当前位置: 仪器信息网 > 行业主题 > >

电池循环充放测试仪

仪器信息网电池循环充放测试仪专题为您提供2024年最新电池循环充放测试仪价格报价、厂家品牌的相关信息, 包括电池循环充放测试仪参数、型号等,不管是国产,还是进口品牌的电池循环充放测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池循环充放测试仪相关的耗材配件、试剂标物,还有电池循环充放测试仪相关的最新资讯、资料,以及电池循环充放测试仪相关的解决方案。

电池循环充放测试仪相关的资讯

  • 可循环充电超万次锰氢气电池问世
    p style="text-indent: 2em "随着可再生能源开发利用规模的不断扩大及智能电网产业的迅速崛起,储能技术的重要性日益凸显。记者7日获悉,由美国斯坦福大学崔屹教授领衔的研究团队介绍了一种可循环充电1万次以上的锰氢气电池,可实现10年以上的稳定性能。该成果发表在《自然· 能源》上。/pp style="text-indent: 2em "据该成果的第一作者、美国斯坦福大学材料科学与工程学院的陈维博士介绍,他们发明的锰氢气电池使用高表面积的碳作为正极集流体,易溶于水的硫酸锰盐作为电解液,由催化剂控制的氢气作为负极。该电池从设计、充放电原理、测试方法和性能上都有别于以往任何水系电池。/pp style="text-indent: 2em "成果显示,锰氢气电池具有非常优异的电化学性能,比如稳定的放电电压1.3伏,高倍率的放电电流100mA/cm2,大于1万次的稳定循环,以及较高的质量能量密度139Wh/kg和体积能量密度210Wh/L。而且,该电池很容易放大用于大规模储能。/pp style="text-indent: 2em "大规模储能是实现可再生能源普及应用的核心技术。现有的大规模储能技术(如抽水储能、压缩空气储能)以及各种蓄能电池(如锂离子电池、钠硫电池、液流电池)等均存在不同的问题,远不能满足大规模储能廉价、安全、高能量密度和高稳定性的要求。崔屹表示:“锰氢气电池的发明将对大规模储能的格局产生重要影响,进一步缓解由传统化石能源带来的严重碳排放和空气污染。”/p
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 国家电动汽车电池及充电系统产业计量测试中心落户光明科学城 光明照耀未来 “超充之城”建设再提速
    日前,记者来到位于光明科学城的国家电动汽车电池及充电系统产业计量测试中心,中心内一派繁忙而有序的工作景象映入眼帘。300台套计量测试装备,可开展500余项计量参数测试,这里集中了最尖端的仪器设备和专业技术人员,他们正致力于推动新能源汽车产业高质量发展。  步入其中,一个大型的环境模拟实验室映入眼帘,这里的温度、湿度甚至气压都可以根据需要精准调控到极寒酷暑等各种极限环境条件。一旁,一辆崭新的电动汽车正在严苛环境下接受考验,技术人员密切监控着车辆电池在高低温循环中的充放电性能表现,以及其对环境变化的响应速度和稳定性。而在另一侧的精密计量区域,一组工程师正利用高精度测量仪器对一块块锂电池模块进行细致入微的检测。  近日,国家市场监督管理总局批准成立国家电动汽车电池及充电系统产业计量测试中心。该中心选址深圳光明,是电动汽车电池及充电系统领域全国唯一的国家级产业计量中心。中心是光明科学城入驻的科研平台之一,在建设期间,围绕电动汽车电池及充电领域深入开展计量测试技术研究,承担国家、省级科研项目27项,制定了国家及地方标准35项,制定国家计量检定规程、规范6项。在电动汽车充电桩远程计量、充电站能耗计量测试、充电桩安全敏感参数计量测试等领域产出一批首创成果,填补行业空白。  落户光明促新能源产业高质量发展  计量测试是产业发展的重要技术基础,与产业变革和技术进步息息相关,作为鼓励类产业被列入国家科技服务业。  为充分发挥计量测试在服务和支撑电动汽车产业发展、提升电动汽车产业核心竞争力方面的作用,国家市场监督管理总局批准深圳市依托深圳市计量质量检测研究院正式成立国家电动汽车电池及充电系统产业计量测试中心(以下简称国家中心)。  为何落户深圳光明?深圳市计量质量检测研究院院长刘铁东告诉记者,国家中心的成立恰逢光明区加快建设世界一流科学城的大好时机,光明科学城是世界级大型开放原始创新策源地、引领高质量发展的中试验证和成果转化基地、深化科技创新体制机制改革前沿阵地,布局建设了一批重大科学基础设施和前沿交叉研究平台,其中包含了国家电动汽车电池及充电系统产业计量测试中心。  光明已成为大湾区重大科技创新载体布局最集中、创新动能汇聚最迅速、综合创新投入力度最大的区域。作为大湾区综合性国家科学中心先行启动区,科学城是光明区最闪亮的名片,2023年光明科学城规划布局的24个重大科技创新载体,在建和运营数达到20个。全社会研发投入首次突破100亿元,占GDP比重达到7.1%,创新动能愈加澎湃。  刘铁东表示,国家中心的成立不仅为光明增添了又一个国家级科技创新平台,也为光明区在新能源汽车、电化学储能、新型电池材料等领域提供国家级一站式的计量测试支撑,将有力促进光明区新能源产业的高质量发展,同时与光明区相关高校、企业、研究机构充分融合,因地制宜发展新质生产力,助推世界一流科学城的建设。  国家中心重点针对产业提质增效和可持续高质量发展中的计量测试难点和需求,构建完备的计量测试体系,提供“全溯源链、全产业链、全寿命周期”并具有前瞻性的计量测试技术服务,着力解决产业当中“测不了、测不全、测不准”的痛点、难点。  标准引领打造“超充服务”新标杆  4月1日起,深圳市正式实施《电动汽车超级充电设备分级评价规范》和《电动汽车集中式公共充电站设计规范》(以下统称“深圳超充标准”),这两项标准是全国首个超充设备分级评价和超级充电站设计的地方标准。  “深圳超充标准”在行业内率先提出“超级充电设备”“全液冷超充设备”等术语定义,并明确超充设备单枪额定功率不低于480kW。光明区发展改革局相关负责人表示,光明区抢抓这一标准带来的市场机遇,认真落实市政府关于建设世界一流 “超充之城”的工作部署,结合新能源汽车产业、超级快速充电技术发展趋势以及城市规划、人口分布等实际情况,重点围绕商业综合体、市政公园、大型景区、公共机构、高铁站、公交场站、高速服务(停车)区合理布局超充站点,满足市民充电需求,同时谋划打造若干光储充检和车网互动一体化示范项目,推动充电设施接入深圳市电力充储放一张网,助力深圳市打造坚强电网。  步入光明区长圳南北停车区的全液冷超充站,一种未来科技气息扑面而来。这处占地广阔的充电站坐落在繁忙的高速公路两侧,犹如一个新能源汽车的能量补给绿洲,镶嵌在快速流动的交通线之中。  这个超充站是全市首座高速服务区全液冷超充站,实现1秒1公里的超快速充电速率,创新的冷却方式确保了即便在高强度连续充电下,充电桩也能保持稳定高效的性能,大大减少了充电过程中的热损耗,为市民提供极速的充电服务,切实缓解市民旅程焦虑。  宽敞舒适的休息区内,司机们一边通过智能屏幕实时查看车辆充电进度,一边感受着这份便捷与科技带来的出行变革。司机陈先生告诉记者,光明科学城不仅追求硬件设施的卓越,更关注用户体验的极致,超充站配备先进的液冷快充技术,只需一杯咖啡的时间,就能让电动汽车“满血复活”。  打造“超充服务”新标杆,截至目前,光明区已建成超充站24座,在建及前期项目15个。2024年,光明区将继续围绕打造世界一流“超充之城”的工作目标,依托光明区停车场资源等,发动充电设施企业投资建设超充站,至2024年底累计达到73座超充站、新增8700个普通充电桩。  绿色发展 “超充之城”跑出加速度  在充满活力与创新精神的光明科学城,一幅描绘未来智慧生活的“超充之城”蓝图正在细腻绘就。  光明区以其前瞻性视野和坚定决心,积极投身于绿色产业的发展,并在此过程中扮演着“超充之城”建设的重要角色,二者相互赋能,共同描绘出一幅可持续发展的未来画卷。  光明区扎实推进超充设施建设,组织华为、星星充电、前海奥特迅、特来电等充电设施行业头部企业研究探讨超充站建设有关要点,形成《超级快速充电设施选址建设有关要求》,指导各街道、各部门完成两批次100余处超充初步选址;组织充电设施行业头部企业与各街道、各部门建立沟通联系渠道,政府部门会同充电设施企业开展选址踏勘、评估工作,促成一批项目合作;定期组织超充建设调度会,协调解决用地性质、租期、用电报装等问题,确保项目顺利推进。  光明区在推动“超充之城”建设的同时,也带动了相关产业的技术迭代升级和服务模式创新。目前已拥有新能源领域规上企业250余家,聚集了贝特瑞、欣旺达等一批行业龙头企业, 越来越多的优质绿色企业、产业纷至沓来。  去年,世界500强企业法国威立雅环境集团粤港澳大湾区总部,正式落户光明科学城。未来,光明科学城将凭借威立雅在减污降碳、资源回收、数字化能源管理等方面的专业技术和知识,助力粤港澳大湾区早日实现“双碳”目标,进一步推动城市智慧能源管理建设。  今年,国家电动汽车电池及充电系统产业计量测试中心落户光明,集聚了电动汽车计量测试领域领先的技术、人才、装备与资质,致力搭建开放、共享的公共技术平台,通过政产学研联动,在智能网联汽车、新型电池、新能源、测量人工智能、高端仪器仪表研发等领域协同创新,打造世界一流科学城的计量测试高地。  政策方面,光明区陆续出台“8+5”产业集群专项政策、 “1151”产业空间政策、行业发展和人才政策,光明区还将在深圳市出台的《支持电化学储能产业加快发展的若干措施》的基础上,制定出台区级电化学储能、光伏储能充电等新能源领域专项扶持政策,驱动绿色循环低碳发展。同时,在马田街道打造平方公里级的新能源新型产业社区,将光明科学城全域打造成为新能源新材料、新技术新产品的应用示范场景。  光明照耀未来。光明区还将继续发挥创新链、产业链、资金链和人才链“四链”融合发展优势,重点围绕新型储能、光伏、氢能等领域强势布局,朝着建设世界一流“超充之城”和新能源产业集聚区目标稳步迈进。
  • 环球分析测试仪器有限公司亮相2024氢燃料电池 技术创新与应用大会
    2024年4月18日-4月19日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在上海美仑国际酒店举办的“2024氢燃料电池技术创新与应用大会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借优异的硬件和专业的软件功能等优点吸引许多参会科研学者的驻足咨询交流。 此次活动由士研咨询主办,同时得到了同济大学燃料电池汽车技术研究所、上海市汽车工程学会、江苏省汽车工程学会、日本氢能燃料电池株式会社、韩国电池工业协会(KBIA)、嘉定氢能港等业内机的大力支持,力求将此次大会打造为业内交流合作的最佳平台。本次大会的主题定为“创新赋能,降本增效",聚焦氢燃料电池产业的前沿科技创新与高效发展,呼唤氢能行业精英汇聚上海,共同探讨氢燃料电池产业未来的新实践、新思路和新洞见。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 苏州纳米所报道长循环高电压聚合物基固态锂金属电池
    锂金属因具有高理论容量(~3860 mAh g-1)和低氧化还原电位(相对于标准氢电极为-3.04 V),是颇有前景的锂电池电极材料之一。然而,锂枝晶的生长将会顶穿隔膜,引起电池短路热失控,甚至引燃电解液等,存在安全隐患。使用具有高机械强度的固态电解质代替电解液,可以有效阻止锂枝晶生长,从而提高锂金属电池(LMBs)安全性。相比无机电解质较高的界面接触阻抗,聚合物电解质(SPEs)可与电极形成紧密的物理接触而备受关注。   然而,用于导锂的含氧极性官能团容易被氧化,成为限制电化学稳定性的瓶颈。虽然通过开环聚合消除弱键、引入含氟官能团等策略可拓宽电化学窗口(ESW),但宽ESW难以直接转化为长循环LMBs的高截止电压。一方面,测试ESW的线性扫描伏安法使用的阻塞电极通常是平坦的不锈钢,与具有高表面积碳导电剂的实际电极相比,显示出较低的反应活性,易高估ESW;另一方面,具有过渡金属的正极材料较强的催化活性,易加剧氧化。目前,适用于截止电压为4.5V或更高的长循环LMBs的聚合物电解质有待证明。   近日,中国科学院苏州纳米技术与纳米仿生研究所应用多氟化交联剂来增强聚合物电解质的抗氧化性。交联网络有助于传递多氟化链段的吸电子效应,并具有普适性。进一步通过组分优化后,基于多氟交联剂的聚合物电解质同时表现出宽ESW、高电导率和高机械强度。组装的Li||NCM523全电池在0.5C和4.5 V的截止电压,获得了~164.19 mAh g-1的高放电比容量,并在200次循环后容量保持率90%,是当前领域报道的最佳循环稳定性之一。   相关研究成果以Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院稳定支持基础研究领域青年团队计划、江苏省碳达峰碳中和科技创新专项等的资助,并获得苏州纳米所纳米真空互联实验站(Nano-X)的技术支持。新加坡南洋理工大学科研人员参与研究。图1.SPE的制备图2.SPE的ESW。a.Li|PVEC/P(IL-OFHDODA-VEC)|C的LSV曲线;b.PIL、POFHDODA、PVEC、P(IL-OFHDODA)、P(IL-VEC)和P(OFHDODA-VEC)的ESW。图3.Li|P(IL-OFHDODA-VEC)|NCM523全电池的电化学性能。a.Li|P(IL-OFHDODA-VEC)|NCM523全电池在0.5 C下的循环性能;b.Li|P(IL-OFHDODA-VEC)|NCM523全电池的第1-200次充放电曲线;c.Li|P(IL-OFHDODA-VEC)|NCM523全电池的倍率性能;d-f.充满电的Li|P(IL-OFHDODA-VEC)|NCM523软包电池在折叠前(d)和折叠后(e)或切割后(f)点亮LED灯的照片。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 环球分析测试仪器有限公司助力第三届中国国际氢能及燃料电池高峰论坛
