当前位置: 仪器信息网 > 行业主题 > >

环氧树脂固化度检测

仪器信息网环氧树脂固化度检测专题为您提供2024年最新环氧树脂固化度检测价格报价、厂家品牌的相关信息, 包括环氧树脂固化度检测参数、型号等,不管是国产,还是进口品牌的环氧树脂固化度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环氧树脂固化度检测相关的耗材配件、试剂标物,还有环氧树脂固化度检测相关的最新资讯、资料,以及环氧树脂固化度检测相关的解决方案。

环氧树脂固化度检测相关的论坛

  • 新手求助★关于★水性环氧树脂与固化剂★的DSC分析问题

    新手求助★关于★水性环氧树脂与固化剂★的DSC分析问题

    [font='微软雅黑',sans-serif]各位DSC方面的前辈老师们好,我是刚开始学习DSC,几乎从零开始,有些问题想求助咨询下,谢谢各位。我们这边打算测试水性环氧树脂与多元胺固化剂的,产品本身含有差不多50%的水(相当于固体环氧树脂颗粒在水中分散),一般是低温或常温固化(<[/font][font='Arial',sans-serif]100[/font][font='微软雅黑',sans-serif]℃),实际使用于涂料,水分先挥发再交联固化。最近公司刚购买了[/font][font='Arial',sans-serif]DSC[/font][font='微软雅黑',sans-serif]设备,作为[/font][font='Arial',sans-serif]DSC[/font][font='微软雅黑',sans-serif]设备的初学者,有几个关于检测的问题想咨询一下。[/font][font='微软雅黑',sans-serif]主要问题如下:[/font][font='Arial',sans-serif]1、[/font][font='微软雅黑',sans-serif]我看很多[/font][font='Arial',sans-serif]DSC[/font][font='微软雅黑',sans-serif]检测资料都是分析不含水或含水量很少的测试,我想知道像我们这种水性环氧树脂一般含水量是≥[/font][font='Arial',sans-serif]45%[/font][font='微软雅黑',sans-serif]的,这种时候假如我要检测该环氧树脂的[/font][font='Arial',sans-serif]TG[/font][font='微软雅黑',sans-serif],是否应该先把水蒸干后再用密封坩埚检测?也就是说这种含大量水的情况下,我的样品的制样应该采取哪种方式合理呢?因为水是增塑的,蒸干水分后再测试应该和我实际产品的tg结果不一样的吧?这样蒸干后检测的结果是否就表征我这个水性环氧树脂的实际[/font][font='Arial',sans-serif]TG[/font]呢?固体环氧E20的tg很好测,但因为水的存在下,测试时出不来台阶。而且,因为我们产品虽然有水,但实际使用时水是跑掉的,那我觉得是不是把水分蒸干后再测试tg就已经有实际意义了呢?2、在测试产品固化放热峰时,很难做出好的曲线,甚至出不来放热峰,显示的反而是吸热峰。我想主要原因也是因为水的吸热掩盖或干扰后放热峰的结果。实际尝试时使用铝坩埚,试过以下几种方法,请各位指导和协助优化下:①[font='微软雅黑',sans-serif]当液体(水性环氧树脂+固化剂)采用密封盘时,温度设置到[/font][font='Arial',sans-serif]150[/font]℃(此时坩埚未被冲破),只有很轻微放热峰出现,而且有时测试有峰,有时测试没有峰。[img=,690,416]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151417342508_9688_6179273_3.jpg!w690x416.jpg[/img]②[font='微软雅黑',sans-serif]当液体样品扎孔测试时,放热峰可能完全被水分挥发的吸热峰掩盖,无法出来。[/font][img=,690,394]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151419036458_5488_6179273_3.jpg!w690x394.jpg[/img]③[font='微软雅黑',sans-serif]当把样品预先低温([/font][font='Arial',sans-serif]70[/font][font='微软雅黑',sans-serif]℃×[/font][font='Arial',sans-serif]10min[/font][font='微软雅黑',sans-serif])烘干水分再密封盘测试时,有放热峰,但峰较平缓不尖锐,不知道是不是还有部分水分没有挥发,放热峰被干扰。我把升温速率提升后那个峰又出不来。而且,从图来看,低温40多度就已经开始反应了,[font=等线]前面[/font][font='Calibri',sans-serif]70[/font][font=等线]度预烘干时肯定也会带来样品的固化,这种测试方法是不是不合理呢?应该如何尝试。[img=,690,389]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151423350823_6822_6179273_3.jpg!w690x389.jpg[/img]④[font='微软雅黑',sans-serif]我们产品实际应用时是常温或低温的,常温或低温时肯定达不到[/font][font='Arial',sans-serif]100%[/font][font='微软雅黑',sans-serif]固化度。那这个时候我想要测试低温(例如[/font][font='Arial',sans-serif]70[/font][font='微软雅黑',sans-serif]℃)的固化度时,应该怎么设置方法才合理呢?[/font][/font][/font]

