当前位置: 仪器信息网 > 行业主题 > >

商用气体生物传感器

仪器信息网商用气体生物传感器专题为您提供2024年最新商用气体生物传感器价格报价、厂家品牌的相关信息, 包括商用气体生物传感器参数、型号等,不管是国产,还是进口品牌的商用气体生物传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合商用气体生物传感器相关的耗材配件、试剂标物,还有商用气体生物传感器相关的最新资讯、资料,以及商用气体生物传感器相关的解决方案。

商用气体生物传感器相关的论坛

  • 生物传感器的研究现状及应用

    一、 引言 从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。 近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应 用PCR的DNA生物传感器也越来越多。 二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。 (1). 原材料及代谢产物的测定 微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。 在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。 当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。 此外,还有用大肠杆菌(E.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。 (2). 微生物细胞总数的测定 在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的。 (3). 代谢试验的鉴定 传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等。 2、 环境监测 (1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果。 现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中。 (2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。 测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好。 硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=2.5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是Chromatium.SP,与氢电极连接构成。 最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(E.coli)中,用来检测砷的有毒化合物。 水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5

  • 请教生物传感器教材

    我将来读博士想读电化学方向的,主要研究生物传感器在测量人体神经作用方面的应用,但是对此刚刚涉足,请教大虾这方面有哪些书比较好,电化学和生物传感器方面的

  • 生物传感器特点

    这款[url=http://www.f-lab.cn/biosensors/fo-ppr.html][b]生物传感器[/b][/url]采用光纤光学[b]粒子等离激元共振[/b]技术FO-PPR,提供一流的[b]生物分子传感[/b]功能,非常适合[b]生物分子探测[/b]和[b]生物分子实时交互[/b]分析,广泛用于医学研究和生命科学研究以及生物制药诊断和质量控制。[b]生物传感器特色[/b]15分钟完成测量仅仅需要3步骤即可完成实验:生物芯片安装,样品微注射,结果探测具有无需标记的专利技术便携式设计,方便移动超高灵敏度,具有探测10^-9克灵敏度生物传感器工作过程生物传感器FO-PPR采用了高灵敏度光纤光学粒子等离激元共振技术,通过检测金纳米颗粒AuNPs的表面激元散射,在光纤上表现出折射率变化,从而实时监测分子结合事件。[img=生物传感器]http://www.f-lab.cn/Upload/FO-PPR.jpg[/img]生物传感器:[url]http://www.f-lab.cn/biosensors/fo-ppr.html[/url]