    2024年4月11日-4月13日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在重庆帕格森蒂两江蒂苑酒店举办的“第三届中国国际氢能及燃料电池高峰论坛暨展览会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借其性能优异、简洁易用操作软件、强大离线数据分析软件、优越性价比及强大的拓展功能等诸多亮点受到广大参会科研学者的支持。 本次大会以“氢助双碳、引向未来"为主题,邀请来自政府主管部门、行业精英、涉氢企业、社会组织负责人、专家学者、企业家等齐聚美丽山城。旨在促进氢能产业技术“政、产、学、研、用"协同发展,推进氢能产业链基础设施建设,深入拓展氢能产业领域相关新技术、产品示范应用,助力实现双碳目标,推动氢能产业高质量发展。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 锂金属电池保护薄层 可提高电池效率并允许冷充电
    p据外媒报道,宾夕法尼亚州立大学研究团队表示,想要开发可靠、快速充电、适宜在寒冷天气下工作的汽车电池,自组装薄层电化学活性分子或将成为解决方案。/ppbr//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/70cad0b3-66f1-47a4-989c-f6ad1caabc2a.jpg" title="202009011201548733.jpg" alt="202009011201548733.jpg"//pp style="text-align: center "锂图片来源:PSU官网/ppbr//pp金属电池是继锂离子电池之后的下一代电池,宾夕法尼亚州立大学机械工程教授、电池和储能技术中心的主要研究人员Donghai Wang说,“这种电池使用的是锂负极,能量密度更高,但存在枝晶生长、效率低和循环寿命短等问题。”研究人员表示,具有电化学活性的自组装单层,可以分解成合适的构成部分,保护锂负极表面,从而解决这些问题。/ppbr//pp这类电池由锂负极、锂金属氧化物正极和电解质构成,其电解质中含有锂离子导电材料和保护性薄膜层。在快速充电或在寒冷的条件下,如果没有保护层,电池中可能逐渐长出锂枝晶,最终会导致电池短路,大大降低电池的实用性和循环寿命。Wang表示:“关键在于调整分子化学,使其能够在表面自我组装。”在充电时,这种单层可以提供良好的固态电解质界面,从而保护锂负极。/ppbr//pp研究人员将这种单层膜沉积在薄铜层上。在电池充电时,锂撞击单层并分解形成稳定的界面层。部分锂与剩余的层体一起沉积在铜上,原层分解的部分在锂上面进行重组,从而保护锂,防止生成锂枝晶。/ppbr//pp据研究人员介绍,利用这项技术,可以提升电池的存储容量,增加充电次数。Wang说:“这项技术的关键在于能够在需要的时候及时形成一层膜。这种膜可以分解并自动转化,然后留在铜上并覆盖锂表面。这种技术可以应用于无人机、汽车或一些水下低温应用的小型电池中。”/p
  • 利好科学仪器!欧盟电池法正式生效:电池回收、碳足迹要求升级
    仪器信息网讯 8月17日,欧盟官方公示满20天的《欧盟电池和废电池法规》(下称《欧盟电池法》,法规全文见文末附件)正式生效。核心要点:谁生产谁回收、谁进口谁回收。《欧盟电池法》对生产者责任延伸、电池回收管理、数字电池护照等提出更高要求,明确自2027年起,动力电池出口到欧洲必须持有符合要求的“电池护照”,记录电池的制造商、材料成分、碳足迹、供应链等信息。这将对中国动力电池企业出口欧洲产生重大影响。《欧盟电池法》生效利好科学仪器行业。新法规对电池回收、碳足迹、电池护照要求升级背后,科学仪器测试技术支撑作用突显,新法规文件中,“测试”一词出现达82次。如法规文件附件五的安全参数部分,依次对热冲击和循环、外部短路保护、过冲保护、过放电保护、过温保护、热传导保护、外力引起机械损伤、内部短路、热滥用、着火试验、气体排放等相关测试项目进行了描述。且多个测试项目明确要求需采用最先进的测试技术或测试仪器设备。《欧盟电池法》对于投放到欧盟市场的所有类型电池(除用于军事、航天、核能用途电池)提出了强制性要求。这些要求涵盖可持续性和安全、标签、信息、尽职调查、电池护照、废旧电池管理等等。同时,新电池法详细规定了电池以及含电池产品的制造商、进口商、分销商的责任和义务,并建立了符合性评估程序和市场监管要求。据华泰证券分析,《欧盟电池法》对我国产业链或将带来三方面影响:第一,碳排放的相关要求或将强制出口企业进行零碳转型,在生产技术上将向着高效低能耗、环保低碳等方向进行革新 第二,有望倒逼国内回收体系完善,长期将带动国内产业链的绿色转型,推进行业的可持续发展。回收要求趋严或利好已和海外厂商合作布局回收的企业 第三,电池护照旨在确保供应链的透明度,出口企业将面临护照数据库建设、护照管理系统维护及国际统一标准构建等挑战。《欧盟电池法》目录一览:第1章 一般规定第2章 可持续性和安全性要求第3章 标签、标记和信息要求第4章 电池一致性第5章 合格评定机构的通知第6章 第七、八章以外经营者的义务第7章 经济运营商在电池尽职调查政策方面的义务第8章 废电池管理第9章 数字电池护照第10章 第十章联合市场监督和欧盟保障程序第11章 绿色公共采购和修订限制的程序第12章 授权和委员会程序第13章 修正案第14章 最后条款附件1对物质的限制附件2碳足迹附件3通用便携式电池的电化学性能和耐久性参数附件4 LMT电池、容量大于2kWh的工业电池和电动汽车的电化学性能和耐久性要求附件5安全参数附件6标签、标记和信息要求附件7确定电池健康状态和预期寿命的参数附件8合格评定程序附件9欧盟一致性声明编号(申报的识别号)附件10原材料和风险类别清单附件11废旧便携式电池和废旧LMI电池收集率的计算附件12储存和处理,包括回收,要求附件13电池护照中应包含的信息附件14废旧电池装运的最低要求附件15相关表附:欧洲电池法规Battery regulation approved by EU Parliament.pdf
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 《锂离子电池和电池组充放电测试设备规范》等118项目标准报批公示
    根据标准制修订计划,相关标准化技术组织已完成《锂离子电池和电池组充放电测试设备规范》等45项行业标准和《锂离子电池组安全设计指南》等73项国家标准的制修订工作。在以上标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2022年5月26日。以上标准报批稿请登录中国电子工业标准化技术协会网站(www.cesa.cn)“标准报批公示”栏目阅览,并反馈意见。公示时间:2022年4月27日-2022年5月26日附件:1.45项电子行业标准名称及主要内容2.73项推荐性国家标准名称及主要内容工业和信息化部科技司2022年4月27日
  • 动力电池安全性能检测实验室场地建设规划条件
    p  近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg"//ppstrongspan style="color: rgb(31, 73, 125) " span style="color: rgb(84, 141, 212) " span style="color: rgb(0, 112, 192) "一、(规划)锂电池实验室设计依据及设备部署:/span/span/span/strong/pp  strong1、依据标准规范:/strong/pp  满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。/pp  实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。/pp  1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。/pp  strong2、(规划)锂电池实验室设备布局:/strong/pp  在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区:/pp  1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。/pp  2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。/pp  3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。/pp  4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。/pp  5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。/pp  strong注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。/strong/pp  span style="color: rgb(0, 112, 192) "strong二、(规划)锂电池实验室测试程序:/strong/span/pp  strong1. 电池材料检测/strong/pp  电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。/pp style="text-align: center "img title="2.png" src="http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg"//pp  工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。/pp  strong2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="3.png" src="http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg"//pp  strong3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。/ppimg title="4.png" src="http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg"//pp  strong4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测/strong/pp  电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="5.png" src="http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg"//pp  strong5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险:/strong/pp  1)着火、燃烧、爆炸/pp  磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。