  • 【分享】DMA对环氧树脂固化程度的研究

    这是一篇用DMA研究环氧树脂固化程度的文章。粗看下来,实验做得简单了些,写得也比较粗糙,但相对于常用DSC测试方法还有一定参考作用。贴上来供关心这方面工作的板油参考。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=160153]动态热机械分析法对环氧树脂固化程度的研究[/url]

  • 环氧树脂固化物层出现裂纹如何修复

    钢质内胆缠绕气瓶上的缠绕层由玻纤粘上环氧树脂一层层缠绕上去的,现有少量瓶子缠绕层树脂固化物出现裂纹,有什么好办法修复吗,钢瓶要承受20MPa的压力。请各位大虾支支招,谢谢!

  • 【求助】环氧树脂E51固化物的DSC曲线 为什么两个Tg

    【求助】环氧树脂E51固化物的DSC曲线 为什么两个Tg

    RT,环氧树脂E51,固化剂是低分子聚酰胺651(添加量是50%),DSC自带的软件分析在48.27度和95.03各有一个Tg,请教一下这是为什么呢,先行谢过了[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903151845_138605_1637724_3.jpg[/img]

  • 【求助】请高手指教如何分析环氧树脂的固化剂

    【求助】请高手指教如何分析环氧树脂的固化剂

    样品为液态,有氨味,是环氧树脂的固化剂。请高手帮忙看看红外图,谁做过这类样品的分析还请指点一下要怎么分离,还要用什么仪器才能搞清楚里面的各种成分?第一次遇到这样的样品,一片茫然,请大家多多给与指点。谢谢![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910291141_178690_1720933_3.jpg[/img]

  • 【求助】dsc测 热固性树脂固化怎么定 开始温度

    【求助】dsc测 热固性树脂固化怎么定 开始温度

    http://ng1.17img.cn/bbsfiles/images/2011/05/201105141352_294113_1682431_3.jpg请问各位,用TA 的软件分析时,怎么定开始温度啊?我就是用红线一拉然后按回车结果就出来了。但是感觉放热峰的开始温度和结束温度都不是很确定啊,我拉线的位置不同结果就不同了。图中的112.69C是开始温度吗?55.52J是反映焓H吧。我想测的是热固性树脂的固化反映热,固化度。其中的-5452%CURE是怎么回事啊?我的样品是液态树脂,用封闭的PAN 来测固化反应的。不知到会不会其他准备样品的方式会不会不一样。我知道有的人测环氧树脂的时候,样品是未固化粉末。谢谢!请赐教!

  • 【资料】环氧树脂成份及用途!

