拟输出和计数输出)的EM R13733。/pp style="TEXT-ALIGN: right"撰稿:刘丰秋/pp /p
  • 迄今最灵敏声波探测器问世 能检测量子水平声波
    据美国物理学家组织网2月7日报道,瑞典查尔姆斯理工大学的科学家开发出迄今世界上最灵敏的新式声波探测器,能检测到量子水平的声波。该研究有望带来一种将声子和电子结合在一起的量子电路,为量子物理开辟新的研究方向。相关论文发表在最近出版的《自然物理学》上。  这种“量子麦克”探测器是一种压电耦合单电子晶体管,这种晶体管中通过电流时,一次只过一个电子。研究小组模拟了卵石投入池塘形成的涟漪,并让这种声波在微晶片的表面而不是在空气中传播。这种声波波长仅3微米,但声波传过来时,探测器能迅速感知到。  他们还在芯片表面制作了一种3毫米长的回音腔,这样即使声音在晶体上传播的速度是其在空气中的10倍,探测器也能够极灵敏地追踪声波脉冲在回音腔壁之间来回反射,由此能清晰检出声波的性质。  研究人员指出,这种表面声波探测对波峰高度只有质子直径的百分之几的声波敏感,探测灵敏度在单个声子水平,频率为932兆赫兹。如此轻微的声音遵从量子力学法则而不是经典力学法则,其性质更像是光。  “该实验是用经典声波来做的,但我们把各项准备工作就绪,却发现研究的是标准的量子声波,此前还没有人做过这样的实验。”论文第一作者、博士生马丁古斯塔夫森说。  “量子麦克”探测器能检测的声波不仅极其轻微,其频率几乎达到了1千兆赫,比一组A音高21个八度。这种音调对人类听觉而言是太高了。研究人员还指出,他们的项目将表面声波的独特性和量子电路紧密结合在一起,为研究开辟了新方向,如声子—声子的相互作用、声波结合超导量子比特研究等。
  • 《食品金属探测器》国家标准正式批准发布
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了青岛电子检测仪器厂主持制定的2010年第8号(总第163号)《食品金属探测器》国家标准,并上报国家标准化管理委员会,作为推荐性国家标准批准、发布。标准的发布,标志着食品金属探测器行业的进一步规范化。2010年11月,由国家质量监督检验检疫总局、国家标准化管理委员会正式批准和颁布了食品金属探测器国家标准,标准号:GB/T25345-2010。  2008年底,青岛电子检测仪器厂接到中国标准化管理委员会通知,作为主持制定单位进行食品金属探测器国家标准的起草制定单位。经过一年多的意见征集、整理,用户调研、行业内各企业调研等步骤,最终整理制定出食品金属探测器国家标准。  审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 中国火箭又刷新纪录 脉冲星试验卫星发射成功
    11月10日早上7时42分,我国在酒泉卫星发射中心用长征十一号运载火箭,成功发射了脉冲星试验卫星。该星属于太阳同步轨道卫星,卫星入轨并完成在轨测试后,将开展在轨技术试验。  “一箭五星”刷新纪录  此次发射的脉冲星试验卫星属于太阳同步轨道卫星,主要用于验证脉冲星探测器性能指标和空间环境适应性,积累脉冲星试验卫星在轨试验数据,为脉冲星探测体制验证奠定技术基础。经过约10分钟的飞行,火箭准确将卫星送入预定轨道。  同时,此次发射所使用的长征十一号固体运载火箭在完成脉冲星试验卫星发射任务外,还搭载四颗微小卫星,“一箭五星”刷新了我国固体运载火箭一箭多星的发射纪录。其中,两颗有民营企业研制的卫星首次搭乘长征火箭进入太空,标志着长征十一号已经具备支撑民营航天器发射的能力。  这次发射的脉冲星试验卫星,将是世界范围内首颗单独用于脉冲星探测的科学试验卫星,更为奇特的是,它的总重量只有200多公斤,是卫星家族中非常独特的“小个子”。别看它体积不大,但是却搭载有两种不同类型的探测器,可以用多种方式,寻找宇宙中的灯塔——脉冲星。  脉冲星为何被称为宇宙中的灯塔?  说到脉冲星,这对于大多数人可是一个新鲜词。脉冲星到底是一种什么样的天体?它为何被称为是宇宙中的灯塔,脉冲星试验卫星,又将怎样利用它?  脉冲星试验卫星的工作原理,是通过捕捉脉冲星发出的x射线,来找到这种奇特的天体。脉冲星发出的x射线会在空气中快速衰减,很难在地面上进行收集,因此只能在太空中直接探测。在以前,想要完成类似的空间科学实验,只能选择将科学仪器设备搭载在“天宫二号”空间实验室这样的大型航天器上,而如今中国微小卫星定制技术的快速突破,使得脉冲星探测的“单独行动”成为可能。  在宇宙天体中,有着许许多多像太阳一样的恒星,这些恒星也和人一样,有生老病死,而在生命终结后,它们会有三种结局,其中密度较小的那些恒星,会变成白矮星 密度最大的恒星,则会变成大家所熟知的黑洞,而处于这两者之间的,则被称为中子星。所谓脉冲星,就是中子星当中,在进行高速自转,发出脉冲信号的成员。  脉冲星有很多很特别的特性。虽然它不是由密度最大的恒星演变而来,但是同样重量惊人,1立方厘米大小的脉冲星物质,质量可以达到惊人的1亿吨。目前人类已经发现的脉冲星大约有2500多个。  我们的祖先曾经利用北斗星座来辨识方向,这就是因为它们在夜空中的状态非常稳定,而脉冲星也拥有同样的特点。在宇宙空间里,它们在数千甚至数万年间,只会产生微小的变化,而且特征明显,易于辨识,所以也就有了宇宙灯塔这样的名字。  脉冲星导航飞向宇宙的关键法宝  有了脉冲星作为宇宙中的灯塔,如何利用它就成了科学家最为关心的课题。由于脉冲星稳定、易于观察的特点,宇航学家建立了以脉冲星为基础的导航技术,这也为人类航天器发展提出了新的方向。而此次我国发射的全球首颗脉冲星试验卫星,就将对这项世界性难题发起冲击。  现如今,我们在宇宙中飞行的卫星、空间站等航天器,都是依赖地面测控,完成引导的,这是因为它们在飞行的过程中,其实是处于“不认路”的状态,无法自行判断位置。而脉冲星导航的优点,在于航天器可以利用这些显眼的宇宙灯塔,确定自己的位置,进而实现自主的导航寻路。  按照计划,接下来我国将在5到10年探测26颗脉冲星,建立脉冲星数据库,首先为这种自然形成的宇宙灯塔,绘制最基础的地图,以便进行后续导航技术的试验。