/pp  电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。/pp  2)有毒气体的排放/pp  由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。/pp  3)漏液的污染性/pp  电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。/pp  span style="color: rgb(0, 112, 192) "strong三、(规划)锂电池实验室——通风系统特点:/strong/span/pp  1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。/pp  2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。/pp  3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。/pp  4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。/pp  5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。/pp  6、实验室的通风换气次数取每小时10~20次。/pp  7、支管内风速取6~12m/s,干管内风速取8~14 m/s。/pp  8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。/pp  strongspan style="color: rgb(0, 112, 192) "四、(规划)锂电池实验室——内部装饰/span/strong/pp  strong1、天花/strong/pp  (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。/pp  (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。/pp  (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。/pp  (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。/pp  (5)洁净室采用彩钢板天花板。/pp  strong2、地面/strong/pp  (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。/pp  (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。/pp  (3)在装修过程中,抛光砖的铺设最适合于办公场所。/pp  (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。/pp  (5)洗涤室利用原有地面,节约成本。/pp  (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。/pp  strong3、墙体/strong/pp  (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。/pp  (2)采用其他墙体全部贴500*500抛光砖/pp  (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。/pp  (4)采用玻璃间隔的设计使得开放式实验成为一种可能。/pp  (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。/pp  strong4、门窗/strong/pp  (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。/pp  (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。/pp  span style="color: rgb(0, 112, 192) "strong四、(建议)锂电池实验室注意事项:/strong/span/pp  实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。/pp  strong1.爆炸前预警:/strong由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。/pp  strong2.爆炸过程控制:/strong电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。/pp  strong3.污染物可回收:/strong污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。/pp  strong4.试验室防爆系统:/strong房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。/pp  strong5.每个防爆室配置有防爆灯,视频监控探头。/strong视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。/pp  strong6.充放电区:/strong设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。/pp  strong7.消防要求:/strong在人员操作区和样品区设置有消防烟感探头。/pp  strong8.视频监控要求:/strong共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。/pp  strong9.实验室噪音:/strong实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。/pp  strong10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。/strong设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。/pp  strongspan style="color: rgb(0, 112, 192) "五、(规划)锂电池实验室水电要求:/span/strong/pp  1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /pp  2.独立地线:接地电阻≤4Ω /pp  3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /pp  4.排水:配管连接直径Φ100。/pp  span style="color: rgb(0, 112, 192) "strong六、(设计)锂电池实验室测量系统精度:/strong/span/pp  1.所以控制值的准确度应在以下范围内/pp  2.电压:± 1.0% /pp  3.电流:± 1.0% /pp  4.温度: ± 2℃ /pp  5.时间:± 1.0% /pp  6.尺寸:± 1.0% /pp  7.容量:± 1.0%。/pp  strongspan style="color: rgb(0, 112, 192) "七、锂电池防爆实验室典型设计应用:/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "img title="6.png" src="http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg"//span/strong/pp style="text-align: center "(锂电池实验室效果图)/pp style="text-align: center "img title="7.png" src="http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg"//pp style="text-align: center "(测试系统综合交钥匙工程)/pp style="text-align: center "img title="8.png" src="http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg"//pp style="text-align: center "(电池整体实验室正面)/pp style="text-align: center "img title="9.png" src="http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg"//pp style="text-align: center "(电池整体实验室背面)/pp  strong作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器)/strong/p
  • 募集近30亿 格林美打造电池拆解循环利用产业链
    p  日前,国内主营资源回收循环业务的格林美集团发布公告,计划募集资金总额不超过29.5亿元,用于投资动力电池产业链项目,包括电池拆解循环利用、三元锂电池材料分解再利用以及电池包再造等,同时将在荆门建设年产5万组车用和5万组梯次利用动力电池封组生产线。/pp  面对中国新能源汽车市场爆发,动力电池的回收与利用成为了社会关心的话题。格林美集团目前主营业务集中在废旧电池等资源循环回收利用,此次加入到动力电池产业链中,希望构建“新能源全生命周期价值链”,从电池回收、原料再造、材料再造、电池包再造、新能源汽车周边服务等角度,为中国新能源汽车后市场打造价值链。/pp  目前,格林美在全国已经建立6个拆解回收中心,也成立了第一条动力电池的拆解线和建立了正极材料生产的智能制造车间。此外,两条动力电池包及梯次利用自动化生产线也已经投入运行,可适用于18650、21700和26650等车用圆柱型动力电池系统制造,年产可达1GWh。/ppbr//p
  • 案例精选 | StoreDot极速快充电池技术将于2024年实现量产
    StoreDot 是电动汽车锂离子 (Li-ion) 电池的开发商,于 2012 年创立。StoreDot 是极端快速充电 (XFC) 电池的先驱和领导者,它克服了主流电动汽车普及的关键障碍——充电时间和里程焦虑。该公司通过设计和合成专有的有机和无机化合物彻底改变了传统的锂离子电池,并通过人工智能算法进行了优化,从而实现充电5分钟可提供100英里的续航里程——这与为传统燃油汽车加油所需的时间相同。StoreDot 的战略投资者和合作伙伴包括戴姆勒、BP、VinFast、沃尔沃汽车、Polestar、Ola Electric、三星、TDK 和制造合作伙伴 EVE Energy。StoreDot极速快充电池技术,预计于2024年实现量产,目前全球超过 15 家原始设备制造商和制造合作伙伴正在对电池进行持续测试,且该技术可利用标准锂离子生产线轻松扩展。图片来源于StoreDot官网值得一提是,StoreDot研发生产线使用的布劳恩手套箱,如图所示,StoreDot公司首席执行官 Dr. Doron Myersdorf StoreDot博士在布劳恩手套箱前展示电池。图片来源于StoreDot官网图片来源于StoreDot官网布劳恩在锂电池、钙钛矿太阳能电池、有机光伏和有机发光半导体等行业拥有丰富的研发和产业经验,为客户的尖端技术和崭新应用提供定制化、集成化、自动化的全新解决方案,帮助客户在新材料、新工艺和新产品开发、生产环节中赢得优势。以下是布劳恩手套箱的技术特点,目前布劳恩手套箱主要有两种型号,LABstar MAX和UNIlab MAX:UNIlab MAXLABstar MAX集成气体净化系统的简洁设计不锈钢主体加装安全玻璃前窗模块化箱体设计,便于扩展闭路循环净化水、氧浓度可达1ppm可在正压或负压下操作SIEMENS PLC 自动控制系统,大尺寸彩色触摸屏配置脚踏开关,便于调整箱体压力配置快速清洗功能配置节能循环模式(ECO Mode)配置大过渡舱,内有滑盘配置Edwards RV12 真空泵其它众多功能拓展附件可选,详情可点击布劳恩手套箱集成工艺设备集锦如果您对以上产品感兴趣,敬请联系布劳恩!