    环氧树脂化学成分主要成份是:酚醛树脂 酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂,其中以苯酚和甲醛树脂为最重要。也是世界上最早由人工合成的,至今仍很重要的高分子材料。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。 NL固化剂是酚醛树脂呋喃树脂的高效低毒固化剂。NL固化剂毒性低,基本无刺激味,树脂固化后强度高、耐蚀性好,使用用量少,操作方便,贮存期长。本品适用于热固性酚醛树脂及呋喃树脂的常温固化。用来配制酚醛树脂及呋喃胶泥;玻璃钢制品;制笔、制刷、竹木等制品的粘合;也可用作铸造树脂的室温固化剂。质量指标外观 暗灰色液体相对密度(20℃) 1.16±0.01粘度(涂-4,25℃)秒 20-30 总酸度(以H2SO4计)% 18±2 游离酸(以H2SO4计)% 3-5 贮存期 一年以上(密闭存放)应用对酚醛树脂或呋喃树脂,NL固化剂的用量范围一般为5-12%。环境温度20℃时,2130酚醛树脂的NL固化剂用量为8%左右,NL固化剂用量可随温度调整。参考配方 酚醛树脂 酒精 NL固化剂 石英粉酚醛胶泥 100 0-5 6-10 150-200玻璃钢腻子 100 0-5 6-10 120-200玻璃钢面料 100 10 8-15 10-1520℃时NL用量为8%,1小时左右初凝,使用期30分钟左右配方注意:酚醛树脂或呋喃树脂用NL固化剂来固化时,对填料的要求较高,要求填料的耐酸性达到规范的要求。劣质填料含有碳酸钙等会与酸性固化剂反应产生气泡,影响制品质量,并可能造成树脂不固化。包装及贮运10Kg、25Kg塑料桶装。室温密闭储存。可长期贮存,超过一年复测合格可继续使用。材料简介  环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。[编辑本段]应用特性  1、 形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。  2、 固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。  3、 粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。  4、 收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。  5、 力学性能。固化后的环氧树脂体系具有优良的力学性能。  6、 电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。  7、 化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。  8、 尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。  9、 耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。类型分类  根据分子结构,环氧树脂大体上可分为五大类:  1、 缩水甘油醚类环氧树脂  2、 缩水甘油酯类环氧树脂  3、 缩水甘油胺类环氧树脂  4、 线型脂肪族类环氧树脂  5、 脂环族类环氧树脂  复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。其次是缩水甘油胺类环氧树脂。  1、 缩水甘油醚类环氧树脂  缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。  (1)二酚基丙烷型环氧树脂 二酚基丙烷型环氧树脂是由二酚基丙烷与环氧氯丙烷缩聚而成。  工业二酚基丙烷型环氧树脂实际上是含不同聚合度的分子的混合物。其中大多数的分子是含有两个环氧基端的线型结构。少数分子可能支化,极少数分子终止的基团是氯醇基团而不是环氧基。因此环氧树脂的环氧基含量、氯含量等对树脂的固化及固化物的性能有很大的影响。 工业上作为树脂的控制指标如下:  ①环氧值。环氧值是鉴别环氧树脂性质的最主要的指标,工业环氧树脂型号就是按环氧值不同来区分的。环氧值是指每100g树脂中所含环氧基的物质的量数。环氧值的倒数乘以100就称之为环氧当量。环氧当量的含义是:含有1mol环氧基的环氧树脂的克数。  ②无机氯含量。树脂中的氯离子能与胺类固化剂起络合作用而影响树脂的固化,同时也影响固化树脂的电性能,因此氯含量也环氧树脂的一项重要指标。  ③有机氯含量。树脂中的有机氯含量标志着分子中未起闭环反应的那部分氯醇基团的含量,它含量应尽可能地降低,否则也要影响树脂的固化及固化物的性能。  ④挥发分。  ⑤粘度或软化点。  (2)酚醛多环氧树脂 酚醛多环氧树脂包括有苯酚甲醛型、邻甲酚甲醛型多环氧树脂,它与二酚基丙烷型环氧树脂相比,在线型分子中含有两个以上的环氧基,因此固化后产物的交联密度大,具有优良的热稳定性、力学性能、电绝缘性、耐水性和耐腐蚀性。它们是由线型酚醛树脂与环氧氯丙烷缩聚而成的。  (3)其它多羟基酚类缩水甘油醚型环氧树脂 这类树脂中具有实用性的代表有:间苯二酚型环氧树脂、间苯二酚-甲醛型环氧树脂、四酚基乙烷型环氧树脂和三羟苯基甲烷型环氧树脂,这些多官能缩水甘油醚树脂固化后具有高的热变形温度和刚性,可单独  或者与通用E型树脂共混,供作高性能复合材料(ACM)、印刷线路板等基体材料。  (4)脂族多元醇缩水甘油醚型环氧树脂 脂族多元醇缩水甘油醚分子中含有两个或两个以上的环氧基,这类树脂绝大多数粘度很低;大多数是长链线型分子,因此富有柔韧性。  2、其它类型环氧树脂  (1)缩水甘油酯类环氧树脂 缩水甘油酯类环氧树脂和二酚基丙烷环氧化树脂比较,它具有粘度低,使用工艺性好;反应活性高;粘合力比通用环氧树脂高,固化物力学性能好;电绝缘性好;耐气候性好,并且具有良好的耐超低温性,在超低温条件下,仍具有比其它类型环氧树脂高的粘结强度。有较好的表面光泽度,透光性、耐气候性好。  (2)缩水甘油胺类环氧树脂 这类树脂的优点是多官能度、环氧当量高,交联密度大,耐热性显著提高。上前国内外已利用缩水甘油胺环氧树脂优越的粘接性和耐热性,来制造碳纤维增强的复合材料(CFRP)用于飞机二次结构材料。  (3)脂环族环氧树脂 这类环氧树脂是由脂环族烯烃的双键经环氧化而制得的,它们的分子结构和二酚基丙烷型环氧树脂及其它环氧树脂有很大差异,前者环氧基都直接连接在脂环上,而后者的环氧基都是以环氧丙基醚连接在苯核或脂肪烃上。脂环族环氧树脂的固化物具有以下特点:①较高的压缩与拉伸强度;②长期暴置在高温条件下仍能保持良好的力学性能;③耐电弧性、耐紫外光老化性能及耐气候性较好。  (4)脂肪族环氧树脂 这类环氧树脂分子结构里不仅无苯核,也无脂环结构。仅有脂肪链,环氧基与脂肪链相连。环氧化聚丁二烯树脂固化后的强度、韧性、粘接性、耐正负温度性能都良好。

