当前位置: 仪器信息网 > 行业主题 > >

水泥收缩膨胀分析仪

仪器信息网水泥收缩膨胀分析仪专题为您提供2024年最新水泥收缩膨胀分析仪价格报价、厂家品牌的相关信息, 包括水泥收缩膨胀分析仪参数、型号等,不管是国产,还是进口品牌的水泥收缩膨胀分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水泥收缩膨胀分析仪相关的耗材配件、试剂标物,还有水泥收缩膨胀分析仪相关的最新资讯、资料,以及水泥收缩膨胀分析仪相关的解决方案。

水泥收缩膨胀分析仪相关的论坛

  • 热膨胀仪DIL,热机械分析仪TMA,动态力学分析仪DMA 之间不同?

    我对热膨胀仪DIL、热机械分析仪TMA、动态力学分析仪DMA 之间界定不是很清楚,如果只用来测热膨胀系数的话好像三者都可以,但具体的测量原理有什么不同呢? 尤其是DIL和TMA总感觉两个仪器的功能差不多,DMA还可以加上力的作用那个可以测阻尼运动等等,那DIL和TMA有什么区别啊? 希望清楚的坛友帮我解答下?谢谢。

  • 由热机械分析仪DMS 6100测膨胀系数

    用的仪器是DMS 6100 查找百度发现可以测膨胀系数CTE 不知道具体怎么测,测试中心的人说选择SS模式(应力应变控制模式)才能测应力是恒定的情况,但是此时只能测拉伸样品,这种情况下测拉伸不就是蠕变了吗?蠕变能算膨胀系数吗?!(恒定拉力,温度不变情况下测形变,不是得出蠕变吗)做了一下压缩模式,但是此时应力并不能设置成静态的,我设置成0.1N,1Hz运行后自动变成了9.8N ,在玻璃化温度附近应力还变小了(9.8N)。EXCEL 里面的确有应变dl,但我觉得应变应该是在只有温度变化情况下测量的,或者应力很小的情况.现在应力是9.8N能行吗?而且还是动态的力1Hz.求各位网友指教如何用这种仪器来测膨胀系数,拜谢!!!

  • 深析膨胀罐的作用与优缺点

    膨胀罐目前已经被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,下面南京捷登流体设备以我司的Aquafill与wozi膨胀罐为例,为大家深析深析膨胀罐的作用与优缺点。一、膨胀罐的工作原理:  由膨胀罐的结构可知,当膨胀罐用于系统中时,由于系统压力比预充气体的压力高,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再往系统补给,维持动态的平衡。二、膨胀罐的作用:  膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。三|、隔膜式膨胀罐 隔膜式膨胀罐是早期第一代的产品,对隔膜式膨胀罐来讲,其罐体和隔膜之间预充有一定压力的氮气,气囊式膨胀罐是罐体可气囊之间预充有一定压力的氮气。  1.因为隔膜式膨胀罐壳体是直接与水接触的,所以壳内都喷涂防锈层。罐的接口与壳体之间是焊接而成。这样在焊接的过程中,高温就会将防锈涂层氧化。本来是银白色的涂层,在焊接后呈现黑色。用手触摸可感觉有黑色小颗粒。那么这些看似微不足道的氧化点工作时长期与水接触,慢慢就会生锈并逐渐扩大,直到整个罐体生锈,为什么这种膨胀罐用一段时间后,倒出来来的水呈黄水也就不足为奇了。 2.隔膜式膨胀罐的内膜是通过热轧的方式固定在膨胀罐的两个半壳的碳钢中间,这种工艺过程如果处理的不好,就会留下微小的气孔在内膜和碳钢之间,这些微小的气孔就会将预充的气体泄露出去,膨胀罐如果泄露气体,90%就是从这里泄露的。这种漏气的膨胀罐用一段时间如果不再补充气体就不能起到定压卸荷作用。而这本身是很难察觉。由于罐壁厚度一般在1mm左右,接口直接与罐焊接在一起,这种联接方式可承受的扭力相当小。而安装罐时只能抱着壳体旋转,这样如果用力太大或过猛,就会将接口旋断。这种情况在空调生产过程中最为常见。四、气囊式膨胀罐 气囊式膨胀罐就克服了隔膜式气压罐的缺点,气囊式膨胀罐内部有一个整体的气囊,在工作时水只进入气囊内,不与壳体接触。接口处用法兰盘连接。这种结构就避免了焊接过程引起的生锈问题。这种结构的膨胀罐的气囊可更换。同样,由于是法兰连接,故它的接口就可以承受很大的扭力,在安装过程中就不怕会扭断接口。

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用: 壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理: 当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。

  • 活性污泥中非丝状菌膨胀的条件和成因

    非丝状菌膨胀是由于菌胶团细菌本身生理活动异常,导致活性污泥沉降性能恶化。可分为两种。一种是由于进水中含有大量的溶解性有机物,使污泥负荷F/M太高,而进水中缺乏足够的氮、磷等营养物质,或者混合液内溶解氧不足。高F/M时,细菌会把大量的有机物质吸入体内,而由于缺乏氮、磷或溶解氧不足,又不能在体内进行正常的分解代谢。此时细菌会向体外分泌出过量的多聚糖类物质。这些物质由于分子式中含很多羟基而具有较强的亲水性。使活性污泥的结合水高达400%(正常污泥结合水为100%左右)以上。呈粘性的凝胶状,使活性污泥在二沉池内无法进行有效的泥水分离及浓缩。这种污泥膨胀称为粘性膨胀。另一种非丝状菌膨胀是由于进水中含有大量的有毒物质,导致污泥中毒。使细菌不能分泌出足够的粘性物质,形不成絮体,因此也无法在二沉池进行有效的泥水分离及浓缩。这种污泥膨胀有时又称为非粘性膨胀或离散性膨胀。