  • 牛津仪器发布牛津仪器Xplore能谱探测器新品
    Xplore能谱探测器的推出完善了牛津仪器能谱产品系列,使得广大用户可以使用AZtecLive实时元素分布功能。15/30mm2 有效晶体面积在用户电镜上保证Mn Kα≤129eV分辨率(@100,000cps)最大计数率超过1Mcps全部零件现场可更换,保证更少的宕机时间支持三个软件平台: AZtecLiveLite AZtecLiveOne AZtecOneXplore是SEM常规分析所用新一代EDS探测器。探测器有效晶体面积为15/30mm2 ,应用范围广泛。Xplore使用了Ultim Max探测器中诸多新技术,它提供了实时EDS分析所需的快速数据采集,同时保证了常规分析所需的自动可靠的结果。速度-Extreme电路与X1脉冲处理器的结合使Xplore能够以1,000,000 cps的计数率进行面分布分析,并以100,000 cps的速度进行准确定量分析灵敏度-新的紧凑型设计使得探测器体积小巧且便于现场维修,更大限度地延长工作时间并减少宕机时间Extreme电路-Xplore结合了先进的Extreme电路,提供尽可能低的噪音信号检测和处理。确保在高计数率下获得优异的能量分辨率和谱图质量,保证在100,000 cps下获得129eV Mn Kα分辨率创新点:速度-Extreme电路与X1脉冲处理器的结合使Xplore能够以1,000,000 cps的计数率进行面分布分析,并以100,000 cps的速度进行准确定量分析灵敏度-新的紧凑型设计使得探测器体积小巧且便于现场维修,更大限度地延长工作时间并减少宕机时间Extreme电路-Xplore结合了先进的Extreme电路,提供尽可能低的噪音信号检测和处理。确保在高计数率下获得优异的能量分辨率和谱图质量,保证在100,000 cps下获得129eV Mn Kα 分辨率牛津仪器Xplore能谱探测器
  • 更多宇宙的声音可以被新探测器听见
    欧洲爱因斯坦望远镜艺术图 图片来源:ET概念设计团队 5年前,当物理学家首次探测到引力波时,他们为宇宙打开了一扇新的窗户。引力波是大质量黑洞或中子星碰撞时产生的涟漪。现在,研究人员已经在计划更大、更灵敏的探测器。而且,美欧之间的竞争已经初露端倪,美国科学家提出建造更大的探测器,而欧洲研究人员则在追求更激进的设计。  “目前,我们只捕捉到最罕见、最响亮的事件,但在宇宙中还有更多的声音。”美国加州州立大学天体物理学家Jocelyn Read说。加州理工学院物理学家David Reitze也表示,物理学家希望新的探测器能在21世纪30年代运行,这意味着他们必须现在就开始计划。“引力波的发现已经吸引了全世界的目光,所以现在是思考接下来会发生什么的好时机。”  目前的探测器都是L形的仪器,叫做干涉仪。激光在悬挂在每条臂的两端的镜子之间反射,有些光线会漏出来,在L形臂的弯处会合。在那里,光的干涉方式取决于臂的相对长度。通过监测这种干扰,物理学家可以发现通过的引力波,这种引力波会使臂的相关数值产生不同程度的变化。  因此,为了探测空间的微小拉伸,干涉仪的臂必须很长。发现了第一个引力波的位于路易斯安那州和华盛顿州的激光干涉仪引力波天文台(LIGO),臂长达4公里。位于意大利的Virgo探测器有3公里长的臂。  现在,研究人员现在想要一种灵敏度比现有设备高10倍的探测器。它能发现可观测宇宙中所有的黑洞合并,甚至可以追溯到第一批恒星出现之前,从而寻找大爆炸中形成的原始黑洞。它还应该能发现数百个“千新星”,揭示中子星超密度物质的本质。  美国科学家对新探测器的愿景很简单。“我们只想把它做得非常非常大。”Read说。Read正在帮助设计“宇宙探索者”—— 一个臂长40公里的干涉仪,本质上是一个放大了10倍的LIGO。  指导了LIGO建设的加州理工学院物理学家Barry Barish说,这种批量设计可能使美国能够负担得起多个分离的探测器,这将有助于新设备像现在的LIGO和Virgo一样精确定位天空中的事件源。  但安置这样巨大仪器可能很棘手。40公里的臂必须是直的,但地球是圆的。如果L形的弯道位于地面上,那么干涉仪的末端可能必须放在30米高的护堤上。因此,美国研究人员希望找到一个碗状区域,以便容纳这种结构。  相比之下,欧洲物理学家设想了一个地下引力波天文台,称为爱因斯坦望远镜(ET)。意大利国家核物理研究所物理学家、ET指导委员会联合主席Michele Punturo说:“我们想要实现一个能够在50年内承载(探测器)所有进化的基础设施。”  ET将由多个V形干涉仪组成,臂长10公里,排列在一个深埋地下的等边三角形中,以帮助屏蔽振动。借助指向三个方向的干涉仪,ET可以确定引力波的偏振度,帮助科学家在天空中定位引力波的来源,并探测引力波的基本性质。  Punturo表示,ET预计耗资17亿欧元,包括用于隧道和基础设施的9亿欧元。研究人员正在考虑两个地点,一个靠近比利时、德国和荷兰的交汇处,另一个在撒丁岛。相关计划正在等待审议。  美国的提议则不那么成熟。研究人员希望美国国家科学基金会提供6500万美元用于设计工作,这样就可以在本世纪20年代中期对这台价值10亿美元的机器做出决定。但物理学家们都希望这两台新设备能在2030年代中期启动。
