当前位置: 仪器信息网 > 行业主题 > >

电子元器件失效分析

仪器信息网电子元器件失效分析专题为您提供2024年最新电子元器件失效分析价格报价、厂家品牌的相关信息, 包括电子元器件失效分析参数、型号等,不管是国产,还是进口品牌的电子元器件失效分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子元器件失效分析相关的耗材配件、试剂标物,还有电子元器件失效分析相关的最新资讯、资料,以及电子元器件失效分析相关的解决方案。

电子元器件失效分析相关的资讯

  • 元器件失效分析配置清单
    p style="text-indent: 28px text-align: justify "span style="font-family:宋体"失效分析(/spanspanFA/spanspan style="font-family:宋体")是对已失效器件进行的一种事后检查。根据需要,采用电测试以及各种先进的物理、金相和化学分析技术,并结合元器件失效前后的具体情况及有关技术文件进行分析,以验证所报告的失效,确定元器件的失效模式、失效机理和造成失效的原因。全面系统的失效分析可以确定失效的原因,对于器件设计、制造工艺、试验或应用的改进具有指导作用,采取相应的纠正措施消除失效模式或机理产生的原因,从而实现器件以及装备整体可靠性的提高。/span/pp style="text-indent: 29px text-align: justify "span style="font-family:宋体"通过失效分析可以发现失效器件的固有质量问题,也有可能发现元器件因不按规定条件使用而失效的使用质量问题,通过向有关方面反馈,促使责任方采取纠正措施,以便消除所报告的失效模式或机理产生的原因,防止其再次出现,对提高元器件的固有质量或使用质量都起到十分重要的作用。/span/pp style="text-indent: 29px text-align: justify "span style="font-family:宋体"失效分析的相关标准也有很多,主要包括/span/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none"tbodytr class="firstRow"td width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"标准号/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"名称/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB548B-2005/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"微电子器件试验方法和程序/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB450A/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"装备可靠性工作通用要求/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB841/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"故障报告、分析和纠正系统/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB536B-2011/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"电子元器件质量保证大纲/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanQJ3065.5-98/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"元器件失效分析管理要求/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB 33A-1997/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"半导体分立器件总规范/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB 65B-1999/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"有可靠性指标的电磁继电器总规范/span/p/td/trtrtd width="160" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspanGJB 597A-1996/span/p/tdtd width="393" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"半导体集成电路总规范/span/p/td/tr/tbody/tablep style="text-indent: 28px text-align: justify "span style="font-family:宋体"通常失效分析的常见流程包括:失效现场信息调查、失效模式确认、外观检查、非破坏性分析、半破坏性分析、破坏性分析、综合分析、报告编写。如下为典型失效分析流程/span/pp style="text-indent: 0em "span style="text-align: center "img style="max-width:100% max-height:100% " src="http://www.enrlb.com/system_dntb/upload/20040303.jpg"/ /span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体 text-indent: 42px "元器件的失效分析涉及到数量众多,种类繁杂的仪器设备,以下为元器件失效分析的相关测试项目及检测仪器设备清单:/span/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse: collapse "tbodytr style=" height:1px" class="firstRow"td width="197" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"测试项目/span/strong/p/tdtd width="363" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"检测仪器设备/span/strong/p/td/trtr style=" height:1px"td width="197" nowrap="" rowspan="13" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"电性测试/span/strong/p/tdtd width="363" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/2473.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"LCR/spanspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"阻抗分析仪/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"高阻计/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"耐压测试仪/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"ESD/spanspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"测试仪/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/1801.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"探针台/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"半导体参数分析仪/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"高精度图示仪/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"可编程电源/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"电子负载/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/2438.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"示波器/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/2489.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"频谱分析仪/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"数字span//span模拟集成电路测试机台/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"电磁继电器测试系统/span/p/td/trtr style=" height:1px"td width="196" rowspan="7" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"形貌观察/span/strong/p/tdtd width="363" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/56.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"体视显微镜/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/58.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"金相显微镜/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"X-RAY/spanspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"透射系统/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"声学扫描显微镜/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/53.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"扫描电镜/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/1139.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"透射电镜/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/1856.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"聚焦离子束/span/a/p/td/trtr style=" height:1px"td width="196" rowspan="4" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"制样设备/span/strong/p/tdtd width="363" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"机械开封机/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"化学开封机/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"反应离子刻蚀机/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"研磨抛光机/span/p/td/trtr style=" height:1px"td width="196" rowspan="9" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"应力试验设备/span/strong/p/tdtd width="363" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/617.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"高低温试验箱span-/span热循环试验/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/622.