当前位置: 仪器信息网 > 行业主题 > >

电池容量简易检测仪

仪器信息网电池容量简易检测仪专题为您提供2024年最新电池容量简易检测仪价格报价、厂家品牌的相关信息, 包括电池容量简易检测仪参数、型号等,不管是国产,还是进口品牌的电池容量简易检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池容量简易检测仪相关的耗材配件、试剂标物,还有电池容量简易检测仪相关的最新资讯、资料,以及电池容量简易检测仪相关的解决方案。

电池容量简易检测仪相关的资讯

  • 仪器市场新极新突破:锂离子电池容量骤升
    p style="text-indent: 2em "据美国《科学进展》杂志29日消息称,美国西北大学研究团队研发出一种全新材料,可用于制造性能稳定的大容量锂离子电池,从而大幅提升智能手机、电动汽车等的续航时间,甚至可以延长到目前的两倍多。/pp style="text-indent: 2em "锂离子电池已是现代高性能电池的代表,应用最为广泛,其主要依靠锂离子在正极和负极之间移动来工作。而今消费电子和动力电池对能量密度提升的需求,推动着正极材料不断进步——通常,人们采用的是锂、氧和一种过渡金属的化合物为电池正极,这其中,正是过渡金属负责储存和释放电能,其性质也是电池容量的关键。/pp style="text-indent: 2em "现阶段最常用的过渡金属是钴,而此前科学家研究发现,如果用镁取代钴,可以在提高容量的同时降低成本,但镁也有一定缺陷——电池性能退化太快,仅两轮充放电后就出现大幅下降。/pp style="text-indent: 2em "据美国西北大学官方网站介绍,此次团队研发的新材料是掺有铬和钒元素的锂镁氧化物,其用作锂离子电池的正极,电池容量出现了大幅提高,同时兼具性能稳定、不会迅速退化的优点。/pp style="text-indent: 2em "西北大学研究小组先是为锂镁氧化物材料建立了一个结构模型。该模型详细到了单个原子,团队借此分析了全部充放电过程,发现其中的氧也会参与存储电能,因而容量比以往要大。/pp style="text-indent: 2em "随后,研究人员尝试了将不同元素掺入锂镁氧化物的方案,以期计算出不同混合物各自的储能效果。最终他们发现,掺入铬和钒能在保持电池大容量的同时实现最稳定性能。/pp style="text-indent: 2em "研究人员表示,下一步他们将在实验室中检验该新材料的实际应用表现。/p
  • 10倍!新型石墨烯让钠电池容量大增 未来或可与锂电池相媲美
    在寻找可持续能源存储技术的过程中,瑞典查尔姆斯理工大学的研究人员提出了一种新概念来制造用于钠电池的高性能电极材料。 它基于一种新型石墨烯来储存世界上最常见和最便宜的金属离子之一——钠。结果表明,容量可以与当今的锂离子电池相匹配。尽管锂离子电池在储能方面效果很好,但锂是一种昂贵的金属,其长期供应和导致的环境问题令人担忧。另一方面,钠是一种丰富的低成本金属,是海水的主要成分。这使得钠离子电池成为一种有趣且可持续的替代方案,可减少我们对关键原材料的需求。然而,钠离子电池面临的主要挑战是如何提升容量。在目前的性能水平上,钠离子电池无法与锂离子电池竞争。一个限制因素是石墨,它由石墨烯的堆叠层组成,用作当今锂离子电池的负极材料。离子通过在石墨层间进出完成储能的过程。钠离子比锂离子大并且表面特性不同,因此,它们不能有效地储存在石墨结构中。但是查尔姆斯理工大学的研究人员想出了一种新的方法来解决这个问题。“我们在石墨烯层的一侧添加了一个分子间隔物。当这些层堆叠在一起时,这些分子会在石墨烯片之间产生更大的空间并提供一个相互作用点,从而显著提高容量,”该项研究的作者说。十倍于标准石墨的能量容量通常,标准石墨中可以嵌入的钠离子容量约为每克 35 毫安时 (mAh g-1)。这不到石墨中锂离子嵌入容量的十分之一。使用新型石墨烯,钠离子的比容量为每克332毫安时——接近石墨中锂离子的容量。实验结果还显示这种新型材料还具有完全可逆性和高循环稳定性。“当我们观察到如此高容量的钠离子嵌入时,真的很令人兴奋。这项研究仍处于早期阶段,但结果非常有希望。这表明可以设计出适合钠离子电池的有序结构的石墨烯负极材料,使其容量与石墨相当,”查尔姆斯大学物理系的 Aleksandar Matic 教授说。新型石墨烯在相对的两个面上具有不对称的化学官能化,因此通常被称为 Janus 石墨烯,以古罗马的双面神 Janus 命名。Janus是罗马神话中的门神,具有两个面孔,是起源神,象征开始。之所以用Janus命名是希望这种石墨烯材料可能为高容量钠离子电池打开大门。“我们的 Janus 材料离工业应用还很远,但新的结果表明我们可以设计超薄石墨烯片——以及它们之间的微小空间——用于高容量储能。我们很高兴提出一个具有成本效益、丰富且可持续的金属纳离子电池的概念,”查尔默斯工业与材料科学系附属教授 Vincenzo Palermo 说。关于材料的更多信息:具有独特结构的 Janus 石墨烯研究中使用的材料具有独特的人造纳米结构。每个石墨烯片的上表面都有一个分子,作为钠离子的间隔物和活性相互作用位点。两个堆叠石墨烯片之间的每个分子通过共价键连接到下部石墨烯片,并通过静电相互作用与上部石墨烯片相互作用。石墨烯层还具有均匀的孔径、可控的功能化密度和很少的边缘。
  • 大连化物所提出颗粒细化诱导提高钠/锂离子电池循环容量的新机制
    近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队和燕山大学唐永福教授团队合作,在钠/锂离子电池电极储能机理研究方面取得新进展。  近年来,钠离子电池作为研究热点得到了国内外广泛关注,取得了快速发展。研究发现,具有较高Na+储存性能和循环稳定性的电极材料,对于提高钠离子电池的能量密度和倍率性能十分重要。 本工作中,研究团队设计了一种珊瑚状的FeP复合材料,该材料可锚定FeP纳米颗粒,并将其均匀分散在氮(N)掺杂的三维(3D)碳骨架(FeP@NC)上。珊瑚状FeP@NC复合材料具有较短的电荷转移路径和较高的导电氮掺杂碳网络,可显著改善复合材料的电荷转移动力学。同时,由于FeP纳米颗粒周围具有高度连续的N掺杂碳骨架和弹性缓冲的石墨化碳层,基于FeP@NC复合材料的钠离子电池(SIB)表现出优异的倍率性能和循环性能,在10A/g下经10000次循环后其容量保持率为82.0%。  更为重要的是,针对循环过程中电池容量逐渐上升的现象,研究团队结合电化学研究和原位电镜表征分析,证实了一种独特的颗粒细化在循环过程中提高容量的作用机制,这种容量提升效果在小电流下表现得更为显著。研究表明,均匀分布在氮掺杂碳基体上的FeP纳米颗粒,在第一个循环中经历了细化-复合过程,经过数次循环后呈现出全区域细化的趋势,这种细化对周围的非晶碳产生强烈的吸附作用,引起复合材料石墨化度和界面磁化强度逐渐增加,为Na+的存储提供了更多的额外活性中心,进而提高了循环容量。这种容量提升机制也可以扩展到锂离子电池(LIBs)。研究发现,在10A/g下,经5000次循环后,基于FeP@NC复合材料的LIBs的容量保持率为90.3%,超过了已报道的FeP基复合材料的容量保持率。  该研究提出了一种在循环过程中经颗粒细化诱导提高电池容量的新策略,为设计高性能的SIBs/LIBS负极材料提供了新思路。  相关成果以“A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle-Refinement”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所DNL17博士研究生王灿沛。上述研究工作得到国家自然科学基金、中科院青年创新促进会等项目的资助。  文章链接:https://doi.org/10.1002/anie.202110177
  • 锂离子电池原料的含水量检测
    pstrong一、前言/strongbr/  锂电池与我们生活息息相关,扮演着不可或缺的角色。比如我们每天不离手的手机以及笔记本电脑,家用电器等。作为交通工具的飞机、混合动力车、电动车等对锂离子电池的需求也显著增加。在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。br/strong二、水分对锂电池的影响及市场现状/strongbr/strong2.1 水分会对锂离子电池造成哪些不良影响?/strongbr/  主要表现为电池容量小,放电时间变短,内阻增大,循环容量衰减,电池膨胀等现象,因此在锂离子电池的制作过程中,必须要严格控制环境的湿度和正负极材料、隔膜、电解液的含水量。br/strong2.2 锂离子电池水分控制方法检测现状?/strongbr/  目前市场上水分含量测定的技术方法最常用的是加热失重法和卡尔费休法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。br/strong三、分析与方法/strongbr/strong3.1 仪器/strongbr/  AKF-BT2015C 锂电池卡氏水分仪br/strong3.2 技术参数及特点/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/2f8bdcbf-c688-4dfd-aa4d-bedd9c41a0f0.jpg" title="1.jpg"//ppstrong特点:/strongbr/1. 卡氏顶空样品瓶加热技术,有效避免加热炉膛和反应杯污染;br/2. 禾工独创的样品瓶连接器,让载气无须穿刺样品瓶隔垫即可进入到样品瓶内部,密封性好,减少隔垫耗材的同时可拆卸方便;br/3. 精确流量控制设计,载气消耗量仅为同类进口产品管式加热炉的十分之一;br/4. 大功率散热槽设计,迅速冷却样品瓶,提高工作效率;br/5. 7" 高分辨率彩色触摸屏界面,多参数显示,直观简洁;一键测定,操作极为简便;br/6. 防凝结保温管路无死体积设计,保证挥发后的水分管壁系统无残留;br/7. 加热温度最高达300° ,0-100ml 气体流量自由调节,满足大多数固体原料水分测定需求;br/8. 全自动恒流极化检测,无需人工设定终点,检测精度高,水分测量分辨率达到0.1ug br/9. 一键启动,操作简单,稳定可靠,故障低,使用寿命长;br/strong3.3 分析原理/strongbr/  样品用卡氏加热炉专用密封进样小瓶装载,用顶空瓶连接器密闭后进入加热槽中,样品中的水分(还可能有其他挥发性的溶剂)以蒸气的形式完全释放,通过干燥载气(如干燥的空气或者氮气)由顶空瓶经加热伴管路转移到KF 滴定杯中,然后卡尔费休水分测定仪进行检测并显示测量数据。br/strong3.4 检测方法/strongbr/1.将电解液注入电解池以及电解电极的阴极室内,液位至下刻度线,加入微量水然后电解至平衡。br/2.将气源连接至卡氏加热炉,将干燥样品瓶装入加热槽,温度设置为250℃,流量调整为50mL/min,吹扫样品瓶和管路内可能存在水分,等待再次平衡。br/3.将样品瓶移至冷却槽冷却后取出,用电子天平称取约0.5~3g 样品置于样品瓶内,然后在水分仪上点击开始测量,同时将样品瓶装入加热槽。br/4.输入样品称取的重量,等待测量结束后显示最终测量结果。br/strong四、数据与结论/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c2469d3d-16f8-4766-a1cb-7d8da27630e8.jpg" title="2.jpg"//ppstrong结论说明:/strongbr/  通过本实验方法,可以精确测得锂离子电池原料的水分含量,检测结果精度与重复性均达到进口同类产品的水平。AKF 库仑法卡尔费休水分测定仪和KH-1 卡氏加热炉顶空进样器联用,能自动扣除漂移,操作便捷,能准确可靠的测出锂电池跟原料的含水量。/p
  • 相关检测技术和设备成为开启电池回收百亿市场的关键
    p  在新能源汽车产业繁荣发展的同时,动力电池回收利用问题也已成为业内关注的焦点。无论是从环境保护还是资源最大化利用角度而言,动力电池回收利用都已是箭在弦上,而动力电池回收利用也在逐渐彰显其利用价值。国内机构预测,废旧电池所创造的回收市场规模在2018年将超过52.87亿元,2020年将超过100亿元。/pp  动力电池规模化退役时限渐行渐近。按照新能源汽车的使用周期和我国新能源汽车的市场化进程,今年将是新能源汽车动力电池大规模报废回收布局窗口。/pp  近年来,我国新能源汽车产业发展一直在稳步提升。据统计,2017年我国新能源汽车销量达77.7万辆,截至当年累计保有量约180万辆。而逐渐扩大的新能源汽车体系背后,动力电池报废回收再利用等方面的需求也随之加大。估算显示,动力电池“退役潮”今年将开始爆发,如按70%实施梯次利用计算,2020年将有约6万吨废旧电池等待处理。目前国内的动力电池主要是锂离子电池,其成分中的正极材料有可能造成重金属污染。/pp  在此背景下,我国有关动力蓄电池回收利用的政策不断出台。七部门印发《新能源汽车动力蓄电池回收利用管理暂行办法》,强调落实生产者责任延伸制度,要求汽车生产企业承担动力蓄电池回收的主体责任。随即,工信部公布的《新能源汽车动力蓄电池回收利用溯源管理暂行规定》明确,对动力蓄电池生产、销售、使用、报废、回收、利用等全过程进行信息采集。业内预测,随着相关技术的不断突破,政策发布速度将加快,预计相关标准也将在2018年发布。/pp  一边是蜂拥而至的批量报废,一边是尚处起步的新兴领域,动力电池回收将历经怎样的考验?由于体积大、成分复杂,动力电池回收再利用面临诸多限制和较高技术门槛。诚如电池类型、电池容量和电压平台均存在不小的差异,这是动力电池梯次利用面临的第一道坎,因此如何科学评估退役电池也成为决定电池“去哪儿”的第一关。同时我国没有出台动力电池的统一标准,要大范围集中利用还有困难。/pp  除了技术难题外,在多位业内人士看来,动力电池回收问题的焦点在于谁来收、怎么收及采用何种模式回收均不确定。当前倡导退役动力电池先梯次利用再报废回收的原则,并且要求整车企业作为动力电池回收主体,承担动力电池回收责任。而在回收模式上,因“退役潮”暂未大规模到来,不少企业面临盈利难题,短期内仍难实现规模效应。/pp  尽管起步艰难,前景却被业内普遍看好。甚至有机构预测,动力电池回收市场将形成百亿元新“风口”。这也是目前除了车企、电池企业、原材料回收企业,资本也大举进军该领域的原因,他们也在谋求这一领域的新机遇。迄今,新能源汽车动力电池的梯次利用和回收利用有望根据适用场景依次展开,新能源汽车产业链企业已经积极布局电池回收利用领域。/pp  其中,部分车企选择以合作的形式,联手其他公司共同推进国内动力电池回收再利用等相关事项。长安、比亚迪、银隆新能源等16家整车及电池企业与动力电池回收利用大户中国铁塔公司达成合作,解决退役动力电池回收再利用等问题。除了整车企业,电池生产企业也对此进行了积极探索,宁德时代、中航锂电、比克电池、国轩高科等企业都建立了电池回收网络,开始布局动力电池回收业务。/pp span style="color: rgb(0, 176, 240) " 截至目前,仅有少数车企开展了相关布局。相对于即将进入市场的报废动力电池总量来说,仍然是“杯水车薪”,总体而言,回收主体还处于缺位状态。因而,不论是市场规模还是处理技术都需要时间来完善。但业界一种普遍的观点是,控制退役电池的品质和安全是梯次利用技术的难点,必须研发相关检测技术和设备,才能准确判断退役电池能否进入梯次利用市场,并确定应用场景。/span/ppbr//p
  • Nature Materials:综合物性测量系统拓展新应用-原位磁性测试揭示锂离子电池额外容量问题!