  • 电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 生物传感器技术发展现状和未来展望

    从上世纪60年代Clark和Lyon提出生物传感器的设想开始,生物传感器的发展已经距今已有40 多年的历史了。作为一门在生命科学和信息科学之间发展起来的一门交叉学科,生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。随着社会的进一步信息化,生物传感器必将获得越来越广泛的应用。一、生物传感器的定义与其发展历史回顾   作为生物,最基本特征之一就是能够对外界的各种刺激作出反应。其所以能够如此,首先是由于生物能感受外界的各类刺激信号,并将这些信号转换成体内信息处理系统所能接收并处理的信号。例如,人能通过眼、耳、鼻、舌、身等感觉器官将外界的光、声温度及其它各种化学和物理信号转换成人体内神经系统等信息处理系统能够接收和处理的信号。现代和未来的信息社会中,信息处理系统要对自然和社会的各种变化作出反应,首先需要通过传感器将外界的各种信息接下来并转换成信息系统中的信息处理单元(即计算机)能够接收和处理的信号。  生物传感器定义为"使用固定化的生物分子(immobilized biomolecules)结合换能器,用来侦测生体内或生体外的环境化学物质或与之起特异性交互作用后产生响应的一种装置"。生物传感器由两个主要关键部份所构成,一为来自于生物体分子、组织部份或个体细胞的分子辨认组件,此一组件为生物传感器信号接收或产生部份。另一为属于硬件仪器组件部份,主要为物理信号转换组件。因此,如何已生化方法分离、纯化甚或设计合成特定的生物活性分子(biological active materials),结合精确而且响应快速的物理换能器(transducers)组合成生物传感器反应系统,实为研究生物传感器的主要目的。  生物传感器可以如上述的那样,依照其感受器中所采用的生命物质而称为组织传感器、细胞传感器、酶传感器等等,也可根据所监测的物理量、化学量或生物量而命名为热传感器、光传感器、胰岛素传感器等,还可根据其用途统称为免疫传感器。药物传感器等等。生物传感器中的信号转换器,与传统的转换器并没有本质的区别。例如,可以利用电化学电极、场效应管、热每器件、压电器件、光电器件等器件作为生物传感器中的信号转换器。依照信号转换器的不同,也可将生物传感器进行分类,如压电晶体生物传感器、场效应管生物传感器等。  生物传感器的发展,自1962年Clark和Lyon两人提出酵素电极的观念以后,YSI公司于七零年代即积极投入商品化开发与生产,启开了第一代生物传感器于1979年投入医检市场,最早的商品为血糖测试用酵素电极。YSI公司的上市成功与八零年代电子信息业的蓬勃发展有很密切的关系,并且一举带动了生物传感器的研发热潮。Medisense公司继续以研发第一代酵素电极为主,于1988年由于成功的开发出调节(mediator)分子来加速响应时间与增强测试灵敏度而声名大噪,并以笔型(Pen 2)及信用卡型(companion 2)之便携式小型生物传感器产品,于1988年上市后立即袭卷70%以上的第一代产品市场,成为生物传感器业的盟主。第二代的生物传感器定义为使用抗体或受体蛋白当分子识别组件,换能器的选用则朝向更为多样化,诸如场效半导体(FET),光纤(FOS),压晶体管(PZ),表面声波器(SAW)等。虽然第二代的生物传感器,自八零年代中期即开始引起广泛的研发兴趣,但一般认为尚未达医检应用阶段,预定相关技术须待世纪末前方能成熟。目前可称的上第二代的生物传感器产品为1991年上市的瑞典商Pharmacia所推出的BIAcore与BIAlite两项产品。  Pharmacia 公司于1985年成功地开发出表面薄膜共振技术(SPR, Surface Plasma Resonance),利用此一光学特性开发出可以于10-6g/ml到10-11g/ml之低浓度下,进行生物分子间交互作用的实时侦测式生物感测仪器。第三代的生物传感器定位在更具携带式,自动化,与实时测定功能。  二、生物传感器的分类  生物传感器微生物电子产品(bioelectronic product)。为了能够获得最佳的信号传递,固定化的生物组件通常与信号转换组件紧密地接合在一起。基本上,由信号产生方式(mode of signal generation)的不同,可以将生物传感器区分成两种主要类型:  1.生物亲和性传感器 (Bioaffinity sensors)  当固定生物组件与待测定之分析物发生亲和性结合(bioaffinity binding)时,造成生物分子形状改变与/或引起诸如荷电、厚度、质量、热量或光学等物理量的变化。此种经由分子辨认─结合类型的生物传感器有免疫传感器、化学受体传感器等,其分析可为荷尔蒙、蛋白质、醣类、抗原或抗体,而相对应的受体可为荷尔蒙受体、染剂、外源凝集素(lectins)、抗体或抗原等。  2.生物催化型感应器(Biocatalytic biosensors)  此类传感器之信号侦测并不在于分子辨认─结合的阶段,而且当固定划分子与待测物反应后,产生生化代谢物质,再经特定电极侦测特定代谢物后以电子讯号表现出来。最为人所熟悉的为属第一代生物传感器的酵素电极。目前有关此类生物传感器的两个主要研究发展方向为(1)使用酵素共轭物(enzyme conjugates)、环系酵素群(cycling enzymes)和系列酵素来组合生物传感器,(2)使用微生物细胞或动、植物组织切片或可渗透性细胞(permealized cells)等来当作分子辨认组件。  三、生物传感器在当前的主要应用领域  1.发酵工业  因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。所以具有成本低、设备简单、不受发酵液混浊程度的限制、能消除发酵过程中干扰物质的干扰的微生物传感器发酵工业中得到了广泛的应用。  2.食品工业  生物传感器可以用来检测食品中营养成分和有害成分的含量、食品的新鲜程度等。如已经开发出来的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖含量,从而衡量水果的成熟度。采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸含量。此外,也有用生物传感器测定色素和乳化剂的应用。  生物传感器在医学领域也发挥着越来越大的作用:临床上用免疫传感器等生物传感器来检测体液中的各种化学成分,为医生的诊断提供依据;在军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素。生物传感器还可以用来测量乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。  4.环境监测  环保问题已经引起了全球性的广泛关注,用于环境监测的专业仪器市场也越来越大,目前已经有相当数量的生物传感器投入到大气和水中各种污染物质含量的监测中去,在发达国家如英国、法国、德国、西班牙和瑞典,在水质检测过程都采用了生物冷光型的生物传感器。生物传感器因其具有快速,连续在线监测的优点,相信在未来,还会有更广泛的应用。