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"热冲击试验箱span-/span热冲击试验/span/a/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"振动台span-/span机械振动试验/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"恒定加速度试验台span-/span恒定加速度试验/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"可编程电源span-/span电压、功率老炼试验/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"电子负载span-/span电流、功率老炼/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"频率发生器span-/span老炼试验/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"浪涌发生器span-/span浪涌试验/span/p/td/trtr style=" height:1px"td width="351" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"高温真空箱/span/p/td/trtr style=" height:1px"td width="196" rowspan="6" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:center"strongspan style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"其他检测设备/span/strong/p/tdtd width="363" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"颗粒碰撞噪声测试仪/span/p/td/trtr style=" height:1px"td width="361" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"a href="https://www.instrument.com.cn/zc/488.html" target="_self"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"氦质谱检漏仪/span/a/p/td/trtr style=" height:1px"td width="361" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"碳氟化合物粗检漏仪/span/p/td/trtr style=" height:1px"td width="361" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"键合拉力测试仪/span/p/td/trtr style=" height:1px"td width="361" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"剪切力测试仪/span/p/td/trtr style=" height:1px"td width="361" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="1"p style="text-align:left"span style="font-size:15px font-family:' 微软雅黑' ,sans-serif color:black"火花试验机/span/p/td/tr/tbody/tablep style="text-indent:29px"span style="font-family:宋体 color:white"失效分析对产品的生产和使用都具有重要的意义,失效可能发生在产品寿命周期的各个阶段,涉及产品的研发设计、来料检验、加工组装、测试筛选、客户端使用等各个环节,通过分析工艺废次品、早期失效、试验失效、中试失效以及现场失效的样品,确认失效模式、分析失效机理,明确失效原因,最终给出预防对策,减少或避免失效的再次发生。/span/ppbr//p
  • 电子元器件测试筛选仪器配置清单
    p style="text-indent:28px"电子元器件测试筛选服务也称之为电子元器件二次筛选。电子元器件的二次筛选是指在元器件厂家筛选的基础上,由使用方或其委托的第三方对电子元器件进行的筛选。二次筛选是在电子元器件各种失效模式的基础上,进行的一系列有针对性的试验,从而达到有效剔除早期失效的目的。介于目前我国电子元器件设计、制造和工艺等方面的现状,以及进口元器件采购中的诸多不可控因素,电子元器件二次筛选已成为激发电子元器件潜在设计、生产缺陷,有效剔除早期失效产品,提高整机系统的可靠性等方面必不可少的一环。/pp style="text-indent:28px"电子元器件测试贯穿产品设计元器件选型、生产阶段元器件接收和选用、产品交付阶段的产品“二次”筛选。设法在一批元器件中剔除那些由于原材料、设备、工艺、人为等方面潜在的不良因素所造成的有缺陷的,或可能发生早期失效的器件,而挑选出具有一定特性的合格元器件或判定批次产品是否合格接收,提高产品使用可靠性,特别是针对进口元器件,通过“二次筛选”保证产品质量可控,提高装备整体可靠性。/pp style="text-indent:28px"电子元器件测试筛选一般要求:span1./span不改变元器件固有可靠性,非破坏性试验;span2./span对批次产品进行span100%/span筛选;span3./span剔除早期失效品,提高元器件使用可靠性;span4. /span筛选等级由元器件预期工作条件和使用寿命决定。/pp style="text-indent:28px"电子元器件测试筛选涉及到大量种类的仪器设备,以下为电子元器件测试筛选的相关测试项目及检测仪器设备清单:/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none"tbodytr class="firstRow"td width="141" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"测试项目/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"span检测仪器设备/span/p/td/trtrtd width="141" rowspan="13" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"电测试/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"span style=" color:black"阻抗分析仪/span/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"span style=" color:black"高阻计/span/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"span style=" color:black"耐压测试仪/span/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/zc/1746.html" target="_self"span style=" color:black"半导体参数测试系统/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"span style=" color:black"高精度图示仪/span/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/list/sort/231.shtml" target="_self"span style=" color:black"网络分析仪/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/zc/2437.html" target="_self"span style=" color:black"信号发生器/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/zc/2489.html" target="_self"span style=" color:black"频谱分析仪/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/zc/2457.html" target="_self"span style=" color:black"数字集成电路测试系统/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/zc/2458.html" target="_self"span style=" color:black"模拟集成电路测试系统/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"span style=" color:black"继电器测试系统/span/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center background:white"a href="https://www.instrument.com.cn/zc/2473.html" target="_self"span style=" color:black"LCR/spanspan style=" color:black"、电阻计等/span/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"span style=" color:black"电源模块测试系统/span/p/td/trtrtd width="141" rowspan="6" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"环境、应力筛选/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"高低温试验箱:热循环试验/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"a href="https://www.instrument.com.cn/zc/386.html" target="_self"振动台:振动试验/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"恒定加速度试验台:恒定加速度试验/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"可编程电源:电压、功率老炼试验/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"电子负载:电流、功率老炼/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"颗粒碰撞噪声测试仪/p/td/trtrtd width="141" rowspan="11" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"寿命span//span老化span//span老炼试验/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p style="text-align:center"单片集成电路高温动态老炼系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"混合集成电路高温动态老炼系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"电源模块高温老炼检测系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"晶体振荡器高温老化测试系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"分立器件综合老炼检测系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p style="text-align:center"分立器件间歇寿命试验系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p电容器高温老炼检测系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p大功率晶体管老炼检测系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p继电器低电平寿命筛选系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p继电器中电平寿命筛选系统/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p继电器高电平寿命筛选系统/p/td/trtrtd width="141" rowspan="2" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p外观检查/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"pa href="https://www.instrument.com.cn/list/sort/5.shtml" target="_self"光学显微镜/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"pa href="https://www.instrument.com.cn/zc/58.html" target="_self"金相显微镜/a/p/td/trtrtd width="141" rowspan="2" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p密封检测/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"pa href="https://www.instrument.com.cn/zc/488.html" target="_self"氦质谱检漏仪/a/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p碳氟化合物粗检漏仪/p/td/trtrtd width="141" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"pspanX/span射线照相/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"pspanX-RAY/span透射系统/p/td/trtrtd width="141" rowspan="2" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center"p扫描声学显微镜检查/p/tdtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"p声扫检测设备/p/td/trtrtd width="412" valign="middle" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align="center"pa href="https://www.instrument.com.cn/zc/420.html" target="_self"超声扫描显微镜/a/p/td/tr/tbody/tablepbr//p