    在锂离子电池中,过渡族金属化合物材料反常的超出理论限的额外容量现象引发了人们的广泛关注。为了揭示这一关键科学问题,多位国际能源领域权威专家都对该现象提出了不同的理论解释,如电表面电解质衍生层的形成与分解、含锂物质的氧化反应、空间电荷存储等。然而由于电材料界面处的复杂性超出常规设备的测试能力,其蕴藏的储能机制始终处于争议中。近期,青岛大学物理科学学院李强、李洪森教授与加拿大滑铁卢大学苗国兴教授、美国得克萨斯大学奥斯汀分校余桂华教授等人通力合作,利用自主构建的原位磁性监测技术(如图1所示),结合自旋电子学理论揭示了过渡族金属化合物Fe3O4的额外容量主要来源于过渡族金属Fe纳米颗粒表面的自旋化电容,并证明这种空间电荷储锂电容广泛存在于各种过渡族金属化合物中,费米面处3d电子高电子态密度发挥了关键作用(如图2所示)。该研究结论突破了人们对传统锂离子电池储能方式(Insertion、Alloying、Conversion)的认知,次在实验上直观地证实了空间电荷存储机制,并进一步明确了电子存储位置。该工作已于近期发表在期刊《Nature Materials》[1]。精彩图文展示:图1 原位观测Fe3O4锂离子电池材料在充放电过程中的磁响应,其中上图为磁化强度变化,下图为恒流充放电曲线。磁性测试出乎意料的发现在于,当电压由0.45 V降低到0.01 V时,电磁化强度缓慢降低直至放电结束。这一发现表明还原产物金属Fe颗粒可以继续参与反应,这与经典的锂电池转化反应相矛盾。有趣的是,随后充电到1.4 V时,体系磁化强度再一次增大。 图2. 自旋化电子在Fe0/Li2O界面的表面电容示意图(EF,费米能)。a、铁磁性金属颗粒表面(放电前后)的自旋化态密度示意图。b、自旋化电容模型中额外存储锂形成的空间电荷区。放电过程中还原出的Fe0纳米颗粒分布在Li2O介质中,具有大的表面/块体比率且费米面处具有高的电子态密度。大量的电子可以存储在Fe0纳米颗粒中的自旋劈裂能带中,从而产生自旋化电容。值得注意的是,本文使用的样品杆是研究人员经过多年努力自主设计的,他们将电化学工作站与综合物性测试系统(PPMS)中的振动样品磁强计选件(VSM)进行了有效结合,成功地构建了锂离子电池原位磁性测试系统来观察锂电池充放电过程中的磁响应。文中所使用的PPMS系统具有高灵敏度磁性测试等优势,可作为研究能源材料原子尺度临近范围内的原子探针,是研究杂质相和局部电子分布的全新“利器”,获取其他传统技术所不能测得的信息。图3 PPMS Dynacool系统示意图 基于该测试系统,本文研究者破解了多年争议,次在实验中揭示了电池容量会超过理论限的关键问题,不仅为设计下一代高性能储能器件提供了新方向,也为能源材料的设计制备提供了一种有力的测试分析技术。在这里我们恭喜我们的PPMS用户取得了新的突破,也祝愿他们科研事业更上一层楼!参考文献:[1] Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry, Nature Materials, 2020, https://doi.org/10.1038/s41563-020-0756-y
  • 锂离子电池· 燃料电池用 X射线异物分析仪「SEA-Hybrid」发售
    为确保电池容量、防止发热起火、成品率改善等作贡献 精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。新产品「SEA-Hybrid」可快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20&mu m大小的微小金属异物并进行元素分析。 X射线异物分析仪 「SEA-Hybrid」  构成锂离子电池和燃料电池的电极材料和隔膜中如果掺有金属异物的话,不仅会降低电池容量及缩短使用寿命,还会导致发热起火。SIINT致力于电池中的金属异物检测仪的开发,在今年9月份日本的分析展上展出了样机,现已经投产并开始销售。  「SEA-Hybrid」把电极板和隔膜以及装在容器里的活性物质放到仪器中,选择检查程序后,只需点击开始测量,从X射线透视图像的拍摄到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出,由此可简单地知道金属异物的掺入途径。因为无需前处理且完全自动,所以可以方便地进行抽样检查和故障分析。SIINT将销售此仪器到电池厂家、原材料厂家等,为电池的品质提高作贡献。 【SEA-Hybrid的主要特征】 1.  可在几分钟内对250× 200mm大小的样品检测出20&mu m大小的金属异物例如要检测250× 200mm(约B5尺寸)大小的电池电极板中20&mu m大小的金属异物,以往的X射线透视检查仪需要十小时左右的摄像时间。SIINT通过新型X射线透视方法的开发,成功缩短了时间。检测速度成功达到了以往的100倍以上,可在3~10分钟内完成。 2.电极板的微小金属异物也可进行元素分析 对样品中检测出的金属异物可自动使用X射线荧光法进行元素分析。以往,对于电极板中可能存在的20&mu m左右的微小金属异物,只能分析存在于样品表面的异物。这是由于存在于内部时,异物产生的X射线荧光被基材所吸收,信号强度非常微弱。「SEA-Hybrid」采用独自研发的高能量X射线光学系统,可对电极・ 有机薄膜内部所含的20&mu m大小的微小金属异物进行元素分析。 3. 一体化的操作,提高作业效率与以往的技术相比,金属异物的检测速度、元素分析速度大幅提高,并且把显微镜等都组合在一台仪器内,各个系统联动可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。 【SEA-Hybrid的主要规格】被测样品尺寸宽250× 深200mm异物检测时间3~10分钟左右(250× 200mm全面摄像、20&mu m大小异物的检测时间)异物元素分析时间1~4分钟左右 每检测出1个(根据异物尺寸及元素的不同,有时会发生变化)装置X射线发生系统冷却用水仪器自身尺寸1340(宽)× 1000(深)× 1550(高)mm 【价格】 5,800万日元~(不含税) 【销售目标台数】 20台(2012年度) 以上本产品的咨询方式中国:精工盈司电子科技(上海)有限公司TEL:021-50273533FAX:021-50273733MAIL:sales@siint.com.cn日本:【媒体宣传】精工电子有限公司综合企划本部 秘书广告部 井尾、森TEL:043-211-1185 【客户】精工电子纳米科技有限公司分析营业部 营业二科 浅井、村松TEL: 03-6280-0077http://www.siint.com/
  • Super Power便携式电池-HAPSITE便携式气质联用仪专用
    随着便携式仪器发展日趋迅猛及应用日渐成熟,用户对现场分析和检测能力的要求也越来越高。而对于大部分便携式仪器来说,其连续工作时间和续航能力都是一个明显的短板,特别是在一些应急现场和僻远地区,一个稳定安全、供电时间长的移动电源BCT显得异常重要。北京博赛德科技有限公司具有多年现场检测和应急监测的经验,依据长期的使用环境和客户特殊的使用习惯,特为HAPSITE ER(SMART)客户研发了本款Super Power便携式电池。该电池具有超大电池容量和超强续航能力(10~24小时),使用寿命长(5年)及重量轻使用方便等特点,通过专用电缆可以和便携式气质联用仪HAPSITE Smart/ HAPSITE ER轻松连接使用。产品通过CE及ROSH认证,可满足客户应急响应和现场/野外操作的需求。 系统特点微型设计:重量轻便于携带;定制电芯:进口锂电芯总容量≥120000mAh;高效低耗:能效比≥95%,长期负荷≤120W;多路可调:24V,9V和USB(5V)端口,必要时可以同时为手机,路由器等装置供电;航空接头:定制航空连接电缆用于HAPSITE ER/SMART与便携式电池的快速连接;便携背包:特制小包,防潮防雨保温并方便现场携带;安全可靠:完善的过载、过热、过充和短路保护,确保电源和负载安全电量监控:四级LED显示灯显示剩余电量直观可靠;简易支架:可选配的HAPSITE电源支架,将电源和HAPSITE主机BCT连为一体;不间断供电:可选配双头HAPSITE链接电缆,实现电池更换时不间断供电;客户定制:可以根据用户要求定制不同的专用连接电缆、输出电压和功率; Super Power便携式电池标配: Super Power电池1块便携背包1个单头连接线缆1根专用充电器1套 Super Power便携式电池选配:电池支架 :充分考虑空间限制和便携要求,依据HAPSITE主机及电池外形定制该支架。使用该支架可以将Super Power便携式电池和HAPSITE主机BCT连接使其成为一个整体,无论仪器平放竖立还是肩背都不会影响使用,避免了搬运及使用的不便和可能的磕碰损伤。 双头连接线缆:考虑到长时间应急和现场使用可能造成的供电中断,特设计定制该双头航空连接电缆,可以将两块便携式电池和HAPSITE主机BCT连接,从而实现电池更换的不间断供电。(不建议客户长期用两块电池同时供电)Super Power便携式电池参数型号Super Power A-120容量(mAh)120000输出电压(V)5V 9V 24V输出功率5V 2A 9V 1.BCT 24V 6A充电电压(V)25.2V(专用充电器)充电时长(H)8~12参考使用时间(HAPSITE ER) (H)24~30特点日本原装进口锂离子电芯电池极限温度(°C)100尺寸(mm)245*100*60重量(Kg)1.8
  • 大容量9系三元锂离子电池热失控测试
    前言9系超高镍三元锂离子电池是指正极材料元素比值为Ni:Co:Mn=9:0.5:0.5的三元锂离子电池,作为短期内已经将锂电池正极材料的潜力发挥到最大的方案,9系锂电池的理论能量密度甚至超过了300Wh/kg。由于9系锂电池具有超高的能量密度,受到了致力于提高新能源汽车续航里程的主机厂的密切关注。但高能量密度伴随着潜在的高危险性,因此获得9系电池的热失控特征参数尤为重要,但是9系锂电池的热失控过程非常剧烈,有较大概率会损伤仪器,因此9系锂电池的绝热热失控实验数据十分缺乏,电池热管理设计也缺少实验数据的支撑。本文利用杭州仰仪科技有限公司BAC-420A大型电池绝热量热仪进行了130Ah的9系NCM超高镍锂离子电池的绝热热失控测试,获得该电池热失控过程的相关热力学特征参数等信息。相关结果有助于帮助研究人员明确9系电池的热失控危害性,优化电池安全设计。实验部分1.样品准备实验样品:130Ah 9系NCM锂离子电池*1,260mm*100mm*25mm,100%SOC。2.实验条件实验仪器:杭州仰仪科技BAC-420A大型电池绝热量热仪;工作模式:HWS模式、温差基线模式;标准铝块:6061铝合金材质。图1 BAC-420A大型电池绝热量热仪3.实验过程3.1 温差基线校正:利用与电池大小形状一致的标准铝块进行温差基线模式实验,对热电偶及仪器进行校正;3.2 标准铝块HWS实验:利用标准铝块进行HWS模式实验,验证温差基线校正的效果及实验过程中仪器的绝热性能;3.3 电池HWS实验:为了防止9系电池热失控损坏炉腔,因此在电池外部增加了如图2所示的金属网防护罩,以HWS模式进行绝热热失控实验;图2 9系电池实验安装示意图及实物照片3.4 标准铝块HWS实验:电池HWS实验结束后,用标准铝块重新进行HWS验证实验,用于验证热失控后仪器功能是否正常及传感器漂移程度。实验结果图3 电池绝热热失控(a)温度-压力曲线及(b)温升速率-温度曲线如图3(a)所示,电池在82.68℃下的自放热温升速率达到了0.02℃/min的Tonset检测阈值;在131.67℃达到泄压温度Tv,泄压阀打开;随后在169.49℃达到热失控起始温度TTR (60℃/min),电池发生热失控,数秒内温度快速升高至约1090℃,最大温升速率(dT/dt)max超过40000℃/min。并且通过图4所示的抗爆箱内外部的监控画面,可以发现电池的热失控过程十分剧烈,在极短的时间内喷射出强烈的射流火及大量浓烟,同时瞬间产生的高温高压气流对实验室墙面产生了一定的冲击作用。图4 (a)防爆箱内部视频及(b)防爆箱外部视频图5 电池残骸照片通过观察电池残骸可以发现,泄压阀位置完全崩裂,同时电池残骸基本仅剩外部铝壳,内部电池材料几乎全部从泄压口喷出,热失控后电池的质量损失率达到了85.97%,也侧面表明了9系电芯的热失控剧烈程度。图6 电池热失控前(a)后(b)铝块HWS模式实验曲线在电池实验前,通过标准铝块的HWS实验验证了仪器良好的绝热性能,如图6(a),每个温度台阶铝块的温升速率均小于±0.002℃/min;电池测试后,为了确认仪器能否在承受9系锂电池的剧烈爆炸后仍然能正常使用,重新进行一次标准铝块的HWS实验。通过图6(b)可以发现,实验过程中仪器运行良好,并且每一个台阶的温升速率均低于±0.002℃/min,绝热性能依然优异,说明仪器功能完好,同时传感器未出现明显漂移。结论大容量9系超高镍NCM锂电池绝热热失控的剧烈程度高,实验室应具备足够的泄压泄爆面积(建议50平米以上),同时实验室墙面应进行加固。仰仪科技BAC-420A大型电池绝热量热仪具有优异的耐压和抗爆性,能够承受大容量超高比能电芯的热失控爆炸冲击。
  • 锂离子电池用X射线异物检测仪问世
    精工电子纳米科技有限公司成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日展出。  锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。  金属异物的掺入途径是通过活性物质[1]、分离器[2]等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。  最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。  把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。  X射线异物检测仪的主要特征:  1、可在数分钟内检测出A4大小样品中20μm左右的金属异物  例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。  2、元素识别速度大幅提升  对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。  3、一体化的操作,提高作业效率  X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。  [1]活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。  [2]分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来。
  • 岛津推出锂离子电池应用数据集册
    目前,市场上使用的充电电池主要分为铅酸电池、镍镉电池、镍氢电池和锂离子电池。铅酸电池主要用于动力电池领域,缺点是重金属铅对人体和环境的污染;镍镉电池主要用在笔记本、手机等消费电子领域,存在记忆效应、寿命短且有镉污染等问题;镍氢电池是镍镉电池的替代品,缺点是高温性差,具有记忆效应。唯有锂离子电池具有能量高密度、高电压、寿命长、无记忆效应等优点,近些年逐渐替代镍镉电池、镍氢电池,占据了消费电子领域大部分市场。中国制造2025,是中国政府实施制造强国战略的第一个十年行动纲领,其中节能与新能源汽车、新材料占据了十大领域的两席之地。锂离子电池产业已被列入国家“863计划”和“973计划”,是政府大力支持和发展的新能源产业之一。 作为新兴的绿色优质能源,锂离子电池的制造工艺要求非常高,关键材料的性能对电池的整体性能(比如电池容量、安全性能、使用寿命等)影响非常巨大,需要完善的质量监控手段严格控制制造过程。为了精确的对各个关键部件材料的质量工艺进行控制,锂离子电池各关键部件的分析检测方法就成为国内检测机构的重要工作之一。此外,废旧锂电池回收处理,有助于形成“生产-回收-再生产”的循环链,解决废旧锂电池污染和废物利用的问题,实现新能源汽车的持续发展。锂离子电池领域涉及仪器范围较广,有FTIR、XPS、SPM、XRD、EDX、GC/GCMS等。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终秉承 “以科学技术向社会做贡献”的宗旨,不断钻研相关领域的最新技术。岛津公司秉承“为了人类和地球的健康”这一企业理念,为您奉上《岛津锂离子电池应用数据集册》,涉及锂离子电池正负极、隔膜材料、电解液成分检测以及电池原位充放电检测技术等领域,希望我们的努力能为您带来有益的帮助。
  • 锂离子电池用X射线异物检测仪问世
    世界首台*1 使微小金属异物的快速检测及元素分析自动化  精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。SIINT成功开发了一款检测仪器,既可自动进行元素分析,又可在数分钟内快速检测出锂离子可充电电池和燃料电池的电极中可能掺杂的20μm左右的微小金属异物。此试验机将在9月7日-9日的日本国内最大的分析仪器展「分析展/科学仪器展2011」(幕张Messe)展出。X射线异物检查仪(样机)  锂离子可充电电池和燃料电池中掺杂金属异物是导致电池的成品率及寿命缩短的重要原因。特别是锂离子可充电电池会发热,有可能引发起火。近年来,随着在汽车・ 电油混合汽车以及住宅方面的应用,电池也逐渐大型化,因此防止金属异物的掺入变得更重要了。所以,以电池厂商为中心,为了防止金属异物的掺入,进行了复杂的故障分析。  金属异物的掺入途径是通过活性物质*2・ 分离器*3等材料以及涂漆等生产工程中掺入等多方面原因。以往所进行的故障分析是把不良电池拆除,通过X射线穿透检查仪和显微镜检测出金属异物存在的地方,再使用扫描电子显微镜和X射线荧光分析仪等特定对象元素,然后推测掺入的途径。但是,这些方法由于仪器性能的限制,很难检测出50μm以下的金属异物,并且检测所需时间非常长也是问题之一。并且,由于使用别的仪器对检测出的异物进行元素分析,有可能找不到需要检测的地方。  最近SIINT把通过X射线穿透进行金属异物的检测和使用X射线荧光进行元素分析的两项技术相融合,开发了世界首台可检测并且分析20μm左右的微小金属异物的X射线异物检查仪。  把电极板和分离器、装在容器里的活性物质放到仪器里,选择检查顺序后,只需点击开始测量,从X射线穿透图像的拍照到金属异物的检测及其元素分析都可自动运行。并且,分析结果中包括样品中的金属异物个数和各个异物的组成及其尺寸、显微镜的观察图像都可输出。由于无需前处理并且完全自动,所以无论是谁都可以简单地进行故障分析・ 抽样检查。  【X射线异物检测仪的主要特征】  1.可在数分钟内检测出A4大小样品中20μm左右的金属异物  例如要检测A4大小的电池电极中20μm左右的金属异物,以往的X射线穿透检查仪需要数小时以上的摄像时间※1。SIINT通过采用最新的X射线管球和检测器以及新图像处理技术,大大缩短了摄像时间,检测速度成功达到了以往的100倍以上。A4大小的电池电极可在3~6分钟内完成摄像、识别20μm左右的金属异物并自动检测。  2.元素识别速度大幅提升  对检测出的金属异物,自动使用X射线荧光法进行元素分析。本仪器配备了我司独自研发的高亮度X射线光学系统,20μm左右的金属异物的元素识别速度是以往仪器的10倍。  3.一体化的操作,提高作业效率  X射线穿透检查仪和元素分析仪以及显微镜都包含在一台仪器内,各个系统联合起来可全自动输出测量结果。因此,操作人员只需放置好样品,即可获得测量结果,大大提升了作业效率。  *1 敝司调查  *2 活性物质:通过与电解质的化学反应,吸收电子或者放出电子的物质。吸收电子的活性物质称为正极活物质,放出电子的活性物质称为负极活性物质。  *3 分离器:用带有无数微小的孔的薄膜(聚乙烯:PE或者聚丙烯:PP),把正极和负极绝缘起来  本产品的咨询方式  中国:  精工盈司电子科技(上海)有限公司  TEL:021-50273533  FAX:021-50273733  MAIL:sales@siint.com.cn  日本:  【媒体宣传】  精工电子有限公司  综合企划本部 秘书广告部  【客户】  精工电子纳米科技有限公司  分析营业部 营业二科  TEL: 03-6280-0077(直线)  MAIL:info@siint.co.jp
  • 中国锂离子电池检测仪器设备市场解析|2018年