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用:壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理:当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。南京捷登专业销售壁挂炉膨胀罐,意大利原装进口Aquafill壁挂炉膨胀罐以及国内组装wozi壁挂炉膨胀罐。两大品牌,从质到价,给您超高性价比的性价比。

  • 玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    尼龙是一种由DuPont最先研发的聚酰胺纤维(PA 6.6),最初是作为丝绸的替代品用在纺织品和绳索制造中。后来,在英语中尼龙作为一个术语表示所有线性脂肪族聚酰胺纤维,它的应用范围迅速扩大,现在被广泛应用在包装、管道和低负载机械部件等领域。玻璃纤维和碳纤维作为填料加入到尼龙中制成的复合材料具有很好的机械强度和耐热性,使其应用范围更加宽广。耐驰热机械分析仪可以作为尼龙和其他聚合物材料膨胀系数测试的有力工具。[b]测试仪器[/b]TMA 402 F1 Hyperion[b]测试条件[/b][table][tr][td=1,1,124]温度范围[/td][td=1,1,124]升降温速率[/td][td=1,1,124]气氛[/td][td=1,1,124]样品长度[/td][td=1,1,124]样品支架[/td][td=1,1,121]测量模式[/td][/tr][tr][td=1,1,124]-30℃-200℃[/td][td=1,1,124]5℃/min[/td][td=1,1,124]He,20ml/min [/td][td=1,1,124]25.02mm[/td][td=1,1,124]熔融石英[/td][td=1,1,121]拉伸模式[/td][/tr][/table][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131413202108_9987_163_3.jpg!w590x329.jpg[/img][b]结果讨论[/b]聚合物材料相对金属材料具有更高的膨胀系数,一般其膨胀系数(CTE,工程膨胀系数)在10-5 1/K-10-4 1/K范围内。示例中使用的聚酰胺样品在20℃-200℃的膨胀系数为13.5X10-5 1/K(即1.35X10-4K/min)。CTE值是指在所选温度区间内平均热膨胀系数,但因为尼龙样品在65℃(起始点)附近玻璃化转变的存在,导致热膨胀曲线呈现非线性形状,因此在温度20℃-100℃之间(玻璃化之前)的热膨胀系数值较小,约为9.9X10-5 1/K。

  • Pyrex7740 膨胀系数测试

    Pyrex7740 膨胀系数测试

    Pyrex是一种由Corning公司首次研发的硼硅酸盐玻璃。它被广泛应用在实验室用玻璃器皿上。它有如下优点:在较宽的温度范围内有很好的稳定性(温度上限:490℃),具有很强的耐酸、耐碱及耐腐蚀性,具有很低的膨胀系数,制成厚玻璃具有很好的机械强度。耐驰热膨胀仪和热机械分析仪可以用来测试Pyrex及其他低膨胀的玻璃或陶瓷样品的膨胀系数。[b]测[color=black]试条件[/color][/b][color=black]耐驰热机械分析仪 TMA 402 F1 Hyperion[/color][table][tr][td=1,1,370]温度范围:-20°C … 300°C[/td][td=1,1,370]加热与降温速率:2°C/min[/td][/tr][tr][td=1,1,370]气氛:He,20ml/min[/td][td=1,1,370]样品长度:24.98 mm[/td][/tr][tr][td=1,1,370]样品支架:熔融石英[/td][td=1,1,370]测量模式:压缩[/td][/tr][/table][b]结果讨论[/b][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131418562409_2488_163_3.jpg!w590x329.jpg[/img]在整个温度范围内,Pyrex玻璃的膨胀曲线近似完全线性,0℃ … 300℃的膨胀系数(工程膨胀系数,CTE)为33.4X10[sup]-7[/sup] 1/K,与理论值(32.5 X10[sup]-7[/sup] 1/K)的误差近0.9 X10[sup]-7[/sup] 1/K,这足以说明TMA 402 F1 Hyperion可以用于测试低膨胀系数的样品。(1) Corning data sheet: Properties of PYREX[sup][/sup], PYREXPLUS[sup][/sup] and Low Actinic PYREX[sup][/sup] Code 740 Glasses(2) [url=http://www.valleydesign.com/pyrex.htm]www.valleydesign.com/pyrex.htm[/url]

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 304不锈钢热膨胀系数的精确测定

    304不锈钢热膨胀系数的精确测定

    304不锈钢是一种常见的奥氏体钢合金,其中含有18-20%的铬和8-12%的镍。它具有很好的耐腐蚀性能,被广泛应用在化学、食品和石油工业中。它还具有很好的拉伸性能,可以按需求制成各种复杂的形状。[color=#1f497d][/color]耐驰的热膨胀仪和热机械分析仪非常适合用来测试304不锈钢和其他金属或金属合金的膨胀行为。[color=#1f497d][/color][b]测试仪器[/b]耐驰热机械分析仪,TMA 402 F1 Hyperion[b]测试条件[/b][table=100%,rgb(255,255,255)][tr][td=1,1,15%]温度范围[/td][td=1,1,15%]升降温速率[/td][td=1,1,21%]气氛[/td][td=1,1,15%]样品长度[/td][td=1,1,15%]样品支架[/td][td=1,1,16%]测量模式[/td][/tr][tr][td=1,1,15%]RT … 1300℃[/td][td=1,1,15%]5℃/min[/td][td=1,1,21%]He,20ml/min[color=#1f497d][/color][/td][td=1,1,15%]27.99mm[/td][td=1,1,15%]氧化铝[/td][td=1,1,16%]压缩模式[/td][/tr][/table][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131404507849_2425_163_3.jpg!w590x329.jpg[/img][b]结果讨论[/b][color=#1f497d][/color]上图显示,在测量温度范围内,样品表现出相对线性的膨胀行为,26℃… 649℃(79 … 1200℉)间的热膨胀系数(工程膨胀系数,CTE)为18.3X10[sup]-6[/sup] 1/K,与文献中数据(温度范围0℃ … 649℃,即30 …1200℉)18.7 X10[sup]-6[/sup] 1/K吻合很好,样品在26 … 1299℃(79 … 2372℉)间的膨胀系数为19.9 X10[sup]-6[/sup]1/K。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 怎样选择压汞仪膨胀计?