  • 工信部:2023年电子元器件销售总额达21000亿,突破一批关键技术
    1月29日,据工信部微信公众号消息,工信部近日印发了《基础电子元器件产业发展行动计划(2021—2023年)》(以下简称《行动计划》)。《行动计划》中提到,面向智能终端、5G、工业互联网等重要行业,推动基础电子元器件实现突破,增强关键材料、设备仪器等供应链保障能力。计划到2023年,电子元器件销售总额达到21000亿元,突破一批电子元器件关键技术,并力争15家电子元器件企业营收规模突破100亿元。基础电子元器件产业发展行动计划(2021-2023年)信息技术产业是关系国民经济安全和发展的战略性、基础性、先导性产业,也是世界主要国家高度重视、全力布局的竞争高地。电子元器件是支撑信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。当前我国电子元器件产业存在整体大而不强、龙头企业匮乏、创新能力不足等问题,制约信息技术产业发展。面对百年未有之大变局和产业大升级、行业大融合的态势,加快电子元器件及配套材料和设备仪器等基础电子产业发展,对推进信息技术产业基础高级化、产业链现代化,乃至实现国民经济高质量发展具有重要意义。为深入贯彻落实党中央、国务院决策部署,持续提升保障能力和产业化水平,支持电子元器件领域关键短板产品及技术攻关,特制定本行动计划。一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届二中、三中、四中、五中全会精神,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,以做强电子元器件产业、夯实信息技术产业基础为目标,以关键核心技术为主攻方向,支持重点行业市场应用,建立健全产业链配套体系,推动基础电子元器件产业实现高质量发展,保障国家信息技术产业安全。(二)总体目标到2023年,优势产品竞争力进一步增强,产业链安全供应水平显著提升,面向智能终端、5G、工业互联网等重要行业,推动基础电子元器件实现突破,增强关键材料、设备仪器等供应链保障能力,提升产业链供应链现代化水平。——产业规模不断壮大。电子元器件销售总额达到21000亿元,进一步巩固我国作为全球电子元器件生产大国的地位,充分满足信息技术市场规模需求。——技术创新取得突破。突破一批电子元器件关键技术,行业总体创新投入进一步提升,射频滤波器、高速连接器、片式多层陶瓷电容器、光通信器件等重点产品专利布局更加完善。——企业发展成效明显。形成一批具有国际竞争优势的电子元器件企业,力争15家企业营收规模突破100亿元,龙头企业营收规模和综合实力有效提升,抗风险和再投入能力明显增强。二、重点工作(一)提升产业创新能力攻克关键核心技术。实施重点产品高端提升行动,面向电路类元器件等重点产品,突破制约行业发展的专利、技术壁垒,补足电子元器件发展短板,保障产业链供应链安全稳定。专栏1 重点产品高端提升行动构建多层次联合创新体系。支持企业、高等院校及科研院所加强合作,在电子元器件领域探索成立制造业创新中心,加大关键共性技术、前沿引领技术、现代工程技术、颠覆性技术研发力度,搭建产学研用紧密结合的协同创新和成果转化平台。鼓励各地围绕特色或细分领域,开展关键技术研发与产业化,形成差异化发展。完善知识产权布局。鼓励企业、高等院校及科研院所提升知识产权保护意识,完善知识产权管理制度并开展国内外知识产权布局。探索建立专利池,围绕电子元器件开展专利分析和预警。开展知识产权试点企业培育工作。(二)强化市场应用推广支持重点行业市场应用。实施重点市场应用推广行动,在智能终端、5G、工业互联网和数据中心、智能网联汽车等重点行业推动电子元器件差异化应用,加速产品吸引社会资源,迭代升级。专栏2 重点市场应用推广行动强化产业链深层次合作。推动电子元器件及其配套材料和设备仪器企业、整机企业加强联动,共同开展产品研制,加快新型电子元器件的产业化应用。引导上下游企业通过战略联盟、资本合作、技术联动等方式,形成稳定合作关系。加速创新型产品应用推广。面向人工智能、先进计算、物联网、新能源、新基建等新兴需求,开发重点应用领域急需的小型化、高性能、高效率、高可靠电子元器件,推动整机企业积极应用创新型产品,加速元器件产品迭代升级。(三)夯实配套产业基础突破关键材料技术。支持电子元器件上游电子陶瓷材料、磁性材料、电池材料等电子功能材料,电子浆料等工艺与辅助材料,高端印制电路板材料等封装与装联材料的研发和生产。提升配套能力,推动关键环节电子专用材料研发与产业化。提升设备仪器配套能力。支持技术难度大、应用价值高、通用性强、对电子元器件行业带动大的配套电子专用设备与仪器,如刻蚀显影设备等工艺设备、显微CT等检测分析仪器的研发及产业化,提升设备仪器质量和可靠性水平。健全产业配套体系。鼓励和引导化工、有色金属、轻工机械、设备仪器等企业进入电子元器件领域,开展关键材料、设备的研发和生产,推进产学研用协同创新,实现全产业链协同发展,增强试验验证能力,提升关键环节配套水平。(四)引导产业转型升级提升智能化水平。引导企业搭建数字化设计平台、全环境仿真平台和材料、工艺、失效分析数据库,基于机器学习与人工智能技术,推进关键工序数字化、网络化改造,优化生产工艺及质量管控系统,开展智能工厂建设,提升智能制造水平。专栏3 智能制造推进行动推广绿色制造。推进全行业节能节水技术改造,加快应用清洁高效生产工艺,开展清洁生产,降低能耗和污染物排放强度,实现绿色生产。优化电子元器件产品结构设计,开发高附加值、低消耗、低排放产品。制定电子元器件行业绿色制造相关标准,完善绿色制造体系。专栏4 绿色制造提升行动培育优质企业。鼓励龙头企业通过兼并重组、资本运作等方式整合资源、扩大生产规模、增强核心竞争力、提高合规履责和抗风险能力。培育一批具有自主知识产权、产品附加值高、有核心竞争力的专精特新“小巨人”和制造业单项冠军企业。(五)促进行业质量提升加强标准化工作。加强关键核心技术和基础共性技术的标准研制,持续提升标准的供给质量和水平。引导社会团体加快制定发布具有创新性和国际性的团体标准。鼓励企事业单位和专家积极参与国际标准化活动,开展国际标准制定。提升质量品牌效益。优化产品设计、改造技术设备、完善检验检测,推广先进质量文化与技术。引导企业建立以质量为基础的品牌发展战略,丰富品牌内涵,提升品牌形象和影响力。开展质量兴业、品牌培育等活动,定期发布质量品牌报告。优化市场环境。引导终端企业优化电子元器件产品采购模式,倡导优质廉价,避免低价恶性竞争、哄抬价格、肆意炒作等非理性市场行为,推动构建公平、公正、开放、有序的市场竞争环境。(六)加强公共平台建设建设分析评价公共平台。支持有能力、有资质的企事业单位建设国家级电子元器件分析评价公共服务平台,加强质量品质和技术等级分类标准建设,围绕电子元器件各领域开展产品检测分析、评级、可靠性、应用验证等服务,为电子系统整机设计、物料选型提供依据。建设科技服务平台。支持地方、园区、企事业单位建设一批公共服务平台,开展知识产权培训与交易、科技成果评价、市场战略研究等服务。鼓励建设专用电子元器件生产线,为MEMS传感器、滤波器、光通信模块驱动芯片等提供流片服务。建设创新创业孵化平台。支持电子元器件领域众创、众包、众扶、众筹等创业支撑平台建设,推动建立一批基础电子元器件产业生态孵化器、加速器,鼓励为初创企业提供资金、技术、市场应用及推广等扶持。(七)完善人才引育机制加大人才培养力度。深化产教融合,推动高等院校优化相关学科建设和专业布局。鼓励企业建立企业研究院、院士和博士后工作站等创新平台,建立校企结合的人才综合培训和实践基地,支持企业开展员工国内外在职教育培训。加强人才引进培育。多渠道引进高端人才和青年人才,加快形成具有国际领先水平的专家队伍。发挥行业组织及大专、高等院校作用,鼓励企业培育和引进掌握关键技术的科技领军人才和团队,为产业发展提供智力支持。引导人才合理流动。引导企业通过合规途径招聘人才,保障人才在企业间的正常流动,加强职业道德宣传,降低人员流动损失,鼓励企业为人才创造有利的成长空间,提升福利待遇,完善人才职业晋升通道,提升电子元器件行业人才归属感。三、保障措施(一)加强产业统筹协调。建立健全电子元器件产业发展协调机制,加强协同配合和统筹推进,积极推动解决产业发展中重大事项和重点工作。加强央地合作,指导各地统筹规划基础电子元器件重点项目布局,适时推进主体集中和区域集聚。做好重点领域监测分析和跟踪研究,加强与现行相关政策衔接,有序推进各项行动。(二)加大政策支持力度。围绕电子元器件产业,推动生产、应用、融资等合作衔接,加快市场化推广应用。充分利用产业基础再造等渠道支持创新突破。鼓励制造业转型升级基金等加大投资力度,引导地方投资基金协同支持。发挥市场机制作用,鼓励社会资本参与,吸引风险投资、融资租赁等多元化资金支持产业发展。(三)优化产业发展环境。加强对电子元器件行业垄断、倾销、价格保护、侵犯知识产权等不正当竞争行为的预警和防范,维护公平竞争、健康有序的市场发展环境。促进行业诚信经营、依法纳税、节能环保、和谐用工。引导电子元器件行业信用体系建设,推行企业产品标准、质量、安全自我声明和监督制度。(四)深化国际交流合作。落实“一带一路”倡议,拓展电子元器件产业国际交流合作渠道,加强与相关国际组织、标准化机构等交流沟通,推动与国际先进技术及产业链对接。推动电子元器件产业国内国际相互促进,鼓励全球领先企业来华设立生产基地和研发机构,支持骨干企业开拓海外市场,与境外机构开展多种形式的技术、人才、资本等合作,构建开放发展、合作共赢的产业格局。
  • 直播邀请 | 电子样品显微制备方案及失效分析交流会
    电子样品显微制备方案及失效分析交流会会议时间2022年11月29日15:00-16:45会议内容随着电子行业产业逐渐升级,产品的技术与发展,测试要求越来越高,质量方面也不断严格把控,而电子元器件产品、IC、配件、电子中间产品、终端产品的每一个环节都至关重要。此次会议,主要针对常规以及微小电子样品的失效分析、切片制备、定位处理等进行方案介绍和案例分享。会议议程奖品多多,参者有份一等奖:京东购物卡200元,2名二等奖:商务背包,5名三等奖:保温杯,10名*凡参与抽奖未获得上述奖品者,只要填写了收货信息,均可获得精美笔记本一本报名参会* 长按识别右边二维码* 关注领拓仪器公众号可参与抽奖
  • 2012年电子元器件行业发展依靠创新
    内容摘要:2011年电子行业整体表现平淡,企业经营业绩也不佳,基本面缺乏亮点和创新,一季度、二季度处于行业淡季,下半年三、四季度,也没有迎来销售的旺季。  工控摘要:2011年电子行业整体表现平淡,企业经营业绩也不佳,基本面缺乏亮点和创新,一季度、二季度处于行业淡季,下半年三、四季度,也没有迎来销售的旺季。2012年1-3月电子元器件库存周转天数创近期新高,库存压力依然较大,总体来看,今年二季度难以出现实际性好转,将维持行业整体中性评级。  分析称:去年四季度我国电子元器件中,业绩增速方面光学元件表现的最佳,半导体盈利较差,LED和光学元件盈利较好,半导体和触摸屏较差,库存方面连接器和显示器件的去库存效果明显,其他均出现了增长,智能手机和被动元件扩张较为明显。今年1-3月,业绩增速方面连接器表现最好,半导体最差,智能手机首次出现净利润下滑,盈利能力方面LED表现最好,半导体最差,存货方面显示器件和PCB小幅下降,其他行业均上升,投资扩张力度方面,智能手机和PCB行业较为明显,半导体和显示器件最为谨慎。  在整体全球宏观经济下行的背景下,电子行业市场整体需求下降导致全球半导体行业收入增速不断下滑。全球主要的电子代工和晶圆代工等代表企业营业收入增速下滑直接反映出宏观经济对行业的负面影响。智能手机产业链及安防、POS机终端、智能电表芯片等市场刚性需求较强的相关公司增长确定性较高,将是2012年上半年值得重点关注的品种。  不单单是上述这些值得重点关注的品种,在传感器等上游产业中,我们也不难看到产业的春天。2012年第一季度有数据报告显示,原处于景气下行阶段的电子元器件制造业经营业绩略有上升,无论是国际领先的电子产品制造商,还是国内的电子元器件生产商,该季度业绩普遍有较大幅度的提高,订单量也稍有恢复。电子元器件行业的整体如何,仍是一个众人关注的谜。  物联网发展步伐加快,特别是从传感器等上游入手,将会推动整个产业链的发展。2011年12月,国家发布《物联网“十二五”发展规划》,规划提出要建立完善的物联网产业链,培育和发展10个产业聚集区,100家以上骨干企业。根据某数据网站预计,至2015年,中国物联网产业规模将达到7500亿元,年复合增长率将超过30%。物联网产业政策和发展专项资金的推出、关键技术的突破,对物联网新兴产业构成极大利好。物联网应用已进入实际应用阶段,传感器处于物联网产业链的上游,将是整个物联网产业中需求量最大和最基础的环节。  新型互联网的推动,必将会带来行业特别是电子元器件行业的大改革。在互联网不断的冲击下,经营的方式和推广手段也不尽相同。电子元器件行业相关的网站也如雨后春笋般兴起,选择适合自身发展的道路,才能够在新的浪潮下如日冲天!