  • 新型自由电子激光X射线探测器 ePix10k,每秒可获1000张图像
    新型自由电子激光x射线探测器 ePix10K,每秒可获1000张图像同步辐射与自由电子激光通常都用于研究自然界中一些肉眼无法观察到的超快现象。这些装置可产生的超亮且超快的x射线,就像巨大的频闪灯一样,“冻结”了快速的运动,它们可以捕捉到分子、原子的动态影像,研究人员就能够拍出清晰的快照,探究看不见的微观世界的秘密,为人类对自然的研究工程服务。美国能源部SLAC国家加速器实验室开发出了新一代的x射线探测器ePix10K,新的探测器每秒最多可获1000张图像,速度约是上一代的10倍。这大大提高了光源的有效利用率,即每秒可发射数千次x射线。相比于旧款ePix及其它探测器,ePix10K可以处理强度更高的x射线,同时灵敏度提高了3倍,且像素高达200万。SLAC的直线加速器相干光源(LCLS)x射线激光器上安装了一个16模块,220万像素的ePix10K x射线探测器1ePix10K概述epix10k 是由SLAC开发的一种用于自由电子激光装置(FEL)的混合像素探测器,可通过自动调节增益提供超高探测范围(245 ev至88 mev)。它具有三种增益模式(高,中和低)和两种自动调节增益模式(高至低和中至低)。首批ePix10K探测器围绕模块构建,该模块由与4个Asic结合的传感器倒装芯片组成,从而产生352×384个像素,每个像素100 μm x 100 μm。 ePix10K由两个主要的核心部分组成:感光传感器和专用集成电路(Asic)。后者处理传感器采集的信号,赋予epix10k独特的性能。以前的探测器(例如LCLS科学家使用了几年的ePix100)经过定制,可以在x射线激光每秒120脉冲的发射速率下最大化性能。SLAC的探测器团队进一步开发了该技术,现在它每秒可以捕获1,000张图像。2epix10k的主要规格specification 135k,2mof pixels/module 384 x 352pixel size100μmactive area dimensions38.4 x 35.2mm2max signal(8 kev photons equivalent) 11000frame rate (hz) 120 hz (or up to 1khz)sensor thickness (μm) 5003ePix10K的应用SLAC的ePix 旨在满足使用强大x射线光源研究化学、生物和材料的原子细节的科学家的特定需求。它们速度快,长时间运行稳定并且对大范围的x射线强度敏感,这意味着它们可以处理非常明亮的x射线束以及单个光子。ePix10K将成为SLAC的直线加速器相干光源(LCLS) x射线激光器中x射线科学的新主力,它也将使其他设备受益。美国能源部的Argonne国家实验室的先进光源(APS)和欧洲XFEL已经在使用该技术。4具体案例去年,研究人员把ePix10K带到了APS的Biocars光束线站,这是一个研究生物学和化学过程的实验站。该线站使用了一种被称为时间分辨串行晶体学的技术,研究人员用激光照射微小晶体,并使用APS 的x射线探究晶体的原子结构如何响应激光刺激。“我们将这种方法应用于蛋白质,例如,了解酶如何催化重要的生物反应,”芝加哥大学的Biocars运营经理Robert Henning说,“原则上,我们可以在APS上以每秒1,000个x射线脉冲的速度进行这些实验,但是大多数探测器无法处理与该速率相关的全部强度。”新的探测器将使科学家充分利用x射线源的能量,节省大量时间。Henning说:“要获得完整的数据,我们通常需要拍摄数千张x光照片,能够利用到APS的每一个脉冲,将减少完成这一任务所需的时间。”5ePix10K系列前景SLAC的探测器团队目前已经在开发新一代的探测器ePixHR,它将能够每秒拍摄5,000到25,000张图片。SLAC的最终目标是每秒能得到10万张图片。”此外,该团队正在研究一种革命性的新型探测器SparkPix,它将能以LCLS-II发射x射线脉冲的高速率采集图像并实时处理数据。参考资料【1】g. blaj, a. dragone, c. j. kenney, f. abu-nimeh, p. caragiulo, d. doering, m. kwiatkowski, b. markovic, j. pines, m. weaver, s. boutet, g. carini, c.