    实验分析中膨胀计的选择需考虑三个标准:(1) 样品类型: 如果你的样品是粉末,颗粒状,或具有良好颗粒松散度的大块状,使用粉末膨胀计。如果你的样品是固体形态或大块,使用固体膨胀计。(2) 样品体积:使用能够接近填满膨胀计的样品量。膨胀计样品室有三种型号:3,5和15cm³。因此,如果你的样品体积是4cm³那么适合放入5 cm³的样品室,从而5cm³的膨胀计是最适合的。(3)样品浸入体积:填充满样品孔的理想汞体积应该介于膨胀计“最大浸入体积”的25%至90%。一个理想范围内的有效浸入体积将会提供好的清晰度。换句话说,确保膨胀计包含足够的汞以便填充满样品孔。同时考虑粉末样品粒内孔隙的额外浸入体积也作为浸入体积测量 。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    在热膨胀系数测试过程中,加热速率是一个重要试验设置参数,加热速率的设置直接影响热膨胀系数测量的准确性。一般来说,加热速率越小,热膨胀系数测量的准确性越高,但相应的整个测试过程时间就会很长。因此,在实际热膨胀系数测试过程中,针对不同被测材料样品,选择合理的加热速率则显着非常重要,从而实现既能保证测量的准确性,又能缩短整个测试过程时间。 一直以来,加热速率对热膨胀系数测试结果的影响只是一个公认的常识,很少看到有专项研究对这种影响进行系统性考核试验和报道。如Jankula等人的研究中[1],仅展示了不同加热速率会使相对热膨胀曲线之间产生偏移,如图1所示。即在较高加热速率下,温度在整个样品中的分布并不均匀,因此可以观察到相对膨胀的一些延迟。这种不同加热速率所带来的延迟效应在热分析测试中非常典型,可以在差热分析、热重分析和其他热分析技术中找到,但这种延迟性描述和表征并不直观,特别是在热膨胀系数测试中并不能直观描述加热速率的影响。[align=center] [img=,690,378]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081406107187_3969_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#990000]图1 不同升温速率下砖坯样品的相对热膨胀变化曲线:2.5℃/分钟(灰色)和10℃/分钟(黑色)[/color][/align] 为了更直接和直观的描述加热速率对热膨胀系数测量的影响,Dulucheanu等人开展了这方面的专项研究[2],具体的实验条件如下: (1)热膨胀仪:德国NETZSCH公司Expedis DIL 402-SUPREME膨胀仪; (2)样品材料:铁素体-马氏体结构双相钢; (3)样品尺寸:圆柱形样品,直径5mm,高度25mm; (4)加热温度范围:30~980℃; (5)测试温度范围:30~700℃; (6)加热速率:1、3、5、10和30℃/min; (7)试验气氛:氮气,流速100ml/min; (8)样品负载:200mN。 在加热速率为3℃/min时,得到如图2所示的相对热膨胀曲线,并由此可计算得到30~100℃、30~200℃、30~300℃、30~400℃、30~500℃、30~600℃和30~700℃的平均线膨胀系数。[align=center][color=#990000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081407341483_4829_3384_3.png!w690x466.jpg[/img][/color][/align][align=center][color=#990000]图2 膨胀曲线和线性热膨胀系数(CTE),温度范围为30~700℃,加热速率为3℃/分钟[/color][/align] 分别采用不同加热速率进行测试,得到相应的平均线膨胀系数测试结果,数值形式如表1所示,曲线形式如图3所示。[align=center][color=#990000]表1 不同加热速率下的平均线膨胀系数测试结果[/color][/align][align=center][color=#990000][img=,690,139]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408072713_661_3384_3.png!w690x139.jpg[/img][/color][/align][align=center][color=#990000][img=,690,504]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408542587_2405_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 平均线性热膨胀系数(CTE)随加热速率和温度范围的变化[/color][/align] 从这个直观的系列性验证试验可以看出,由于被测样品材料的内部结构和热物理性能,加热速率会对热膨胀系数测试结果产生明显影响,加热速率这一试验参数的选择不当会造成热膨胀系数测量误差极大。因此,在实际测试过程中,要根据被测材料结构和热物理性能,选择合理的加热速率。[b][color=#990000]参考文献[/color][/b] [1] Jankula M, Š íN P, PODOBA R, et al. Typical problems in push-rod dilatometry analysis[J]. Epitoanyag-Journal of Silicate Based & Composite Materials, 2013, 65(1) [2] C. Dulucheanu, T. Severin, M. Bă eș u, The Influence of Heating Rate on the Coefficient of Linear Thermal Expansion of a 0.087% C and 0.511% Mn Steel, TEHNOMUS.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • TMA精确测量铝合金6061的热膨胀系数