  • 【分享】生物传感器技术未来发展特点

    21世纪是生命科学和信息科学的世纪。生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。生物传感器研究的全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。 一、生物传感器四大应用领域 生物传感器正进入全面深入研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。 1.食品工业 生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。 在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。中华反应釜网了解已开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖等。 亚硫酸盐通常用作食品工业的漂白剂和防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸含量。此外,也有用生物传感器测定色素和乳化剂的报道。 2.环境监测 近年来,环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。目前,已有相当部分的生物传感器应用于环境监测中。 二氧化硫(SO2)是酸雨酸雾形成的主要原因,传统的检测方法很复杂。Marty等人将亚细胞类脂类固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,可对酸雨酸雾样品溶液进行检测。 3.发酵工业 在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。 微生物传感器还可用于测量发酵工业中的原材料和代谢产物。另外,还用于微生物细胞数目的测定。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。 4.医学领域 医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广阔的应用前景。 中华反应釜网了解在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器。在军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素。 二、未来生物传感器几大特点 近年来,随着生物科学、信息科学和材料科学发展的推动,生物传感器技术飞速发展。可以预见,未来的生物传感器将具有以下特点。 1、功能多样化:未来的生物传感器将进一步涉及医疗保健、疾病诊断、食品检测、环境监测、发酵工业的各个领域。目前,生物传感器研究中的重要内容之一就是研究能代替生物视觉、听觉和触觉等感觉器官的生物传感器,即仿生传感器。 2、微型化:随着微加工技术和纳米技术的进步,生物传感器将不断地微型化,各种便携式生物传感器的出现使人们在家中进行疾病诊断,在市场上直接检测食品成为可能。 3、智能化与集成化:未来的生物传感器必定与计算机紧密结合,自动采集数据、处理数据,更科学、更准确地提供结果,实现采样、进样、结果一条龙,形成检测的自动化系统。同时,芯片技术将越来越多地进入传感器领域,实现检测系统的集成化、一体化。 4、低成本、高灵敏度、高稳定性和高寿命:生物传感器技术的不断进步,必然要求不断降低产品成本,提高灵敏度、稳定性和延长寿命。这些特性的改善也会加速生物传感器场化、商品化的进程。

  • 生物芯片之电化学生物传感器

    前面已经讲过生物芯片是生物传感器的延伸,所以生物传感器的研究就是生物芯片的研究基础中的重要部分了!下面对电化学生物传感器方面的研究进行简单的介绍。须指出的是,生物芯片中用到的生物传感器与传统的电化学传感器有一些不同,但这并不妨碍我们将传统电化学传感器的认识应用到生物芯片的研究中去。电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 生物传感器

    新开一个生物传感器的讨论群,敬请加入。欢迎一切和电化学工作站相关人士,共同探讨!站内联系

  • 【分享】生物传感器的研究现状及应用

    一、 引言 从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应 用PCR的DNA生物传感器也越来越多。 二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。 (1). 原材料及代谢产物的测定 微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。 此外,还有用大肠杆菌(E.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。 (2). 微生物细胞总数的测定 在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的。

  • 【分享】生物芯片之电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。

  • 【讨论】生物传感器的应用汇总(请跟贴)

    作为一种分析检测技术,生物传感器必须以实际应用为最终目的,这是不容置疑的。本贴以“生物传感器的应用汇总”为题,只是道出了一个希望。希望大家能将自己了解到的生物传感器在实际应用领域中的进展事例贴出来,这个内容包含的范围比较广,可以是面市的新产品信息,也可以是相关技术的新突破,新材料的应用,等等。大家一同努力吧。[em17]

  • 【原创】大家都用什么仪器做生物传感器?

    以前的生物传感器大都是电化学生物传感器,现在生物传感器的种类多了,希望知道大家都用什么做生物传感器。比如用锁相放大器、前置放大器和多功能数据采集器的组合等。请各位不吝赐教,我将给有效的帖子50积分的奖励。

  • 高校科研院所招聘联盟刚刚发布了 中科院上海微系统与信息技术研究所-气体,生物传感器博士后职位,坐标上海,敢不敢来试试?