  • 【求助】环氧树脂会氧化吗?

    我做过聚乙烯的氧化诱导期,在200度下用氧气做,可以做出它的氧化时间,请问环氧树脂在200度下会做出同样的氧化时间吗?我的环氧树脂是成品上切下来的。已经用粉末固化了。

  • 【求助】(已应助)UV固化水性环氧树脂的合成研究 文献求助

    【作者】 庄宏清 肖华 【英文作者】 ZHUANG Hong-qing XIAO Hua(Epoxy Resin Division of Sinopec Baling Petrochemical Co.Ltd. Yueyang 414014 China) 【作者单位】 中石化巴陵石化有限责任公司环氧树脂事业部 湖南岳阳 【文献出处】 热固性树脂 , Thermosetting Resin, 编辑部邮箱 2008年 03期 期刊荣誉:ASPT来源刊 CJFD收录刊

  • 【求助】求助,关于环氧树脂热分析的玻璃化转变温度!

    如题,本人对环氧树脂E51/DDM体系进行了DSC分析,结果曲线上根本看不到明显的玻璃化转变,不知是何原因?PS:做了两个样,一个是热固化的试样,分析时有比较明显的Tg(130摄氏度),跟文献报道差不多;另一个是微波固化样,分析时没有明显阶梯,会不会是由于固化度太高?还是因为我用的是做过拉伸试验后的试样?求解!!