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 硫化锂电池原位电镜表征与循环稳定性调控研究获进展
    p  随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。/pp  硫化锂(Lisub2/subS)材料理论容量高达1166 mA h gsup-1/sup,是其它过渡金属氧化物和磷酸盐的数倍 其首次脱锂充电过程中所发生的体积收缩能给后续的嵌锂放电反应提供空间,保护了电极结构不受破坏 其可与非锂金属负极材料(诸如硅、锡等)组装电池,有效避免锂枝晶形成等问题所带来的安全隐患,是极具发展潜力的锂硫电池正极材料。然而,该材料电子/离子导电率低,反应中间产物多硫化物在电解液中的溶解引发穿梭效应等问题,限制了其在锂硫电池中的实际应用。/pp  近日,中国科学院苏州纳米技术与纳米仿生研究所张跃钢课题组自主研发设计了原位扫描/透射电镜电化学芯片,实现了其对硫化锂电极充电过程的实时观测 在充分理解Lisub2/subS充放电机理的基础上设计了高氮掺杂石墨烯负载硫化锂材料作为电池正极,并通过控制充电容量和电压,显著提升了Lisub2/subS的容量利用率及循环寿命,相关成果发表在Advanced Energy Materials 杂志上。/pp  研究人员为提高锂硫电池的容量利用率和循环寿命,通常会将硫填充至具有高比表面积和高导电性的多孔材料中(如:碳纳米管,多孔碳,石墨烯和碳纤维等)。张跃钢课题组在前期研究工作中发现氧化石墨烯上引入氮掺杂官能团,不仅可以有效减少多硫化物在电解液中的溶解,而且可优化多硫化物在沉积过程中的分布(Nano Letters,2014, 14, 4821-4827)。为了更好地改善Lisub2/subS的容量利用率以及循环寿命,该团队利用原位表征技术研究了Lisub2/subS溶解和再沉积机理,进而提出将最初活化电池电压调控到3.8 V,然后通过控制电压(1.7~2.4 V)和充电容量可有效阻止长链可溶性多硫化物的形成,该充放电调控方法让电极在充电过程中保留了一部分不可溶的Lisub2/subS作为种子,使得Lisub2/subS材料能够有效地活化和均匀地再沉积。此外,该研究通过在氮化处理前的氧化石墨烯表面包覆葡萄糖,有效增加了石墨烯的折皱率和弯曲率,进而为多硫化物提供了更多的负载位点 反应过程中利用氨水和高温氨气热处理的方法使得氮掺杂量提高至12.2% 该高氮掺杂石墨烯材料不仅具有高导电性,其表面氮官能团更能有效减少多硫化物的溶解,优化Li2S的均匀分布。利用该高氮掺杂石墨烯-Li2S复合正极材料所制备的锂硫电池在2000圈(1C)循环后其容量仍能保持318 mA h gsup-1/sup(按硫元素重量折算为457 mA h gsup-1/sup),3000圈(2C)循环后仍能保持256 mA h gsup-1/sup(按硫元素重量折算为368 mA h gsup-1/sup),是迄今为止所报道的最长循环寿命。/pp  该研究工作首次利用了新开发的原位扫描电镜和原位透射电镜芯片技术实现了对硫化锂电极充电过程的实时观测,并在研究/pp  Lisub2/subS充放电机理的基础上,开发新的电压-容量调控机制,设计了一种新型的高氮掺杂负载硫化锂的电极材料,为高能量的Lisub2/subS-C /Li 电池的应用打开了广阔的应用前景。/pp  该项研究工作得到了国家自然科学基金重点项目、中国科学院千人计划人才专项的大力支持。/pp  a href="http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501369/epdf" target="_self" title=""原文链接/a/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/3d4cdfa8-d284-4598-81b3-9799a4671568.jpg" title="00000.jpg"//pp  负载于单层石墨烯电极表面的Lisub2/subS材料在LiTFSI-DOL/DME电解液中活化过程的原位观测SEM图/p
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 游泳池水质测试仪该怎样选择?
    游泳池水质测试仪该怎样选择?【霍尔德电子HED-YL04】众所周知,泳池水质卫生新国标于2019年11月01正式实施,这是国家强制性必须实行的,年受到疫情影响很多泳池场所未开业,即使开放了去游泳的人的屈指可数,但是在水质处理方面不能落下,去年11月才实施新国标,那时很多泳池由于天气等各方面原因,早已经闭馆,所以对泳池水质新标准需要重新认识一下。余氯在泳池水中的作用很大,余氯主要来自于池水加入氯消毒剂一定时间后,所剩余的氯,称之为余氯。余氯值是直接体现消毒效果的指标,因此要让泳池水有持续杀菌的能力,每天都要投加氯消毒剂,新标准中余氯范围应在:0.3-1.0mg/L。 水质检测仪器配合快速显色检测试剂,可“快速、简单、准确、稳定”进行测量,拥有精美的外观造型,简单的操作界面,准确的检测系统,帮助用户获得精细的数据,可更准确、有效的分析水体状况,提预防,及时避免损失。应用行业:适用于 饮用水、自来水、医疗废水、工业污、河流监测、游泳场馆、水源保护、生产监测、科研实验等。仪器特点:安卓智能系统操作更佳简便快捷;内置操作流程、操作简单、无需培训、直接上手;检测速度快,现场读取数据;便携式体积小,重量轻,方便户外检测;外形小巧美观,工作稳定免维护,具有较好的性价比;采用进口冷光源,光学性能稳定,寿命长达10万小时;参数指标:余氯:0~3mg/L、0~20mg/L总氯:0~3mg/L、0~20mg/L二氧化氯:0~5mg/L,0~20mg/L臭氧:0~6mg/L波长范围:340~800nm测量方式:光电比色测量误差:≤5%重复性:0.5%稳定性:0.5%波长选择:自动操作系统:安卓智能操作系统显示屏幕:3.5寸彩色液晶触摸屏灵敏度(吸光度):0.001使用环境:温度0~50℃,湿度0~90%数据存储:80000条以上通讯:Type-C、WIFI、热点、蓝牙电池:5600mAh锂电池连续工作时间:12小时供电电压:5V/DC直流尺寸:180mm*80mm*70mm重量:700g支持语言:简体中文或英文
  • 法国Bio-Logic电池测试前沿技术交流展示会上海站隆重举行
    由华洋科仪/Bio-Logic主办的电池测试前沿技术交流展示会上海站于2016年11月15日隆重举行。来自全国各高校,研究所的专家学者及企业的研发人员参加了本次交流会。 交流会现场1 交流会现场2 法国Bio-Logic公司本部的资深电池领域应用专家Christophe Morin博士, Nicolas Tran博士详细介绍了多种电池测试技术及电池技术的最新发展和应用,内容包括:DC和AC电池测试,GITT, HPC, DCA和DCS差分容量分析,循环过程中的EIS测量(电流或电压模式)等。 上机实物解说会议期间,法国Bio-Logic最新的电池测试仪器BCS-8xx系列的现场展示引起了与会的专家学者及科研人员的极大兴趣。与会代表们体验了最新的测试技术对扣式电池,18650,26650 LFP,NMC,LCO等电池测试的明显优势,得到了与会代表们的极大好评。本次技术交流会上海站将历时三天,北京站及深圳站也将相继开启,敬请关注我们陆续的报道。 华洋科仪市场部 2016年11月15日
  • 精邦LIMS促进新能源电池检测实验室智能化管理方向发展
    作为战略性新兴行业之一,中国新能源汽车近年来发展迅速。数据显示,2018年中国新能源汽车产销量突破100万辆,产销规模连续三年位居全球第一。但同时,新能源汽车自燃、电池寿命短等与动力电池安全有关的事件和问题的频发为新能源汽车行业敲响了警钟。什么是新能源汽车检测试室呢?为什么要建设新能源汽车检测实验室呢?新能源电池实验不同于家用电器和汽车电子产品实验,由于电池的危险性,电池测试过程中可能会产生有害气体、冒烟、明火、爆炸,这些问题可能导致环境空气污染、设备损坏、人员受伤,甚至对人身财产造成巨大损失。因此,电池试验室的规模大小,场地建设,设备购置,以及日常的运营成本都需要引起重视。实验室主要分为电池性能测试评价、环境可靠性测试评价、安全滥用性测试评价三大平台,其测试能力覆盖动力电池单体、模组、Pack(电池包)及系统级别的各项产品,可满足多项国际标准及中国国家标准。通常具有完整测试能力的电池检测实验室 ,可规划成如下功能分区:1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等。2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合试验台。3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等。4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水侵泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、温度箱等。