    TMA精确测量铝合金6061的热膨胀系数

    铝合金6061是含有镁和硅为主成分的通用铝合金。此材料质量轻、机械强度和焊透性良好,广泛用于交通工具领域,比如飞机、船只、汽车和自行车。热膨胀测试仪(DIL)、热机械分析仪(TMA)都是测量铝合金6061和其他金属合金热膨胀的理想工具。[color=#1f497d][/color][b]测试条件[/b]耐驰热机械分析仪,TMA 402 F1 Hyperion温度范围:-20°C ... 500°C加热与降温速率:5°C/min气氛:He,20ml/min样品长度:25.00mm样品支架:石英测量模式:膨胀[color=#1f497d][/color][b]结果讨论[img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131407412759_976_163_3.jpg!w590x329.jpg[/img][/b][color=#000000]图[/color][color=#000000]1[/color][color=#000000]显示了铝合金在室温至[/color][color=#000000]500[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]范围的热膨胀曲线。得到的平均热膨胀系数([/color][color=#000000]20[/color][color=#000000]°[/color][color=#000000]C...100[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])为[/color][color=#000000]22.8X10[sup]-6[/sup] 1/K[/color][color=#000000],非常接近文献数据[/color][color=#000000]23.0 ... 23.6X10[sup]-6[/sup] 1/K[/color][color=#000000]。([/color][color=#000000]20[/color][color=#000000]°[/color][color=#000000]C ... 500[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])范围内的平均热膨胀系数为[/color][color=#000000]27.0 X 10[sup]-6[/sup] 1/K[/color][color=#000000]。[/color]

  • 理化专用影像测量分析仪

    理化专用影像测量分析仪

    国内首创,主要用于力学性能测试方面的,尺寸测量,面积分析仪,角度、弧度,布氏硬度制测定、断后延伸率的测量等等,代替了力学实验室里用的所有测量工具,如卡尺等,更能准确的测量分析仪。功能介绍:1、 落锤、摆锤冲击断口分析、膨胀值测定2、 断后延伸率:拉伸试验断后延伸率测定、断口收缩率测定3、 硬度值测定:布氏硬度、维氏硬度测定4、 动态断裂试验测量。5、 裂纹扩展试验测量6、 等比例分段测量等用于理化实验室物理性能试验中对试验测尺分析。http://ng1.17img.cn/bbsfiles/images/2011/09/201109101047_315566_1632196_3.jpg