  • 关键电子元器件发展亟待突破瓶颈
    制造LED芯片所使用的金属有机物化学气相沉积(MOCVD)设备主要由德国和美国两家公司供货,生产触摸屏所用的玻璃基板主要由美国和日本的几大厂商控制,有机半导体发光器件的发光材料专利主要掌握在日本与韩国厂商的手中……  目前,我国在关键性电子元器件方面虽多年攻关仍举步维艰,那么,问题到底出在哪儿?  “这里已经没有理论和设计问题了。”中国科学院电子学研究所研究员郭开周近日接受《中国科学报》记者采访时说,研制出在线、无损、实时检测以及质量控制的技术平台,比单纯的产品设计困难得多 研制出实用的技术平台的意义,比掌握某种设计技术重要得多。  公差问题不容小视  电子元器件是电子产品的最基本单元,其质量直接关系到整个系统、分系统、单机产品的质量。没有高可靠性的电子元器件,设计再好的电子产品也难以发挥作用。  一位业内人士给记者打了个形象的比喻:元器件之于电子产品,就像建筑高楼大厦所用的钢筋水泥、砖瓦灰石一样,再好的建筑师如果使用的是低劣的建筑材料,盖出的楼房也必定是“豆腐渣”。  “对于产品质量,公差的影响巨大。”郭开周说。  所谓公差,就是实际参数值的允许变动量。理论计算是不考虑公差的 而实际产品中,所有的元器件参量乃至一根金属线的尺寸都有公差。  完成一件高质量的产品,要妥善处理各种各样的公差,比如:尺寸公差、介质材料介电常数和厚度的公差、工艺环境(温度、压力等)的公差等。  “一些公差的组合是允许的,会导致成品产生 而另一些公差的组合则是不允许的,会导致废品产生。”郭开周说,公差控制不严,器件传递的信号就会出现种种问题,如短路或漏电等。  中科院微电子所高性能模拟集成电路项目组负责人赵野告诉记者,企业在生产制造中通常采用良率(良品/产品总数)作为控制质量的指标。“普通的电子元器件产品,良率至少要达到96%~97%,否则报废太多,企业无法赢利。”  因此,郭开周认为,要获得“成品”,必须建立合适的质量控制体系,包括实时质量监测和控制的技术平台。  “尽管控制产品质量与生产工艺的调整有关,但在产品设计时就要考虑如何避免出现质量问题。”赵野补充道。  技术平台研制须加强  在我国电子元器件行业发展的过程中,由于国内企业普遍规模较小,技术研发起步较晚,故在产业链上游的原材料和设备环节缺乏竞争力,主要集中在代工制造的环节,企业综合竞争能力普遍较弱。  究其原因,赵野认为,一方面,我国生产制造电子元器件的开放性商业平台较缺乏,较先进的工艺平台有待完善 另一方面,在设计上也还有欠缺,一些核心技术还没掌握。  对此,郭开周建议,在生产流程中,对阶段成品的质量实施在线、实时、无损检测。“有经验的工作人员可以及时找到故障点并分析出产生故障的原因,及时调节工艺参数,不至于连续生产废品 同时可以对各种不合格情况进行实验、分析,找到在工艺流程中进行改善和控制的办法。”  实际上,制造出精细的集成电路并实现实时质量监控并不容易。有的单位花了大量经费、人力和时间,一直保持着与西方国家的技术联系,还采用了国外软件进行设计,可是要研制出某些任务要求的芯片,仍然是困难重重。  “重理论、重设计而轻视工艺、技术平台,必然会出现瓶颈。”郭开周说。  中国探月工程三期总设计师胡浩在接受采访时曾透露,“嫦娥一号”绕月探测卫星所使用的CCD相机中的芯片属于引进的高端元器件,它的订单比原计划推迟了半年多,对项目进程产生不利影响。  他坦言:“中国航天元器件引进遭遇拖延的情况时有发生,技术基础相对薄弱使得我们在一些方面受制于人。”  “初期购买国外设备是必要的,但在解剖、仿制的过程中,不重视实用技术平台的建立会吃大亏。”郭开周说,“现在应该是花大力气解决关键国产部件、器件、元件及材料研发瓶颈问题的时候了。解决这些瓶颈问题,将会把我国的科技水平提到一个更高的层次,我国的科技事业将会形成一个完整的体系。”
  • 2022宁波国际电子元器件产业展览会
    2022中国(宁波)国际电子元器件产业展会时间:2022年 5 月 12-14 日展会地点:宁波国际会展中心同期举办:2022宁波国际照明展览会规模:6大展馆50000平方 参展企业1200家 专业观众50000+主办单位:宁波电子行业协会 中国电器工业协会电工合金分会 支持单位: 宁波市磁性材料商会宁波磁性材料产业集群发展促进中心浙江省磁性材料应用技术制造创新中心浙江省磁性材料产业创新发展服务综合体承办单位:宁波万众展览服务有限公司展会背景电子元器件产业是电子信息产业的基础支撑,汽车电子、互联网应用产品、移动通信、智慧家庭、5G、物联网、消费电子产品等领域成为中国电子元器件市场发展的源源不断的动力,带动了电子元器件的市场需求,也加快电子元器件更迭换代的速度,对我国电子元器件产业的发展既是机遇也是挑战,中国企业要立足当下展望未来,抓住机遇,投入更多的人力、物力、财力,加快新一代具有自主知识产权的新型元器件研发,把中国电子元器件的生产技术提升到新的高度。2022国际电子元器件产业展览会分别于2022年5月12-14日在宁波国际会展中心举办,2022年7月13-15日在厦门国际会展中心举办、2022年12月1-3日在深圳国际会展中心举办。是专注于电子元器件行业国际性、专业化的展会平台,汇聚众多电子元器件具有影响力的参展商,完整展示电子元器件产业链,打造深度的技术交流平台,通过行业趋势解读、政策导向与技术分享,充分挖掘行业发展新需求,共同开拓市场新机遇。展示范围:电子元器件:电阻、电容器、电位器、电感器、电子管、散热器、集成电路、被动元件、敏感元器件、无线技术、存储器件、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电池、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷、印刷电路用基材基板、电子胶(带)制品、EMI/EMC电磁兼容技术等;开关、连接器、接插件及线束展区:电子开关、拨动开关、船形开关、按扭开关、微动开关、旋转开关、键盘开关;端子连接器、防水连接器、防爆连接器、导线连接器、圆形连接器、线缆连接器、射频同轴连接器、矩形连接器、光纤连接器、音频连接器、家用电器连接器、军用连接器、电子连接器、电力连接器、特种连接器、工业连接器、印制电路连接器、重载连接器;插头、插座、开关、端子、端子、连接器接触器、硅胶按键、IC圆孔插座、插针、排针;接线端子、绝缘护套、导线及绝缘包扎材料等;电子线材:电源线、音视频线、电脑周边线、汽车插叛头线、线材、线束、扎线、 电磁线、护套线、视线、高温耐热电线等;尼龙扎线带、配线槽、配线标志、接线头、接线端子、线扣、电线固定头、固定座等各类配线器材等。电子材料:磁性材料、胶粘材料、散热材料、防水材料、焊接材料、防静电材料、介电材料、半导体材料、压电与铁电材料、导电金属及其合金材料、气体绝缘介质材料,纳米材料、绝缘材料、电子五金件、电工陶瓷材料、敏感材料、封装材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电子锡焊料材料、PCB制作材料、光电子材料、电磁波屏蔽材料、电子功能工艺专用材料、电子化学材料及部品等;电子生产设备:线束和连接器生产设备、线圈生产设备、元器件制造设备、表面贴装技术、焊接技术、点胶注胶、涂层设备、测试测量和质量保证、机器人、运动控制、驱动技术、洁净室技术、LED制造设备、材料加工、有机和印刷电子产品、电池和电能存储生产技术、PCB及电路载体制造、电子专用工具等;电子仪器仪表、测试测量及电子生产自动化技术:电子仪器仪表、电子在线测试仪器、电子生产自动化技术产品、环境测试设备仪器、气候环境模拟试验设备、机械环境模拟试验设备、可靠性试验设备等;展示交流1.与全球电子制造、配套中心的长三角地区的电子制造配套企业共同成长。 2.获得范围、高密度的强势宣传,拓展更多的商业机会。 3.与国内外同行业领导厂商同台展示、切磋技术。 4.接触长三角地区最具影响力的业界人士及用户企业最终决策者、实力买家和研发工程师。信息交流这意味着要知道如何与观众的多样化交换信息,展前、展中、展后、更有效地与观众进行对话,直接与他们建立联系。 1.考虑有效的展台风格及布局,便于更多的产品展示,并专注观众视觉焦点着重展示,让观众消息交流方便。 2.制定观众邀请计划,吸引观众莅临展台。不仅发送电子邮件来邀请客户,还可以通过展品快讯发送邀请。 3.展览期间约见重要客户,并创建一个充实的预约日程。 4.准备展品文档,如演示 PPT、视频和小册子,并可为海外观众提供外语版本。专业观众及买家1.消费类、计算机、通讯、工控与自动化、照明、航空航天、军工等行业的采购订单大量涌向展会现场。 