另一方面,为此建立的电池安全检测标准有: 国际标准(IEC)、欧盟标准(EN)、中国标准(GB QC)、美国标准(SAE UL)、日本标准(JIS),针对新能源汽车应用较为广泛的标准是UN 38.3、QC 743、SAND 2005-3123、UL 2580、ISO 12405。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。新能源汽车检测实验室为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况应运而生。通过电池安全检测标准的新能源汽车才能在安全上有长久的保障,相信未来新能源汽车的安全性会得到大大改善。精邦实验室信息化管理平台针对未来汽车实验室科学管理,开发出汽车行业LIMS系统软件,该系统是一款以ISO/IEC17025、ISO9000等精细化管理标准为基础,采用现代化的电子信息技术和数据库系统,专业为汽车企业实验室和质量检验平台设计方案的综合型业务管理系统。汽车实验室精邦LIMS系统关键程序模块:1. 样品管理:是检测中心的关键工作之一。精邦LIMS针对取样、来样加工、试样、留样、余样等差异环节特征的样品,提供样品接收、确认、前处理、派发、传递、检测、保存、处理、退回等全程管理功能模块运用条形码标签建立样品的唯一性界定和查询精准定位。2. 检测管理,具备分配任务、分配管理、结果备案、评价、审核等检测流程管理功能模块,支持数值、字段、文档、报表、图谱等各类结果类别。可设置计算方法、判定指标值等业务流程标准,根据实验仪器接口功能模块,同时导入初始检测统计数据运用电子签章技术性审核结果,保证网络安全;3. 设备维护: 提供设备台账,申购采购,应用记录,维修保养,计量检测,出现故障检修,借还备案,状态控制,销毁报废,利用率统计分析等管理功能模块。较大底限地提升实验室设备等设施自动化技术管理能力;4. 规范管理,为实验室应用的规范丰富多彩提供数字化管理,便捷相关技术人员免费在线查看,并对规范方式的追踪,非标准方式的制订、确认和应用推行有效管理。5. 人员管理针对检测中心的各类技术人员,精邦LIMS提供健全的人员管理方案如技术人员基本资料、人事关系、专业能力确认、资质确认、授权管理、工作记录、监管、评价、学习培训、绩效考评等6. 物资管理精邦LIMS提供实验室物资管理,合格供应商管理,耗材申购、采购、项目验收、入库管理,领用备案,库存量智能提醒(有效期限、库存值)等管理功能模块建立耗材的标准化管理,动态性管控并有效控制耗材使用量,减少检测成本费7. 质量控制精邦LIMS针对实验室內部审核、管理评审、能力验证、实验室间核对、外部审查(如资质证书评定、实验室认可)等相关品质活动,提供了活动计划、活动变更、活动执行、不良整顿 等质量管理和质量控制功能模块8. 数据分析精邦LIMS针对各检测业务的对象、业务流程阶段、业务流程状态智能生成月表、年报表或阶段性可视化报表,同时强大功能的报表设计构思器,允许客户自定义报表格式和內容来源,定期进行或实时生成各类的可视化图形报表,为业务流程分析、市场拓展、领导层管理决策填报数据支持9. 流程优化精邦LIMS嵌入工作流引擎,可为检测中心量身定做定制最贴切的工作流程,将信息流(凭证)、商品流(样品)、审批流(每日任务)有机化学融合成一体化,建立检测业务流程的全程动态性管理, 能够迅速响应检测中心业务流程飞速发展的需求精邦LIMS系统面向生产制造产业,技术专业的质量检验实验室LIMS系统软件提升规范性与智能化管理能力,全方位覆盖了实验室和质量检验平台的经营范围,为汽车产品质量检验的每个阶段提供全方位、精细的管理解决方法,并将各部门日常任务工作中有机地相结合,形成个完整性、统一性的业务流程管理平台,全部工作都能够使用LIMS协调工作。10.智能数据分析 数据智能分析中心主要是针对系统已经存在的检测数据进行多维度、多层级的单向、多项目组合分析管理。通过数据分析能够把数据之间的逻辑关系清晰的展现出来,以满足企业对历史检测数据的纵向、横向分析,以便为产品研发、生产、采购提供科学的建议,同时有效的减低产品研发成本、提高产品的质量、缩短研发周期。精邦数据智能分析中心通过可视化的展现可以快速、精准的对检测数据进行分析,图表与图形智能的展现,帮助实验室从历史检测数据中提取数据进行综合排优比对与建议。◆ 精邦数据智能分析中心不仅仅是前端报表,还包括元数据管理与数据中心(数据仓库);◆ 不仅仅是数据可视化,不仅仅是敏捷数据智能分析中心,精邦 BI 独有的多维动态分析与智能钻取轻松实现智能分析;◆精邦 BI 开发平台,包括数据转换管理(ETL)、OLAP 数据库设计、元数据管理、WEB多维报表设计、多维动态分析、智能钻取、智能报告、数据填报、移动应用、微信应用、单点登陆等 10 余项功能,专注企业级应用,更符合第一方实验室的信息化现状及需求;通过数据匹配组成最佳产品体系分析,形成研发数据库为研发部提供数据支撑; 根据不同的测试安排和类型,数据分析的功能分为数据对比和 SPC 监控两部分。 1 数据对比主要是同一测试项目可直接较 ,如客户需 60 度 7 天后 厚度膨胀(内阻、 厚度膨胀(内阻、 OCV OCV、恢复容量剩余处理方式一样),可以将不同阶段,不同规格的试验单,在一表中展示(busbar 形式,或客户要求的其他),并可以直接导出比较图表、原始数据。 2 SPC 监控主要针对品质稳定性监控,比如量产电池的厚度、容量、倍率、存储、循环 150 次的结果,做长期跟踪,并依据时间、批次,给出某一关键指标的趋势变化图,若出现超规格情况,可依据严重程度,系统自动给出预警(比如邮件、短信)通知,可设置不同层级(工程师、经理、总监、副总、总经理等); 3 数据对比 选择测试用例及需要进行对比的测试任务进行数据可视化对比分析,包括不限于倍率、循环、存储、高低温测试,可针对不同项目不同关注点进行比较,比如容量(保持率)、厚度(增长)、放电能力、内阻增加等各个方面进行展示。对于原始的充放电数据(放电数据),循环数据,都可以直接叠加比较。 该软件可以查询相关的功能,并设置了重置,可以一次性对比几个测试,选择重置,可以清空这些对比信息,主要的对比包括如下几点: 4 倍率放电测试记录在不同倍率(0.1C,0.2C,0.5C,1C,1.5C,2C)下,电芯的放电曲线
  • 大连化物所提出颗粒细化诱导提高钠/锂离子电池循环容量的新机制
    近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队和燕山大学唐永福教授团队合作,在钠/锂离子电池电极储能机理研究方面取得新进展。  近年来,钠离子电池作为研究热点得到了国内外广泛关注,取得了快速发展。研究发现,具有较高Na+储存性能和循环稳定性的电极材料,对于提高钠离子电池的能量密度和倍率性能十分重要。 本工作中,研究团队设计了一种珊瑚状的FeP复合材料,该材料可锚定FeP纳米颗粒,并将其均匀分散在氮(N)掺杂的三维(3D)碳骨架(FeP@NC)上。珊瑚状FeP@NC复合材料具有较短的电荷转移路径和较高的导电氮掺杂碳网络,可显著改善复合材料的电荷转移动力学。同时,由于FeP纳米颗粒周围具有高度连续的N掺杂碳骨架和弹性缓冲的石墨化碳层,基于FeP@NC复合材料的钠离子电池(SIB)表现出优异的倍率性能和循环性能,在10A/g下经10000次循环后其容量保持率为82.0%。  更为重要的是,针对循环过程中电池容量逐渐上升的现象,研究团队结合电化学研究和原位电镜表征分析,证实了一种独特的颗粒细化在循环过程中提高容量的作用机制,这种容量提升效果在小电流下表现得更为显著。研究表明,均匀分布在氮掺杂碳基体上的FeP纳米颗粒,在第一个循环中经历了细化-复合过程,经过数次循环后呈现出全区域细化的趋势,这种细化对周围的非晶碳产生强烈的吸附作用,引起复合材料石墨化度和界面磁化强度逐渐增加,为Na+的存储提供了更多的额外活性中心,进而提高了循环容量。这种容量提升机制也可以扩展到锂离子电池(LIBs)。研究发现,在10A/g下,经5000次循环后,基于FeP@NC复合材料的LIBs的容量保持率为90.3%,超过了已报道的FeP基复合材料的容量保持率。  该研究提出了一种在循环过程中经颗粒细化诱导提高电池容量的新策略,为设计高性能的SIBs/LIBS负极材料提供了新思路。  相关成果以“A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle-Refinement”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所DNL17博士研究生王灿沛。上述研究工作得到国家自然科学基金、中科院青年创新促进会等项目的资助。  文章链接:https://doi.org/10.1002/anie.202110177