    p  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量有望达到155.82GWH,市场规模将到达2313.26亿元。中国是锂电池重要的生产国之一,2017年中国锂电池产量突破100亿只,增速达27.81%,2018年预计全国锂电池产量达到121亿只,增速22.86%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/06d25d4d-9770-4f94-90cf-561334abdcf6.jpg" title="01.jpg.png" alt="01.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1锂电产业链到测试仪器设备对应关系图/span/pp  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS检测系统、模组EOL检测系统、电池组EOL检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或X射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。图1展示了从锂电产业链到测试方法的对应关系。/pp  随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。图1展示了从锂电产业链到测试方法的对应关系,图2则展示了不同空间分辨率对应的部分的表征方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/12d49b40-626a-4708-986a-8546871af96b.jpg" title="02.jpg.png" alt="02.jpg.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图2 锂离子电池实验技术的空间分辨分布图/span/pp  从市面锂电检测相关市场调研报告或资料统计来看,多数主要针对生产制造环节的锂电检测系统,却鲜有涉及研发必需的各类分析仪器。然而,纵观目前国内锂电企业,低端产能过剩,高端产能不足是行业现状,锂电产品质量走向高端是必然发展趋势。走向高端则必须保持高研发投入,来保证不断材料改进和技术革新。基于此,仪器信息网(a style="color: rgb(0, 176, 240) text-decoration: underline " target="_self" href="https://www.instrument.com.cn/"span style="color: rgb(0, 176, 240) "https://www.instrument.com.cn//span/a)特组织了“中国锂离子电池检测仪器设备市场调研”活动,以期从市场应用角度,对锂电检测设备及仪器做更全面的梳理归纳,对近年来锂离子电池检测行业整体产业链发展现状、市场发展行情、锂电检测涉及到的仪器设备品类,各仪器设备品牌在市场中的占有率以及各自市场拓展情况等信息进行调研分析,为各锂电检测仪器设备商在以后的仪器销售和推广活动中提供决策参考。此次调研,面对的调研对象包括仪器信息网注册用户、锂电科研开发用户、锂电生产企业、锂电第三方检测机构、锂电检测领域专家以及部分锂电检测相关仪器设备主流生产厂商等。/pp  a style="color: rgb(0, 176, 240) text-decoration: underline " target="_blank" href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=151"strongspan style="color: rgb(0, 176, 240) "《中国锂离子电池检测仪器设备市场研究报告(2018版)》/span/strong/a内容包含了锂电行业行业监管体制及相关产业法规政策、标准,锂电及锂电检测发展现状,锂电检测用户调研分析,锂电检测设备商市场分析,锂电检测涉及各种分析检测仪器设备品牌分布分析等。/pp  a style="text-decoration: underline " target="_blank" href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=151"span style="text-decoration: underline color: rgb(0, 176, 240) "strong《中国锂离子电池检测仪器设备市场研究报告(2018版)》/strong/span/a得到了广大调研用户、相关企业以及业内专家的大力支持。近200余位来自锂电生产、研发、第三方检测机构、高校院所等领域的锂电检测用户参与在线调研。结合仪器信息网大数据平台,还对锂电仪器设备商近三年在仪器信息网发布的300篇锂电相关解决方案数据进行了统计分析。同时,报告详细统计分析2017年国内锂电检测相关文献,考察具有研究生教育能力的高校和研究院所,初步对近18年来锂电相关博士学位论文和优秀硕士学位论文6713篇数据统计。在此,谨对报告所有参与者表示最衷心的感谢strong!/strong/ptable align="center"tbodytr class="firstRow"td colspan="2" style="border: 1px solid windowtext padding: 0px 7px " width="568" valign="top"p style="text-align:center"strongspan style="font-size:19px font-family:' 微软雅黑' ,' sans-serif' color:red"关于《中国锂离子电池检测仪器设备市场研究报告(2018版)》/span/strong/p/td/trtrtd style="border-right: 1px solid windowtext border-width: medium 1px 1px border-style: none solid solid border-color: -moz-use-text-color windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="149"p style="text-align:center"strongspan style="font-family:' 微软雅黑' ,' sans-serif' color:red"报告适合对象/span/strong/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color padding: 0px 7px word-break: break-all " width="419" valign="top"p class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"△span style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "重点业务板块包含锂电检测的仪器设备企业/检测机构;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"span style="font-family:Wingdings"△span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "锂电领域呈增长趋势的仪器设备企业/检测机构;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"span style="font-family:Wingdings"△span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "将锂电作为重点拓展领域的仪器设备企业/检测机构;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"/spanspan style="font-family:Wingdings"△ span style="font:9px ' Times New Roman' "/span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "仪器设备产品为锂电检测重要或高占比品类的仪器设备企业;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"/spanspan style="font-family:Wingdings"△ span style="font:9px ' Times New Roman' "/span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "仪器设备品类齐全,涵盖了锂电检测诸多检测仪器品类的大综仪器设备企业;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"/spanspan style="font-family:Wingdings"△ /spanspan style="font-family:Wingdings"/spanspan style="font-family:Wingdings"....../spanspan style="font-family:' 微软雅黑' ,' sans-serif' "/span/p/td/trtrtd style="border-right: 1px solid windowtext border-width: medium 1px 1px border-style: none solid solid border-color: -moz-use-text-color windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="149"p style="text-align:center"strongspan style="font-family:' 微软雅黑' ,' sans-serif' color:red"获取报告可能带来哪些收益?/span/strong/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color padding: 0px 7px word-break: break-all " width="419" valign="top"p class="MsoListParagraph" style="margin-left:28px"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电检测市场至上而下系统性整体把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "锂电不同产业链阶段对检测仪器设备需求把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电封装后端锂电检测系统市场格局把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电封装前端检测仪器市场格局把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' "/span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' " 对锂电开发、科研检测仪器设备品类、各品类主流品牌、各品牌等市场格局把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "对锂电开发、科研检测仪器设备用户分布把握;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "锂电检测领域业务投资、拓展规划等导向参考;/span/pp class="MsoListParagraph" style="margin-left:28px"span style="font-family:Wingdings"strongspan style="font-family:Wingdings"√/span/strongspan style="font-family:Wingdings"span style="font:9px ' Times New Roman' "/span/spanspan style="font:9px ' Times New Roman' " /span/spanspan style="font-family:' 微软雅黑' ,' sans-serif' "......./span/p/td/tr/tbody/tablep  strong报告链接/strong:a style="text-decoration: underline color: rgb(255, 0, 0) " target="_blank" href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=151"span style="color: rgb(255, 0, 0) "strong《中国锂离子电池检测仪器设备市场研究报告(2018版)》/strong/span/a/pp  span style="color: rgb(0, 176, 240) "strong欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部/strong/span/ppbr//ppspan style="color: rgb(255, 0, 0) "strong 报告节选:/strong/span/pp  strong一 锂电池行业监管体制及相关产业法规政策/strong/pp  ....../pp  2.1 相关法律、法规与政策(2007-2018)/pp  ....../pp  2.2 相关标准/pp  ....../pp  表 电池相关标准发布情况/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/da42376b-e785-4643-bcda-5bfa22228928.jpg" title="1.jpg" alt="1.jpg"//pp  表 电池检测相关标准发布情况/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/2ee83f81-7764-4535-8e2f-88fb8b4ecbb5.jpg" title="1.jpg" alt="1.jpg"//pp  ....../pp  strong二 锂电及锂电检测发展背景/strong/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/5f286267-b748-4f32-a0f8-f0d797ad87d2.jpg" title="03.jpg.png" alt="03.jpg.png" width="450" height="269"//pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/6c628d9f-6ae2-43e8-8d77-cd78c08d1497.jpg" title="04.jpg.png" alt="04.jpg.png" width="450" height="308"//pp  ....../pp strong三 锂电检测仪器设备市场调研分析/strong/pp ....../pp  strong四 锂电研发用检测仪器设备市场分析/strong/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/8ea20ccf-f148-40e4-86cd-7ef3fdba0766.jpg" title="05.jpg.png" alt="05.jpg.png" width="450" height="281"//pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/77d4360c-765d-47cf-b644-b44644c1803f.jpg" title="06.jpg.png" alt="06.jpg.png" width="450" height="296"//pp  ....../pp  3 2017年锂电研发用电镜市场分布情况/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/e06873f6-50ed-4630-bfa1-fc0b9a8f7c56.jpg" title="07.jpg.png" alt="07.jpg.png" width="450" height="271"//pp  ....../pp style="text-align: center "  span style="color: rgb(0, 176, 240) "表 锂电研发用电镜不同品牌用户在各地区分布数据表/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/992b6593-5342-4b53-a3a1-7576e9cc118f.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "表 锂电研发用电镜各地区品牌渗透数据表/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/4600a0aa-d5e7-4bb7-b821-27cf760d4d17.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/ca4cc6a1-a049-43df-8b15-078dd12e4357.jpg" title="08.png" alt="08.png" width="450" height="281"//pp  ....../pp 4 2017年锂电研发用电化学工作站市场分布情况/pp ....../pp  strong五 小结/strong/pp  ....../pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/uepic/c0d39595-d1e6-4330-9b2e-037a61e4044c.jpg" title="09.png" alt="09.png" width="600" height="380"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "仪器厂商发布锂电解决方案数量与用户关注度柱状图/span/pp  ....../pp  span style="color: rgb(255, 0, 0) "strong正文目录/strong/span/pp  一 锂电池行业监管体制及相关产业法规政策...... 6/pp  1 锂电池行业监管体制....... 6/pp  2 锂电行业相关法律、法规与政策、标准....... 7/pp  二 锂电及锂电检测发展背景....... 15/pp  1 锂电产业链概况....... 15/pp  2 锂电检测行业概况及对仪器设备的需求....... 15/pp  三 锂电检测仪器设备市场调研分析....... 18/pp  1调研用户样本情况分析....... 18/pp  2 锂电封装后之电池检测系统市场概况....... 20/pp  3 锂电封装后之电池检测系统用户调研分析....... 23/pp  4 锂电封装前之检测仪器市场用户调研....... 25/pp  四 锂电研发用检测仪器设备市场分析....... 27/pp  1近18年发表锂电相关学位论文发布情况及主要发布单位....... 28/pp  2 2017年锂电研发用检测仪器品类分布分析....... 31/pp  3 2017年锂电研发用电镜市场分布情况....... 32/pp  4 2017年锂电研发用电化学工作站市场分布情况....... 36/pp  5 2017年锂电研发用电池性能检测系统市场分布情况....... 38/pp  6 2017年锂电研发用X射线衍射仪(XRD)市场分布情况....... 40/pp  7 2017年锂电研发用热分析仪市场分布情况....... 43/pp  8 2017年锂电研发用X射线光电子能谱仪(XPS)市场分布情况....... 45/pp  9 2017年锂电研发用红外光谱仪市场分布情况....... 46/pp  10 2017年锂电研发用比表面测试仪市场分布情况....... 48/pp  11 2017年锂电研发用拉曼光谱仪市场分布情况....... 49/pp  12 2017年锂电研发用电感耦合等离子体发射光谱仪(ICP)市场分布情况....... 51/pp  五 小结....... 51/pp  1锂电检测研发端:仪器种类繁多,仪器商众,进口品牌独占鳌头....... 52/pp  2锂电检测封装后锂电检测系统端:行业整合加速,品牌意识将加强....... 53/pp  3仪器信息网大数据之锂电检测仪器设备商:锂电产业热潮中,蜂拥关注,拓展尚处摸索期....... 54/p
  • 新产品 | 新一代---高精度大容量动力电池评估系统
    目前,锂离子电池电芯与模组正朝着超大容量,高度集成化方向发展,锂离子电池生产企业,系统集成商和主机厂为了获得更高的体积能量密度,正从100Ah电芯逐渐切换到200Ah以上大容量电芯,此外刀片电池,CTP,CTC技术以及4680型电池的广泛应用,对现有检测设备的测试能力提出新的极限挑战。基于联合Nissan,英国华威大学(WMG)和Element Energy参与由英国商业、能源和工业战略部主导的”英国能源存储实验室”项目,AMETEK(普林斯顿及输力强电化学)公司开发了新一代大容量动力电池评估系统。输力强分析的SI-9300R,是一套针对动力电池开发,测试,诊断和梯次利用分级筛选的一站式多通道电池评估系统,适用于多种不同类型电池的分析,并具有无与伦比的超高精度,测量和快速诊断能力。 动力电池开发-测试-分析-分级 动力电池对高比容量、快速充电和长寿命等特性的需求,使得电池测量面临着更大的挑战。在对动力电池测试设备市场深入分析,对动力电池和电动汽车生产企业需求的充分了解的基础上, Solartron Analytical开发出一整套针对动力电池开发,测量,分析和分级的系统解决方案。 SI-9300R 五大技术特点 1.超大容量电流量程:2A-300A200A连续,300A脉冲并联可达到1000A可以满足各种类型的单体动力电池及模组的测试需要,不仅可以满足传统的18650,21700等类型的圆柱型电池,同时可以满足日益增长的高容量软包及方形动力电池测试。 2.超高精度• 24-位高精度ADCs• 磁通量电流传感器-高精度低热漂移• 高精度电流电压测量:0.03%• 高精度阻抗测试:0.1%, 0.1deg可满足动力电池在开发,测试,分析,分级等复杂应用场景下的差异性测试需求3.超强能力随着对动力电池安全及性能的要求越来越高,如何在满足常规直流测试的前提下,同时实现动力电池电化学性能快速精确测量呢?交直流同步测试,一站式完成,无需切换接线,确保人机安全。集充放电技术,电化学测试技术于一身,可提供如线性循环伏安,线性扫描,恒电流,恒电压,恒功率恒电阻和HPC(高精度库伦法)等全套动力电池测试技术。 每通道标配交流阻抗功能,可完成动力电池在充放电过程中的动态EIS分析,模拟实际工况下的使用状态。每通道标配两个辅助分压功能,可同时同步监测单体电池中正负极或串联模组中的单体及总体响应。快速进行正负极或单体失效分析。 4.全新技术专利数据直存硬盘技术–保证系统的可靠性和数据安全性电网回馈式–多余电能回馈电网不会产生热能损耗体积小,节约空间通道电能共享–放电电能将用于对其他电池充电-优化电能使用,节能环保,减少碳排放。实时数据分析–测试时可进行实时DC/EIS数据分析, 实时诊断电池性能。 5.超快SoH诊断基于9300R强大的充放电仪叠加交流阻抗功能,及灵活开放的软件界面,可开发出动力电池快速SoH(健康状态)诊断功能。全球首个成功案例,输力强通过与英国华威大学合作,使用9300R ,针对NISSAN LEAF的退役动力电池模组开发出SoH专利算法,仅仅3分钟之内即可分析出电池的SoH,且其误差为+/-3%,远高于传统的直流方法。 这为动力电池梯次利用,分级筛选提供了高可靠性,巨大经济性的解决方案。 “工欲善其事,必先利其器“,输力强作为全球超高精度,超高可靠性的动力电池,研发,测试,分析和分级的领先品牌,一直持续致力于为广大科研用户提供最先进的技术解决方案。
  • 手机电池标准引争议 呼吁新标准出台
    近日,工信部发布最新统计数据,截至11月,中国手机用户已超过8.42亿户。随着手机产业规模扩大,用户增多,与之相关的手机电池等配件安全越来越受到用户关注。但对于手机电池检测的标准问题,业内也存在不同说法,并因此引发数次争议。  现行的《蜂窝电话用锂离子电池总规范》从2000年开始实施。相关标准主要参考镍氢、镍镉等电池的有关性能和特性。然而随着手机功能越来越强大,对电池容量的要求也越来越大,业界开始普遍采用容量更大、寿命更长的锂离子电池,镍氢、镍镉电池已经基本退出了手机行业。  现行《蜂窝电话用锂离子电池总规范》中规定,“热冲击试验的温度标准150℃,保持30分钟”。而目前的电池无法承受150℃的标准,尤其是超过1000毫安时的大容量电池只能通过130℃的试验,所以业界针对150℃还是130℃的标准已经争议多年。2007年夏新就因为检测标准不统一,而在电池“热冲击”实验中被指为不合格产品。  “2005年质检总局曾经制定过一个‘新国标’,我们日常检测中都适用这个标准。如果按这个标准进行检测的话,就不会出现不合格的问题。”一位不愿透露姓名的国产手机厂商负责人表示。记者了解到,他所说的“新国标”,是国家质检总局在2005年联合全国碱性蓄电池标准化技术委员会提出的,虽然这项标准一直没有正式公布,但包括工信部下属的泰尔实验室在内的多家官方检测机构,都已经适用这一标准进行产品检测。  类似的问题还有电池过充电,标准中规定单电池加载电压为10V,而“新国标”要求不低于4.6V。行业发展至今,锂离子电池普遍运用到手机已有10年,目前1000毫安时以上容量的电池在手机中已经普遍应用,随着智能手机销量的增长,消费者对大容量电池的需求也更加旺盛。“技术层面已经不存在问题,但我们呼吁国家相关部门召集企业制订符合行业发展水平及实用性的标准,并尽快出台。不要因为标准不统一、不明确造成市场和消费者的误解。”上述国产手机厂商负责人表示。
  • 油价上涨加速新能源行业的发展,该如何保障动力电池的安全性?