  • 美国重大事故——美国混凝土热膨胀系数测试方法重大错误的验证和分析

    [color=#cc0000]摘要:针对路面混凝土热膨胀系数(CTE)测试,国内外普遍使用的测试方法AASHTO TP60因被发现由重大错误,后经过重大修改并由AASHTO T336所替代。本文将回顾发现AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[/color][color=#cc0000][/color][color=#cc0000]关键词:热膨胀系数,混凝土,路面混凝土设计,测试方法[/color][color=#cc0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  随着我国基础建设的飞速发展,越来越多的公路路面采用了水泥混凝土,这主要是因为水泥混凝土具有高强度和高稳定性等优点,但路面板边缘过早破坏、面板开裂、横缝错台等危害一直困扰着道路工程界。大量研究发现混凝土的热膨胀系数(CTE)是影响路面水平裂缝以及其它危害发生的主要原因,CTE越大,路面越容易出现开裂和疲劳破坏。在近些几年中对CTE测试的兴趣显著增加,因为它被认为是用于混凝土路面设计最重要的输入参数之一。  有多种测试方法可用于测定混凝土的CTE,文献做了详细的综述介绍。纵观各种混凝土CTE测试方法,最广泛使用的是AASHTO TP60,它是所有混凝土CTE测试的基础,AASHTO TP60测试方法广泛使用的另外一个原因是其测量装置也可以被其它测试方法使用。  TP60的测量原理非常简单,它测量垂直放置在金属框架内的饱和混凝土样品的长度变化,该金属框架受特定温度变化的影响。控温水浴用于改变测试方法规定的温度范围,通过测量已知CTE的校准样品长度变化来消除框架的变形影响。  对于任何材料性能测试方法和测量装置的测量准确性考核和评价,一般都采用以下几种方式:  (1)测试可计量溯源的标准参考材料,测试结果与标准值比较;  (2)测试经更高等级测试设备验证过的参考材料,测试结果与参考值比较;  (3)多个实验室不同测试设备之间的比对测试。  美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)为了评估AASHTO TP60测试方法的准确性,采用了上述第二种方式,选择了几种参考材料并经第三方实验室采用更高等级的测试设备对参考材料CTE进行测量。在此评价过程中发现了使用了近十多年之久的AASHTO TP60存在着重大错误,并及时做出了修改,从而推出了新的测试方法AASHTO T336,但以往错误所带来的影响和后果非常严重,造成大面积的数据库和设计软件的修改等。  本文将回顾发现混凝土CTE测试方法AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[b][color=#cc0000]2. 参考材料[/color][/b]  为了评估AASHTO TP60测试方法和相应测试设备测量精度和测量重复性,以及实验室间的比对测试,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)准备了三种参考材料,这三种参考材料的CTE值范围基本都在TFHRC先前测试过的混凝土样品范围内。三种参考材料如下:  (1)氧化铝陶瓷:根据文献其CTE为5.5×10-6/℃。这种氧化铝陶瓷一种多孔陶瓷,在测试之前需要饱和。  (2)钛合金(Ti-6Al-4V):根据文献其CTE为9.2×10-6/℃。  (3)410不锈钢:根据文献其CTE为10.5×10-6/℃。[b][color=#cc0000]3. 参考材料热膨胀系数测试[/color][/b]  美国TFHRC首先使用自己实验室的两台不同的混凝土热膨胀系数测试设备,按照TP60方法对上述三种参考材料进行了测试,测试结果如表3-1所示。[align=center][color=#cc0000]表3-1 参考材料文献值和不同测试方法(AASHTO TP60和ASTM E228)结果[/color][/align][align=center][img=,600,324]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292225403071_943_3384_3.png!w900x487.jpg[/img][/align]  从表3-1可以看出,针对氧化铝陶瓷、钛合金和410不锈钢三种参考材料,采用AASHTO TP60测试方法测量得到的CTE值与文献报道值并不一致,它们普遍比文献值高约1×10-6/℃。  当发现测量值与文献值之间存在较大差异后,TFHRC首先认为造成这种差异的可能原因是氧化铝素瓷、钛合金和410不锈钢这些参考材料与文献报道的材料并不完全相同,或者在测试期间位移探测器(LVDT)受温度或湿气(或两者)变化的影响。[b][color=#cc0000]4. 第三方实验室测试[/color][/b]  上述三种参考材料测试结果与文献值的较大差异使得TFHRC决定选择独立的第三方实验室对CTE测试进行验证,参考样品被送到专门从事航天工业金属CTE测试的实验室进行了测试,测试按照ASTM E228测试方法(顶杆法)的修改版进行,以适应高度180mm、直径80mm或100mm样品和TP60中相同的温度范围10~50℃。除了发送新获得的参考材料外,用于校准FHWA手动测量装置和两台商业测量装置的几个304不锈钢校准样品也被送到此第三方实验室进行测试验证。  在ASTM E228测试方法中,顶杆法热膨胀仪用于测量线性热膨胀。测量样品和已知标准参考材料之间作为温度函数的膨胀差异,样品的膨胀是根据这种膨胀差异和标准膨胀来计算的。  表3-1显示了CTE文献值和TFHRC及第三方独立实验室获得的测量结果。可以看出,按照TP60在TFHRC获得的CTE结果远高于按照ASTM E228在第三方实验室的测量结果。按照TP60规定,三种304不锈钢校准样品(SS743、M1和M2)设定的热膨胀系数都为17.3×10-6/℃,所以采用TP60方法测试得到的CTE结果也都为17.3×10-6/℃。  从表3-1可以看出,根据TP60获得的结果远高于根据ASTM E228获得的结果。此外,除了304不锈钢校准样品外,第三方实验室报告的结果与文献值基本一致。而对于所有304不锈钢校准样品,第三方实验室报告的CTE测试结果都要明显低于17.3×10-6/℃。[b][color=#cc0000]5. 对比分析[/color][/b]  通过上述第三方实验室的对比测量,TFHRC终于认识到出现TP60测试结果较高的原因是:304不锈钢校准样品的CTE值可能在测试温度范围内设定(或选择)的并不正确。当发现这个灾难性的可能原因后,TFHRC感觉到了事态的严重性,这是因为无论是定制装置还是商用测量装置,所有执行AASHTO TP60和类似测试方法的实验室所使用的304不锈钢校准样品CTE值均为17.3×10-6/℃,如果发生错误则会带来大范围的影响。  根据TP60,如果用作校正系数所输入的304不锈钢校准样品CTE值不正确,则所测试材料的CTE值也不正确。作为验证,TFHRC使用了第三方CTE测试结果15.8×10-6/℃作为304不锈钢校准样品的CTE作为新的校正因子。使用新的校正因子,TFHRC重新计算了表3-1中报告的CTE,如表5-1所示。[align=center][color=#cc0000]表5-1 第三方实验室和TFHRC的CTE测量值比较,假设校准样品有两个CTE值[/color][/align][align=center][color=#cc0000][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292227254161_5379_3384_3.png!w900x289.jpg[/img][/color][/align]  从表5-1可以看出,当使用TP60建议的304不锈钢CTE默认值来计算校正系数时,氧化铝陶瓷、钛合金和410不锈钢的CTE高于预期,但是当使用由第三方实验室测量确定的304不锈钢CTE值计算校正系数时,获得的氧化铝陶瓷、钛合金和410不锈钢的CTE更接近预期值,与预期值的差异并不是由于温度或湿度变化对LVDT读数的影响。相反,这种较大差异主要是由于使用304不锈钢校准样品的不适当CTE值作为输入来计算校正因子,从而导致测量参考材料CTE的错误。[b][color=#cc0000]6. 第三方实验室再次测试[/color][/b]  为了进一步确认304不锈钢校准样品的CTE,TFHRC将校准样品送到另一家第三方独立实验室进行测试。由于发现此实验室虽然可以采用ASTM E228进行CTE 测量,但无法对高180mm、直径80mm或100mm的样品进行测量,因此送到此第二家第三方实验室的较小尺寸样品是将先前发送到第一家第三方实验室的样品进行了切短,切短后的样品尺寸约为51×51×6mm。该实验室在比以前实验室更宽的温度范围内(-40~300℃)测量了304不锈钢校准样品的CTE,结果如表6-1所示。[align=center][color=#cc0000]表6-1 两家第三方实验室的CTE测试结果比较(测试方法ASTM E228)[/color][/align][align=center][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229073780_4938_3384_3.png!w900x289.jpg[/img][/align]  表6-1清楚地显示,从第二个独立实验室收到的结果与从第一个独立实验室获得的结果一致,观察到的微小差异可归因于可接受的测试系统误差。表6-1中显示的CTE测试结果表示在与TP60相同温度范围内的CTE值,并不包括第2个独立实验室使用的全温度范围。  图6-1显示了第二家独立实验室在测试期间使用的整个温度范围内的平均CTE。从中可以看出,CTE值随温度而变化在-40~300℃温度范围内呈现最稳定CTE的材料是钛合金。同样清楚的是,在300℃左右,304不锈钢样品的CTE试验结果接近17.3×10-6/℃的文献报道。[align=center][img=,600,354]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229413984_686_3384_3.png!w848x501.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图6-1 在宽温度范围内的平均CTE(参考温度为20℃)[/color][/align]  通过这次第二家第三方实验室的测试,进一步验证了TP60方法中存在的问题,从而推进了新型测试方法的建立。