  • 【求助】(已应助)测环氧树脂硬度的方法

    各位大侠: 我要测环氧树脂固化物的硬度,不知该用那种硬度计?在网上查了一下,有一种硬度计叫邵氏硬度计,,可以用来测橡胶、树脂之类的。那位大侠知道我应该选择哪种型号的呢? 跪求!!不胜感激~~

  • 如何用DSC测不饱和树脂的固化度

    将不饱和树脂制成浇注体或树脂糊等产品后,用DSC测其放热面积,如何根据放热峰面积计算其固化度?[list][*]求各位大神指教,一直都搞不懂[img]http://simg.instrument.com.cn/bbs/images/default/em09509.gif[/img][/list]

  • 【分享】“环氧树脂系统产品有何优点?”

    由“环氧树脂系统应用基础”介绍可知,目前这类产品大致有:1、 防护系统 2、环氧地坪系统 3、粘接和密封系统 4、电器系统 5、玻璃纤维浸渍系统。它们都是由环氧树脂、固化剂、其它辅助材料组成。一开始应用时,是由用户自己根据用途,分别买环氧树脂、固化剂、其它辅助材料(例如填料、溶剂、稀释剂、颜料、流平剂、消泡剂、偶联剂、增塑剂------),经过加工成为能够适合自己应用的材料。这就涉及到技术配方、各种原料验收的仪器、加工设备等各个生产环节。而大多数应用厂是不具备这样的条件。当用户厂出现质量问题时,就查树脂、固化剂、其它辅助材料,往往各原料厂都讲自己的产品符合出厂标准。用户厂为了查原因结果转了一大圈,时间花掉了,问题却还找不出来。后来就出现了粘接剂、涂料的专业生产厂,将各种料配制成一定质量标准的相关产品,方便了用户的使用。保证了用户的使用质量。再后来陆续出现了浇注料、塑封料、层压料------环氧树脂系统材料,而且从多包装发展到现在的双包装甚至单包装的产品,极大地方便了用户。这就是环氧树脂系统产品的最大优点。 由於环氧树脂系统产品是由专业厂进行生产,产品质量有指标、有生产工艺、有专用设备,保证了产品的质量,减少了资源的浪费。这是环氧树脂系统产品的另一个优点。 环氧树脂系统产品有了专业生产厂进行生产,这些专业厂为了不断地开发产品或提高产品质量,就会不断地有专业人员来进行研究。加快了环氧树脂系统产品的开发速度,这是环氧树脂系统产品的又一个优点。“ 环氧树脂系统产品有哪些进展?”