    进入2022年之后汽油价格的上涨让很多朋友感到“心痛”调皮的网友甚至戏称要把汽车当废铁卖掉以此来调侃油价上涨的压力油价的急剧上涨势必会推动新能源汽车行业的发展而动力电池作为新能源汽车的主要部件也是汽车的动力来源其安全性是车辆安全性的一个非常重要指标因此对于电池的检测要十分严格!电池安全性测试:flir高速红外热像仪动力电池因其能量密度高,充放电电流大,因此在新能源汽车使用过程中电池在充放电、夏季高温、碰撞刮擦的时候非常容易起火燃烧甚至爆炸,对财产甚至人的生命安全可能造成无可挽回的损失。所以对汽车动力电池的验证和检测过程是极其严苛的,汽车动力电池包会针对挤压、震动、内部加压、喷水、火烧、腐蚀、浸泡等多种极端工况进行实验验证,确保在装车之后的使用过程中动力电池的安全方面可以万无一失。用flir高速热成像记录的电池针刺测试动力电池在验证和检测过程中,任何模拟极端工况造成动力电池破坏的开始都是伴随着热的发生、积聚以及传导,因此使用红外热像仪来监测动力电池的破坏性实验,是一种非常有效地观察、记录、分析动力电池破坏过程的方式。案例分析:电池被刺爆破的瞬间,flir高速热像仪收集各项热数据!电池故障定位:flir t500系列新能源电动汽车在充电的时候会发现其有发热的现象,一般情况下的发热是正常现象,而异常发热很有可能会使电池容量降低、缩短电池寿命,因此我们要定时检测动力电池充电时的状况,确保电池的持久性和安全性!flir t500监测发热的电池元件, 定位接触不良的热点flir t500系列热像仪配备高达464 x 348(161,472)像素的红外分辨率,内置先进的测量工具,借助由强大的msx、ultramax和专利型自适应滤波算法支持的flir vision processing™ 技术,确保生成的热图像具有良好的清晰度,让用户能够更快捷地发现和诊断动力电池中存在的问题。配备标准24˚镜头和微距模式的flir t500系列专业红外热像仪可以轻松达到71µm的光斑尺寸,且无需更换镜头。在此条件下,该系列热像仪能够针对尺寸为1.6mm×0.8mm的电池中的微小零部件进行精确的温度测量以及红外热成像。目前flir t560是我们的主推款产品,备货充足,可“闪电”供货哦~电池研发与设计:flir a系列热像仪动力电池在研发的过程中,需要对产品性能做出快速评估,这样才能够缩短产品开发周期和费用,提高研发效率。电池生产商比亚迪和宁德时代,以及新能源汽车制造商特斯拉、比亚迪等都在动力电池的研发和检测过程中使用了flir热像仪。通过模拟极端工况下对电池的破坏性实验,工程师获得了电池的失效方式、破坏程度以及危险程度,为研发、设计、生产、改进新型电池,以及新能源汽车提供了有效的帮助。某电池的破坏燃烧在动力电池研发和设计的过程中,小菲建议可以选择flir a系列红外热像仪来监控电池研发过程,比如flir a50/a70研发套件,可提供数千个温度测量点,是经济实惠的即用型解决方案,适合用于概念验证电子检测和研发的热成像分析。还有flir a400/a700 系列科研套件,其为研究人员和工程师提供了一套精简的准确温度测量解决方案,搭配自带的flir research studio软件轻松查看、采集和分析数据,可为动力电池的研发快速获取和分析红外测量结果。负荷状态下的电池管理系统在新能源汽车的检测中,还可以利用flir ex系列热像仪对汽车各项设备异常升温点进行检测,其紧凑小巧,可全自动调焦或免调焦,使用起来非常方便;还可以使用flir vs290红外视频内窥镜套件,对汽车中难以触及的狭窄区域进行检测。
  • XPS科技校园行活动-锂硫电池研究
    2020年8月起,岛津开启科技校园行活动,产品经理联合公司多部门共同走进高校用户,与高校学者共同探讨分析仪器应用技术,分享应用成果。 吡啶氮掺杂碳纳米薄片应用于高稳定的锂硫电池中的促进硫释放反应的研究 论文背景介绍 … 锂硫电池因其理论能量密度高而受到人们的高度评价。除了多硫化锂的溶解、锂化过程中的体积膨胀和硫的绝缘性质导致硫利用率低外,最终放电产物锂的不可逆相变被认为是锂硫电池容量下降的主要原因之一。幸运的是,新兴的材料科学和纳米技术使解决上述挑战成为可能,建设碳硫复合材料阴极被认为是一种经济有效的方法。 目前,基体材料的多孔结构和吸附/扩散性能是复合硫阴极设计需要考虑的主要因素。然而,另一个重要的因素,Li2S的激活,却经常被忽略。最终放电产物Li2S的不可逆相变是导致锂电池容量下降的主要原因之一。 在本文研究中,作者开发了一种高效的螯合方法来合成具有可控浓度和可调氮结构的高度多孔N掺杂碳材料,基于吡啶氮N掺杂纳米片的复合硫阴极显示出更好的循环稳定性和更高的容量。其中,制备具有可控氮浓度和可调氮结构的高孔隙氮掺杂碳有挑战性。 使用XPS对合成的多空N掺杂碳材料进行了表面元素化学态的表征。 合成工艺中,使用5克尿素或2、3、3.5、4和5克三聚氰胺合成的氮掺杂碳的名称分别缩写为N5U-C或N2M-C,N3M-C,N3.5M-C,N4M-C和N5M-C。 使用XPS分析这6个样品的化学成分,谱图显示由C、N、O组成。XPS谱图显示,N5U-C和N3.5M-C的元素组成相似,有利于比较不同氮结构在Li-S电池中的工作机理。N5U-C、N3.5M-C和其他4个样品的高分辨率N1s谱可以分为吡啶N(≈ 398.4 eV)、吡咯N(≈ 399.8 eV)和石墨化N(≈ 401.5 eV)三个不同的峰。显然,N5U-C的主要掺杂结构是吡咯基N,N3.5M-C的主要结构为吡啶N。高分辨率C1 s谱图证明了碳氮键(285.8 eV)的存在,被认为可以提高LiPSs的捕获能力。 结果表明,通过改变氮源的类型和用量,可以实现氮浓度和氮结构的隧道化。 作者:袁华栋 浙江工业大学
  • 超百亿市场:动力电池回收布局进行时
    p 在新能源汽车产业繁荣发展的同时,动力电池回收利用问题也已成为业内关注的焦点。无论是从环境保护还是资源最大化利用角度而言,动力电池回收利用都已是箭在弦上,而动力电池回收利用也在逐渐彰显其利用价值。国内机构预测,废旧电池所创造的回收市场规模在2018年将超过52.87亿元,2020年将超过100亿元。/pp  动力电池规模化退役时限渐行渐近。按照新能源汽车的使用周期和我国新能源汽车的市场化进程,今年将是新能源汽车动力电池大规模报废回收布局窗口。/pp  近年来,我国新能源汽车产业发展一直在稳步提升。据统计,2017年我国新能源汽车销量达77.7万辆,截至当年累计保有量约180万辆。而逐渐扩大的新能源汽车体系背后,动力电池报废回收再利用等方面的需求也随之加大。估算显示,动力电池“退役潮”今年将开始爆发,如按70%实施梯次利用计算,2020年将有约6万吨废旧电池等待处理。目前国内的动力电池主要是锂离子电池,其成分中的正极材料有可能造成重金属污染。/pp  在此背景下,我国有关动力蓄电池回收利用的政策不断出台。七部门印发《新能源汽车动力蓄电池回收利用管理暂行办法》,强调落实生产者责任延伸制度,要求汽车生产企业承担动力蓄电池回收的主体责任。随即,工信部公布的《新能源汽车动力蓄电池回收利用溯源管理暂行规定》明确,对动力蓄电池生产、销售、使用、报废、回收、利用等全过程进行信息采集。业内预测,随着相关技术的不断突破,政策发布速度将加快,预计相关标准也将在2018年发布。/pp  一边是蜂拥而至的批量报废,一边是尚处起步的新兴领域,动力电池回收将历经怎样的考验?由于体积大、成分复杂,动力电池回收再利用面临诸多限制和较高技术门槛。诚如电池类型、电池容量和电压平台均存在不小的差异,这是动力电池梯次利用面临的第一道坎,因此如何科学评估退役电池也成为决定电池“去哪儿”的第一关。同时我国没有出台动力电池的统一标准,要大范围集中利用还有困难。/pp  除了技术难题外,在多位业内人士看来,动力电池回收问题的焦点在于谁来收、怎么收及采用何种模式回收都不确定。当前倡导退役动力电池先梯次利用再报废回收的原则,并且要求整车企业作为动力电池回收主体,承担动力电池回收责任。而在回收模式上,因“退役潮”暂未大规模到来,不少企业面临盈利难题,短期内仍难实现规模效应。/pp  尽管起步艰难,前景却被业内普遍看好。甚至有机构预测,动力电池回收市场将形成百亿元新“风口”。这也是目前除了车企、电池企业、原材料回收企业,资本也大举进军该领域的原因,他们也在谋求这一领域的新机遇。迄今,新能源汽车动力电池的梯次利用和回收利用有望根据适用场景依次展开,新能源汽车产业链企业已经积极布局电池回收利用领域。/pp  其中,部分车企选择以合作的形式,联手其他公司共同推进国内动力电池回收再利用等相关事项。长安、比亚迪、银隆新能源等16家整车及电池企业与动力电池回收利用大户中国铁塔公司达成合作,解决退役动力电池回收再利用等问题。除了整车企业,电池生产企业也对此进行了积极探索,宁德时代、中航锂电、比克电池、国轩高科等企业都建立了电池回收网络,开始布局动力电池回收业务。/pp  截至目前,仅有少数车企开展了相关布局。相对于即将进入市场的报废动力电池总量来说,仍然是“杯水车薪”,总体而言,回收主体还处于缺位状态。因而,不论是市场规模还是处理技术都需要时间来完善。但业界一种普遍的观点是,控制退役电池的品质和安全是梯次利用技术的难点,必须研发相关检测技术和设备,才能准确判断退役电池能否进入梯次利用市场,并确定应用场景。/p
  • 如何延长动力电池的寿命?FLIR红外热像仪提供专业“秘籍”
    新能源汽车动力电池系统属于高压部件,会影响整车安全性及可靠性。动力电池用于带动车辆电动机,还包括起步、照明、点火等功能,所以提前诊断故障及处理十分重要。为了保障动力电池的安全、稳定、高效运行,在研发、设计、生产和使用的过程中,都要进行严格的检测。FLIR红外热像仪,陪伴动力电池从研究到使用的整个流程,为新能源汽车提供了有效的帮助!研发监控:电池热滥用工况试验电池在批量生产前,要在实验室经过无数次的滥用试验,以确保各个指标的合格,也可以预料新能源汽车出现事故时,所能引起的后果。位于印第安纳州纽伯里的电池创新中心(BIC),曾使用FLIR高速红外热像仪监测电池针刺测试全过程,从而了解到电池极限温度。通过FLIR热成像仪,工程师不仅可以很容易看到在滥用测试时电池外部发生的情况,还可以看到内部发生的情况,以及热量的变化情况。生产监控:查看电池组装防止“热失控”大多数电动汽车的电池模块和电池组在组装时会使用具有一定电量的电池,当各个电池模块连接时,电流将开始在组件之间流动。这种电流会导致电池或模块的温度升高,温度过高会引起“热失控”,从而导致电池损坏甚至爆炸。如果生产商使用FLIR A系列热像仪实时监控组装过程,就能及时发现异常升温情况,发出警报可避免这种情况的出现!点击图片,查看案例详情出厂监控:提高动力电池的合格率新能源汽车电池组由多个电池串联叠置组成。一个典型的电池组大约有96个电池,当电池之间存在不正确的机械连接时,就可能导致高电阻、电源损失甚至电池起火。选择FLIR固定安装式热像仪可用于排查出由不良或松动的电气连接引起的电阻增加而引起的温度升高,及时揪出故障电池,从而保障出厂电池的质量,提高产品合格率!使用监控:监控电动游艇保安全真实案例:通过马耳他海事安全调查局(MSIU)对停泊在意大利奥尔比亚的MY Siempre游艇火灾的报告显示,促使游艇所有者更愿意选用FLIR连续状态和安全监控用红外热像仪,来连续监控各种设施的温度状况,可及时发出预警,避免游艇火灾的发生!点击图片,查看案例详情伪事故监测:锂电池失效性测试如何全方位地测试锂电池的失效性呢?国内某车辆检测研究院测试的方法是将锂电池安装在加热板上,然后进行充放电实验。通常电池加热到100多度时就会失效,有的电池向外喷射气体及液体;有的起火燃烧;有的甚至会发生爆炸。所以,在测试过程中,快速、直观地检测电池的最高温度是重中之重。点击图片,查看案例详情新能源汽车各个部件的研发与质量控制新能源汽车制造厂及其供应商在其产品研发和质量控制过程中,使用FLIR自动化在线式热像仪对汽车的各个部件进行研发与实验检测,包括三电系统、车身设计、轮胎耐久性实验、安全气囊、车灯研发、转向盘加热等,最大限度保证汽车组件的可靠性,实现整车质量的提升。点击图片,查看案例详情消防安全:定期检测电池状况电动汽车充电起火已造成多起严重火灾事故,甚至包括Tata、TESLA及OLA等巨头亦无法幸免。新能源电动汽车在充电的时候会发现其有发热的现象,一般情况下的发热是正常现象,而异常发热很有可能会使电池容量降低、缩短电池寿命,因此我们要定时检测动力电池充电时的状况,确保电池的持久性和安全性!