2.智能终端、汽车与汽车电子、新能源、电力、医疗、三网融合、云计算、物联网、轨道交通等新的行业也从四面八方汇聚展会现场,寻求合作。 3参观观众50%以上是从事采购和研发工作。 4.团体参观的买家主要包括:中国电子集团、福群集团、比亚迪集团、创维集团、康佳集团、中兴通讯、华为集团、TCL 集团、 天马微电子、珠海格力电器、三星电子、深圳长城开发、富士康科技集团、美的集团、盈科、惠而浦、万和、富信、德力、亚艺 电子、步步高集团以及各个行业协会企业代表等。宣传推广1.数百家行业媒体通过其官网和优质数据库,同时发布展商的最新展品。 2.行业优秀媒体长期对展会进行大规模的宣传、报道。 3.展会档期各大门户网站对展会进行重点的专题报道。 4.广播电台、电视台多时段、多频率的对展会现场进行全方位报道。新闻发布 利用NBIECE的独特宣传能力,有计划的进行企业宣传。 1.展前,未雨绸缪的发布新闻稿、展品技术新闻稿。 2.展中,充分利用组委会邀请的众多媒体资源,更多的做企业品牌,形象推广。 3.展后,做好会后回顾工作,在行业、协会、媒体等渠道进行广泛传播。增值服务1.市场推广服务:门票、新品、微博微信、展商专访及报道、新产品/新技术推介会、买家洽谈活动、会刊、现场广告。 2.除常规方式外,NBIECE还拥有一支专业的队伍协助您充分利用展会平台进行市场推广。参展流程1、参展企业确定面积及选定展位;2、填妥参展申请回执(合同)并签字盖章,然后将该表传真或扫描至承办单位;3、展位选定后,企业3个工作日内须将参展费用汇入指定帐户,否则不予保留所选展位;4、组委会将于展前一个月将参展商手册寄给参展单位;5、大会会刊将免费为参展企业刊登企业简介(200字内)。 大会组委会:宁波万众展览服务有限公司TEL:+86-21-62963333FAX:+86-21-62966328联系人:张先生 19921817222微信同号邮箱:shll1688@vip.sina.com展会预定:联系人:杨女士 17717968860(微信同号) 3571565401展会官网:www.eci-expo.com
  • 航空航天电子元器件检测项目落户空港新城
    p style="text-align: justify text-indent: 2em "近日,西咸新区空港新城与北京君普科技有限公司就航空航天电子元器件检测项目正式签订投资协议,标志着空港新城在电子信息产业细分领域迈上新台阶。同时,这一项目的落地将助推新城特种芯片产业链条打造,为空港的芯片产业发展提供新动能。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://p5.itc.cn/images01/20200921/b2bdfc27ada9474da6ce44f19f18ca13.jpeg"//pp style="text-align: justify text-indent: 2em "中国科学院院士、西安电子科技大学教授郝跃,空港新城党委书记、管委会主任贺键,空港集团公司领导蒙彬斌、张绍春、邵元锦等共同见证项目签约。br//pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://p0.itc.cn/images01/20200921/a0f6599fcdeb4cf6b8514cada5493e63.jpeg"//pp style="text-align: justify text-indent: 2em "签约仪式上,空港新城党委委员、管委会副主任杨博与北京君普科技有限公司总经理王中旭代表双方签定协议。/pp style="text-align: justify text-indent: 2em "近年来,随着我国电子元器件市场应用范围的逐渐扩大,参与电子元器件研发、设计及生产企业越来越多,对航天电子元器件的质量特别是产品的使用寿命、可靠性及抗辐照等都提出了更高的要求。空港新城航空航天电子元器件检测项目的建成,将成为国内唯一能够对航天领域电子元器件及电路系统在地外极端环境下的性能表现提供完整试验分析及应用评估报告的机构。/pp style="text-align: justify text-indent: 2em "仪式开始前,双方就项目落地及企业未来发展前景进行了交流会谈。郝跃表示,空港新城近年来在社会经济发展方面成效显著,在区位优势、产业集聚、人才服务、城市配套等方面持续发力,优势凸显,将为项目的快速发展提供极大的战略支撑和保障。希望双方能够持续深化合作,推动整个特种芯片产业链条的落地,实现区域和企业的协同发展。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://p8.itc.cn/images01/20200921/0759341ccf1144ec9eace5d78ddc4734.jpeg"//pp style="text-align: justify text-indent: 2em "贺键表示,目前空港已落户了七七一研究所集成电路测筛与特种计算机研发制造项目、中科钢研碳化硅半导体衬底片制造等一批高新技术产业类项目。航空航天电子元器件检测项目将助力空港在特种芯片产业链条上持续发力,吸引上下游企业进一步集聚发展。项目平台的落地对进一步强化电子信息产业布局空港,促进经济社会高质量发展具有十分重要的意义。空港新城将以良好的营商环境、优质的服务保障,与企业一同携手,共谋美好未来。 /p
  • 建立电子元器件和集成电路交易平台,半导体产业也要“集采”了
    1月26日,国家发展改革委官网发布《关于深圳建设中国特色社会主义先行示范区放宽市场准入若干特别措施的意见》(以下简称“《若干特别措施》”)。《若干特别措施》提出要放宽和优化先进技术应用和产业发展领域市场准入,完善金融投资领域准入方式,创新医药健康领域市场准入机制,放宽教育文化领域准入限制,推动交通运输领域准入放宽和环境优化和放宽其他重点领域市场准入等六方面内容,共计24条措施。其中,在放宽和优化先进技术应用和产业发展领域市场准入方面,《若干特别措施》强调,创新市场准入方式建立电子元器件和集成电路交易平台。支持深圳优化同类交易场所布局,组建市场化运作的电子元器件和集成电路国际交易中心,打造电子元器件、集成电路企业和产品市场准入新平台,促进上下游供应链和产业链的集聚融合、集群发展。支持电子元器件和集成电路企业入驻交易中心,鼓励国内外用户通过交易中心采购电子元器件和各类专业化芯片,支持集成电路设计公司与用户单位通过交易中心开展合作。积极鼓励、引导全球知名基础电子元器件和芯片公司及上下游企业(含各品牌商、分销商或生产商)依托中心开展销售、采购、品牌展示、软体方案研发、应用设计、售后服务、人员培训等。支持开展电子元器件的设计、研发、制造、检测等业务,降低供应链总成本,实现电子元器件产业链生产要素自由流通、整体管理;优化海关监管与通关环境,在风险可控前提下,推动海关、金融、税务等数据协同与利用,联合海关、税务、银行等机构开展跨境业务,交易中心为入驻企业提供进出口报关、物流仓储服务,鼓励金融机构与交易中心合作,为企业提供供应链金融服务。鼓励市场主体依托中心开展采购,设立贸易联盟并按市场化运作方式提供国际贸易资金支持,汇聚企业对关键元器件的采购需求,以集中采购方式提高供应链整体谈判优势。支持设立基础电子元器件检测认证及实验平台,面向智能终端、5G、智能汽车、高端装备等重点市场,加快完善相关标准体系,加强提质增效,降低相关测试认证成本。(工业和信息化部、国家发展改革委、民政部、海关总署、商务部、人民银行、税务总局、市场监管总局、银保监会、外汇管理局等单位按职责分工会同深圳市组织实施)近年来,全球半导体产业“缺芯”情况严重,对全球产业发展业绩造成了较大的影响。自2020年下半年以来,市场就已频频传出缺货潮。2021年以来,半导体行业经历了前所未有的缺货潮和涨价潮,各大厂商纷纷发布涨价函。其中,部分品种涨幅甚至超过300倍。二级市场方面,涨价潮所带来的红利早已兑现。市场普遍预期,缺货要到2022年下半年才有望缓解。对此,工信部发言人表示,一方面,随着社会智能化程度的不断提升,芯片作为智能设备最关键的组成部分,需求在持续增长。另一方面,全球疫情蔓延,还有一些个别国家对他国企业进行无理的制裁和打压,都对全球半导体供应链造成了严重冲击。综合多种因素的叠加,也客观上造成了“缺芯”问题的出现。随着市场调节机制逐步发挥作用,以及在各级政府、汽车企业、芯片企业的共同努力下,汽车领域的芯片“缺芯”问题正在逐步缓解。但是我们也要看到,全球集成电路供应链稳定性依然面临着严峻的挑战,未来较长一段时期内,这种芯片供应将依然处于紧张状态。在“缺芯”潮下,电子元器件和集成电路产品价格暴涨严重影响了供应链,加大了下游企业的成本。面对此种情况,一方面要大力建设晶圆厂,另一方面也需要提升下游企业在供应链中的话语权。虽然此前各地政府已出台大量政策措施鼓励投资和建设晶圆厂等,但晶圆厂建设周期长,起效慢,远水解不了近渴。此次,《若干特别措施》的出台,鼓励建立电子元器件和集成电路交易平台,汇聚企业对关键元器件的采购需求,以集中采购方式提高供应链整体谈判优势。这将有助于提升供应链透明度,为下游企业提升采购效率,降低采购成本。【政策链接】:《关于深圳建设中国特色社会主义先行示范区放宽市场准入若干特别措施的意见(发改体改〔2022〕135号)》