    [b]职位名称:[/b] 中科院上海微系统与信息技术研究所-气体,生物传感器博士后[b]职位描述/要求:[/b]气体、生物传感器方向博士后中国科学院上海微系统与信息技术研究所招聘部门:本部学历要求:博士高级选项:不限职位月薪:面议工作经验:不限年龄要求:不限性别要求:不限语言能力:不限专业要求:材料物理与化学工作地区:长宁区职位描述:微系统技术实验室:编号4S16气体、生物传感器方向博士后开展基于气体、生物类传感器的研究探索材料、化学、微电子等专业;具有国家项目研究经历[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/50028]查看全部[/url]

  • 【原创】植入式生物传感器问题

    植入人体内的生物传感器在体内几个小时酶就大量脱落,以至传感器失去响应,请那位高手介绍一种比较好的生物兼容材料,可以在传感器表面固定方便而于生物兼容性好。

  • 【资料】生物传感器Biosensor商业应用:国内外公司介绍

    【资料】生物传感器Biosensor商业应用:国内外公司介绍

    毫无疑问,生物技术和纳米技术的发展将很快使生物传感器从实验室的概念推向商业实现。我们始终不能忘记实用性是生物传感器最终的价值体现,无论SCI文章吸引了我们多少的注意力,我们都应该清楚目标是什么。本贴将介绍目前国内外在生物传感器领域已开始商业开发的公司(其实20年前就已经开始了),请各位跟贴补充。顺便贴一张图,以强调生物传感器领域的三个关键词:生物(bio-),纳米(nano-),电子(electro-)。 [img]http://ng1.17img.cn/bbsfiles/images/2007/11/200711041037_68959_1618618_3.jpg[/img]

  • 【资料】一则老新闻:2009年全球生物传感器产品市场预测

    由于微细加工和小型化之类的快速科技进步正在使生物传感器开始向发展中国家渗透,在美国、欧洲、中国和印度的稳步增长将使该市场的全球总销售额增长9.5%,于[color=red]2009年突破40亿美元[/color]。 据Kalorama Information近日发布的一项新研究报告《医疗与生物传感器和传感器系统:市场、应用和全球竞争》称,2005年生物传感器营业收入达到29亿美元,而医疗应用占该销售额的最大份额。然而,随着生物防卫和环境领域以及工业控制应用的强劲增长,生物传感器成为进行快速精确分析的首选方式,该市场正在开始转移。 在过去4年中,生物传感器研发的方向有了显著变化,对在生物表达化学、表面定性、分子标记以及纳米技术领域新出现的生物技术创新作出响应,并带动了在各种环境下应用的增长。 不过,成功并不只是基于创新和技术。与令人印象深刻的研究结果相对照,化学药剂、生物处理和临床诊断行业的商业化进程很有限。 该研究报告作者James P.Smith博士指出:“生物传感器很昂贵,不论是对开发商还是对终端用户而言都是如此。要让一种医疗传感器问世可能耗费[color=red]5年[/color]时间和[color=red]4000万美元[/color]研发成本,这种时间和成本因素能让传感器开发商望而却步。大众市场兴趣能让生物传感器一时受宠,也能让其未出实验室便遭遗弃。例如,占据[color=red]80%[/color]以上医疗生物传感器市场的[color=red]血糖生物传感器[/color]所取得的成功没有任何其他传感器能与之匹敌。”

  • 【我们不一YOUNG】生物传感器在水环境检测中的应用研究

    [font=&][color=#666666]本研究旨在探讨生物传感器在水环境检测中的应用。通过综合分析相关文献和实验数据,我们发现,生物传感器在水中重金属离子检测、有机物检测、微生物监测和p H值监测等方面具有广泛的应用前景。生物传感器利用生物体的特异性反应和信号转导机制,能够高效、快速、准确地检测水中的污染物质并提供定量信息。[/color][/font]

  • 【分享】生物传感器及其在食品和环境检测中的应用

    生物传感器技术是一种全新的微量分析技术,目前已广泛应用于食品、环境等领域的高通量快速检测。本文依据分子识别元件将生物传感器分为7类,简要介绍各种生物传感器的原理和应用情况,对于生物传感器在食品安全、环境监测和基础分析等领域的推广应用具有重要意义。