-e. chang, p. hart, j. hasi, m. hayes, r. herbst, j. koglin, k. nakahara, j. segal and g. haller,“performance of epix10k, a high dynamic range, gain auto-ranging pixel detector for fels.”aip conference proceedings 2054, 060062 (2019) ,submitted.【2】p. caragiulo et al., "design and characterization of the epix10k prototype: a high dynamic range integrating pixel asic for lcls detectors," 2014 ieee nuclear science symposium and medical imaging conference (nss/mic), seattle, wa, 2014, pp. 1-3, doi: 10.1109/nssmic.2014.7431049.【3】https://www6.slac.stanford.edu/news/2020-08-20-new-x-ray-detector-snaps-1000-atomic-level-pictures-second-natures-ultrafast
  • 英国商人向中国等国售假“炸弹探测器”获罪
    英国ATSC公司的主管麦考克被判处欺诈罪名成立,将面临最高8年监禁资料图:这名机场安全人员手持的就是所谓ADE-651“炸弹探测器”资料图片“摩尔探测器”  据英国广播公司报道,56岁的英国商人麦考米克因向包括伊拉克、中国在内的多国出售假冒“炸弹探测器”,于当地时间4月23日被英国法庭裁定犯有欺诈罪。法庭认为他此举“太缺德”。  报道称,身为退休警官的麦考米克在英格兰肯特郡成立了一家公司,向全球20多个国家兜售一款名为ADE-651型的炸弹探测器。麦考米克声称,该探测器有一张“能探测出爆炸物的特殊电子卡”。但英国剑桥大学的科学家在检测后发现,这种电子卡不过是商店用来防小偷的一种电子标签,根本不能探测出爆炸物。  英国《泰晤士报》24日称,调查发现,麦考米克在2005年到2006年间以每个13英镑的价格购买了一批高尔夫球寻找器。之后,他将这些寻找器改头换面,以2.7万英镑的单价向20多个国家销售,包括伊拉克、格鲁吉亚、沙特、尼日尔和中国等,销售额高达5500万英镑。  令麦考米克的欺骗行为曝光的是他的探测器在伊拉克探测武装分子炸弹时完全不起作用。据英国《独立报》报道,伊拉克政府花费8000多万美元购买这种探测器,但之后不久,伊拉克在2009年遭遇多起针对英美军队的自杀式攻击,造成数百人死亡。当局发现,使用这种无用的炸弹探测设备,可能是导致自杀式炸弹攻击者能够顺利通过安全检查、进行攻击的原因。伊拉克总理马利基已下令全面调查政府为安全部队采购的ADE-651探测器,伊拉克议员要求英国政府召回全部产品。  《泰晤士报》引述原告律师维特姆的话说,一般的炸弹探测器要求可以检测到地下0.6英里、高空3英里以内的可疑物,但麦考米克的产品根本达不到这个标准。英国广播公司称,像麦考米克这样的假货商人在英国还有。2010年,英国警方曾搜查与三家向国外销售假炸弹探测器公司有关的办公室和住宅,缴获大量现金及数百台炸弹探测器。美国联邦调查局也曾对一种名为“QuadroTracker”的假探测器发出警告,要求各政府机构不得使用。(驻英国特约记者 纪双城)
  • 上海光源实现储存环单束团流强高于20 mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20 mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。 图1. 超导三次谐波腔的安装、就位和带束调试图2. 单脉冲X射线超快成像在激光加载后不同时刻(15 μs、20 μs、30 μs、40 μs、50 μs)获得的水中气泡的瞬态图像并观测到气泡中的射流现象上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2 K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。图3. 快速X光成像线站实验站图4. 研制的单脉冲超快X射线成像探测器。(a)研制的大数值孔径三镜头双路光学转换系统,与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器;(b)研制的大数值孔径三镜头双路光学转换系统,与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器图5. 基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,两幅图像之间最短时间间隔为1.44 μs此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 地下金属管道防腐层探测检漏仪是目前界上广泛重视的稳定性、抗干扰的新颖仪器之