  • 可用于稳定一创纪录高容量锂离子电池性能的潜在材料
    p  strong美国西北大学的研究人员发现了可稳定创纪录高储电量电池性能的新方法。/strong/pp style="text-align: center "img title="1-1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/e211e33e-7d72-40e5-911f-ee1ef1fbcc48.jpg"//pp style="text-align: center "电池正极结构示意图,红色为锂,绿色为氧,紫色为锰,深蓝色为铬,浅蓝色为钒。(来源:美国西北大学)/pp  在锂锰氧化物正极基础之上,这一创新可以使span style="color: rgb(255, 0, 0) "智能手机/span和span style="color: rgb(255, 0, 0) "电动汽车/span的电量增加至span style="color: rgb(255, 0, 0) "两倍/span以上。/pp  “span style="color: rgb(31, 73, 125) "i这一电池电极已达到某一有记载最高的过渡金属氧化物基电极的容量。它的容量已超过你现用手机或电脑的两倍。/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) "i美国西北大学McCormick工程学院,材料科学与工程专业Jerome B. Cohen教授Christopher Wolverton/i/span”/i/span/pp  span style="color: rgb(31, 73, 125) "i“这种电极的高容量表明其在用于电动车辆锂离子电池的目标上有了巨大提升。”/i/spanChristopher补充道。/pp  这一研究已于5月18日在科学发展杂志上在线报道。/pp  锂离子电池以在正负极间往复迁移锂离子的方式而工作。正极使用含有锂离子、过渡金属和氧的化合物制取。过渡金属,通常为钴,当锂离子在正负极间来回迁移时有效地储存和释放电能。正极容量因而受到参与反应的过渡金属中的电子数量的限制。/pp  一个法国研究团队于2016年首次鉴别出大容量锂锰氧化物的性能。span style="color: rgb(32, 88, 103) "strong通过使用成本更低的锰替代传统用的钴,研究人员开发出一个成本更低廉且具有之前两倍容量的电极。/strong/span但它也并非完美无瑕。strongspan style="color: rgb(32, 88, 103) "由于电池性能在头两个循环过程中会大大削减,科学家们认为它无法应用于市场。与此同时,他们并未完全理解电池性能衰退及其拥有大容量的化学根源。/span/strong/pp  在绘出一个综合的,原子间相接的正极图像之后,Wolverton的团队发现了材料具备高性能背后的原因:span style="color: rgb(255, 0, 0) "strong它驱使氧参与到反应过程中来。通过使用氧及过渡金属来储存与释放电能,电池具有了更大的容量来储存及利用更多的锂。/strong/span/pp  随后,西北大学的团队将他们的研发重点转向如何稳定电池性能并阻止它的迅速衰减。/pp  span style="color: rgb(31, 73, 125) "i“通过充电过程理论的辅助,我们运用高速计算彻底检索元素周期表,以寻找合金化该含有其它元素化合物的方法,从而去增强电池的性能。/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "i文章共同第一作者,Wolverton 实验室的前博士生Zhenpeng Yao”/i/span/pp  strongspan style="color: rgb(255, 0, 0) "计算鉴别出两种可能有效的元素:钒和铬。研究团队预估将锂锰氧化物与其中的一种混合将会产生可维持正极无与伦比高性能的稳定化合物。随后,Wolverton和他的搭档将在研究室中对这些理论上的化合物进行实验检测。/span/strong/pp  该研究作为电化学能源科学中心,这一由美国能源部科学局资助的能源前沿研究中心的一部分,受到了其基础能源科学项目(项目编码:DE-AC02-06CH11357)的支持。哈佛大学的博士后研究人员Yao,与麻省理工学院的博士后研究人员Soo Kim,均为Wolverton实验室的前成员,并作为文章的共同第一作者。/p
  • 破记录,纯硅全固态电池!华人科学家孟颖、陈政Science​最新成果!
    硅负极商业化应用的瓶颈硅负极具有极高的理论比容量(>3500 mAh/g)、较低的充放电电压平台(0.5 V vs. Li+/Li)以及非常丰富的自然储量等优势,被认为是下一代高能量密度锂离子电池最具发展潜力的负极材料之一。然而,在实际应用中,硅负极面临着一个迄今尚未解决的技术瓶颈,即较差的循环稳定性。特别是硅基全电池,其循环性能往往不超过100圈,这主要归功于硅负极的本征缺陷:1)硅负极在嵌锂和脱锂过程中会发生较大的体积变化(300%),极易导致硅颗粒的破裂和粉化,以及与集流体的剥离;2)由于Li-Si 合金的高反应性,会导致固体电解质界面膜(solid electrolyte interphase, SEI)的不断破裂和重新生成,造成电解液和活性锂的持续消耗,最终造成硅负极的容量快速衰减。针对硅负极存在的问题和挑战,科学家们开发了许多先进的改性策略来缓解容量衰减,如纳米结构设计、探索新型聚合物粘结剂、电解液改性、不同的预锂化策略和硅/石墨复合等等。尽管这些策略均在一定程度上提高了硅负极的循环性能,但是没有一种策略能够同时解决上述所有问题,硅负极的商业化应用之路仍然任重道远。突破瓶颈,新型微硅全固态电池稳定循环500次,容量保持率高达80%2021年9月24日,加州大学圣地亚哥分校的华人美女科学家孟颖(Ying Shirley Meng)教授团队提出了一种全新的方案可以一次性解决硅负极面临的上述问题,即通过使用硫化物固态电解质以及不含碳的99.9 wt.%微硅(μSi)阳极的组合,组装了一种高性能的纯硅阳极全固态电池(ASSB)。所制备的全电池不仅能够在高面电流密度(5 mA cm-2)和宽温度范围内(-20 ℃到80℃)稳定运行,还可以提供高达 11 mAh cm-2 (2890 mAh g-1) 的面积容量。研究表明,该电池可以在5 mA cm-2的电流密度下稳定循环 500 次,容量保持率高达 80% ,且平均库伦效率高达99.9% ,是迄今为止报道的微硅全电池的最佳性能。如此优异的性能主要归因于微硅阳极和硫化物电解质之间理想的界面特性以及锂硅合金独特的化学机械行为,从而彻底解决了硅负极存在的连续的界面生长和不可逆的锂损失等问题。上述研究成果以“Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes”为题,发表在国际顶级期刊《Science》上。文章的第一作者是加州大学圣地亚哥分校的Darren H. S. Tan博士,通讯作者是孟颖(Ying Shirley Meng)教授和Zheng Chen教授。值得注意的是,早在2017年,Darren H. S. Tan、ERIK A. WU、ZHENG CHEN 和Ying Shirley Meng便共同创立了一家专注于全固态电池技术的初创公司 UNIGRID Battery。其中,Darren H. S. Tan为公司的CEO,ERIK A. WU担任公司的CTO,ZHENG CHEN 和Ying Shirley Meng教授担任公司的技术顾问。目前,该公司已经获得文章所开发的技术的使用权。微硅全固态电池的设计思路和创新之处1)选择基于硫化物的固态电解质(SSE)可以保证优异的界面特性。由于硅负极的稳定性问题主要来自阳极与液体电解质的界面,因此作者选择使用SSE,因为它能够形成稳定且钝化的 SEI。同时,与传统的液态电池结构不同,SSE 不渗透多孔 μSi 电极(图 1),且将SSE 和 μSi 电极之间的界面接触面积减少到二维(2D)平面。在 μSi 锂化后,尽管体积膨胀,但二维平面仍被保留,从而防止了新的SEI界面产生。2)制备出由99.9 wt% μSi 和0.1%PVDF组成的纯硅阳极,去除阳极中碳导电添加剂,可以减少SSE的分解和不必要的副反应。碳的消除显着减少了与固体电解质的界面接触(和不需要的副反应),避免了液体电解质通常发生的连续容量损失。同时,如图 1 所示,负极 μSi 颗粒保持彼此直接的离子 (Li+) 和电子 (e-) 接触,确保了 Li+ 的快速扩散和 e- 在整个电极中的传输,不受任何电子绝缘成分(如 SEI 或电解质)的阻碍。鉴于此,作者使用由 99.9 wt% μSi 组成的 μSi 电极、硫化物SSE和锂镍钴锰氧化物 (NCM811)组装了一种纯硅μSi||SSE|| NCM811全固态电池。在锂化过程中,在 μSi 和 SSE 之间形成钝化 SEI,然后在界面附近对 μSi 颗粒进行锂化。然后,高反应性的 Li-Si 与其附近的 Si 颗粒发生反应。反应在整个电极中传播,形成致密的 Li-Si 层。值得注意的是,得益于 Li-Si 和 μSi 颗粒之间的直接离子和电子接触,在 μSi 锂化过程中,Li-Si 的形成可以在整个电极中传播(图 1)。而且,这个过程是高度可逆的,不需要任何过量的锂。图 1.ASSB 全电池中 99.9 wt% μSi 电极的示意图。无碳纯硅阳极减少了SSE的分解,Si-SSE界面的钝化阻止了不必要的副反应为了证明消除阳极中碳的重要性,以及 Si-SSE 界面的钝化性质,研究人员制备了两种有20wt%碳添加剂和无碳添加剂的硅阳极,并表征和量化了 SSE 分解产生的 SEI 产物。CV曲线显示,不含碳的电池表现出大约 3.5 V 的初始电压平台,这是 μSi||NCM811 全电池的典型特征(图2A)。然而,含 20 wt % 碳的电池却在2.5 V 处出现电压平台,这说明在达到 3.5 V 以上的锂化电位前发生了SSE 电化学分解。XRD表征同样证实,在使用碳的电池中,大部分原始 SSE 的衍射信号不再存在(图2B),表明电解质严重分解。XPS分析进一步表明,碳的存在会导致更大程度的 SSE 分解。与不含碳的电极(图 2C 中间)相比,含碳电极(图 2C,底部)的 PS43-硫代磷酸盐单元信号的峰值强度下降幅度更大。因此,与传统的含碳电极相比,无碳电极将大大减少 SSE 分解,从而提高电池的首次循环库仑效率 (CE%) 和倍率性能。图 2. Si-SSE 界面SI成分的表征。同时,研究人员还采用滴定气相色谱 (TGC) 来量化 SEI 增长并确定其钝化和稳定性质。通过组装五个 μSi||SSE||NCM811 全电池,并分别进行 1 到 5 次循环(图 3A)发现:所有电池的首次库伦效率均大约76%,第二圈就迅速上升至 99%。结果表明,在第一次循环后,发现形成的 SEI 总量为电池容量的 11.7%,而在第二次循环中这一数量略有增加至 12.4%。在随后的循环中,发现累积的 SEI 和活性 Li+ 均保持稳定且相对不变,表明界面钝化可防止 Li-Si 与电解质之间发生不必要的连续反应。为了评估延长循环期间的 SEI 稳定性,研究人员制造了一个 Li-Si 对称电池,并在 5 mA cm-2 下循环,每次循环使用 2 mAh cm-2 的容量(图 3C)。电化学阻抗谱 (EIS) 测量发现阻抗在 200 次循环后保持稳定(图 3D),证实 SEI 在本质上是钝化的。图 3. SEI 增长的量化效应。(A) 滴定气相色谱中使用的全电池的电压曲线, (B) Li-Si 和 SEI 相对于电池容量的相对含量, (C) Li-Si 对称电池的电压曲线,和 (D) EIS奈奎斯特图。Li-Si 和 SSE独特的化学和机械性能保证了良好的界面接触为了可视化 Li-Si 的形态演变,研究人员采用聚焦离子束SEM技术表征了在原始、锂化和脱锂状态下三个单独的 μSi 电极的横截面形貌:1)在原始状态下(图 4A),观察到离散的 μSi 颗粒(2 至 5 μm),压延后电极孔隙率为 40%;2) 锂化后(图 4B),电极变得致密,大部分孔隙在原始 μSi 颗粒之间消失。此外,单独的 μSi 颗粒之间的边界已经完全消失,整个电极已成为相互连接的致密锂硅合金;3)脱锂后(图 4C),μSi 电极并没有恢复到其原始的紧密微粒结构,而是形成了大颗粒,且大颗粒之间存在空隙。能量色散 X 射线 (EDS) 成像证实孔隙确实是空隙,没有证据表明每个脱锂颗粒之间存在 SEI 或 SSE。相比之下,由于整个颗粒表面形成了SEI,液态体系下的锂化 μSi 颗粒不会合并并保持分离。为了进一步量化循环过程中的厚度增长和孔隙率变化,研究人员还制备了质量负载约为 3.8 mg cm-2 的 μSi 电极,并在充电和放电状态下测量了它们的厚度。在原始状态下,电极的厚度为约 27 μm,在锂化为 Li3.35Si 后,厚度增加到约 55 μm,脱锂后厚度达到约 40 μm,计算出的孔隙率为约 30%。与原始 40% 相比,脱锂状态下的孔隙率较低。尽管厚度和孔隙率变化相对较大,但在多次循环后观察到相似的形态和厚度,SSE 层和脱锂的 Li-Si 的多孔结构之间仍然保持良好的接触(图 4C)。这表明 Li-Si 和 SSE 的机械性能在保持界面完整性以及沿 2D 界面保持与阳极的接触方面起着至关重要的作用。图 4. 99.9 wt % 微硅负极的锂化和脱锂的可视化。(A) μSi 电极的原始多孔微结构, (B) 锂化后具有致密互连 Li-Si 结构, (C) 脱离后形成大而致密的 Si 颗粒,且颗粒之间形成空隙。纯硅阳极全电池性能得益于上述的 组合优势,该μSi||SSE|| NCM811全固态电池可以实现高达 5 mA cm-2 的电流密度、-20° 和 80°C 之间的工作温度范围以及高达 11 mAh cm-2 (2890 mAh g-1) 的面积容量(图5)。同时μSi||SSE|| NCM811在 5 mA cm-2 下进行500 次循环后仍然可提供 80% 的容量保持率,证明了纯微硅阳极全固态电池具有优异的循环稳定性。图 5. μSi||SSE||NCM811 全固态电池性能:(A) 高电流密度测试, (B) 宽温度范围测试, (C) 高面积容量测试, (D) 室温下的循环寿命。总体而言,这种方法为解决μSi阳极存在的基本界面和性能问题提供了新的解决方案,对推进硅负极商业化具有重要的意义。作者简介通讯作者:孟颖 (Ying Shirley Meng)孟颖教授在中国杭州出生并长大,在新加坡接受高等教育。2005 年获得新加坡-麻省理工学院联盟微纳米系统高级材料博士学位,随后进入麻省理工学院从事博士后研究。2011 年获得美国国家科学基金会 (NSF) CAREER 奖,2013 年获得加州大学圣地亚哥分校校长跨学科合作奖,2014 年巴斯夫和大众汽车电化学科学奖,电化学学会 CW Tobias 青年研究员奖(2016 年),IUMRS-新加坡青年科学家研究奖(2017 年)、国际储能与创新联盟(ICESI)首届青年职业奖(2018 年)、美国化学学会 ACS 应用材料与界面青年研究员奖(2018 年)和 Blavatnik 国家奖(2018 年)入围者。孟颖教授目前是加州大学圣地亚哥分校 (UCSD) 纳米工程和材料科学教授, Zable Endowed 能源技术讲座教授,UCSD可持续电力和能源中心 (http://spec.ucsd.edu) 的创始主任。主要从事能源转换与储存设备(锂离子电池,锂金属电池,锂空气电池,钠离子电池,全固态电池,太阳能电池)的研究,在Science,Nature,Nature Energy等学术期刊上总共发表论文500余篇,h-index 86,被引用25400余次。参考文献:Tan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021). DOI: 10.1126/science.abg7217
  • “百亿级”动力电池回收市场现状与前景
    p  /pp  新能源汽车的高速发展让全球电动汽车的保有量达到了一个新的里程碑,据相关数据显示,到2017年为止,全球电动汽车保有量(包括纯电动汽车和插电式混合动力汽车)超过300万辆,相比2016年增长了57%。/pp  作为新能源汽车“心脏”的动力电池配套量自然也逐年增加,而目前市场上流通的新能源汽车的质保期多以5年或8万公里为标准。若照此标准计算,2009年至2012年推广的新能源汽车或行驶里程接近8万公里车辆的动力电池已经到了需要更换的标准。对此,业内人士估计,2018年累计废旧动力电池报废量将超17万吨,从中回收的镍、钴、锰等金属将为电池原材料市场创造超53亿元的价值。同时,动力电池退役数量每年将以几何级的数量增长,在巨大商机的背后也隐藏着一场新的环保隐患。/pp  在今年3月,工信部等七部委联合发布了《新能源汽车动力蓄电池回收利用管理暂行办法》,办法中提到目前需探索形成动力电池回收利用创新的商业模式,并且支持国内企业结合各地区试点工作开展动力电池梯次利用示范工程。目前国内动力电池回收产业尚未成熟,电池回收量少、回收网络不健全、环保风险大等因素也成为了动力电池回收行业发展路上最大的阻碍。/pp  眼下,废旧动力电池回收利用一般分为两种形式:梯次利用和拆解利用。梯次利用主要针对电池容量降低使得电池无法使电动车正常运行,但是电池本身没有报废,仍可以在别的途径继续使用的电池。/pp  拆解利用则是将电池进行资源化处理,回收有利用价值的再生资源,如钴、锂等有价金属。通过对废弃动力电池进行拆解利用,将镍、钴、锂等有价金属进行提取进行循环再利用,能够在一定程度规避上游原材料稀缺和价格波动风险,降低电池生产成本。业内相关人士告诉笔者,动力电池电浆中的镍、钴、锂纯度相比起矿石和矿物盐中提取的原料纯度会高出许多,这也是动力电池拆解利用市场的获利根本原因。/pp  目前,国内新能源汽车多数搭载三元锂电池和磷酸铁锂电池,对于磷酸铁锂电池,由于不含有钴等贵重金属,回收拆解经济效益不高,但其循环性能较优,因此磷酸铁锂电池倾向适用于梯次利用。对于三元电池,因其含有钴贵金属元素,循环性能欠佳,因此三元电池倾向于拆解利用。相关数据显示,根据现有技术水准,金属钴回收率为95%,碳酸锂回收率85%,同时参考当前金属钴及碳酸锂价格走势,预计至2020年电池回收市场空间可达107亿元,至2024年可提升至245亿元。/pp  除了巨额利润之外,国家出台的一系列制度也正在逐渐引导动力电池回收行业形成其商业模式,第三方机构、材料企业和电池企业也不断将目光转向这杯“羹”。/pp  目前,第三方回收企业以格林美、湖南邦普、赣州豪鹏等企业为代表,依靠着其专业的回收技术、设备、资质和渠道等优势迈入了动力电池回收领域 锂电材料企业方面则以华友钴业、赣锋锂业和寒锐钴业等矿业巨头为代表,在近年先后斥巨资设立了各自的锂电池循环回收利用项目 动力电池企业方面由于动力电池回收责任制的设立,动力电池企业也渐渐成为电池回收商业模式的“主角”,如CATL巨资打造“电池生产-销售-回收”产业环、比亚迪与格林美合作构建“电池再造”的循环体系、国轩高科自建“动力电池回收利用试用流水线”等。/pp  可见,随着国家政策、产业链下游需求、上游原材料价格激增、动力电池回收市场高利润等因素的推动,国内未来几年必将形成一个多元化、激烈极其竞争的动力电池回收市场,各大企业或只有及时开发和制定出各自独有的商业模式,才能尝到这“百亿级市场”的甜头。/pp  /ppbr//p
  • 仪器介绍丨抗生素检测仪的应用场合与检测项目