  • 【原创】生物传感器产业现状和发展前景

    [em02] 生物传感器研究起源于20世纪的60年代,1967年Updike和Hicks把葡萄糖氧化酶(GOD)固定化膜和氧电极组装在一起,首先制成了第一种生物传感器,即葡萄糖酶电极。到80年代生物传感器研究领域已基本形成。其标志性事件是:1985年“生物传感器”国际刊物在英国创刊;1987年生物传感器经典著作在牛津出版社出版;1990年首届世界生物传感器学术大会在新加坡召开,并且确定以后每隔二年召开一次。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=27454]生物传感器产业现状和发展前景[/url]

  • 普通打印机打印出荧光生物传感器

    开发适用于纸质传感器的发光材料,一直是一项重大挑战。可视化纸基生物传感器具有众多优点,然而也存在着缺点。那就是普通的发光材料难以固定在纸质衬底上,同时其光学活性也很容易丧失。因此,想要找到适用于纸质传感器的发光材料难度很大。 近日,中科院合肥物质科学研究院智能所研究人员成功研制出了一种发光氧化石墨烯,能够具有高荧光量子产率,并且可以通过普通打印机在衬底上打印出荧光“开”的生物传感器。该研究对我国多种生物分子研究具有重要意义。 该研究基于氧化石墨烯上功能基团的有机胺化反应制备而成,发光氧化石墨烯可以充满“墨水”用于普通打印机。因为其稳定的发光和二维的平面结构,因此通过普通喷墨打印机也可以将图案打印在微孔滤膜上。打印的图案在紫外灯下可呈现稳定的荧光,最后通过滴加各种配体修饰的银纳米颗粒、与配体对应的目标生物分子,就可以形成可视化荧光“开”的纸质传感器。该研究能够实现对生物硫醇、蛋白质、DNA等可视化检测,在生物学领域将会发挥重要作用。

  • 【求助】有关微生物检测方面的生物传感器?

    我是刚想进行传感器研究的新手,但又不是生物电子专业的,我是微生物和免疫学方面的,请教各位大侠:现在有关微生物检测方面的生物传感器最新进展如何?这方面研究很难吗?需要多少的经费和人手?如何与各位大侠合作?[em04]

  • 请所有“生物传感器版”的用户来领分

    [quote]新年了,生物传感器/生物芯片版也经历了半年的高速发展,成为论坛一个新生力量。对此我想大家和我一样都是很高兴、很欣慰,毕竟生物传感器版的发展是浸透了你我大家的辛勤汗水的!回顾本版的发展,从4077的一个征募版主的帖子发展到现在200多个帖子,从一两个用户发展到现在成百上千的用户,我心中有一股暖流在激荡,我感谢每一为关心生物传感器/生物芯片版发展的好朋友!在本版发展过程中给予本版支持的用户都可以到这个帖子报个到,向各位新老朋友献上你的新年祝福,为本版的繁荣发展表示祝福!特别欢迎优秀的老朋友来这里看看,比如已经是其他版的版主但是还关心本版发展的朋友、本版的老用户等等,给本版的发展把把脉指点一二。最后,祝大家新年快乐![/quote]£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥由于当前还有很多熟悉用户没有来,我决定延长本帖。请所有到生物传感器版的用户首先来这里报个名,£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$£$¥£$¥£$¥£$¥£$¥£$¥£$¥£$¥¥

  • 【资料】生物传感器

    来源:北京大学化学与分子工程学院分析化学研究所[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25592]生物传感器[/url]

  • 广州生物院开发出一种单核苷酸多态性检测生物传感器

    近日,中科院广州生物医药与健康研究院曾令文研究组成功开发出一种基于核酸等温链置换反应技术、T4连接酶反应与胶体金技术的单核苷酸多态性检测的生物传感器。 该生物传感具有以下三个特点:1.简单,无需复杂的检测仪器,仅需室温反应;2.高灵敏度,单次反应可检测约6个核酸分子;3.高特异性,可区分单碱基突变。该生物传感器克服了传统检测方法的操作技术复杂、耗时长、需要特殊仪器等缺陷。 该生物传感器可用于检测/诊断由单核苷酸多态性引起的遗传病、耐药性病原微生物、肿瘤等疾病易感基因。相关成果于7月6日发表在国际著名学术期刊Chemical Communications,2012,48(68): 8547-8549。 该项目由国家重大专项(2008ZX10004-004)、(2009ZX1004-109)经费资助。http://www.cas.cn/ky/kyjz/201208/W020120830533626771243.jpg单核苷酸多态性检测生物传感器

  • 欢迎到生物传感器/生物芯片版分享资料、讨论、学习

    我是[url=http://www.instrument.com.cn/bbs/forum_489.htm]生物传感器/生物芯片[/url]版主,以前觉得生物传感器和PCR版没有什么关系,但是前两天参加一个中德会议,听了几个报告发觉这两个研究领域在一定程度上存在交集。故来此宣传[url=http://www.instrument.com.cn/bbs/forum_489.htm]生物传感器/生物芯片[/url],希望我们展开合作交流!