    地下金属管道防腐层探测检漏仪/地下金属管道防腐层探测检测仪 型号:WN-SL-6 【能及用途】本仪器是目前界上广泛重视的稳定性、抗干扰的新颖仪器之,它能在不挖开复土的情况下,方便而准确地查出地下管道的走向、深度和缘防腐层的漏蚀点的确位置,使整个管道表面不再屡遭到处开搪破土之苦,是油田、化、输油、输气、水电等为保证地下管道防腐层的施质量检查和维修检查的种探测仪器。 【特点】1、仪器电源采用日本可靠性原装开关电源,充电时实行智能快速充电,无需人控制。2、仪器电压、输出电流信号能够自动转换。3、直流电源与交流供电能自动转换。4、仪器采用抗干扰线路,特别实用于城市管网的普查与维护。5、发射机采用液晶显示,提了输出度与仪器的性能。6、仪器特设保护自动调节能,克服产品致命的弱点。7、仪器的线路采用模块化结构、三防设计,从而大大提仪器的野外使用寿命和可靠性。 【主要术标】 1.检漏度:≥0.25mm2;2.位置偏差:<20cm;3.准确率:>98%4适用范围:各种直径的油、气、水等地下防腐金属管道。()发射机术标:1.发射率:≥25W,可调;2.发射频率:1K±0.1Hz,节拍频率1-2Hz;3.输出阻抗匹配:0-100Ω;4.发射距离:50m-5Km(5公里以外可逐移动);5.作电流:≤3A,1-3A可调;6.作电源:12V(系镉镍电池或汽车电源);7.重  量:2.8Kg(不计电池重量);8.外形尺寸:99×220×220(二)探测仪术标:1.灵敏度:0.1mV;2.走向位置偏差:<10cm;3.探测深度:≤5m;4.作电源:6V镉镍蓄电池组;5.重量:0.9Kg;6.外形尺寸:165×135×69。(三)检漏仪术标:1.检漏度:≥0.25mm2;2.检漏深度:≥0.5m;3.位置偏差:<20cm;4.作电源:6V镉镍蓄电池组;5.重量:0.9Kg;6.外形尺寸:165×135×69。 【检测原理及方法】通过向地下管道发送出1KHz的电磁波信号,探测仪利用探头与磁力线地平面垂直相切时,收到的信号小(几乎为零)的原理来测定管道的走向和深度。 检漏原理:通过向地下管道发送个交流信号源,当地下管道防腐层被腐蚀后,该处金属分与大地相短路,在漏点处形成电流回路,将产生的漏点信号向地面辐射,并在漏点正上方辐射信号,根据这原理就可准确地找到漏蚀点。检漏方法:采用“人体电容法”,就是用人体做检漏仪的感应元件,当检漏员走到漏点附近时,检漏仪开始有反应,当走到漏点正上方时,喇叭中的声音响,表头示,从而准确找到漏蚀点。
  • “盗墓贼”七千元购买探测仪器 向工商举报是假货
    —位东北“消费者”日前向洪山工商部门举报:他们家乡附近有许多古墓,为避免藏在地下的金银财宝生锈腐烂,他想通过科学方法,让地下宝藏早日见光,变废为宝。通过网上搜索,他发现武汉先锋世纪电子仪器公司正在卖—种“地下金银探测器”:可通过直观的3D图像,探测地层结构内的空穴、墓穴、木箱等,并能清晰显示地下2030米所埋的金、银、铜等目标物 尤其是在夜间,也可轻易探测墓穴内的金币、银元、项链等小型物体,还配有探测墓穴的相关图片。  他看到广告信以为真,感觉发财的机会就要来了,就花7000多元网购了—台,可使用时什么都显示不出来。洪山工商入员接到举报后,来到珞喻路 727号东谷银座B902号,对被投诉的武汉先锋世纪电子仪器公司进行调查,发现该公司对外宣称“2000年成立”,是—家“集团公司”,是“国内探测仪器最早的研发生产销售企业” “与中国地质大学、武汉长盛地质检测研究所等国内领先物探科研机构,保持有良好的研发与合作关系” “在2008年的四川抗震救灾中,应邀接受国家有关部门的专业咨询”等。  其所卖产品有探测棒、像地雷探测器—样的盘式探测仪等,还有配套的音频耳机和3D成像的视频眼镜等等,可用于考古研究、找寻宝藏、野外探宝等。  经工商入员调查,武汉先锋世纪电子仪器公司并非“集团公司”,在工商部门注册的时间是2007年9月,也没证据可以证明,该公司是国内最早探测仪器研发和生产企业,而所谓的与“中国地大”和“长盛”等单位有研发与合作关系,也只是与这些单位的个入有私交而已。在四川大地震时,并未“应邀接受国家有关部门的专业咨询”。只是法定代表入在抗震救灾期间,与抗震救灾指挥部有关入员有过电话交流。  该公司销售的金属探测器,均没有中文标识,没有产品名称、生产厂名及厂址等信息。在网站上所展示的产品,有90%以上从来没有购进或销售过。  目前,工商部门正在依法进—步调查金属探测器的来龙去脉。  按照我国规定:传世文物、祖传文物可收藏、拍卖。地下、水下出土、出水的文物归国家所有,其中包括私入宅基地下出土的文物。
  • 中科院“机载地下矿产与水资源探测仪研制与产业化示范应用”项目启动
    p  4月16日,国家重点研发计划“重大科学仪器设备开发”重点专项“机载地下矿产与水资源探测仪研制与产业化应用示范”项目在呼和浩特启动。/pp  项目责任专家欧阳劲松代表科技部高技术研究发展中心就项目的执行提出要求,并作政策宣贯报告。内蒙古自治区科技厅副厅长张志宽代表推荐单位进行发言,表示自治区科技厅将在资金配套、优惠政策等方面对项目给予支持。中国科学院空天信息研究院副院长方广有代表技术专家组发言,并就项目的执行提出建议。/pp  “机载地下矿产与水资源探测仪研制与产业化应用示范”项目针对我国地下矿产与水资源勘查领域,航空电磁探测核心装备长期受制发达国家技术封锁以及国际上现有设备存在探测盲区等状况,由内蒙古灵奕(集团)有限责任公司牵头组织,联合空天院、中国自然资源航空物探遥感中心、吉林大学、成都理工大学、厦门大学、重庆大学、核工业北京地质研究院等多家单位共同承担。