[b][color=#cc0000]7. AASHTO新旧标准之间的区别[/color][/b]  AASHTO TP60标准方法在2000年颁布,2009年发现了TP60存在重大问题,2010年在AASHTO TP60基础上颁布了新标准AASHTO T336。TP60方法与T336新方法的主要区别如下:  (1)第三方测试:虽然TP60在非强制性附录中指出304不锈钢的CTE为17.3×10-6/℃,但T336要求任何校准样品的CTE应由拥有ISO 9001或同等认证的实验室来确定。  (2)校准样品的CTE测定:CTE必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与T336相同的温度范围内进行,即10~50℃。  (3)CTE证书:校准样品必须具有第三方实验室颁发的证书,包括所测样品品的批号。CTE必须在相同的样品上或同一批次的样品上测定,因为材料的CTE可能会随批次发现变化。  (4)力学经验路面设计指南(MEPDG)警示说明:在1.0版MEPDG软件中,模型的校准采用的是长效路面性能(LTPP)数据库中的CTE值,而这些CTE值则由TP60方法测试获得。由于根据TP60和T336获得的校准样品CTE值之间由很大差异,因此根据T336获得的CTE不应用作1.0版MEPDG软件的输入,以防止路面厚度的低估。[color=#cc0000][b]8. AASHTO新旧标准更替所带来的影响[/b]8.1. 对路面性能数据库的影响[/color]  目前的长效路面性能(LTPP)数据库中的CTE值是整个美国在10年期间对来自道路的数千个样芯采用TP60方法进行广泛测试的结果。在所测试的温度范围内如果假定校准样品的CTE不正确,那么LTPP数据库中的所有CTE值都高于预期温度范围内的实际CTE值,需要全部进行相应调整。  由于发现了校准样品的CTE差异,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)已经努力反算所有测试结果,用特定的CTE值代替17.3×10-6/℃用于每台热膨胀测试设备的校准样品。[color=#cc0000]8.2. 对力学经验路面设计指南的影响[/color]  美国一致将CTE确定为力学经验路面设计指南(MEPDG)中用于设计混凝土路面最重要输入或分类为极其敏感的输入参数,混凝土的CTE决定了影响整个路面设计的路面卷曲应力、贴合移动和荷载传递效率的大小。在连续钢筋混凝土路面中,CTE决定了裂缝间距和裂缝宽度,这些会影响裂缝荷载传递效率并影响最终冲孔。  由于MEPDG中的各种不同模型使用的都是来自LTPP数据库的CTE数据,因此需要根据校正数据调整这些模型(使用校准样品的正确CTE)。由于MEPDG软件中的当前模型是基于LTPP数据库中错误的较高CTE值,因此无论是通过模型的全局重新校准还是通过局部校准过程,只有在模型重新校准后,才能使用正确的较低CTE值。如果没有解决这个问题,它可能会对预测的设计厚度产生负面影响。[color=#cc0000]8.3. 其他影响[/color]  许多机构已经开始在MEPDG实施之前表征其典型混合物的材料特性,存储在这些数据库中的CTE值仍然有效。但是,这些CTE记录值需要根据校准样品的假定CTE值和根据ASTM E228获得的CTE值的差异进行调整。如上所述,这些经过调整的CTE值仅在模型重新校准后才能用于MEPDG软件的设计。  美国一些州已经开发了基于MEPDG和CTE的典型路面设计和设计表。在这种情况下,一旦重新校准MEPDG,应根据需要对表格进行验证和更改。[b][color=#cc0000]9. AASHTO T336的改进[/color][/b]  2010年颁布的AASHTO T336已经实施了将近十年,尽管AASHTO T336在这些年的实施中已经取得了很大成就,但基于广泛的测试应和研究经验,还是需要进一步的改进和完善。美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)对改进给出了如下建议:  (1)校正因子:T336已经提出了确定校正因子的程序,然而它是测试方法中的非强制性附录内容。由于必须确定校正因子,因此应将其移至标准文本中进行强制性执行。此外,在当前的T336中,没有提供关于校准样品的讨论。为了获得准确结果,建议校准样品的长度与待测混凝土样品长度相差在2mm范围内。校准样品的直径应该是合适的直径,以牢固地放在框架的支撑按钮上。  (2)解决水位问题:当受控温度水浴中的水位影响CTE时,尤其是在测试期间水位发生变化或者在混凝土测试期间水位与校准期间的水位不同时。这是因为当水位改变时,框架和浸没或暴露于环境空气的LVDT轴的长度将改变。因此,根据TFHRC研究,水位偏离上次校准水位以下不应超过13mm。  (3)设备验证。使用LVDT与水接触并在高温下,电子设备会受到影响。为了验证LVDT和整个设备操作的正常运行,建议每月通过测试已知CTE的参考样品(校准样品除外)来验证设置。参考样品的CTE值应至少为5×10-6/℃,与校准样品的CTE值不同。它将确保读数始终良好,因为能很容易的发现任何差异。  建议参考样品应由非腐蚀、非氧化、无孔和非磁性的材料组成,此外,在10~50℃温度范围内,其导热系数应接近混凝土的导热系数。与校准样品的CTE相同,参考材料的CTE应由独立的实验室测定。在研究中发现钛合金(Ti-6Al-4V)是比较合适的材料,如图61所示,其CTE值在整个温度范围内始终比较稳定,变化幅度小。  验证后,如果发现参考样品CTE与认证值相差超过0.3×10-6/℃,则应采用T336中描述的程序再次确定修正系数。  (1)LVDT的校准:目前的T336需要一个千分尺来校准LVDT。然而,它没有提供任何校准指导,也没有提供校准频率。每6个月进行一次校准就足够了。  (2)样品末端条件:混凝土样品的末端条件可能是某些试验误差的来源。T336应提供有关最低要求的指导。建议采用AASHTO T 22-07对抗压强度样品的相同要求。  (3)待测样品数量。不应根据单个测试结果确定混合物的CTE,应提供有关待测样品数量的指导。据推测,至少要测试两个样品并报告平均值,以表征混合物。[b][color=#cc0000]10. 分析和建议[/color][/b]  通过上述路面混凝土热膨胀系数(CTE)测试中测试方法AASHTO TP60重大问题发现和新测试方法AASHTO T336制订的全过程回顾,我们从以下几方面做出了分析,并给出相应的建议:  (1)采用参考样品(或标准参考材料)对测试方法和测试设备进行考核甚至定期自校、多个实验室之间的比对测试,以及多种测试方法之间的比对测试等,这些都是材料物理性能测试工作中标准测试方法制订和实施的必要手段和过程,是保障测试准确性和稳定性的重要措施,在以往热膨胀系数标准测试方法(如ASTM E228等)的制订和实施过程中,都是按照以上过程进行实施。令人费劲的是美国在AASHTO TP60测试方法的制订和实施过程中明显缺少这些重要环节,此测试方法的制订和推广应用非常不严谨甚至不严肃,否则也不会发生AASHTO TP60在颁布十多年后才发现存在严重缺陷的重大问题。  (2)尽管AASHTO T336针对校准样品规定要在有资质的第三方实验室采用ASTM E228或ASTM E289在10~50℃范围内进行CTE测试,并没有规定样品的尺寸大小、控温精度和温度变化形式等细节,而这些细节同样会在ASTM E228或ASTM E289的测试过程中带来较大误差。如一些采用ASTM E228方法的热膨胀仪,测温热电偶为热电偶,那么在10~50℃范围内仅热电偶带来的温度测量误差就会达到10%。另外在样品温度变化形式上,采用台阶式还是线性形式的升降温方式,也会给CTE测量带来很大不同,如果采用线性升降温形式,往往会使样品内外存在温度梯度,而台阶式升降温形式则会使得样品在恒温阶段达到整体温度均匀。  (3)尽管AASHTO T336在校准样品的CTE值准确性上得到了改进,纠正了AASHTO TP60中校准样品CTE值的错误,但CTE测试的装置并没有丝毫改变,测量装置还是基于校准样品来保证测量的准确性,整体设计思路并没有变。而从CTE测试的基本原理出发,几乎所有目前比较常用的CTE标准测试方法,除了采用校准样品(基线扣除法)来保证测量准确性之外,更有效的手段是降低测量装置自身热变形对样品CTE测量的影响,如ASTM E228顶杆法中采用热膨胀系数较低的石英(约0.53×10-6/℃),或热膨胀系数更低的钛石英(0.06×10-6/℃)来作为样品支架。但在AASHTO T336方法中,还在沿用AASHTO TP60方法使用金属杆做样品固定支架,有些混凝土热膨胀仪已经做了改进,采用CTE约为1×10-6/℃的殷钢做样品固定支架。采用较大CTE的金属杆做样品固定支架,因为测试温度范围比较小,基本上能满足目前路面混凝土CTE的测试需求。但对于高温和低温环境下使用的混凝土CTE测试,再采用金属杆做样品固定支架则明显会带来巨大误差。因此,今后AASHTO T336方法的改进,首先要考虑样品固定支架采用膨胀系数低的材料。  (4)无论是AASHTO TP60,还是AASHTO T336方法,混凝土样品CTE的测试温度范围都在10~50℃。在这样接近室温的条件下,样品和水浴的温度变化似乎对位移探测器的影响并不大,在上述两种方法中也没对位移探测器的热防护做出规定。但在高温和低温环境条件下,位移探测器的热防护问题则显着尤为凸出,样品温度的大范围变化势必会给固定位移探测器的机械结构带来热变形。同样,基于更严谨和更准确的目的,建议在AASHTO T336增加上对位移探测器的热防护,尽可能减少长时间50℃水浴温度对位移探测器固定装置的影响。[b][color=#cc0000]11. 参考文献[/color][/b]  (1)李清海, 姚燕, 孙蓓. 水泥基材料热膨胀性能测试方法发展现状. 新型建筑材料, 2007, 34(6):10-12.  (2)黄杰, 吴胜兴, 沈德建. 水泥基材料早期热膨胀系数试验系统现状研究. 结构工程师, 2010, 26(4):160-166.  (3)Tanesi J, Crawford G L, Nicolaescu M, et al. New AASHTO T336-09 Coefficient of Thermal Expansion Test Method: How Will It Affect You?. Transportation Research Record, 2010, 2164(1): 52-57.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 低温冷冻箱膨胀阀如何调试?