  • 【资料】-农药残留检测生物传感器酶固定技术研究进展

    [size=4][B]农药残留检测生物传感器酶固定技术研究进展[/B][/size][I]罗启枚[/I]摘要:酶生物传感器在农药残留检测方面具有传统检测方法不可比拟的优势,而酶的固定技术将直接影响酶生物传感器的性能。该文就酶的不同固定方法和使用的不同载体材料,对近二十年来农药残留检测生物传感器酶的固定技术的研究进展进行综述,并就不同固定方法,不同固定方法的特点和不同载体材料对生物传感器性能的影响作了简单介绍。关键词:酶生物传感器;酶的固定;酶的固定载体材料[B]0 引言[/B]近几十年来,各种农药相继大量的生产和使用,极大促进了农业、林业的生产和发展。在目前世界范围内大量使用的农药中,大部分是毒性高、残留量大的有机磷农药,对环境和人们的身体健康构成了极大的威胁,对农林业的可持续发展也很不利。为了保护环境,保护人们的身体健康,对农林、水产品实时、快速、成本低廉的农药残留检测方法和技术一直是人类十分关注的焦点。当前,高效液相色谱法(HPLC)与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]X质谱联用方法(GCMS)是实验室常用的农药残留检测方法。虽然这些方法具有高的选择性和灵敏度,但是存在以下缺点:(1)因仪器体积庞大、结构复杂、价格昂贵;(2)农药残留检测时存在过程复杂、费时、费用高;(3)需要熟练的专业技术人员,无法做到实时连续检测。随着人们对环境、食品安全的要求越来越高,同时,世界发达国家对农药残留标准也越来越高,因此,发展新的快速、自动、价廉、方便、实时在线、大批量的检测农药残留的方法和技术,无论是在促进农业、林业的生产和发展,还是对环境和人们的身体健康都有极其重要意义。酶生物传感器自发现以来,因具有高度的选择性、结构简单、自动、价廉而备受研究者的关注。特别是微电子技术、纳米材料制备技术、生物技术的发展为扩展生物传感器的应用范围、批量生产、集成化、微型化打下了坚实的基础,极大地促进了酶生物传感器的研究与应用。农药残留检测生物传感器的原理主要是利用农药(如有机农药等)与酶(如乙酰胆碱酯酶等)结合来抑制酶的活性,农药的浓度与酶被抑制的活性成一定的数学关系,从而实现对农药残留量的检测。作为生物传感器关键组成物! 活性酶在水溶液中一般不太稳定,且酶只能和底物作用一次。因此,使用起来极不方便,最有效的途径是将酶固定制备成生物敏感膜使用。这就须采用合适的固定技术将酶固定在合适的载体上,因此酶的固定技术是制备生物传感器的关键步骤,这将直接影响传感器的稳定性、灵敏度、检测下限、响应时间和酶的活性、存活时间等。酶的固定技术主要包括酶的固定方法和固定酶的载体材料的选择,当前国内外对农药残留检测生物传感器中酶的固定技术进行了广泛的研究,并取得了许多重要进展。该文就农药残留检测生物传感器中酶的各种固定技术和研究应用进展进行了较全面系统的介绍,并对一些影响传感器性能的因素进行了分析讨论。[B]! 酶的固定方法[/B]酶在基体电极上的固定是酶生物传感器制备中的重要环节,它直接影响传感器的检测性能。酶的固定化技术是指通过某些方式将酶和载体相结合,使酶被集中或限制,使之在一定空间范围内进行催化反应。要想使酶作为生物敏感物质使用,就必须研究如何将酶固定在各种载体上。酶的固定方法主要有吸附法、共价键合法、凝胶% 溶胶法、聚合物包埋修饰法、交联法等方法。[color=#DC143C][B]全文附件在3楼[/B][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制