  • 深圳“电子元器件和集成电路国际交易中心”完成工商登记
    2022年最后一个工作日,电子元器件和集成电路国际交易中心股份有限公司(简称交易中心)完成工商登记。南方财经全媒体记者获悉,2022年12月8日上午,电子元器件和集成电路国际交易中心在深圳召开揭牌仪式。该交易中心未来将承担引进国际知名电子元器件公司和上下游企业、优化供应链建设、集中采购等多项职能,面向市场化、全球化、平台化发展的电子元器件和集成电路万亿级平台企业。中国(深圳)综合开发研究院金融发展与国资国企研究所副所长余洋表示,打造全球电子元器件集散中心对于维护大湾区乃至全国先进制造业和战略性新兴产业供应链的安全稳定,巩固大湾区电子信息产业优势地位,参与新一轮国际产业竞争均具有重大意义。深圳市监局商事主体登记及备案信息显示,交易中心注册资本为21.28亿元,成立日期为12月30日,注册地位于深圳市前海深港合作区南山街道听海大道5059号前海鸿荣源中心大厦B座3101,股东信息与本报此前报道一致,由13家央企、国企和民营企业共同参与,形成以国资为主导、多种类型共同建设的格局。中国电子信息产业集团有限公司(简称:中国电子)、深圳市投资控股有限公司(简称:深投控)、中国中电国际信息服务有限公司(简称:中国中电)为三大主要出资人,三家总出资额达71.43%。其中,中国中电为中国电子全资子公司。交易中心经营范围涉及电子元器件批发、电子元器件零售、互联网销售(除销售需要许可的商品)、进出口代理、货物进出口、技术进出口、国际货物运输代理等。此前,包括深圳华强在内的上市公司披露,中国电子和深投控各提名3名董事。中国电子、深投控经协商一致后共同提名另外1名董事,为外部董事,不在公司任职,经股东大会选举后产生。董事会设董事长一人,由深投控推荐人选;设立副董事长一人,由中国电子推荐人选;董事长、副董事长均由董事会以全体董事过半数选举产生。工商信息显示,尹可非担任交易中心董事长。他在去年8月刚刚当选深纺织A(000045.SZ)党委书记、董事长。彼时公告信息显示,他还兼任深投控副总经理,历任深圳市燃气集团有限公司赣州深燃天然气有限公司副总经理,广东省东莞市国资委党组成员、副主任,广东省东莞市政府副秘书长,广东省东莞市政府驻北京联络处主任、党组书记,东莞金融控股集团有限公司党委副书记、总经理。除此之外,陈雯海为总经理,其现为深圳市中电港技术股份有限公司董事,中电会展与信息传播有限公司董事长,在中国电子信息产业集团旗下多家公司都曾有过他任职的身影。2022年12月30日,在2022年广东省营商环境评价情况新闻发布会上,深圳市政府副秘书长张晋周表示,在市场化环境方面,深圳持续完善市场经济体制机制,着力激发创新创业活力。其中包括健全市场准入制度,印发放宽市场准入任务清单,推动24项特别措施落地,取得了良好的成效。促进了电子元器件和集成电路国际交易中心、深圳国际珠宝玉石综合贸易平台的挂牌设立。
  • 工信部:推动电子元器件和电子专用设备及测量仪器等产业协作
    9月20日,工信部举行“新时代工业和信息化发展”系列主题新闻发布会。工信部电子信息司司长乔跃山在会上表示,新一代信息技术产业是国民经济的战略性、基础性和先导性产业。十年来,我国新一代信息技术产业规模效益稳步增长,创新能力持续增强,企业实力不断提升,行业应用持续深入,为经济社会发展提供了重要保障。其中,我国电子信息制造业增加值十年来年均增速达11.6%,营业收入从2012年的7万亿元增长至2021年的14.1万亿元,在工业中的营业收入占比已连续九年保持第一,2021年利润总额达8283亿元;软件和信息技术服务业业务收入从2012年的2.5万亿元增长至9.5万亿元,年均增速达16%,2021年利润总额达1.2万亿元,较2015年翻一番。创新能力持续提升乔跃山表示,十年来,我国新一代信息技术产业创新能力持续提升。集成电路、新型显示、第五代移动通信等领域技术创新密集涌现,超高清视频、虚拟现实、先进计算等领域发展步伐进一步加快。基础软件、工业软件、新兴平台软件等产品创新迭代不断加快,供给能力持续增强。全国软件著作权登记量从2012年的14万件增长至2021年的228万件,年均增长率达36%。同时,我国新一代信息技术产业结构不断优化。乔跃山介绍,2021年,14家中国软件名城软件和信息技术服务业业务收入占全国软件业比重达78.4%,产业集聚效应凸显。手机、彩电、计算机、可穿戴设备等智能终端产品供给能力稳步增长,内需升级趋势明显。如4K电视机加快普及,2021年我国4K电视机出货占比达到72%。国内多条全球最高世代液晶面板生产线投产,全柔性AMOLED面板生产线批量出货,8K超高清、窄边框、全面屏、折叠屏、透明屏等多款创新产品全球首发。此外,十年来,我国新一代信息技术产业赋能、赋值、赋智作用深入显现。“在新冠肺炎疫情期间,健康码、远程办公、协同研发等软件创新应用,有力支撑疫情防控和复工复产。”乔跃山说。集成电路销售额首次突破万亿元集成电路产业是信息产业的核心。乔跃山表示,近年来,在内外资企业的共同努力下,中国集成电路产业规模不断壮大。2021年国内集成电路全行业销售额首次突破万亿元,2018-2021年复合增长率为17%,是同期全球增速的3倍多。产业技术创新能力不断增强,芯片产品水平持续提升,较好地满足了新一代信息技术领域发展需要以及行业应用需求。不过,他坦言,我国集成电路产业仍面临产业基础薄弱、高端芯片供给不足等问题。下一步,工信部将做好《新时期促进集成电路产业和软件产业高质量发展的若干政策》落实工作,坚持融合创新,不断为产业发展注入活力,推动产业链各环节的创新发展,做大做强市场;坚持市场导向,充分发挥市场配置资源的决定性作用,努力营造良好产业生态;坚持政策协同,协调落实现有支持政策,加强知识产权保护与运用,持续优化产业发展环境;坚持开放共享,进一步加大开放力度,提升国际合作层次与水平,共同抢抓市场发展机遇,推动集成电路产业实现高质量发展。除了集成电路,种类繁多、应用广泛的电子元器件则是支撑信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。乔跃山介绍,以多层片式陶瓷电容器(MLCC)为例,每台智能手机平均使用数量超过1000只、每辆新能源汽车使用量超过10000只。他表示,我国电子元器件产业发展成绩斐然,已经形成世界上产销规模最大、门类较为齐全、产业链基本完整的电子元器件工业体系,我国电声器件、磁性材料元件、光电线缆等多个门类电子元器件的产量全球第一,电子元器件产业整体规模已突破2万亿元,在部分领域达到国际先进水平。下一步工信部将继续深入实施《基础电子元器件产业发展行动计划(2021-2023年)》,并与“十四五”制造业有关规划政策加强衔接,充分发挥协调机制作用,共同推动产业高质量发展。尤其是提升高端供给能力,推动骨干企业加快攻关突破,面向5G通信、新能源等领域,加快关键技术研发及产业化。此外,推动电子元器件和电子材料、电子专用设备及测量仪器等加强协作,引导基础电子产业升级。工业软件供给能力提升软件是新一代信息技术的灵魂,是数字经济发展的基础,尤其是国产操作系统的发展情况备受市场关注。在回答中国证券报记者有关国产操作系统问题时,工信部信息技术发展司副司长王建伟表示,在桌面操作系统方面,推动桌面操作系统与国际主流芯片架构和应用软件的兼容适配,加快提升产品功能性能,深化推广应用;在服务器操作系统方面,推动服务器操作系统与主流CPU、数据库、中间件等软硬件的兼容适配,加快提高产品国际竞争力,欧拉操作系统终端部署量超170万套;在移动操作系统方面,支持骨干企业开展核心技术攻关,加快移动操作系统应用推广和生态建设,鸿蒙操作系统装机量已超3亿台。王建伟称,下一步,工信部将深入落实国家软件发展战略,持续加大对操作系统的支持力度,顺应开源发展趋势,强化核心技术突破,培育壮大应用生态,更大力度汇聚产学研用各方力量,推动操作系统创新发展。工业软件在推动制造业数字化转型、赋能实体经济变革中发挥着重要作用。王建伟介绍,近三年,我国工业软件市场规模稳步壮大,供给能力有效提升。全国工业软件产品收入由2019年的1720亿元增长至2021年的2414亿元,年均复合增长率达18.5%。今年1-7月份,我国工业软件产品收入达1219亿元,同比增长8.7%,持续保持增长态势。