    低温冷冻箱的有效运行与需要的制冷效果息息相关,要想保证好一点的制冷效果,正确的调试膨胀阀就尤为重要,那么,怎么调试低温冷冻箱膨胀阀呢?低温冷冻箱运行过程中,膨胀阀的开启度小,制冷剂通过的流量就少,压力也低,低温冷冻箱膨胀阀的开启度大,制冷剂通过的流量就多,压力也高。根据制冷剂的热力性质,压力越低,相对应的温度就越低;压力越高,相对应的温度也就越高。所以,如果低温冷冻箱膨胀阀出口压力过低,相应的蒸发压力和温度也过低,但由于进入蒸发器流量的减少,压力的降低,造成蒸发速度减慢,单位容积制冷量下降,制冷效率降低。与之相反,如果低温冷冻箱膨胀阀出口压力过高,相应的蒸发压力和温度也过高,进入低温冷冻箱蒸发器的流量和压力都加大,由于液体蒸发过剩,过潮气体(甚至液体)被压缩机吸入,引起压缩机的湿冲程,使压缩机不能正常工作,造成一系列工况恶劣,甚至损坏压缩机。所以说,低温冷冻箱的膨胀阀开启度,应根据当时的低温冷冻箱温度进行调节,即在低温冷冻箱相对应的压力下调整。低温冷冻箱压缩机的吸气压力由于存在吸气管的压力损失和过热度(取决于管路的长短和隔热效果),一般较蒸发压力稍高。此时膨胀阀的调节压力应基本与蒸发压力相似(蒸发压力稍高)。调节低温冷冻箱膨胀阀必须仔细耐心地进行,调节压力必须经过低温冷冻箱蒸发器与低温冷冻箱温度产生热交换沸腾(蒸发)后再通过管路进入压缩机吸气腔反映到压力表上的,需要一个时间过程。无锡冠亚提醒,每调动低温冷冻箱膨胀阀一次,一般需10~15分钟的时间后才能将膨胀阀的调节压力稳定在吸气压力表上,调节不能操之过急,低温冷冻箱压缩机的吸气压力是膨胀阀调节压力的主要依据参数,低温冷冻箱膨胀阀技术性能的好坏,直接影响其能否正常调节运行的标志。低温冷冻箱膨胀阀如果出现堵塞以及冰堵等故障,需要各位及时解决,以免影响低温冷冻箱的使用。

  • 控制污泥膨胀的调节运行工艺措施有哪些?