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。主题演讲来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了各自在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。新品发布会上,仰仪科技正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技工程师孙昕禹为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼备优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。活动回放——————————————————————————————————杭州仰仪科技有限公司成立于2006年,浙仪旗下实验室事业群成员,是专注于化工与新能源领域测试需求的国家高新技术企业。我们在温度测量与发生、测试容器制备、仪器集成与数据分析等核心技术上有深度积累,是化工领域测试仪器设备、解决方案的专业开发者。公司产品线主要有热分析与量热、理化参数测试、燃爆特性测试和化学品物理危险测试等,产品综合性能达到国际先进水平,在应急管理、货物运输、海关监管、市场监管、环境保护、高等院校、科研院所、大型企业及第三方检测等机构具有广泛应用且口碑良好。
  • 用落镖冲击测试仪检测药用pvc硬片的耐冲击性能相较于落球冲击测试仪,哪个更好
    药用PVC硬片的耐冲击性能检测是一个关键的质量控制步骤,以确保药品包装的完整性和保护药品免受运输和处理过程中的冲击。落镖冲击测试仪和落球冲击测试仪都是用于评估材料耐冲击性能的设备,但它们在设计和应用方面存在差异。落镖冲击测试仪落镖冲击测试仪通常用于评估软包装材料如薄膜、复合膜等的抗冲击穿透能力。它使用一个或多个特定重量和形状的落镖,从一定高度落下冲击试样。这种测试方法更多地侧重于材料的抗穿透性能,适用于检测软包装材料在实际使用中抵抗尖锐物体冲击的能力。落球冲击测试仪落球冲击测试仪则通常用于测试硬质塑料材料如药用PVC硬片的冲击强度。它使用一定质量的球体从预设高度自由落体,冲击试样,以此来模拟实际使用中可能遇到的冲击情况。落球冲击试验可以检测药用PVC硬片的耐用性、硬度、强度和韧性等性能。比较与选择在选择落镖冲击测试仪还是落球冲击测试仪时,需要考虑以下因素:材料特性:药用PVC硬片作为一种硬质塑料材料,更适合使用落球冲击测试仪进行测试。测试目的:如果测试目的是评估材料的耐冲击能力以及硬度和强度,落球冲击测试仪可能更为合适。标准遵循:应参考相关的医药包装材料测试标准或国际标准,如YBB00212005-2015等,这些标准可能指定了特定的测试方法。设备能力:确保所选设备能够满足药用PVC硬片的测试要求,包括试样尺寸、冲击高度和能量等。结论根据上述信息,对于药用PVC硬片的耐冲击性能检测,落球冲击测试仪 更为适合,因为它专门设计用于评估硬质塑料材料的冲击强度,并且符合药用PVC硬片的测试标准和要求。
  • 法国Bio-Logic电池测试前沿技术交流展示会北京站召开
    继法国Bio-Logic电池测试前沿技术交流展示会上海站圆满结束后,北京站于11月21,22日如期举行。会议吸引了来自清华大学、北京大学、济南大学、中信国安盟固利动力科技有限公司、中科院山西煤化所等诸多高校及企业的科研人员前来参会。 会议中,法国Bio-Logic公司本部的资深电池领域应用专家Nicolas Tran博士和法国Bio-Logic 全球销售总经理Herve Bonin 博士详细介绍了多种电池测试技术及电池技术的最新发展和应用,内容包括:DC和AC电池测试,GITT, HPC, DCA和DCS差分容量分析,循环过程中的EIS测量(电流或电压模式)等。 会议期间,Herve与Nicolas使用BCS系列电池测试系统对各种类型锂电池、超级电容器进行了实测演示、讲解。便捷的测试方法,快速地筛选电池品质等突出功能特点极大地引起了前来参会人员的兴趣。参会人员纷纷上机体验了最新的测试技术对扣式电池,18650,26650 LFP,NMC,LCO等电池测试的明显优势,对本次交流展示会给予了高度评价,感到收获颇丰。随着IT市场笔记本电脑与平板电脑的迅速发展、通信电源市场4G应用的一些特点、新能源车市场、储能市场的日趋扩大,全球锂电池市场赢来了大发展时代。作为电化学行业全球领军企业法国Bio-Logic公司,不仅为全球的锂电池专家学者提供着卓越的电化学研究测试仪器,也为全球电池企业确保产品的质量保驾护航,提供着一流的电池测试设备。
  • 广东开发出超长循环寿命的柔性准固态碱性锌电池
    近日,广东省科学院化工研究所研究员曾炜团队开发出具有超长循环寿命的柔性准固态碱性锌电池。相关研究发表于Surfaces and Interfaces。曾炜为该论文通讯作者,郭欣颖为第一作者。   随着便携式电子产品和电动汽车的快速发展,对具有多功能、高性能、高安全性电池的需求越来越大。碱性镍锌电池具有成本低、安全、理论容量高(820 mAh/g)和易于组装等优点,成为学界研究热点。然而,镍锌电池的实际应用还存在着结构不稳定和循环稳定性差等问题。因此,设计和构造具有优良结构稳定性和电化学活性的镍基正极材料至关重要。 柔性准固态碱性锌电池的制备过程。研究团队 供图   研究人员通过简易浸泡导电聚合物封装二硫化三镍空心纳米棒结构实现高性能正极材料。浸泡导电聚合物涂层不仅可以为二硫化三镍纳米棒提供附着力,防止二硫化三镍在循环过程中从基底上脱落,还可以通过完整的导电途径促进电子转移。   此外,还设计了具有双网多孔结构的凝胶电解质,采用海藻酸钠对Zn2+的结合可以有效降低Zn2+溶解鞘中结合水分子的活性,抑制副反应和枝晶的产生,实现锌离子的均匀沉积,提高电池的循环稳定性。   该柔性准固态电池具有良好的可逆性,在8 mA cm-2时表现出1.06 mAh cm-2(276.04 mAh g-1)的高比容量。该电池还表现出优异的倍率性能为93.72%,在30 mA cm-2具有10000次以上的超长循环稳定性,容量保持率达88.96%。   据了解,该柔性准固态电池可应用于柔性电子设备,进一步拓宽了碱性锌电池的应用领域。   上述研究得到国家自然科学基金、广东省科学院建设国内一流研究机构行动专项资金等项目资助。
  • 电弛新能源亮相CIBF 2024重庆国际电池技术交流展览会
    4月27日,重庆国际博览中心,第16届中国国际电池技术交流会/展览会盛大开幕。本次展会由中国化学与物理电源行业协会主办,以“链动全球赋能绿色驱动未来”为主,共计2200多家业内知名企业全方位、多维度参与展示全新技术成果,助推中国新能源产业高质量发展。作为此次展会参展商,电弛新能源携多款重磅产品亮相,展示在锂电池、氢能领域的测试技术产品,包括GPT-1000原位产气量测定仪、IPT-2000气体内压测测定仪、SFT-3000原位膨胀力测试仪、980Pro燃料电池测试系统、780电解水制氢测试系统、DSR数字型旋转圆盘电极等多款产品。近年来,我国新能源行业蓬勃发展。“新质生产力”引领绿色低碳发展。电池行业已然由高增长阶段迈入高质量发展阶段,人们更多地把目光投向电池的性能安全,从源头上开发更安全的电池产品。电弛新能源加大创新投入,基于电池原位产气量、内部气压、膨胀力等关键领域展开研究,研制了先进的电池测试设备,对于探索优化电池材料、结构,具有重要意义。在展会现场,电弛新能源以“专于电池,精于测试”为主题,带来的系列全新电池测试应用解决方案吸引了不少嘉宾的关注。“大家的热情超出我们的预期,对我们展示的最新电池测试技术产品兴趣浓厚,电弛新能源期待与业界朋友合作,一起助力中国电池产业发展”,电弛新能源代表感慨现场观众的热情,认真解答专业技术问题,介绍新产品特色功能。GPT-1000 原位产气量测定仪GPT-1000电池原位产气量测定仪可实现对锂/钠/半/全固态电池化成、过充、循环及存储等不同阶段产气情况的在线或离线监测。该系统提供一整套原位产气量与产气组分的在线测试解决方案。IPT-2000 原位气体内压测定仪IPT-2000原位气体内压测定仪采用先进的GSP气体采样接口设计,实现了对多种不同规格电芯的适配,满足大规模电芯测试的需求,进而为电芯产气分析、失效模式研究以及热失控安全性评估提供强有力的技术支持。SFT-3000 原位膨胀力测试仪SFT-3000原位膨胀力测试仪可在模拟真实的电池充放电工况下,对多种不同形态的电池进行膨胀尺寸和膨胀力的精确评估,助力电极材料的研发和电池膨胀机理的深入分析研究。近年来,我国氢燃料电池汽车产销量高速增长,氢燃料电池测试、电解水制氢等专业设备需求井喷,通过这些仪器设备,开发先进的氢能技术产品,有着重要意义。在本次展会上,电弛新能源展示了近年来在氢能技术研发成果,得到了与会专家、学者的关注。980Pro 燃电池测试系统980Pro燃料电池测试系统是专为PEM燃料电池膜电极(MEA)和电堆性能评估而设计的先进测试平台。可对燃料电池的性能和稳定性进行全面评估,已成功部署国内多所高校实验室。780 电解水制氢测试系统780电解水制氢测试系统兼容PEM与AEM技术应用的创新型电解水制氢测试系统。充分考虑了中国实验室的操作习惯。DSR 数字型旋转环盘电极在展台上,数字型旋转圆盘电极DSR凭借具有中国特色的“千山绿”设计吸引众多嘉宾围观,科技彰显人文,DSR凭借“数字化、更精准、‘狠’稳定”的技术优势,助力中国催化剂及氢能科研。目前,重庆国际电池技术交流会/展览会(CIBF2024)火热进行中,欢迎大家参观电弛新能源展会交流互动!