  • 直播预告!半导体可靠性测试和失效分析技术篇
    2023年10月18-20日,仪器信息网(www.instrument.com.cn) 与电子工业出版社将联合主办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会。iCSMD 2023会议围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件的材料分析、失效分析、可靠性测试、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本次大会分设:半导体材料分析技术新进展、可靠性测试和失效分析技术、可靠性测试和失效分析技术(赛宝实验室专场)、缺陷检测和量测技术4个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,电子工业出版社参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名“可靠性测试和失效分析技术(上午场)”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾专场:可靠性测试和失效分析技术(10月19日上午)9:30碳化硅器件的新型电力系统应用与可靠性研究田鸿昌(中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人)10:00集成电路激光试验测试技术研究马英起(中国科学院国家空间科学中心 正高级工程师)10:30失效半导体器件检测技术及案例分享江海燕(北京软件产品质量检测检验中心 集成电路测评实验室项目经理)11:00半导体元器件材料分析、失效分析技术与案例解析贾铁锁(甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师)嘉宾简介及报告摘要(按分享顺序)田鸿昌 中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人【个人简介】田鸿昌,工学博士,博士后,高级工程师,主要从事宽禁带半导体功率器件与应用研究。2010年于西安电子科技大学自动化专业获学士学位,2015年于上海交通大学电子科学与技术专业获博士学位,2017年-2020年作为浙江大学-中国西电集团有限公司联合培养博士后从事电气工程专业研究。现任中国电气装备集团科学技术研究院电力电子器件专项负责人、中国电气装备集团有限公司科学技术委员会电力电子专家委员,兼任中国电工技术学会电力电子专委会委员、中国西电集团有限公司高层次科技创新领军人才、陕西省半导体与集成电路共性技术研发平台技术负责人、西安电子科技大学和西安交通大学研究生校外导师、陕西省电源学会常务理事、陕西省秦创原“科学家+工程师”团队首席工程师、陕西省“三秦学者”创新团队骨干成员。获得授权发明专利18项,发表学术论文20余篇,出版专著1部。主持科技部国家重点研发计划课题“高可靠性碳化硅MOSFET器件中试生产关键技术研究”,主持和参与国家级、省市级、企业级科研项目10余项。报告题目:碳化硅器件的新型电力系统应用与可靠性研究【摘要】报告首先从“双碳”目标下新型电力系统的发展需求,联系到碳化硅功率半导体器件的特性优势与发展现状,而后讨论了碳化硅功率在新型电力系统的多方面应用情况,最后介绍了对碳化硅器件发展起着重要作用的可靠性测试研究与相应的研究进展。马英起 中国科学院国家空间科学中心 正高级工程师【个人简介】马英起,男,中国科学院国家空间科学中心正高级工程师,太阳活动与空间天气重点实验室空间天气效应中心主任,中科院大学博士生导师,中科院青促会优秀会员,中国光学工程学会激光技术应用专委会委员。主要研究方向为航天器空间环境效应研究与应用、电路与电子系统设计。在卫星器件电路抗辐射研究领域,系统开展辐射效应机理、评估及加固设计验证技术研究,形成的单粒子效应脉冲激光关键技术相关研究成果及系列抗辐射试验平台,支撑了空间科学先导专项、载人航天空间站、月球与深空探测、核高基、高分六号等国家重大任务,形成国家级标准2项。近年来发表论文50余篇、授权发明专利10余项,获省部级科技进步一等奖1项、二等奖1项。报告题目:集成电路激光试验测试技术研究【摘要】概述基于激光光电效应、光热效应、电光效应等机制,开展航天单粒子效应及集成电路缺陷检测应用研究。江海燕 北京软件产品质量检测检验中心 集成电路测评实验室项目经理【个人简介】擅长半导体集成电路失效分析FIB,SEM,EDX,SAT,EMMI,Decap,X-RAY,IV,Probe,OM分析等。报告:失效半导体器件检测技术及案例分享【摘要】本次报告聚焦于集成电路失效分析技术分享,从失效分析的研究方法展开,重点分享失效分析检测手段应用,包含设备基本功能介绍和案例展示,致力于检测技术推广。贾铁锁 甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师【个人简介】贾铁锁,毕业于大连海事大学材料科学与工程专业,对电子元器件失效模式和失效机理有丰富的理论和实践经验,为产品失效分析提供专业解决方案。甬江实验室材料分析与检测中心失效分析技术工程师,长期从事半导体器件失效分析工作,对元器件可靠性、失效分析、失效模式、失效机理等基本概念有科学认知,熟悉电子元器件常见失效模式与失效机理,建立一套对不同元器件失效分析的思路和方法,通过坚实的理论基础与科学的检测仪器分析相结合,解决元器件失效分析相关问题。报告:半导体元器件材料分析、失效分析技术与案例解析【摘要】 报告如下 1. 半导体元器件门类,16大类49小类,挑选部分元器件做讲解。 2. 失效分析的相关介绍:定义和作用、典型失效机理介绍、失效分析的一般流程、关键站点的介绍等 3. 分析技术:方法论和技术介绍,常用失效分析方法,常用技术分析,诸如电性测试、样品制备、失效点定位,FIB微区加工等 4. 失效分析案例解析。会议联系会议内容仪器信息网康编辑:15733280108,kangpc@instrument.com.cn会议赞助周经理,19801307421,zhouhh@instrument.com.cn
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • 超高灵敏度芯片半导体器件失效分析显微镜
    新一代超高灵敏度半导体芯片失效分析热成像显微镜日前在美国问世,于2014年3月18日慕尼黑上海电子展上在大中华区发布并在中国大陆,台湾和香港同步上市,由孚光精仪公司负责该区域销售和售后服务。新一代热发射显微镜采用锁相热成型技术,可探测到1mK (0.001°C) 的器件温度变化,可探测到 100 μW 的功率变化。据悉,这种热发射显微镜可快速定位半导体器件的温度异常点,从而找到漏电等失效点位置。这种热发射显微镜不需要对器件表面处理,可对裸器件和封装器件失效分析,也可定位SMD器件的低功率位置,比如电容泄露测试。除了失效分析之外,这套热发射显微镜还具有器件的真实温度测量功能,以及结点温度,热阻和芯片黏着 Die Attach分析功能。详情浏览:http://www.f-opt.cn/rechengxiang/hongwaixianweijing.html应用领域:器件漏电分析栅极和漏极之间的电阻短路分析封装器件的复合模具短路分析Latch-up点定位金属性短路分析缺陷晶体管和二极管定位分析氧化层击穿SMD元件漏电分析特色和功能超高灵敏度失效点定位堆叠芯片的缺陷深度分析真实温度测量结点温度测量封装和裸露器件分析正面和背面分析检测芯片粘接问题
  • 直播预告!半导体可靠性测试和失效分析技术(赛宝实验室专场)篇