项目将围绕电磁复合效应和机载相干随机脉冲探测技术开展创新性研究,研发机载相干随机脉冲电磁探测软硬件系统,实现地下0-800m深度全覆盖、无盲区探测,开展仪器工程化和产品化开发,完成多个矿区和地下水目标飞行试验与应用示范,实现项目的经济效益和社会效益。/pp  会议按照重大专项管理要求成立了“两组一委”并颁发聘书。与会专家听取了项目负责人、空天院研究员刘小军作的项目实施方案报告和研究员杨景荣作的产业化与应用示范报告,提出意见和建议。项目牵头单位表示将切实落实与会专家意见,贯彻法人责任制,保证项目顺利实施。/pp  国家重点研发计划总体专家组,内蒙古自治区科技厅、项目和课题承担单位的领导与专家等40余人参加会议。/p
  • 我国科学家实现储存环单束团流强高于20mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。   上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。   快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。   此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 美宇航局筹划更先进的望远镜——X射线成像偏振探测器
    美国宇航局预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元  据腾讯太空(罗辑/编译):在地球轨道上,美国宇航局所管辖的空间望远镜是全球最多的,性能也最为先进,几乎覆盖了所有的观测波段。2018年,美国宇航局将发射迄今最先进的空间望远镜,詹姆斯-韦伯望远镜,这是一具红外线天文台。不过,美国宇航局又在筹划一种更先进的望远镜,主要工作波段为X射线,被命名为X射线成像偏振探测器,目前已经入围了三个方案,预计在2020年底会发射升空,将作为X射线天文学观测上的主力。  目前入围的三个方案都是目前X射线观测上的顶尖水平,比如来自加利福尼亚技术研究所的SPHEREX望远镜,美国宇航局马歇尔太空飞行中心提出的IXPE计划,以及美国宇航局戈达德太空飞行中心的PRAXyS方案。每个科学小组会获得100万美元的资金支持,美国宇航局也会进行为期11个月的任务概念研究。预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元,并安排了5000万美元的发射费用。  IXPE和PRAXyS这两个方案主要目标是个宇宙中高能事件,比如恒星工厂和恒星死亡后的情景,这些过程可产生强大的X射线信号。此外,科学家还希望收集黑洞周围的X射线信号,超致密的中子星、恒星爆炸、遥远星系中央内核的X射线信号等。IXPE采用X射线偏振技术,可以对中子星、脉冲星星云、恒星、黑洞等主要宇宙天体进行研究,符合美国宇航局的任务要求。  PRAXyS方案则使用了一种不同的方法来研究X射线天文学,PRAXyS任务的首席研究员基思认为PRAXyS方案类似于GEMS引力与极端磁场研究项目,后者在2012年被美国宇航局取消。SPHEREX任务概念将对天空进行全面扫描,时间至少持续两年,还可以观测宇宙中的引力波。此外,SPHEREX任务还可以对一些恒星系统演化的早期阶段进行研究,比如冰是否存在于恒星周围。
  • 每秒256万亿帧拍照帧率,华科团队造出全球最快的光场摄像机之一,可用于超大能量脉冲激光装置
    近日,华中科技大学光学与电子信息学院教授和团队, 通过获取光场相位信息,实现了 256 万亿帧/秒的拍照帧率,借此造出目前世界上最快的光场摄像机之一。图 | 李政言(来源“”)在评审相关论文时,一位激光脉冲时空测量领域的专家表示,该课题组制作的超快光场摄像机是领域内多年来极度渴望的仪器和技术。在应用前景上,表示:“我们期待超快光场摄像机在两方面取得应用,一方面是服务大型激光装置,另一方面是服务工业应用。”就大型激光装置来说,面向高能量密度物理、强场物理等前沿科学和能源、以及国防安全等战略应用的需求,中国、欧洲、和美国都已建设了一批超大能量脉冲激光装置。然而,这类装置重复频率极低。并且,巨大的光束口径导致激光脉冲光场存在复杂的时空耦合。因此,需要先进的光场时空诊断设备,引导激光装置进行优化,并为物理实验的理论分析和数值仿真,提供初始输入激光信息。就工业应用来说,激光精密加工有两个趋势,一是超快化甚至飞秒化,即使用飞秒激光作为光源,借此实现冷加工并提高精度;二是智能化,即以在线方式观测材料的特性,并对激光参数做出调整。所以,通过安装超快光场摄像机模块,有望让激光精密加工设备长出一只“眼睛”,也即通过实时采集探针光信号、以及观测材料超快时间尺度相应,来对加工工艺做出动态优化。(来源:Light: Science & Applications)以较低成本实现极高的时间分辨率尽管成果很新,但是背景很“旧”,这要从 144 年前说起。1878 年,美国摄影师埃德沃德迈布里奇(Eadweard Muybridge)使用安置在赛道上的 12 台照相机,来拍摄奔跑的赛马。借此证明马在奔跑时会四个蹄子同时离地,解决了几个世纪以来画家和艺术家的困惑,并给电影发明带来了灵感。