    调节运行工艺控制措施对工艺条件控制不当产生的污泥膨胀非常有效。具体方法有:1、在曝气池的进口加粘土、消石灰、生污泥或消化污泥等,以提高活性污泥的沉降性能和密实性。2、使进入曝气池的污水处于新鲜状态,如采取预曝气措施,使污水尽早处于好氧状态,避免形成厌氧状态,同时吹脱硫化氢等有害气体。3、加强曝气强度,提高混合液溶解氧浓度,防止混合液局部缺氧或厌氧。4、补充氮、磷等营养盐,保持混合液中碳、氮、磷等营养物质的平衡。在不降低污水处理功能的前提下,适当提高F/M。5、提高污泥回流比,降低污泥在二沉池的停留时间,避免在二沉池出现厌氧状态。6、当PH值低时应加碱性物质调节,提高曝气池进水的PH值。7、利用在线仪表的手段加强和提高化验分析的时效性,充分发挥预处理系统的作用,保证曝气池的污泥负荷相对稳定。

  • 活性污泥中丝状菌膨胀的条件和成因

    正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。如果活性污泥中丝状菌数量太少,则形不成大的絮状体,沉降性能不好 如果丝状菌过度繁殖,则形成丝状菌污泥膨胀。在正常的环境中,菌胶团的生长率远大于丝状菌,不会出现丝状菌过度繁殖的现象。但如果活性污泥环境条件发生不利变化,丝状菌因其表面积较大,抵抗环境变化能力比菌胶团的细菌强,丝状菌的数量就有可能超过菌胶团细菌,从而导致丝状菌污泥膨胀。引起活性污泥中丝状菌膨胀的环境条件有:1、进水中有机物质太少,曝气池内F/M低,导致微生物食料不足。2、进水中氮、磷等营养物质不足。3、PH太低,不利于微生物生长。4、曝气池混合液内溶解氧太低,不能满足微生物需要。5、进水水质或水量波动太大,对微生物造成冲击。6、进入曝气池的污水因“腐化”产生出较多的H2S(超过1-2mg/l)时,还会导致丝状硫磺菌的过量繁殖,使丝硫磺菌污泥膨胀。7、丝状菌大量繁殖的适宜温度在25℃~30℃,因而夏季易发生丝状菌污泥膨胀。

  • 膨胀罐有哪几种分类

    膨胀罐的主要分类有哪几种,对于这一个问题,南京捷登流体设备有限公司的小编通过文章介绍膨胀罐的类型,让客户更好的了解产品。结构膨胀罐有哪几种分类膨胀罐—由罐体、气囊、进/出水口及补气口四部份组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无需自己加气。原理膨胀罐的工作原理:当外界有压力的水进入膨胀罐气囊内时,密封在罐内的氮气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到膨胀罐内气体压力与水的压力达到一致时停止进水。当水流失压力减低时膨胀罐内气体压力大于水的压力,此时气体膨胀将气囊内的水挤出补到系统。分类膨胀罐分为气囊式和隔膜式两种,前者在使用的过程中水与罐体内壁完全不接触,所以杜绝了生锈和水质的二次污染,是2010年至今市场上的主流产品,无论国内还是国外大部分都是采用气囊式;隔膜式膨胀罐是早期第一代的产品,工作时有一半的罐体内壁直接与水接触,容易锈蚀,严重影响其使用寿命,隔膜式膨胀罐已经淡出市场。

  • 控制污泥膨胀的永久性控制措施有哪些?

    1、好氧选择器的机理是提供一个溶解氧充足、食料充足的高负荷区,让菌胶团细菌率先抢占有机物,不给丝状菌过度增长的机会。例如在活性污泥法工艺的选择器就是在回流污泥进入曝气池前进行再生性曝气,减少回流污泥中高粘结性物质的含量,使其中微生物进入内源呼吸段,提高菌胶团细菌摄取有机物的能力和与丝状菌生物的竞争能力,从而使丝状菌膨胀和非丝状菌膨胀均能得到抑制。为加强微生物选择器的效果,可以在再曝气过程中投加足量的氮、磷等营养物质,提高污泥的活性。2、缺氧选择器控制污泥膨胀的原理是:大部分菌胶团细菌能利用选择器内硝酸盐中化合态氧做氧源,进行生物繁殖,而丝状菌(球衣菌)没有这种功能,因而在选择器内受到抑制,增殖落后于菌胶团菌种,大大降低了丝状菌膨胀发生的可能。3、厌氧选择器控制污泥膨胀的原理是:经大部分种类的丝状菌(球衣菌)都是好氧的,在厌氧条件下将受到抑制。而菌胶团细菌有一大部分为兼性菌,在厌氧状态下短时间内进行厌氧代谢,继续增殖。但是厌氧选择器的设置,会导致产生丝状菌中丝硫菌污泥膨胀的可能性,因为菌胶团的厌氧代谢会产生硫化氢,从而为丝状菌的繁殖提供条件。因此,厌氧选择器的水力停留时间不宜过长。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制