    仪器介绍丨抗生素检测仪的应用场合与检测项目  山东云唐智能科技有限公司生产的抗生素残留检测仪可现场快速检测抗生素类残留、兽药残留、激素类残留等,该仪器广泛应用于食药监局、卫生监督部门、农业部门、商业系统养殖场、屠宰场、食品肉产品深加工企业、畜牧兽医、检验检疫部门、食品生产企业、农副产品批发市场、农业生产基地、超市、餐厅、高教院校、食堂等单位部门对食品中的不安全指标进行监测使用。点击查看详细信息→→→https://www.instrument.com.cn/netshow/C535413.htm  仪器主要技术性能  1、仪器采用10.1英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,性能更强。  2、仪器功能包括:胶体金检测模块、数字化管理模块、无线通讯模块等,可以满足同一软件下实现所有检测项目的检测,并在同一窗口展示检测结果。  3.一体化台式快检设备,采用交直流两用供电方式,可连接车载电源,配备6ah大容量充电锂电池,可以满足现场及流动检测使用的需求。  4、系统自带数据集成模块,设备首页自动统计检测数据包含:周检测数据、月检测数据,全部检测总数量,均包含检测总数,合格数,不合格数,以及相关柱形分析图,对各项检测数据清晰掌握,无需电脑查询,更加快捷直观。  5、仪器具有任务预设模块,可在样品送检前提前预设样品名称、检测指标、送检单位等信息,样品送检时一键调取保存信息,检测更加方便快捷。  更多细节展示  胶体金检测模块:直插式自动扫描方式,可实时显示金标卡实时图像,系统自动分析并呈现出CT曲线图,CT线自动识别,无需手动调整,完成检测后自动退出检测卡。检测结果判定线可修改,对照值标定值可保存,断电不丢失数据。  设备的应用好处  抗生素检测仪的使用为食品安全领域带来了突破性的进展。它的快速、准确和便携的特点使得抗生素残留物的检测变得更加高效和方便,为保障食品的安全和消费者的健康提供了有力的支持。同时,它也在农业生产中起到了重要的作用,帮助农户合理使用抗生素和化学药物,减少对环境和人体健康的潜在风险。  产品参数解析  1、主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。  2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。  3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。  4、光源亮度自动调节与校准  5、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。。  6、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。  7、不间断进样,连续检测  8、样本编号自动累加。  9、检测项目可扩充。  10、检测结果可批量打印,批量上传。  11、检测结果为Excel表格,连接电脑即可拷贝。  12、检测结果存储容量20万条  13、标准USB接口,免驱动安装。  14、固件可升级
  • 我国科学家在水溶液电解质的锂离子电池研究方面取得重要进展
    在国家自然科学重点项目、杰出青年基金等资助下,复旦大学新能源研究院夏永姚教授课题组多年来一直从事锂离子嵌入化合物在水溶液电解质中特性的研究,近期在这一领域取得重要进展,最新研究成果发表在《Nature Chemistry》上(2010, 2,760-765)。  众所周知,相对于目前广泛用于摄像机、笔记本电脑、移动电话等移动通讯器件的有机电解质溶液锂离子电池,水溶液电解质的锂离子电池具有价格低廉,无环境污染,高安全性能等优点而倍受人们关注,但其循环性能差的问题一直未能解决。夏永姚研究组从理论和实验上证实,在水和氧气存在下,作为电池负极的电极材料会被氧气氧化是造成水系锂离子电池容量衰减的主要原因。他们通过消除氧(电池密封)和选择合适的电极材料,大幅提高了电池的循环性能。这种电池将来可望用于风力、太阳能发电等能量储存、智能电网峰谷调荷和短距离的电动公交车等。该研究成果发表后,得到包括Chemistry World,科技日报、科学时报等媒介的报道。
  • 精邦LIMS促进新能源电池检测实验室智能化管理方向发展
    作为战略性新兴行业之一,中国新能源汽车近年来发展迅速。数据显示,2018年中国新能源汽车产销量突破100万辆,产销规模连续三年位居全球第一。但同时,新能源汽车自燃、电池寿命短等与动力电池安全有关的事件和问题的频发为新能源汽车行业敲响了警钟。什么是新能源汽车检测试室呢?为什么要建设新能源汽车检测实验室呢?新能源电池实验不同于家用电器和汽车电子产品实验,由于电池的危险性,电池测试过程中可能会产生有害气体、冒烟、明火、爆炸,这些问题可能导致环境空气污染、设备损坏、人员受伤,甚至对人身财产造成巨大损失。因此,电池试验室的规模大小,场地建设,设备购置,以及日常的运营成本都需要引起重视。实验室主要分为电池性能测试评价、环境可靠性测试评价、安全滥用性测试评价三大平台,其测试能力覆盖动力电池单体、模组、Pack(电池包)及系统级别的各项产品,可满足多项国际标准及中国国家标准。通常具有完整测试能力的电池检测实验室 ,可规划成如下功能分区:1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等。2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合试验台。3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等。4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水侵泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、温度箱等。另一方面,为此建立的电池安全检测标准有: 国际标准(IEC)、欧盟标准(EN)、中国标准(GB QC)、美国标准(SAE UL)、日本标准(JIS),针对新能源汽车应用较为广泛的标准是UN 38.3、QC 743、SAND 2005-3123、UL 2580、ISO 12405。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。新能源汽车检测实验室为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况应运而生。通过电池安全检测标准的新能源汽车才能在安全上有长久的保障,相信未来新能源汽车的安全性会得到大大改善。精邦实验室信息化管理平台针对未来汽车实验室科学管理,开发出汽车行业LIMS系统软件,该系统是一款以ISO/IEC17025、ISO9000等精细化管理标准为基础,采用现代化的电子信息技术和数据库系统,专业为汽车企业实验室和质量检验平台设计方案的综合型业务管理系统。汽车实验室精邦LIMS系统关键程序模块:1. 样品管理:是检测中心的关键工作之一。精邦LIMS针对取样、来样加工、试样、留样、余样等差异环节特征的样品,提供样品接收、确认、前处理、派发、传递、检测、保存、处理、退回等全程管理功能模块运用条形码标签建立样品的唯一性界定和查询精准定位。2. 检测管理,具备分配任务、分配管理、结果备案、评价、审核等检测流程管理功能模块,支持数值、字段、文档、报表、图谱等各类结果类别。可设置计算方法、判定指标值等业务流程标准,根据实验仪器接口功能模块,同时导入初始检测统计数据运用电子签章技术性审核结果,保证网络安全;3. 设备维护: 提供设备台账,申购采购,应用记录,维修保养,计量检测,出现故障检修,借还备案,状态控制,销毁报废,利用率统计分析等管理功能模块。较大底限地提升实验室设备等设施自动化技术管理能力;4. 规范管理,为实验室应用的规范丰富多彩提供数字化管理,便捷相关技术人员免费在线查看,并对规范方式的追踪,非标准方式的制订、确认和应用推行有效管理。5. 人员管理针对检测中心的各类技术人员,精邦LIMS提供健全的人员管理方案如技术人员基本资料、人事关系、专业能力确认、资质确认、授权管理、工作记录、监管、评价、学习培训、绩效考评等6. 物资管理精邦LIMS提供实验室物资管理,合格供应商管理,耗材申购、采购、项目验收、入库管理,领用备案,库存量智能提醒(有效期限、库存值)等管理功能模块建立耗材的标准化管理,动态性管控并有效控制耗材使用量,减少检测成本费7. 质量控制精邦LIMS针对实验室內部审核、管理评审、能力验证、实验室间核对、外部审查(如资质证书评定、实验室认可)等相关品质活动,提供了活动计划、活动变更、活动执行、不良整顿 等质量管理和质量控制功能模块8. 数据分析精邦LIMS针对各检测业务的对象、业务流程阶段、业务流程状态智能生成月表、年报表或阶段性可视化报表,同时强大功能的报表设计构思器,允许客户自定义报表格式和內容来源,定期进行或实时生成各类的可视化图形报表,为业务流程分析、市场拓展、领导层管理决策填报数据支持9. 流程优化精邦LIMS嵌入工作流引擎,可为检测中心量身定做定制最贴切的工作流程,将信息流(凭证)、商品流(样品)、审批流(每日任务)有机化学融合成一体化,建立检测业务流程的全程动态性管理, 能够迅速响应检测中心业务流程飞速发展的需求精邦LIMS系统面向生产制造产业,技术专业的质量检验实验室LIMS系统软件提升规范性与智能化管理能力,全方位覆盖了实验室和质量检验平台的经营范围,为汽车产品质量检验的每个阶段提供全方位、精细的管理解决方法,并将各部门日常任务工作中有机地相结合,形成个完整性、统一性的业务流程管理平台,全部工作都能够使用LIMS协调工作。10.智能数据分析 数据智能分析中心主要是针对系统已经存在的检测数据进行多维度、多层级的单向、多项目组合分析管理。通过数据分析能够把数据之间的逻辑关系清晰的展现出来,以满足企业对历史检测数据的纵向、横向分析,以便为产品研发、生产、采购提供科学的建议,同时有效的减低产品研发成本、提高产品的质量、缩短研发周期。精邦数据智能分析中心通过可视化的展现可以快速、精准的对检测数据进行分析,图表与图形智能的展现,帮助实验室从历史检测数据中提取数据进行综合排优比对与建议。◆ 精邦数据智能分析中心不仅仅是前端报表,还包括元数据管理与数据中心(数据仓库);◆ 不仅仅是数据可视化,不仅仅是敏捷数据智能分析中心,精邦 BI 独有的多维动态分析与智能钻取轻松实现智能分析;◆精邦 BI 开发平台,包括数据转换管理(ETL)、OLAP 数据库设计、元数据管理、WEB多维报表设计、多维动态分析、智能钻取、智能报告、数据填报、移动应用、微信应用、单点登陆等 10 余项功能,专注企业级应用,更符合第一方实验室的信息化现状及需求;通过数据匹配组成最佳产品体系分析,形成研发数据库为研发部提供数据支撑; 根据不同的测试安排和类型,数据分析的功能分为数据对比和 SPC 监控两部分。 1 数据对比主要是同一测试项目可直接较 ,如客户需 60 度 7 天后 厚度膨胀(内阻、 厚度膨胀(内阻、 OCV OCV、恢复容量剩余处理方式一样),可以将不同阶段,不同规格的试验单,在一表中展示(busbar 形式,或客户要求的其他),并可以直接导出比较图表、原始数据。 2 SPC 监控主要针对品质稳定性监控,比如量产电池的厚度、容量、倍率、存储、循环 150 次的结果,做长期跟踪,并依据时间、批次,给出某一关键指标的趋势变化图,若出现超规格情况,可依据严重程度,系统自动给出预警(比如邮件、短信)通知,可设置不同层级(工程师、经理、总监、副总、总经理等); 3 数据对比 选择测试用例及需要进行对比的测试任务进行数据可视化对比分析,包括不限于倍率、循环、存储、高低温测试,可针对不同项目不同关注点进行比较,比如容量(保持率)、厚度(增长)、放电能力、内阻增加等各个方面进行展示。对于原始的充放电数据(放电数据),循环数据,都可以直接叠加比较。 该软件可以查询相关的功能,并设置了重置,可以一次性对比几个测试,选择重置,可以清空这些对比信息,主要的对比包括如下几点: 4 倍率放电测试记录在不同倍率(0.1C,0.2C,0.5C,1C,1.5C,2C)下,电芯的放电曲线
  • 动力电池安全性能检测实验室场地建设规划条件
    p  近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg"//ppstrongspan style="color: rgb(31, 73, 125) " span style="color: rgb(84, 141, 212) " span style="color: rgb(0, 112, 192) "一、(规划)锂电池实验室设计依据及设备部署:/span/span/span/strong/pp  strong1、依据标准规范:/strong/pp  满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。/pp  实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。/pp  1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。/pp  strong2、(规划)锂电池实验室设备布局:/strong/pp  在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区:/pp  1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。/pp  2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。/pp  3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。/pp  4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。/pp  5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。/pp  strong注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。/strong/pp  span style="color: rgb(0, 112, 192) "strong二、(规划)锂电池实验室测试程序:/strong/span/pp  strong1. 电池材料检测/strong/pp  电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。/pp style="text-align: center "img title="2.png" src="http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg"//pp  工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。/pp  strong2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="3.png" src="http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg"//pp  strong3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。/ppimg title="4.png" src="http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg"//pp  strong4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测/strong/pp  电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="5.png" src="http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg"//pp  strong5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险:/strong/pp  1)着火、燃烧、爆炸/pp  磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。/pp  电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。/pp  2)有毒气体的排放/pp  由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。/pp  3)漏液的污染性/pp  电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。/pp  span style="color: rgb(0, 112, 192) "strong三、(规划)锂电池实验室——通风系统特点:/strong/span/pp  1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。/pp  2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。/pp  3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。/pp  4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。/pp  5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。/pp  6、实验室的通风换气次数取每小时10~20次。/pp  7、支管内风速取6~12m/s,干管内风速取8~14 m/s。/pp  8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。/pp  strongspan style="color: rgb(0, 112, 192) "四、(规划)锂电池实验室——内部装饰/span/strong/pp  strong1、天花/strong/pp  (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。/pp  (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。/pp  (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。/pp  (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。/pp  (5)洁净室采用彩钢板天花板。/pp  strong2、地面/strong/pp  (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。/pp  (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。/pp  (3)在装修过程中,抛光砖的铺设最适合于办公场所。