  • Delta德尔塔仪器告诉您——如何才能杜绝电动自行车电池自燃
    5月10日晚上,成都市丛树家园小区一电梯内电瓶车起火,导致包括一名婴儿在内的多人烧伤视频在网上传播后,牵动人心。 电梯监控视频显示,10日19时33分,一男子乘电梯下楼,随后电梯停在某层楼,一名妇女怀抱着一名婴儿进入电梯,电梯继续下行。19时34分23秒,电梯再次停下,一男子推着一辆电瓶车进入电梯,身后还有一名双手提着物品的男子也紧跟进入。19时34分34秒,就在电梯门关闭瞬间,一秒钟时间不到电瓶车底部突然冒起浓烟,瞬间闪起了火光,电梯内迅速被火光和浓烟覆盖。视频显示,冒烟发生同时,推电瓶车的男子迅速伸手按了一下电梯开关。事发时,电梯内有4名大人和1名幼儿。对此很多网友表示,坚决反对电瓶车上楼! 对于网友的评论,我有不同的看法,作为主动方面,禁止电动自行车车进入电梯确实是可行的,但我们不能一昧的谴责推电动自行车进入电梯的男子,却往往忽略了z大的危害源头是电动自行车的电池。电动自行车是为了方便市民的工具,而不是成为大家“闻风丧胆”、相互嫌弃的工具。只有生产厂家按照国家的标准,做好安全检测才投放到市场,这才是遏制电动自行车电池自燃最有效的方法。由国家市场监督管理总局、国家标准化管理委员会批准的GB/T 36972-2018《电动自行车用锂离子蓄电池》国家标准于2018年12月28日正式发布,将于2019年07月01日正式实施,该标准对推动电动自行车用锂离子电池综合标准化工作及电动自行车锂离子电池推广应用具有重要意义和作用,同时也为电动车用锂离子电池领出了一条健康、可持续发展的道路。 Delta德尔塔仪器专业致力于GB/T 36972-2018《电动自行车用锂离子蓄电池》的研发和定制,可为客户提供锂电池安全检测实验室整体打包、一站式交钥匙工程服务。客户只需要提供试验场地,其他的交给我们为您搞定! (电动自行车锂电池安全测试系统综合交钥匙工程)《电动自行车用锂离子蓄电池》(GB/T 36972-2018)检测设备推荐清单序号测试项目本标准条款关键设备设名称辅助功能/引用标准能力说明要求试验方法1. I2(A)放电5.2.16.2.1① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1) 可选配充放电测试通道数和测试额定电流、电压;2) 防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。2. 充电6.2.1.13. 放电6.2.1.24. 2I2(A)放电5.2.26.2.25. 低温放电5.2.36.2.3① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配高低温试验箱内箱容积和温度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。6. 高温放电5.2.46.2.47. 荷电保持能力及荷电恢复能力5.2.56.2.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配恒温箱内箱容积和温度、湿度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。8. 荷电保持能力6.2.5.19. 荷电恢复能力6.2.5.210. 长期贮存后荷电恢复能力5.2.66.2.611. 循环寿命5.2.76.2.712. 内阻5.2.86.2.8① 电池内阻测试仪(推荐型号:HK3561R)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。13. 过充电5.3.26.3.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。14. 强制放电5.3.36.3.315.外部短路5.3.46.3.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路16.挤压5.3.56.3.5① 电池挤压试验机(0-35KN)(推荐型号:GS-MST930)1) 可选配挤压+针刺(穿刺试验)功能;2) 可选配红外摄像监控系统、自动灭火器装置、废气回收净化装置。17.机械冲击5.3.66.3.6① 机械冲击试验机(600g)(推荐型号:GS-MST980)可选配峰值加速度和试验负载18.振动5.3.76.3.7① 电磁振动试验机(0~400Hz)(推荐型号:GS-MST970)X,Y,Z三轴向振动;可选配振动频率、振幅范围及试验负载。19.自由跌落5.3.86.3.8① 电池跌落试验机(定向X,Y,Z)(推荐型号:GS-MST960)X/Y/Z定向跌落;可选配热成像相机、自动灭火器装置。20.低气压5.3.96.3.9① 高空低气压试验箱(11.6KPa)(推荐型号:GS-MST950)可选配试验箱体积(内容积)21.高低温冲击5.3.106.3.10①高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)可选配高低温试验箱内箱容积和温度范围22.浸水5.3.116.3.11① 电池水浸泡试验箱(推荐型号:GS-MST10)可选配实验水箱容积及温度控制范围23.过充电保护5.4.26.4.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。24.过放电保护5.4.36.4.325.短路保护5.4.46.4.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路26.放电过流保护5.4.56.4.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。27.静电放电5.4.66.4.6 ① 静电放电发生器(20kV)(推荐型号:ESD61002TA)引用标准:GB/T 17626.2-200628.模制壳体应力5.5.16.5.1① 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。29.壳体承受压力5.5.26.5.2① 电池壳体抗压试验装置(推荐型号:GS-KYL503)试验压力:250N30.壳体阻燃性5.5.36.5.3①水平垂直燃烧试验机(PLC+触摸屏)(推荐型号:GS-HUVL90)引用标准:GB/T 5169.16-201731.外形尺寸5.6.16.6.1① 游标卡尺(推荐型号:0-300mm)选配指针式/数显,测量量程可选32.充放电接口5.6.26.6.2目检引用标准:QB/T 442833.外观5.6.36.6.3目检/34.极性标志5.6.46.6.4酒精耐磨试验机(推荐型号:GS-YCR02)/合计需要仪器数量:约18台(国家纳米科学中心——锂电池实验室交付现场图片)设备已经成功运用到各大专业测试机构和生产厂家提供服务。第三方检测机构例如:广州SGS通标实验室,上海天祥ITS实验室,昆山出入境技术检验中心,广东质检院,深圳计量院,福建质检院(马尾基地),东莞标检产品检测有限公司(STC),各大企业例如:爱玛电动车,绿源电动车,喜德盛电动车等生产厂家品质研发部,深受客户好评。未来,Delta德尔塔仪器将持续用高品质的产品和服务,为电动自行车和电动助力车行业的发展添砖加瓦,为市民便捷出行、公共交通领域保驾护航,让人们生活的更加安全、舒适、和谐。张工yi八1,28零28677(WX同号)
  • 产品应用|使用等温微量热法测试锂离子电池的质量和性能