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】环氧树脂体系分析新进展之二

    【原创大赛】环氧树脂体系分析新进展之二

    在上一期的分享中,我们介绍了微谱技术在环氧树脂、固化剂方面的红外剖析积累的部分信息,本期我们将继续向您介绍微谱技术在环氧树脂、固化剂方面的核磁剖析积累,微谱技术在固化产物方面的分析实力![b]一. 环氧树脂[/b] 不同结构的环氧树脂在FTIR谱图上的特征峰存在明显差异,同样,其在[sup]1[/sup]H-NMR、[sup]13[/sup]C-NMR、GC-MS、PGC等谱图方面的表征差异性也很突出,图1即展示了双酚A环氧树脂、双酚F环氧树脂、酚醛环氧树脂及邻甲酚环氧树脂4种不同结构的环氧树脂的[sup]1[/sup]H-NMR谱图。[align=center][img=,690,522]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051409010181_2851_2879355_3.jpg!w690x522.jpg[/img][/align][align=center]图1 部分环氧树脂的[sup]1[/sup]H-NMR谱图[/align][align=center] 图2、表1为双酚A环氧树脂的[sup]1[/sup]H-NMR谱图解析结果。[/align][align=center]图3、表2为酚醛环氧树脂的[sup]1[/sup]H-NMR谱图解析结果。[/align][align=center][img=,690,452]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051419027113_7374_2879355_3.jpg!w690x452.jpg[/img][/align][align=center]图2 双酚A环氧树脂的[sup]1[/sup]H-NMR谱图解析[/align][align=center]表1 双酚A环氧树脂的[sup]1[/sup]H-NMR谱图解析[/align] [table=491][tr][td]1[/td][td]1.62ppm[/td][/tr][tr][td]2、3[/td][td]2.72ppm、2.87ppm[/td][/tr][tr][td]4[/td][td]3.33ppm[/td][/tr][tr][td]5、6[/td][td]3.92ppm、4.33ppm[/td][/tr][tr][td]7、8[/td][td]6.82ppm、7.12ppm[/td][/tr][tr][td]9[/td][td]4.1-4.2ppm[/td][/tr][/table][align=center][img=,690,488]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051422366151_1643_2879355_3.jpg!w690x488.jpg[/img][/align][align=center]图3 酚醛环氧树脂的[sup]1[/sup]H-NMR谱图[/align][align=center]表2 酚醛环氧树脂的[sup]1[/sup]H-NMR谱图解析[/align] [table=491][tr][td]1[/td][td]3.99ppm[/td][/tr][tr][td]2、3[/td][td]2.80ppm、2.93ppm[/td][/tr][tr][td]4[/td][td]3.33ppm[/td][/tr][tr][td]5、6[/td][td]3.92ppm、4.21ppm[/td][/tr][tr][td]7、8[/td][td]6.87ppm、7.12ppm[/td][/tr][/table][b]二. 固化剂[/b] 为了达到优异的综合性能,微谱技术工程师通过一定的反应预聚合成了不同的固化剂,来研究改性固化剂中各组分的配比,以及应用谱图表征计算结果差异,从而对分析结果进行校正,以下将以改性1,3-环己二甲胺(1,3-BAC)为例进行说明。[align=center][img=,690,482]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051423305311_3270_2879355_3.jpg!w690x482.jpg[/img][/align][align=center]图4 样品1,3-BAC和环氧树脂反应后[sup]1[/sup]H-NMR测试结果[/align] 图4为样品1,3-BAC和环氧树脂反应后[sup]1[/sup]H-NMR测试结果,图中0.69ppm、1.41ppm、1.2-1.5ppm为1,3-BAC上氢原子的化学位移,通过特征峰积分面积计算投料比约为: 1,3-BAC:E51约为1.19:1(1,3-BAC比实际投料偏少20%左右)。[b]三. 固化产物[/b] 目前有部分产品因为无法拿到固化前液体样品,只有固化成型的产品,因其形成了不溶不熔的三维网络结构导致有效的测试相对较少。为了更准确地分析这部分产品,除了将固化产品降解前处理后再测试外,微谱技术也花费大量的人力物力研究几种典型的固化剂的固化动力学和固化物的耐热性等性能,然后结合降解产品的IR、NMR、GC-MS等测试,互相佐证,从而综合确定固化剂的种类。 以上对环氧树脂体系分析的新进展研究,有力地扩展了微谱分析在环氧产品中的应用,极大地提高了环氧固化剂定性定量的准确率,获得很多国内知名生产商的认可![list][*]声明:本文资料为“上海微谱化工技术服务有限公司”原创,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 【求助】LC和环氧树脂检测的问题

    请问哪位高手知道环氧树脂能否用LC UV紫外检测器检测到??听仪器公司说只能用示差检测器检测。各位从事环氧树脂行业LC检测的兄弟姐妹们能否传一些图片看看,万分感谢!检测物质主要有 1,4环乙烷二甲醇缩水甘油醚 乙二醇缩水甘油醚、丙三醇缩水甘油醚、苄基缩水甘油醚、粘度较低的环氧树脂 这些物质对UV紫外光都有吸收吗?这么做好这些检测呢?