/pp  (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。/pp  (5)洗涤室利用原有地面,节约成本。/pp  (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。/pp  strong3、墙体/strong/pp  (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。/pp  (2)采用其他墙体全部贴500*500抛光砖/pp  (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。/pp  (4)采用玻璃间隔的设计使得开放式实验成为一种可能。/pp  (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。/pp  strong4、门窗/strong/pp  (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。/pp  (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。/pp  span style="color: rgb(0, 112, 192) "strong四、(建议)锂电池实验室注意事项:/strong/span/pp  实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。/pp  strong1.爆炸前预警:/strong由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。/pp  strong2.爆炸过程控制:/strong电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。/pp  strong3.污染物可回收:/strong污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。/pp  strong4.试验室防爆系统:/strong房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。/pp  strong5.每个防爆室配置有防爆灯,视频监控探头。/strong视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。/pp  strong6.充放电区:/strong设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。/pp  strong7.消防要求:/strong在人员操作区和样品区设置有消防烟感探头。/pp  strong8.视频监控要求:/strong共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。/pp  strong9.实验室噪音:/strong实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。/pp  strong10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。/strong设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。/pp  strongspan style="color: rgb(0, 112, 192) "五、(规划)锂电池实验室水电要求:/span/strong/pp  1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /pp  2.独立地线:接地电阻≤4Ω /pp  3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /pp  4.排水:配管连接直径Φ100。/pp  span style="color: rgb(0, 112, 192) "strong六、(设计)锂电池实验室测量系统精度:/strong/span/pp  1.所以控制值的准确度应在以下范围内/pp  2.电压:± 1.0% /pp  3.电流:± 1.0% /pp  4.温度: ± 2℃ /pp  5.时间:± 1.0% /pp  6.尺寸:± 1.0% /pp  7.容量:± 1.0%。/pp  strongspan style="color: rgb(0, 112, 192) "七、锂电池防爆实验室典型设计应用:/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "img title="6.png" src="http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg"//span/strong/pp style="text-align: center "(锂电池实验室效果图)/pp style="text-align: center "img title="7.png" src="http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg"//pp style="text-align: center "(测试系统综合交钥匙工程)/pp style="text-align: center "img title="8.png" src="http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg"//pp style="text-align: center "(电池整体实验室正面)/pp style="text-align: center "img title="9.png" src="http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg"//pp style="text-align: center "(电池整体实验室背面)/pp  strong作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器)/strong/p
  • 锂离子电池产业政策研究及检测标准分析
    p  随着锂离子电池应用领域的不断扩大,其安全问题现已经成为了各方关注的焦点。/pp  本文简要汇总了我国锂电池工业产业最新发展趋势及世界主要发达国家对于锂电池工业产业的政策倾斜,提出了我国锂电池产业发展的建议 研究了锂离子电池安全性检测标准现状及存在的问题,提出了应对策略和建议。/pp  strong1 我国锂电池工业产业现状/strong/pp  锂离子电池作为新能源产品具有显著的优势,世界各国开始将锂电池工业作为引领未来能源发展的支持产业之一。/pp  目前, 中国已成为仅次于日本的锂离子电池生产大国。 据不完全统计,中国锂离子电池的产量已经占到全球的 70%,达到了 16 亿只,市场价值近 50 亿美元,其中 70%以上出口。 我国锂电池行业已经从传统的小型电子产品,逐步向电动自行车、电动汽车等领域拓展。/pp  电动汽车的核心技术是动力电池。 从新能源汽车产业链上来看, 因有色金属资源具有极强的地域性,上游原材料企业将会非常集中 对核心技术的掌控,使中游电池厂商将成为行业发展最大的受益者 而整车厂商在这场行业盛宴中利润微薄。 目前,新能源汽车价格居高不下, 原因之一是动力电池组成本太高,如一辆造价 26 万元的丰田普锐斯,电池成本在 8 万元左右,占了整车成本的三分之一。 因此,国内电动汽车厂商纷纷加大投入, 用于新型锂电池材料、制作工艺、技术的开发研究,期待尽快研制出成本较低的动力锂电池组,以降低电动汽车整车成本,加快行业发展。/pp  动力锂离子电池的主要材料有:正/负极材料、电解液和隔膜。 随着国家对该行业的重视和投入力度的加大, 越来越多新的公司加入到动力电池的研发和生产中来,未来市场格局将面临改变。 以电解液为例进行分析: 电解液是锂离子电池四大关键材料之一,号称锂电池的“血液”,是锂离子电池获得高电压、高比能等性能的保证。 电解液占锂离子电池成本的 12%左右,毛利率接近 40%。 锂离子电池对电解液要求比较高,但目前用量却很少。 比如一块手机电池只用 3 g, 比重很小,2 000 t 电解液可供生产 6 亿块手机电池。/pp  目前全球锂电池电解液市场供求基本平衡,主要是靠现有锂电池市场。 但是,汽车动力电池对电解液的需求量较大, 一辆车需要 40 kg 左右。 预计到2012 年,新能源车的年产量将达到 100 万辆,按每辆新能源汽车电池电解液 40 kg 计算,100 万辆混合动力汽车将带动 4 万吨电解液的需求。/pp  目前国内电池生产商电解液的配套已基本实现国产化,生产企业主要有国泰华荣化工、杉杉股份、珠海赛纬电子、天津金牛、汕头金光、广州天赐等 10余家,年生产能力都在千吨级以上,可满足我国目前的锂电池生产需要,并有部分出口。总体来看, 我国锂离子电池的生产尚处于起步时期。 由于国家对于锂离子电池工业的政策支持,我国不少电池厂以及一些有实力的企业集团均看到了中国锂离子电池的潜在市场, 正准备或已不惜投巨资生产理离子电池, 这些作法将会进一步促进我国锂离子电池工业产业的发展 。/pp strong 2 主要发达国家锂电池工业产业投资政策/strong/pp  strong2.1 /strong美国美国锂电暂任主席、 美国布罗德普公司董事长瑞夫· 布罗德博士,在第四届华南锂电高层论坛发表的演讲中提到了最近美国政府提出的新经济刺激计划。 根据布罗德博士介绍,当前美国政府正前所未有地加大财政力度支持工业界发展。 在美国政府的财政资助计划中, 有 20 亿美金是用于电池工业的发展 其中约 12 亿美金,主要用在做锂电池和锂电池芯的发展方面。 瑞夫· 布罗德博士称,在这一整个工业界绝无仅有的资助行动当中, 锂电池行业被放在重点当中,是“重中之重”。/pp  2009 年 8 月份,奥巴马总统签署了一项为 48 个电池有关的项目提供资金援助的计划, 这次援助计划的目的是为电动/混合动力汽车开发更有效的电池和电力驱动系统,援助的总金额达 24 亿美元,推出后将极大刺激中西部地区的发展。 奥巴马总统宣称美国政府需要的是“面向未来的汽车,以及用来驱动这种汽车的技术”。/pp  虽然这一揽子援助计划主要面向的是汽车电池及电力驱动系统, 但面向消费领域的电池技术也能从中受益。 因为几乎所有的消费电子类产品如电动工具等都非常需要电力强劲、 能持续工作数日的电池来供电, 而现有的产品则只能提供几个小时的电力供应。/pp strong 2.2 /strong德国2009 年年初, 德国政府拿出 5 亿欧元用于资助电动汽车的研发。 其中资助锂离子电池的研发费用为 5 900 万欧元。在 2007 年制定的“高科技战略”中,德国政府已将电动汽车的关键技术———锂离子电池作为攻坚项目。/pp  为了完成这一项目,产业界五大巨头巴斯夫、博世、EVONIK、LiTec、 大众和科学界与应用界的 60 家单位结合,组建了锂离子电池“创新联盟”:企业界出资 3.6 亿欧元,联邦科研部资助 6 000 万欧元。据悉,以上还仅仅是联邦一级的研发投入。 为了抢占市场先机,各州政府也有一批资金的投入。 例如北威州的投入就达 6 000 万欧元。北威州之所以舍得投入,除了想成为“电动汽车的模范区域”之外,更重要的是想让 “北威州的轿车工业尽快生产世界领先的电动汽车”。/pp  strong2.3 /strong日本日本经济产业省近日披露,日本力争在 2010 年将新型锂离子电池用于下一代电动汽车。 日本日立制作所宣称, 将投资 200 亿日元至 300 亿日元,到2015 年将目前面向混合动力车生产的锂电池产能提高约 70 倍。 据称,日立将通过加大投资和扩大其位于茨城县东海事业所的产能, 尽快实现大容量新型锂离子电池的量产, 产品将主要向美国通用汽车公司提供。/pp  2009 年 5 月 15 日,丰田、日产汽车公司及松下电器公司等相关企业签署协议, 合力开发统一规格的新一代汽车锂电池,并计划在 2 年内实现量产。 东芝公司决定, 斥资 500 亿日元开发电动汽车用的锂离子电池, 这种高效动力电池将于两年内进入半商品化生产,计划在 2011 年之前将高性能锂离子电池增至适于不同特性的 3 个种类, 即除了目前的普通型之外, 还将分别开发支持混合动力车和电动汽车等高输出功率型以及高能源密度型的锂离子电池。普及电动汽车的一个关键问题是需要建立足够的电力补充设施。 为此,东京电力公司宣布,将带头参与有关的基础建设, 明年在首都 圈先建 200 多个充电站,3 年后增加将到 1 000 个以上。 日本各大汽车公司也积极响应、参与有关研究和工程,热切期盼“脱石油”时代能尽早来到日本。 目前,东京电力公司已经成功开发出了大型快速充电器, 每 10 min 完成充电,所能行驶的路程是 60 km,充电时间大大缩短,进一步加快了日本普及使用电动车的步伐。据日本汽车研究所预计,按照现在混合动力车的普及程度推算,到 2020 年,日本国内的混合动力车将达到约 360 万辆。 如果高性能锂离子电池得到普及,混合动力车有可能进一步达到 720 万辆的水平。/pp  strong2.4 对我国锂电池工业产业发展的建议/strong/pp  1) 加强科研投入力度。 国家应该将高能量密度、 高效率新型锂离子电池的研发提升到国家级战略高度,制定和实施有关新型锂离子电池材料、生产工艺、制造技术的“973”等高层次课题专项,吸引广大锂离子电池科学家及相关企事业单位广泛参与。/pp  2) 明确产业方向,理顺管理职能。国家应该将锂离子电池工业产业作为国家“十二五”期间重点支柱的基础产业之一,加大投入力度,同时,成立专门管理锂离子电池工业产业的行业协会组织, 统一管理和协调我国锂离子电池工业产业的发展。/pp  3) 提高锂离子电池工业知识产权。 目前锂离子电池材料、 制作工艺等关键技术的知识产权均属国外所有,要想在锂离子电池工业产业中占据高地,必须研发创造属于我国知识产权的关键技术。/pp  4) 加快锂离子电池标准化体系建设。 提高我国锂离子电池工业标准化水平, 使锂离子电池标准体系建设适应快速发展的锂离子电池工业, 积极应该国际社会技术性贸易壁垒 。3 锂电池安全性检测标准简介及问题分析/pp  3strong.1 锂电池安全性检测主要标准/strong/ppstrong/strong  锂离子电池由于存在燃烧、爆炸等安全性隐患,国际社会针对锂离子电池安全性制定了一系列的规章、制度以及国际标准、行业标准等。我国锂离子电池产品检验主要依据的相关标准主要有:联合国《关于危险货物运输建议书》第 38.3条款锂电 池 运 输 安 全 性 能 测 试 (UN 38.3) GB-T8897.1-2003 《原电池 第 1 部分 总则》 GB 8897.2-2005 《原电池 第 2 部分 外形尺寸和技术要求》 GB8897.4-2008 《原电池 第 4 部分 锂电池的安全要求》 GB/T 18287-2000 《蜂窝电话用锂离子电池总规范》 GB/T 19521.11-2005《锂电池组危险货物危险特性检验安全规范》 GB/Z 18333.1-2001 《电动道路车辆用锂离子蓄电池》 YD 1268.1-2003 《移动通信手持 机 锂 电 池 的 安 全 要 求 和 试 验 方 法 》 QC/T 743-2006 《电动汽车用锂离子蓄电池》 QB/T 2502-2000《锂离子蓄电池总规范》 SN/T 1414.3-2004 《进出口蓄电池安全检验方法 第 3 部分 锂离子蓄电池》 SJ/T11169-1998 《锂电池标准》。/pp  现行的国际主要锂离子电池安全性检测标准主要有:IEC 62133:2002 《含碱性或其他非酸性电解质的蓄电池和蓄电池组-便携式密封蓄电池和蓄电池组的安全性要求》 IEC 62281:2004《运输中锂原电池和电池组及 锂 蓄 电 池 和 电 池 组 的 安 全 》 UL 1642:2006《锂电池》 IEEE 1625:2004《便携式计算机用蓄电池标准》 IEEE 1725:2006 《蜂窝电话用蓄电池标准》。/pp  strong3.2 锂电池安全性检测标准分析/strong/pp  目前, 国内外锂离子电池安全性检测标准基本都是符合性检测型标准,即标准规定短路、过充电、强制放电、振动、冲击、挤压、针刺、重物撞击、跌落、温度试验、低气压等电气、机械和环境方面的试验项目, 用以模拟电池在正常使用以及可预见的误用时的应用情况,确保产品在这些情况下的安全性。 这种标准形式具有判据清晰、操作性好的优点,只需针对成品电池进行试验室检测即可判定是否符合标准,缺点则是无法全面有效地保障产品的质量与安全性, 因为安全性作为产品性能的一个组成方面是在产品设计与制造过程中形成并确立的, 现行标准的考核对象与此存在偏差, 此外安全试验是破坏性检验,只能采用抽样检测的方式进行,这种方法本身也存在一定的风险概率。/pp  对比国内外标准可见, 我国锂电池安全标准欠缺整体规划。 一方面国家与行业两级标准间,以及各类行业标准间缺乏协调,标准对象存在一定的交叉、重复,另一方面标准没有统一的指导思想,既span style="color: rgb(127, 127, 127) "/span有单纯的安全标准,又有包括电性能、环境适用性能及安全性能等全部要求的总规范性质的标准。 相比较而言,国外标准在工作思路及相互间关系上则较为统一、协调,如 IEC 针对产品安全性单独制定标准,其他标准如产品总规范规定电性能等其他要求, 安全要求直接引用安全标准 IEEE 则针对不同用途分别制定包括安全要求在内的产品总规范。/pp  strong4 关于锂离子电池安全性检测标准工作的建议/strong/pp  工业和信息化部已经成立了电子产品安全标准工作组,准备开展锂离子电池安全标准工作,并提出了制定便携式锂离子电池安全标准的工作目标 。 结合我国锂离子电池工业产业发展及安全标准现状,建议我国锂离子电池安全性检测标准制定工作注意以下几个方面:/pp  strong1) 建立统一的锂离子电池安全性检测国家标准。/strong 考虑到锂离子电池的生产、营销、使用等遍及国民经济各领域, 应以最高级别的国家标准的形式制定统一的锂离子电池安全性检测标准。 为保持安全标准的统一, 应将现行国家与行业标准的技术内容以包含或整合的方式加以替代 将来随着锂离子电池的发展,通过标准修订的方式更新其安全要求,不再另行制定其他安全标准。/pp  strong2) 统一的安全标准应该与锂离子电池的产品情况相适应。/strong 目前锂离子电池大致划分为能量型和功率型两大类,两类产品在材料、设计结构等方面存在一定差异,在相同的安全前提下,其标准的试验方法乃至要求都可能不同。便携式电池属于能量型, 包括手机、 笔记本电脑、 数码相机和摄像机用锂离子电池等, 而电动工具、 电动自行车和电动汽车用锂离子电池可归为功率型, 建议分别制定能量型和功率型锂离子电池安全标准。制定锂离子电池安全标准时要掌握 “适度”原则, 即标准应寻求并建立产品安全与性能的最佳结合点,因为安全性越好往往意味着电性能越差。/pp  strong3) 锂离子电池安全性检测标准内容应涵盖产品设计及制造工艺,并建立相应的监管认证机制/strong。绝大多数锂离子电池的安全问题是由现行安全标准难于模拟的内部短路缺陷所引起的, 因此应将锂离子电池的设计和制造过程全面纳入质量控制体系方能有效避免产品内部短路的隐患。 新制定的安全性检测标准应将其内容拓展至产品上游的设计与生产环节。 建议国家质检部门在依据新的安全性标准开展锂离子电池强制安全认证工作时, 除最终产品安全性检测外,还应对包括产品设计与工艺评审、制造过程监督等内容进行认证, 并参照质量体系认证做法,建立定期复查与随机抽检的制度,如此将可确保标准内容最大限度地得以贯彻与实施。/pp  span style="color: rgb(127, 127, 127) "i文章摘自/i/spanspan style="color: rgb(127, 127, 127) "ispan style="font-size: 16px "Chinese Battery Industry(电池工业),第16卷第3期2011年6月/span/i/spani style="font-size: 16px color: rgb(127, 127, 127) "(魏宇锋,张继东,费旭东,吴晓红,陈 相,上海出入境检验检疫局)/i/p