时隔一百多年,2018 年诺贝尔物理学奖部分授予杰哈莫罗()和唐娜斯特里克兰()这两位科学家,以对他们发明的高功率超快激光的啁啾脉冲放大技术(Chirped Pulse Amplification, CPA)做出表彰。在激光精密加工、近视的激光视力矫正、惯性约束核聚变等高功率超快激光的应用中,每一个超快激光脉冲仿佛一匹光速奔跑的“赛马”,在各类物质的“赛道”上穿行时。对于激光脉冲和物质特性在极短时间内的演化现象,人们同样充满好奇,希望像迈布里奇那样为激光与物质相互作用的过程“拍摄电影”。(来源:Light: Science & Applications)基于此,制作了这台超快光场摄像机 。在超快光学领域中,它能为激光脉冲和激光照射的物质“拍摄电影”,并同时具有空间分辨和时间分辨的单发测量能力。几十年来,尽管在超快光学领域出现了大量时间分辨测量技术,但多数方法主要测量不同时刻下某个物理量的演化,普遍缺少空间分辨能力;要么得让激光脉冲的“赛马”多次跑过物质“赛道”进行重复测量。而超快光场摄像机只需激光脉冲一次性地作用于物质,它记录的是光速飞行的激光脉冲通过某个特定位置时,位于这一位置光场的二维空间分布。这样,人们就能一次性得到激光脉冲三维时空分布的“电影”。而实现单发光场摄像的难点在于,如何使用常规照相机的等二维阵列式探测器,来一次性地记录三维数据。研究中,该团队借鉴了压缩感知概念,在前人光学压缩成像技术的基础上,将待测光场的三维信息“压缩”到二维探测器上并进行一次性采集,从而实现了摄像机的功能。此外,不同于一般摄像机或探测器记录的是光强度信息,超快光场摄像机的记录包括振幅和相位信息在内的“光场”信息。对于表征超快激光脉冲来说,获取光场信息是非常重要的,它既决定着激光脉冲中各个颜色成分的时间先后关系,还决定着影响聚焦和成像质量的空间波前分布。另外,在对激光照射物质的探测过程中,获取探针光束的完整振幅和相位信息,可以帮助人们完整了解物质不同位置的光学性质,同时获取折射率、吸收率等重要参数的空间分布。该成果的另一亮点在于,超快光场摄像机以较低的成本,实现了极高的时间分辨率或“电影”帧率。日常生活中,我们观看的电影帧率一般为 24 帧/秒,最高可以达到 120 帧/秒,仅能满足人眼视觉暂留效应的要求。而团队的超快光场摄像机,记录的是光速飞行的超快激光脉冲的“赛马”过程,即在各类物质“赛道”上奔跑的过程,需要观测飞秒(10 -15 秒)时间尺度内发生的事件,所需的帧率在万亿帧/秒量级。近日,相关论文以《单次压缩光场形貌》()为题发表在 Light: Science & Applications 上,唐浩程和门庭为共同第一作者,担任通讯作者 [1]。图 | 相关论文(来源:Light: Science & Applications)为超快时间尺度内发生的任意事件拍摄电影据介绍,课题组的目标是为超快时间尺度内发生的任意事件“拍摄电影”。这项工作最早要追溯到十四年前读博期间。他说:“2008 年 8 月开始我到美国德克萨斯大学奥斯丁分校读博士,第一次见到导师 教授他就给我指派了博士论文课题:为超高强度超短激光脉冲在等离子体中激发的光速传播的尾波‘拍摄电影’,这样就可以对基于等离子体尾波的新一代桌面型电子加速器提供实时诊断。”这是一个挑战性极高的课题,经过六年的努力,只能部分地解决这一问题。例如,在测量技术方面,他和当时的所在团队发展了一种基于多束探针光和断层成像技术(tomography)的方法,可以为光速飞行的折射率结构拍摄“电影”[2],并被 Nat. Phot. 以 News & Views 文章的形式再次进行报道。后来,他还观测到了等离子体尾波纵向结构的演化规律 [3]。然而,为激光驱动的等离子体尾波“拍摄电影”的梦想一直没能实现,主要难点在于无法在单发条件下,用二维探测器记录三维数据信息。2014 年,的合作者 (现为加拿大魁北克大学应用计算成像实验室教授),发表了基于压缩感知概念的超快照相技术的论文 [4],对前者解决等离子体尾波电影拍摄中遇到的维度问题,带来了极大启发。然而,超快压缩照相技术获得的是光场的强度时空分布信息。另一方面,等离子体尾波主要调制探测激光的相位。那么,如何使用超快压缩照相技术来同时测量包含振幅和相位的光场信息,就成为亟待解决的问题。同时,这也是研究基于压缩感知的超快光场摄像机的问题来源。2017 年,回国入职华中科技大学,经过前期实验室建设和武汉疫情,他和团队终于在 2020 年秋季,开始了针对超快光场摄像机的研究。(来源:Light: Science & Applications)“研究早期充满了挣扎,一方面我们需要反复试错以完成实验系统光学设计和成像质量的不断优化,另一方面激光光场高光谱图像的压缩感知重构技术以及相关算法,对我们来说是新事物,需要不断积累经验。”他说。在这过程中,非常感谢负责具体实验和数据处理工作的研究生唐浩程和门庭,以及 教授和他的学生 Xianglei Liu。他继续说道:“唐浩程和门庭当时是刚刚入学的一年级研究生,面对陡峭的学习曲线虽然也曾抱怨这个课题‘就像要去五金店里翻找一些零件组装成一部汽车’,但凭借扎实的理论实验基础和顽强的毅力,以及合作者在压缩照相重构算法方面的有力支持,终于克服了种种困难。”到 2021 年秋,他们终于能以较好的可靠性,实现飞秒激光脉冲的超快光场摄像机,并利用它对光速飞行的激光等离子体电离前沿进行表征测量。