  • 【原创大赛】环氧树脂体系分析新进展之一

    【原创大赛】环氧树脂体系分析新进展之一

    环氧树脂是指分子结构中含有2个或者2个以上环氧基并在适当的化学试剂存在下能形成三维网状固化物的化合物的总称,因其具有良好的力学、粘接强度、绝缘等性能,环氧树脂作为胶粘剂、涂料和复合材料等的树脂基体,广泛应用于水利、交通、机械、电子、家电、汽车及航空航天等领域。 环氧树脂本身是热塑性高分子预聚体,单纯的树脂几乎没有太大的使用价值,只有加入固化剂,使其反应转变为不溶不熔的三维网状结构,方才呈现出一系列的优异性能,因此固化剂的选用对环氧树脂的应用和环氧树脂产品的性能起到非常关键的作用。但对于已经固化的产品,确定其固化剂的类型比较困难,针对这一现实问题,微谱技术胶涂油事业部以分析的角度对环氧树脂、固化剂及固化产物的性能进行深入研究,进而协助客户解决固化剂的选用和搭配问题。[b]一. 环氧树脂[/b] 环氧树脂品种繁多,用途也各不相同,按照化学结构可分为缩水甘油醚型、缩水甘油酯型、缩水甘油胺类。 微谱技术工程师首先搜集市面上的8种不同结构的环氧树脂进行FTIR、[sup]1[/sup]H-NMR、[sup]13[/sup]C-NMR、GC-MS、PGC等的表征,研究不同结构环氧树脂在以上谱图中的区别,结果表明发现不同的环氧树脂在IR、NMR、PGC分析中有非常明显的差异。部分环氧树脂的红外谱图如图1-图4所示。[align=center][img=,636,399]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051339534169_7173_2879355_3.jpg!w636x399.jpg[/img][/align][align=center]图1 双酚A环氧树脂E51的红外谱图[/align] [table=491][tr][td] [align=center]波数 /cm[sup]-1[/sup][/align] [/td][td] [align=center]表现形式[/align] [/td][/tr][tr][td] [align=center]1607、1582、1456 [/align] [/td][td] [align=center]苯环—C=C—弯曲振动[/align] [/td][/tr][tr][td] [align=center]1510 [/align] [/td][td] [align=center]对位取代苯环—C=C—弯曲振动[/align] [/td][/tr][tr][td] [align=center]1362[/align] [/td][td] [align=center]—C(CH[sub]3[/sub])[sub]2[/sub]弯曲振动[/align] [/td][/tr][tr][td] [align=center]1245 [/align] [/td][td] [align=center]脂肪芳香醚C-O-C反对称伸缩[/align] [/td][/tr][tr][td] [align=center]1107、1036[/align] [/td][td] [align=center]对位取代苯环=CH面内变形[/align] [/td][/tr][tr][td] [align=center]971、916、772[/align] [/td][td] [align=center]端基环氧环[/align] [/td][/tr][tr][td] [align=center]831[/align] [/td][td] [align=center]对位取代苯环=CH面外变形[/align] [/td][/tr][/table][align=center][img=,690,275]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051340579999_4569_2879355_3.jpg!w690x275.jpg[/img][/align][align=center]图2 双酚A环氧树脂E51和双酚F环氧树脂的红外对比谱图[/align] 对比双酚F环氧树脂和双酚A环氧树脂(E51):两者的区别主要甲基和亚甲基出峰,双酚F环氧树脂出峰为1452cm[sup]-1[/sup]、1432cm[sup]-1[/sup]、1345cm[sup]-1[/sup],而双酚A出峰为1455cm[sup]-1[/sup]、[color=red]1413cm[sup]-1[/sup][/color][color=red]、[/color][color=red]1384cm[sup]-1[/sup][/color][color=red]、[/color][color=red]1362cm[sup]-1[/sup][/color][color=red]、[/color]1346cm[sup]-1[/sup]。[align=center][img=,690,252]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051341262329_4547_2879355_3.jpg!w690x252.jpg[/img][/align][align=center]图3 双酚A环氧树脂E51和双酚F环氧树脂的红外对比谱图[/align] 酚醛环氧树脂的特征吸收峰与双酚A环氧树脂E51类似,区别在于1141 cm[sup]-1[/sup]和756 cm[sup]-1[/sup]附近的吸收。[align=center][img=,690,272]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051341546879_4899_2879355_3.jpg!w690x272.jpg[/img][/align][align=center]图4 双酚A环氧树脂E51和酚醛环氧树脂的红外对比谱图[/align] 邻甲酚环氧树脂的特征吸收峰与酚醛环氧树脂的区别在于1478cm[sup]-1[/sup]、1131cm[sup]-1[/sup]、859 cm[sup]-1[/sup]附近的吸收。[b]二. 固化剂[/b] 微谱技术工程师还表征了数种显在型(胺类、酸酐、聚硫醇等)和潜伏型(改性胺、改性咪唑、酰肼类固化剂),通过FTIR、[sup]1[/sup]H-NMR、[sup]13[/sup]C-NMR、GC-MS、PGC等谱图寻找特征出峰,锁定特征片段信息,进而准确确定每一种特定的固化剂类型。部分红外测试谱图如图5所示。[align=center][img=,539,387]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051342420291_7519_2879355_3.jpg!w539x387.jpg[/img][/align][align=center][img=,539,395]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051343077271_2806_2879355_3.jpg!w539x395.jpg[/img][/align][align=center]图5 部分固化剂的FTIR测试谱图[/align] 环氧固化剂使用过程中并不单单选用一种,绝大部分会选用多种不同类型的固化剂复配,有些还需要通过一定的反应预聚,从而达到优异的综合性能要求。为此特定合成了集中不同的固化剂,研究了改性固化剂中各组分的配比和谱图表征计算结果差异,从而对分析结果进行校正。 至此,我们已经介绍了微谱技术在环氧树脂、固化剂方面的红外剖析积累的部分信息,您是否期待微谱技术在环氧树脂、固化剂方面的核磁剖析积累呢?又是否好奇微谱技术在固化产物方面的分析实力呢?那就敬请关注我们的下一期精彩分享吧![list][*]声明:本文资料为“上海微谱化工技术服务有限公司”编辑,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 【讨论】请教DSC测试树脂固化度的问题