    由寄生反应测量推动的研究突破过去十年中,在电池研究、开发和质量控制领域,已将原位和操作中等温微量热法(IMC)用作评估锂离子电池循环期间热流的主要方法。将电池循环至失效可能需要数月的时间,但新兴的诊断测试能够在几周内预测长期行为。此类新兴诊断方法之一是测量电池在循环过程中的寄生热。Krause等人概述了将寄生热事件与总热量生成进行分离的程序,以对寄生反应进行量化,然后利用寄生反应数据以实现:√ 判断电池质量√ 协助活性材料配方的研发√ 研究添加剂的影响√ 研究固体电解质界面(SEI)的形成和增长√ 协助循环和日历寿命预测模型的制定通过了解寄生反应 加强新电池配方的研发J. Krause等人和Jeff Dahn小组研究了不同石墨以及电极配方对电池性能的影响。他们使用TAM III微量热仪测量寄生能量并将其与活性锂损失或库仑效率相关联的早期创新者,“确认寄生能量的来源是锂化电极和电解质之间发生的反应热。”已经证明,他们的方法对研究新材料组合和预测电池寿命是有效的。先前的工作表明,从石墨锂离子软包电池的电解质中去除碳酸亚乙酯(EC)可延长循环寿命和高压运行寿命。S. L. Glazier 等人通过联用TAM III微热量仪和电池循环器测量在高压运行期间的寄生热流,研究了无EC电解质的性能。该团队测量了寄生反应的时间和电压依赖性,以表征电池中复杂的内部反应。他们发现,不含EC的电解质“在较低电压下产生更高的寄生热流,但在4.3 V以上时的表现优于含EC的电解质。”此外,不含EC的电解质在高压暴露后能够更好地恢复到较低的寄生热流。他们的工作证实,不含EC的电解质可提供出色的高性能操作,进一步的研究可帮助改善电池在低电位下的性能,以获得更成功的电池电解质配方。通过高压热流测量 评估新型电池材料L. Glazier等人还通过测量寄生热流和容量保持率对天然石墨和人造石墨电池进行了比较。事实证明,他们的TAM III微热量仪有助于“了解高压锂离子软包电池中寄生反应的电压和时间依赖性。”他们使用IMC在低电压范围内研究寄生反应,以探测电解质在负电极中的反应,然后在高电压范围内进行测试,以探测氧化的正/负相互作用。结果表明,含足够电解质添加剂负载的天然和人造石墨电极将产生相似量的寄生热,人造石墨产生的热量最少。电解质添加剂负载不足会产生更大的寄生热流,并且在高电压范围内的电化学性能显著恶化。长期循环行为表明,与人造石墨相比,天然石墨电池具有更快的容量衰减速度。该小组提出,在电解质负载不足的情况下,SEI层很薄,无法有效承受锂化过程中天然石墨颗粒的机械膨胀,并且由于新的SEI在暴露表面形成,会导致不可逆膨胀和更大的容量衰减率。通过评估寄生反应 为优化高镍NMC阴极制定基线C. D. Quilty等人在研究富镍锂镍锰钴氧化物(NMC)阴极电池的研究中也评估了新型锂离子电池材料。NMC提供了高能量密度,但受到潜在的容量衰减较高的影响,因此必须谨慎限制其容量。要最大限度地提高NMC电池的寿命和高容量,需要使用一套工具来测量容量衰减机制,包括操作中IMC实验。C. D. Quilty等人使用TAM IV微热量仪实时测量(去)锂化过程中的热量,以全面了解了电池退化过程。他们指出,IMC是一个“强大的非破坏性工具,能够以超高精度捕捉循环电池释放的瞬时热流”,为他们的研究提供了帮助。他们发现,在更高电压下,容量衰减率的增加可能由更大的热能浪费或更低的电化学效率引发。他们的结论为未来的NMC阴极优化设定了基准。评估预锂化 对新型锂离子电池加工技术的影响预锂化是一种新的锂离子电池化成方法,该方法在电池单元运行之前增加活性锂含量。预锂化可补偿形成循环中的锂损失,如果操作正确完成,有望获得高能量密度和更好的循环性能。然而,对预锂化可能产生的负面影响仍处于研究阶段。Linghong Zhang等人使用TAM III微热量仪评估了预锂化过程和相关的寄生反应。第一个循环期间,预锂化电池产生了额外的寄生反应,但在三个循环后,“在预锂化电池和对照电池中观察到类似的来自寄生事件的热信号,表明预锂化的稳定性,以及可能不存在长期的副作用。”该研究首次展示了应用等温微量热法评估预锂化,并提供了有关该程序的有前景的结果。他们得出结论,“操作中等温微量热法是表征锂离子电池预锂化应用的有力工具。”未来的研究可继续优化预锂化,监测预锂化添加剂对大规模安全形成电池的影响尤为重要。研究背后的技术上述研究均使用到TA仪器的TAM系列微量热仪,这是一款先进的分析工具,可在受控温度条件下测量样品的热行为。许多研究将TAM与恒电位仪或电池循环器配对使用,使它们能够测量电池运行期间的热流,以获得可靠的结果。TA仪器全新推出的电池循环微量热仪解决方案专为这一应用而构建。该方案将TAM IV微量热仪与BioLogic VSP-300恒电位仪搭配成一个集成系统,从而形成一个端到端的运行中(in-operando)测量工具,在灵活和直观的系统中实时揭示电池在用户定义的温度和电压曲线下的详细热-电化学特性。现在,各级研究人员和科学家都可以通过无缝系统控制和数据分析来测量操作中的电池热流,从而缩短测试时间、加快决策。电池循环器微型量热仪解决方案包括两个主要系统的无缝软件和硬件集成:TAM IV 微型量热仪——可在受控温度条件下测量样品热行为的最先进的分析工具BioLogic VSP-300 恒电位仪/循环器——用于探测材料电性能的研究级电化学分析工具高级集成√ 仅通过一个软件接口,即可提供无缝系统控制√ 实时汇总数据,无需等待漫长的实验完成即可查看初步结果√ TAM ASSISTANT软件可一键进行数据可视化分析,更快提供结果和新见解卓越生产率√ 可同时循环并测量多个电池单元和外形尺寸的寄生热量√ 无需处理或操纵电线,消除了对专项工程的需求以及与定制OEM产品相关的不安全操作风险灵敏可重复√ 温度范围扩展至4℃-150℃,更好模拟现实世界中的应用√ 无与伦比的自放电测量的灵敏度和温度稳定性
  • 百特参加高比能固态电池关键材料技术大会,助力电池产业转型升级
    2021年3月11日,由中国粉体网联合中国颗粒学会能源颗粒材料专委会主办的“第二届高比能固态电池关键材料技术大会暨第四届能源颗粒材料制备及应用技术高峰论坛”在湖南长沙吉美国际会展酒店隆重开幕。来自全国各地300余名电池材料界专家和厂家代表参加了本次会议。丹东百特仪器有限公司携激光粒度仪和粉体综合特性测试仪参会,为电池厂家提供粒度、物性分析一站式解决方案。相较于传统的锂电池来说,全固态电池具有不易燃、无腐蚀性、不漏液等特性,从而提升了电池使用的安全性。它功率密度较低,能量密度较高,在轻薄化后柔性程度也会有明显的提高,是电动汽车的理想电池。作为传统电池行业的一个新领域,全固态电池的开发是机遇,更面临着挑战。如何满足正负极和固体电解质的离子传输?循环过程中,正负极材料如何良好接触?金属锂电极的体积变化等都是研发团队需要克服的问题。在本次会议上,丹东百特技术总监李雪冰博士做了《固态电池中关键材料颗粒检测面临的问题和挑战》的报告。粒度分布作为电池行业质量把控的重要指标之一,样品分散、数据的稳定性一直是业内关注的焦点。李博士通过应用案例和实测数据就目前颗粒检测面临的问题做出详细分析,提供合理详尽的解决方案,赢得阵阵热烈的掌声。在仪器展示区,丹东百特展出了Bettersize2600激光粒度仪和BT-1001智能粉体特性测试仪。Bettesize2600激光粒度仪采用正反傅里叶技术,量程达到0.02-2600μm,高精度的数据采集与处理系统使测试结果达到同类进口仪器水平,它还具有一键式SOP智能化操作,十分钟就可以学会操作流程。BT-1001智能粉体特性测试仪可测试包含安息角、平板角、振实密度、松装密度、分散度、流动性等14个项目,通过自动控制技术、CCD摄像技术和触摸屏等现代技术,使粉体物性测试进入了科学化、智能化和精确化时代,是电池材料行业物性分析的标准仪器。 作为国内专业的粒度、粒形、粉体物性检测仪器的研究制造企业,丹东百特仪器有限公司始终致力于创新发展,在提供具有国际先进水平的粒度粒形分析仪器的同时,还为各个材料行业提供颗粒检测应用方案。未来,百特将继续发挥技术优势,助力电池材料行业蓬勃发展。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开!
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了他们在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。会上,杭州仰仪科技有限公司正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技的孙昕禹工程师为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼具优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制