  • 食品检测仪器设备-食品检测仪器设备-食品检测仪器设备
    食品检测仪器设备-食品检测仪器设备-食品检测仪器设备【霍尔德】多功能食品安全检测仪为集成化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。 一、食品检测仪器设备应用范围: 多功能食品安全检测仪可现场快速检测非食用化学物质、滥用食品添加剂、农药残留、兽药残留、重金属、营养强化剂、抗生素类残留、激素类残留、真菌毒素类残留、化学类残留等200多项目的快速定性定量检测。如甲醛、二氧化硫、吊白块、过氧化氢、亚硝酸盐、蛋白质、蜂蜜果糖和葡萄糖、蜂蜜中蔗糖、过氧化值、酸价、白酒中的杂醇油、铅、汞砷、锡、镉、硼砂、食盐中亚铁氰化钾、食盐中碘、过氧化苯甲酰、红色色素(胭脂红、苋菜红)、黄色色素(柠檬黄、日落黄)、蓝色色素(亮蓝)、食醋的总酸、酱油的总酸、苯甲酸钠、甜蜜素、木耳中硫酸镁、芝麻油纯度、油脂丙二醛、溴酸钾、余氯、谷氨酸钠、挥发性盐基氮、山梨酸、糖精钠、饮料中维C、酱油氨基酸态氮、肉制品酸价、水中氰化物、水发产品中组胺、蜂蜜定粉酶、蜂蜜酸度、罗丹明B、三聚氰胺、盐酸克伦特罗、沙丁胺醇、莱克多巴胺、四环素类、硝基呋喃类、磺胺类、沙星类、氯霉素、孔雀石绿磺胺类、猪蓝耳病毒、猪瘟病毒、黄曲霉毒素B1、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒、鸡禽流感等快速检测。 二、食品检测仪器设备产品性能: 1、安卓智能操作系统,采用更加效率高和人性化操作,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速上传数据。 2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复功能。 3、新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。 4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 5、一体化主机,包含食品安全检测模块、多通道农药残留检测模块、胶体金免疫层析检测模块。 6、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 7、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。 8、食品安全检测仪CT线自动识别,无需手动调整。 9、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。 10、样品处理简单省力,整体操作快速、安全、便捷。 11、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。 12、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 13、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。 14、仪器具有重新校准、锁定、恢复出厂设置功能。 15、结果判定线可修改,对照值标定值可保存,断电不丢失数据。 16、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。 三、食品检测仪器设备主要参数: 1、主控芯片采用ARMCortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。 4、四波长冷光源,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专业光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。 5、光源亮度自动调节与校准 6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。 7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、不间断进样,连续检测 9、样本编号自动累加。 10、检测项目可扩充。 11、检测结果可批量打印,批量上传。 12、检测结果为Excel表格,连接电脑即可拷贝。 13、检测结果存储容量20万条 14、支持U盘存储,标准USB接口,免驱动安装。 15、固件可升级 16、仪器尺寸:43×35×20cm,主机净重:5.1kg
  • 邀请函 | 锂电池样品制样前处理及表征整体解决方案交流会
    锂电池样品制样前处理及表征整体解决方案交流会会议时间2023年2月28日 09:00-15:30地址:广东省广州市番禺区番禺大道北555号天安科技园总部6号楼2栋会议内容 锂离子电池是一种新型和高性能的电池,广泛应用于汽车、电力储能、备用电源、电动工具和模型等领域。锂离子电池产业已被列入国家“863计划”和“793计划”,是政府大力支持和发展的新能源产业之一。 作为新兴的绿色优质能源,锂离子电池的制造工艺要求非常高,关键材料的性能对电池的整体性能(如电池容量、安全性能、使用寿命等)影响非常巨大,需要完善的质量监控手段严格控制制造过程。本次会议将针对锂离子电池的制样前处理和表征手段进行方案介绍和案例分享,希望本次交流能给大家提供有益的帮助!会议议程抽奖礼品一等奖:京东购物卡500元 1名二等奖:电动牙刷套装 5名三等奖:保温杯 10名*凡参会者均可获得精美笔记本+英雄金属中性笔+鼠标垫各一份,本次会议免费参与,提供午餐,其他自理。识别上方二维码报名参会
  • 喷雾干燥技术在锂离子电池中的应用分享
    《求是》杂志于 5 月 16 日发表习总书记重要文章《正确认识和把握我国发展重大理论和实践问题》。文章指出要正确认识和把握碳达峰碳中和,须知绿色低碳发展是一个复杂工程和长期任务;需要狠抓绿色低碳技术攻关,加快先进技术推广应用,深入推动能源革命,增加新能源消纳能力,加快建设能源强国。而锂离子作为新兴的储能物质,具备其能量密度高、安全性好、无记忆效应、循环寿命长等优点,被广泛应用于各种可穿戴电子设备和电动汽车等领域。近年来新能源汽车已成为全球锂电产业高速发展的主要动力。此外,电化学储能作为电网储能技术的重要组成部分,在削峰填谷、新能源并网和电力系统辅助服务等大政方针下扮演着愈发重要的角色。当前市场迫切需要开发出更高能量密度、更低成本、循环稳定性更好和可逆比容量更高且安全的锂离子电池,满足行业应用的同时实现社会绿色可持续发展。为方便大家了解关于锂离子材料的最新研究动态,我们给大家分享几篇相关综述和一些利用喷雾干燥技术开展的研究应用,供大家参考学习。代表综述1Particuology (2022): Balancing particle properties for practical lithium-ion batteries作为最先进的二次电池,锂离子电池在索尼公司于 20 世纪 90 年代初推出以锂钴为负极材料电池后,一直占据着消费电子市场。锂离子电池高效运行的关键在于富锂离子的电解质与电极中活性材料颗粒之间的有效接触。电极材料的颗粒特性影响锂离子的扩散路径、扩散阻力、与活性材料的接触面积、电化学性能和电池的能量密度。为了使锂离子电池达到满意的综合性能,不仅要注重材料的改性,而且要平衡电极材料颗粒的性能。因此,本文将从三个方面分析颗粒特性对电池性能的影响:颗粒尺寸、颗粒分布和颗粒形状。深入了解粒子对电极和电池的作用和机理,将有助于开发和制造实用的锂电池。锂电池本质上是锂离子在两个电极之间反复循环 “流动”,锂离子会不断地被脱嵌和嵌入到正负极材料中,这是电极材料颗粒与电解液接触和反应的过程。因此,锂化和脱锂过程受电极材料颗粒特性的影响。由于电极中活性物质粒子的高比表面积,以及传输和化学转化中多层次结构的多样性,平衡粒子的性能成为实际 LIBs 技术突破的关键。颗粒的形态和尺寸影响锂离子的扩散路径、扩散阻力以及活性材料与电解质的接触面积,进而影响 LIBs 的电化学性能。较小的粒子通常具有较短的从粒子内部到表面的路径,而球形粒子可以提供较大的接触面积并提高电极中的活性物质含量。同时,颗粒大小分布对电极材料颗粒的堆积有直接影响,这种空间效应会影响锂离子的脱嵌,从而影响电池性能。下图作者使用八卦图的方式,展示平衡理念,非常形象的描述了离子颗粒特性的几个因素。更多内容请阅读原文献内容。2Materials (2018): Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries锂离子、钠离子及相关电池中电极材料的性能不仅取决于其化学成分,还取决于其微观结构。因此,合成方法的选择至关重要的。在各种各样的合成或成型路线中,报道了越来越多的组合方法,喷雾干燥作为一种多功能工具脱颖而出,提供了扩大到工业级别的潜力。在这篇文章中,概述了迅速增加的文献研究数量,包括溶液的喷雾干燥和悬浮液的喷雾干燥。并特别关注待喷雾干燥的溶液/悬浮液配方的化学方面;也考虑了喷雾干燥前驱体的后处理以及由此产生的颗粒形态。在表格中引用了 300 多种出版,其中条目根据最终化合物组成、起始材料、碳来源等列出。作者建议,关于电极材料的合成,应从早期阶段考虑将结果从克级的实验室规模转移到公斤级工业规模的可能性。这在电极材料研究中尤其重要,因为在从小批量到大批量或连续生产时,由于传热问题,微观结构通常是放大时受影响最大的特性之一。容易放大是喷雾干燥的优势之一,这是一种通用且强大的技术,其在食品和制药行业已成为经典的方法,最近已扩展到电极材料领域的研究。下图来源原文献中:喷雾干燥发表文献&喷雾干燥原理介绍喷雾干燥微观颗粒形态喷雾干燥流程示意图3Drying Technology (2017): Laboratory spray drying of materials for batteries, lasers, and bioceramics喷雾干燥技术是一种适用于各种先进材料规模化生产的工艺。广泛应用于材料、化学、食品和制药工业领域。该方法具有连续性、可扩展性、成本低、易于产业化等特点。它提供了生成具有特殊结构的功能性粉末的能力,例如复合材料、核壳或封装颗粒等。最近的实验室规模研究集中在开发:用于下一代锂离子电池的纳米/微结构电极材料,具有增强的电池容量和优异的电化学性能透明材料的激光陶瓷生物陶瓷,如具有改善生物活性和治疗效果的骨替代物、牙科植入物和胶连剂本文综述了这些应用领域的研究进展,并强调了实验室规模的喷雾干燥在相应的先进材料加工路线中的重要性。BUCHI 经典实验室喷雾干燥仪 B-290 示意图不同电极材料合成路线(点击查看大图)相关研究应用介绍1Dalton Trans(2021): Spray-dried assembly of 3D N,P-Co-doped graphene microspheres embedded with core-shell CoP/MoP@C nanoparticles for enhanced lithium-ion storage通讯作者:上海交通大学何雨石教授具有精确控制工程的过渡金属磷化物(TMP)材料的微/纳米结构调控的新型合成方法的发展对于实现其在电池中的实际应用至关重要。本研究采用喷雾干燥技术构建了三维(3D)N,P 共掺杂石墨烯(G-NP)微球,微球内嵌 CoP@C 和 MoP@C 两种核-壳型纳米粒子(CoP@C ⊂ G-NP, MoP@C ⊂ G-NP)。这种有意义的设计显示了微观结构 G-NP 和核壳 CoP@C/MoP@C 纳米粒子系统的化学性质之间的密切相关性,这有助于锂离子电池(LIBs)中的负极性能。所获得的结构具有通过共掺杂杂原子(N,P)制备的稳定的多孔 G-NP 骨架,该骨架具有三维导电高速通道,允许离子和电子快速通过并保持材料的整体结构完整性。内部碳壳可有效抑制体积变化并防止 CoP/MoP 纳米颗粒聚集,提供出色的机械稳定性。因此,CoP@C ⊂ G-NP 和 MoP@C ⊂ G-NP 复合材料在 0.1 A g-1 的电流密度下具有 823.6 和 602.9 mAh g-1 的高比容量;在 1 A g-1 下,500 次和 800 次循环后,比容量为 438 和 301mAh g-1,表现出及其出色的循环稳定性。下面为原文献截图:制备工艺示意图(点击查看大图)电化学性能测试(点击查看大图)2Adv. Energy Mater. (2018): Spray-Dried Mesoporous Mixed Cu-Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Li-Ion Battery Anodes本研究开发了剥离石墨烯包裹的介孔氧化铜镍(CNO)纳米复合材料,采用快速喷雾干燥技术,通过石墨烯纳米片(GNSs)均匀包裹了分层介孔 CNO 纳米砌块,其协同效应有效地保护了电活性物质免受充放电过程引起的体积变化影响。由于脱落的石墨烯片的笼化效应产生的有趣结构和形态特征,这些 3D/2D CNO@GNS 纳米复合微球有望作为高性能锂离子电池的负极材料。它们表现出前所未有的电化学行为,如高可逆比容量(在低 0.1 mA g-1 下的初始放电容量超过 1700 mAh g-1; 在 1 和 5 mA g-1 下,800 次和 1300 次循环后,比容量为 850 和 730 mAh g-1;在超过 2000 次循环 10 mA g-1 的非常高的电流密度下,比容量仍高于 400 mAh g-1),出色的库伦效率和长期稳定性(超过 3000 次循环,容量保持率>55%)。与通过传统技术制备的大多数过渡金属氧化物和纳米复合材料相比,其在高电流密度下是显著的。这种简单而创新的材料设计对开发用于锂离子电池或其他储能设备的先进转换材料具有启发意义。(点击查看大图)(点击查看大图)(点击查看大图)(点击查看大图)3ACS Appl. Mater. Interfaces (2020): MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid−Electrolyte Interphases on Silicon Nanoparticle Bundles通讯作者:上海交通大学何雨石教授,同济大学杨晓伟教授喷雾干燥技术制备高度稳定的纳米硅负极。硅基材料是下一代锂离子电池理想的负极材料;然而,在充放电过程中,硅的体积变化很大,导致电极断裂和固体不稳定−电解质界面(SEI)层,严重影响其稳定性和库仑效率。新兴的 2D MXene 由于其有趣的表面物理化学特性,在电催化领域得到了广泛的研究。本研究将硅纳米颗粒封装在坚固的微米级 MXene 框架中,其中 MXene 纳米片通过毛细管压缩力作用力下发生预褶皱,以有效缓冲体积变化,另外通过简单的热自交联反应在相邻纳米片之间形成了丰富的共价键(Ti−O−Ti)进一步保证了 MXene 框架相邻薄片的坚固性。这两个因素都稳定了电极结构。此外,在充放电循环时, MXene 纳米片上丰富的氟/F封端基团有助于在框架外原位形成高度紧凑、耐用且机械坚固的富含 LiF 的电解质界面(SEI)层,这不仅抑制了 Si 和有机电解质之间的副反应,还增强了 MXene 框架的结构稳定性。得益于这些优点,本研究所制备的阳极具有高达 1797 mA h/g 的高比容量,并且 500 次循环后,高容量保持率为 86.7%,平均库仑效率为 99.6%。可以说,这项工作为其它具有强烈体积效应的高容量电极材料提供了思路。(点击查看大图)(点击查看大图)(点击查看大图)4Ionics (2021) 27: Green and efficient synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material with outstanding electrochemical performance by spray drying method通讯作者:天津工业大学时志强教授,宁波大学阮殿波教授高镍层状材料由于具有高比容量等优点,已被广泛作用锂离子电池的正极材料。然而,传统的共沉淀法存在生产周期长、污水污染等缺点,因此开发一种高效、环保的合成方法具有重要意义。基于此,本文以醋酸盐为原料,采用喷雾干燥法成功合成了 LiNi0.8Co0.1Mn0.1O2 材料,并研究了喷雾溶液浓度对电化学性能的影响。XRD、SEM 和 EDS 测试结果表明,合成的 LiNi0.8Co0.1Mn0.1O2 材料样品具有层状晶体结构,一次粒子堆积形成二次球形粒子微观结构、组分分布均匀。恒电流充放电测试结果表明,高浓度溶液制备的样品表现出优异的循环性能,初始放电容量为 199.3 mAh g-1,在 2.8-4.3 V 下循环 300 次后容量保持率高达 83%,电流密度为 1C(1C=180 mAh g-1 )。电池制备工艺图(点击查看大图)5Journal of Electroanalytical Chemistry (2019): Silicon@graphene composite prepared by spray–drying method as anode for lithium ion batteries通讯作者:江苏大学刘云建教授本文采用喷雾干燥法(进、出口温度分别为 160℃ 和 110℃)结合低温还原技术制备了硅@石墨烯复合材料作为负极材料。通过改进的 Hummers 方法合成了氧化石墨烯材料,并超声波处理将氧化石墨烯粉末分散到 5% 的乙醇溶液中。并在剧烈搅拌下将纳米硅粉末均匀地分散到氧化石墨烯悬浮液中形成硅@石墨烯复合材料。XRD 结果表明复合材料由硅和石墨烯组成,并经 FT-IR 和拉曼光谱验证。 SEM 和 TEM 结果表明,硅@石墨烯粉末为微米级别的球形颗粒,石墨烯片包裹了纳米硅颗粒。硅@石墨烯复合材料显示出优良的电化学性能,当硅和氧化石墨烯的质量比在 1:4 时,可表现出最佳的电化学性能,在100 mAh g-1 时具有 1298.1 mAh g-1 的高初始充电容量。此外,该样品表现出良好的倍率性能,这表明它是一种很有前途的锂离子电池负极材料。(点击查看大图)(点击查看大图)(点击查看大图)瑞士步琦公司是实验室喷雾干燥领域全球市场领导者,提供纳米至微米级颗粒的完整解决方案,从 1979年推出第一台实验室喷雾干燥仪 B-190 以来,迄今已有 40 多年的历史。凭借其高品质的产品,专业的服务,领先优势的制造工艺技术如压电技术喷雾、红宝石喷嘴冒、专利技术静电涂层分离器和溶剂安全处理惰性循环装置等深受广大客户青睐!如需上面文献资料或更多产品资料信息,欢迎联系我们。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制