(来源:Light: Science & Applications)然而,对于超快光场摄像机的探索并未结束。因为,为等离子体尾波“拍摄电影”的梦想并未实现。“也许我们已经找到更好的途径,离目标更近了一些,但仍需要朝着既定方向努力工作。进入 2022 年,我们继续进行超快光场摄像机相关的研究,并取得了一些进展,主要体现在进一步提高系统稳定性和可靠性、获取更全面的矢量光场信息、探索更多的超快光场摄像机应用等。”表示。如今,2022 年即将迎来尾声。对于更久之后的规划,他表示:其一,将进一步完善超快光场摄像机技术。目前的方法基于标量光场的假设,只测量了待测光场的振幅和相位信息。但是,实际的光场具有矢量形态的电 磁波,这时面对待测光场的偏振态以及矢量特征,就得做出完整的测量。其二,他计划完成一些基于超快光场摄像机的典型泵浦-探测实验。泵浦-探测实验,是探索物质超快时间尺度属性的有力工具。因此,他希望使用超快光场摄像机,来为探针光拍摄光场“电影”。其三,他也打算实现一些基于超快光场摄像机的应用。基于此,希望与领域内专家展开更多合作。尤其是在大型激光科学装置上,他期待能研发出一种实用的、小型化的超快激光光场时空表征仪器。而在工业应用方面,他将继续耕耘于为未来的超快激光加工设备配备一双“眼睛”,从而实现基于材料特性实时观测的智能加工。参考资料:1.Tang, H., Men, T., Liu, X. et al. Single-shot compressed optical field topography. Light Sci Appl 11, 244 (2022). https://doi.org/10.1038/s41377-022-00935-02.Z. Li, et al., Nat. Commun. (2014) 5, 30853.Z. Li et al., Phys. Rev. Lett.(2014) 113, 0850014.L. Gao, J. Liang et al., Nature (2014) 516, 74–77
  • 江门中微子实验中心探测器不锈钢主结构安装完成
    6月24日,江门中微子实验(JUNO)地下700米的实验大厅内,中心探测器不锈钢主结构最后一个拼装单元吊装合拢,标志着中心探测器不锈钢主结构安装工作顺利完成。 江门中微子实验核心探测设备——中心探测器位于地下实验大厅内44米深的水池中央,其不锈钢主结构设计采用直径约41米的球形网壳结构形式,也称作不锈钢网壳,作为探测器的主支撑结构,它将承载35.4米直径的有机玻璃球、两万吨液体闪烁体、两万只20英寸光电倍增管、两万五千只3英寸光电倍增管、前端电子学、电缆、防磁线圈、隔光板等诸多关键部件。 不锈钢主结构由预制的焊接H型钢通过12万套高强螺栓拼接而成,结构制造精度要求非常高,连接孔与环槽铆钉的安装间隙不超过1毫米,球形网壳网格拼装精度小于3毫米,是目前国内最大的单体不锈钢主结构。自2013年立项以来,高能所与设计、生产企业协同攻关,攻克诸多工艺技术难题,解决了大型不锈钢复杂结构焊接变形问题,通过特殊工装和工法完成了所有构件在工厂的高精度预拼装;研发了不锈钢表面粗化技术,该技术将不锈钢表面抗滑移系数从普通的0.2提高到0.5以上;同时针对JUNO项目的特殊需求研制了高强不锈钢短尾环槽铆钉。 不锈钢主结构项目负责人、现场安装经理何伟表示:不锈钢主结构设计与预研过程中获得了多项技术发明专利授权,同时带动提升了相关制造企业的创新发展和综合实力;其中不锈钢短尾环槽铆钉技术经中国机械通用零部件工业协会鉴定,首次用于不锈钢钢结构领域,相关标准据此发布,填补了国内空白。在不锈钢网壳现场安装过程中,为了保证安装质量、提高安装速度,同时满足实验高洁净度的要求,工程技术人员不断摸索优化拼装单元和安装工法,并且改进了铆钉枪的使用,有效减少了铆接不良率和返修数量,保证了质量和工期。 江门中微子实验项目采用单主线多副线并行的高效建设方案。在中心探测器不锈钢网壳安装过程中,同步进行了反符合探测器主支撑结构和有机玻璃升降平台的现场安装。其中,反符合探测器主支撑结构分布于直径43.5米的大型圆柱形池壁内侧,为悬挂不锈钢钢结构位于防水HDPE膜外,具有大长细比自重预应力的特点。该结构准确紧贴池壁,充分提高探测体积,同时43米通长无侧支撑,从根本上解决混凝土穿透处高压地下水渗漏难题。该结构作为池壁承载的主结构,承载探测器的各种电缆、光纤、液闪和纯水管路、tyvek反射纸以及水切伦科夫探测器刻度光源等。 不锈钢主结构的合拢也意味着有机玻璃球现场安装的开始,中心探测器结构中的有机玻璃球直径35.4米,壁厚120毫米,重600多吨,是世界上最大的单体有机玻璃结构,生产和建造在国内外都无先例,如何突破传统工艺,在短期内顺利完成这一球体建造是项目组面临的又一巨大挑战。 江门中微子实验位于广东省江门市开平市,是由中科院和广东省共同建设的大科学装置,同时也是一个大型的国际合作项目。2015年开始建设,计划2023年建成运行,以测定中微子质量顺序、精确测量中微子混合参数为主要科学目标,并进行其他多项科学前沿研究。江门中微子实验的实施将使我国在中微子研究领域的领先地位得到进一步巩固,并成为国际中微子研究的中心之一。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制