    【讨论】请教DSC测试树脂固化度的问题

    我看到一篇资料上介绍用DSC Q 100 (TA instruments, USA),可以测树脂的固化度,这我知道,但是他列出这让的曲线见附件。因为我用过,但不是精通,所以请大家看看,能直接用DSC做出来吗?还是后期处理的?谢谢大家了![img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811132052_118307_1836071_3.jpg[/img]

  • 【原创大赛】光固化丙烯酸树脂

    本实验目的及意义:近年来,水基涂料因其绿色环保的优点越来越多地应用于涂料涂装行业,其最大的优点是不含有挥发性的有机溶剂,降低了有机溶剂挥发物(VOC)的量,不会损害人体的健康,满足涂层无毒的要求,属于环保型涂料。相对于其他类型的涂料,光固化涂料具有高效、经济、节能、适应性广、环境友好等优点。光固化涂料通常可以在几秒的时间内固化,固化所需的能量小,UV光固化依需要可涂装多种基材,如木材、金属、塑料、纸张、皮革等,光固化涂料基本不含挥发性溶剂,具有环境友好的特点。因此将水性涂料与光固化涂料的优点结合起来的涂料将具有更加优良的性能。本文中介绍一种光固化的丙烯酸树脂用于涂料涂装,其制备方法如下:实验原料:己二酸、环氧E51、丙烯酸合成方法:将己二酸和环氧E51以及丙烯酸按照摩尔比为3:5:1加入三口瓶中,升温至140℃,搅拌,反应4-5h;将反应完全的丙烯酸树脂倒入准备好的塑料模具中,使树脂铺满模具底板,加入光引发剂2959,在350nm紫外光下照射30s,树脂即固化完全,在塑料模具底板上形成均匀的涂料层,用手指触之,涂层指干。

  • 【求助】环氧树脂Tg异常

    [~139362~][~139363~]以上是我们供应商的两种环氧树脂的Tg测试图。老样品的Tg是有台阶的,但是新样品的测试中根本没有台阶,并且是有一个大大的放热峰。我不知道是什么原因,这样的图形正常吗,如果正常的话那里是他的Tg点,如果不正常是因为新样品固化不完全吗?请各位大侠指点一下。

  • 【分享】【防腐剂】环氧树脂

    环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制