    2023年10月18-20日,仪器信息网(www.instrument.com.cn) 与电子工业出版社将联合主办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会。iCSMD 2023会议围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件的材料分析、失效分析、可靠性测试、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本次大会分设:半导体材料分析技术新进展、可靠性测试和失效分析技术、可靠性测试和失效分析技术(赛宝实验室专场)、缺陷检测和量测技术4个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,电子工业出版社参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名“可靠性测试和失效分析技术”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾专场:可靠性测试和失效分析技术(赛宝实验室专场)(10月19日下午)专场主持人:吕宏峰(工业和信息化部电子第五研究所 高级工程师)14:00高端集成电路5A分析评价技术师谦(工业和信息化部电子第五研究所 高级工程师)14:30光学显微分析技术在半导体失效分析中的应用刘丽媛(工业和信息化部电子第五研究所 高级工程师)15:00集成电路振动、冲击试验评价邓传锦(工业和信息化部电子第五研究所 高级工程师)15:30光发射显微镜原理及在失效分析中的应用蔡金宝(工业和信息化部电子第五研究所 部门主任/高级工程师)16:00半导体集成电路热环境可靠性试验方法与标准陈锴彬(工业和信息化部电子第五研究所 工程师)16:30电子制造中的可靠性工程邹雅冰(工业和信息化部电子第五研究所 高级工程师/工艺总师)17:00集成电路静电放电失效分析与评价何胜宗(工业和信息化部电子第五研究所 高级工程师)嘉宾简介及报告摘要(按分享顺序)专场主持人:吕宏峰 工业和信息化部电子第五研究所 高级工程师【个人简介】吕宏峰,博士,高级工程师,主要从事元器件质量与可靠性相关的科研任务,累计负责和参与省部级项目20余项,具有丰富的测试检测及科研经验,发表SCI\EI论文十余篇,授权专利4项,编撰2本技术专著。报告题目:碳化硅器件的新型电力系统应用与可靠性研究师谦 工业和信息化部电子第五研究所 高级工程师【个人简介】师谦,中国赛宝实验室(工业和信息化部电子第五研究所)高级工程师, 硕士,现任工业和信息化部电子第五研究所元器件可靠性研究分析中心元器件可靠性工程部总工。硕士毕业于电子科技大学微电子技术专业。1998年入职工业和信息化部电子第五研究所元器件可靠性研究分析中心,专业从事集成电路失效机理,失效分析技术和环境适用性试验技术研究。荣获省部级科技奖6次,主持和参与4项国家标准制定,参与发表专著和文章7篇。报告题目: 高端集成电路5A分析评价技术【摘要】高端芯片的可靠性保证技术,在材料,工艺和外部应力几个层面进行分析评价,实现产品可靠性提升。刘丽媛 工业和信息化部电子第五研究所 高级工程师【个人简介】刘丽媛,女,毕业于中山大学微电子学与固体电子学专业,硕士研究生,长期从事分立器件、集成电路等元器件可靠性分析和评价工作,擅长塑封集成电路在航空装备领域及全海深无人潜水器领域的应用风险评估,2018年获得国防科学技术进步奖一等奖一项,2020年作为项目负责人完成电子元器件领域省部级科研项目1项,参与其他国家重大工程、研究项目10余项,包括广东省科技厅重点领域研发计划高端芯片可靠性与可信任性评价分析关键技术、面向高频开关电源应用的8英寸Si衬底上GaN基功率器件的关键技术研究及产业化等,并参与国家新材料测试评价平台-战略性电子材料测试评价中心建设工作,曾与航空装备研制单位、无人深潜器研制单位、电力企业、家电企业等开展多项项目合作,连续5年担任国际标准组织JEDEC质量与可靠性委员会中国区工作组秘书长,发表论文10余篇。报告题目: 光学显微分析技术在半导体失效分析中的应用【摘要】报告简要介绍光学显微镜的分类、原理和特点,重点结合应用案例讲解光学显微技术在半导体失效分析中的重要作用,如样品外观、内部结构检查及失效发现,与电学分析、化学分析联用分析等。邓传锦 工业和信息化部电子第五研究所 高级工程师【个人简介】工业和信息化部电子五所高级工程师,主要从事元器件可靠性寿命及环境试验评估方法研究,具有超过10年丰富的一线试验操作经验,熟悉各类元器件检测试验标准,对元器件可靠性试验评价有独特的见解。承担了多项省部级机械试验、寿命试验方面检测技术研究类课题,发表机械试验、寿命试验及环境试验方面论文13篇,EI收录8篇。报告题目: 集成电路振动、冲击试验评价【摘要】1、集成电路振动试验评价 对集成电路常用振动试验标准中扫频振动、随机振动试验条件、方法、注意事项及振动夹具设计测试方法进行讲解。 2、集成电路冲击试验评价 对集成电路常用冲击试验标准中标准波形冲击、冲击响应谱、轻量级冲击、瞬态脉冲波形冲击等试验条件、方法、注意事项及失效案例进行讲解。蔡金宝 工业和信息化部电子第五研究所 部门主任/高级工程师【个人简介】蔡金宝,硕士,高级工程师,毕业于北京大学微电子与固体电子学,现任工业和信息化部电子第五研究所系统工程中心项目工程部主任,主要从事电子系统元器件级、板级的可靠性研究和分析工作,主持过多个行业龙头企业的可靠性提升服务工作。在电子产品的可靠性工作流程优化、可靠性增长与评价、故障根因分析、物料评估与优选、寿命分析与评价方面有着丰富的工作经验。在电子元器件可靠性管控方面,曾为通讯、家电、军工、汽车电子等行业的标杆客户提供服务,包括定制模块的可靠性评估与增长、物料选用体系优化、替代物料的验证等。报告题目: 光发射显微镜原理及在失效分析中的应用【摘要】光发射显微镜技术(EMMI)和激光扫描显微镜技术(OBIRCH)能快速定位芯片失效区域,广泛应用于器件的失效分析。本报告主要介绍EMMI和OBIRCH的理论基础和成像原理,通过两种技术的应用及实际案例,对比两者区别,并详细介绍两种技术的应用范围。最后对试验设备进行简单介绍。陈锴彬 工业和信息化部电子第五研究所 工程师【个人简介】本科和硕士毕业于华南理工大学,目前在工业和信息化电子第五研究所任职项目工程师,主要从事电子元器件可靠性环境与寿命试验的开展和研究工作。在可靠性环境与寿命试验领域:个人实操开展的试验项目上千项;参与了多项省部级课题的研究工作,发表学术论文7篇,其中6篇被SCI或EI收录;申请发明专利3项。支撑并解决了若干款新产品在鉴定检验时,在环境试验方面的匹配性问题。报告题目:半导体集成电路热环境可靠性试验方法与标准【摘要】热环境试验是考核和验证产品环境适应性的一类可靠性试验。对于半导体集成电路,常用的热环境可靠性试验包括温度循环、热冲击、高低温贮存、高低温工作等试验。本报告从试验的方法和原理出发,分析不同热环境试验对样品的考核目的及差异。并进一步结合集成电路常用的热环境试验标准和相关的案例,对开展试验时的注意事项进行介绍。邹雅冰 工业和信息化部电子第五研究所 高级工程师/工艺总师【个人简介】邹雅冰 工业和信息化部电子第五研究所 元器件可靠性分析中心 高级工程师 工艺总师,办公室主任,IPC特邀专家。 专业从事电子装联工艺可靠性技术研究,拥有丰富的科研及工程项目经验,擅长印制板及其组件失效分析、工艺制程改进和工艺可靠性试验评价技术,先后主持/参与30多项IPC、国标、行标等相关标准的制修订及审核工作,服务多家单位的工艺优化及改进相关咨询项目。报告题目: 电子制造中的可靠性工程【摘要】从制造大国到制造强国,实现高质量发展,可靠性必不可少。电子制造是一个复杂的高技术的工艺工程,而可靠性是一项系统工程。出厂合格不等于可靠,不可靠的产品不具有品牌竞争力。高可靠的电子制造需要系统导入可靠性工程,本课程简要介绍了导入的基本方法和流程。何胜宗 工业和信息化部电子第五研究所 高级工程师【个人简介】何胜宗,可靠性高级工程师、iNARTE认证ESD工程师、TSQ项目黑带。专业从事电子产品质量可靠性整体解决(TSQ/TSR)项目的技术咨询和辅导工作。在电子元器件检测、失效分析领域,具有丰富的实践经验,积累了大量电子元器件物料缺陷、制造工艺不良、静电防护不当等诱发产品失效的案例经验和相应的解决方案。帮助客户查明引起重大质量事故的根本原因,并提出有效的整改方案及预防措施,获得客户好评与认可。积累了大量由于ESD损伤的失效分析案例,对ESD损伤现场诊断、分析以及防护管控体系整改、培训具有丰富的实践经验。辅导了多家企业的静电防护体系改造工程,使相关人员全面掌握了电子制造过程的静电防护原理、方法和管控措施,并使企业通过了IEC61340/ESDA S20.20标准体系认证。开展静电防护体系建设辅导相关的企业有:华高王氏、ABB、技研新阳、美维电子、成都振芯科技、贵州振华风光、新风光电子、美的空调、美的冰箱、美的机电、海信空调、海信日立、杭州先途电子、昆山神讯电脑、上海渡省、万和电气、武汉新芯、九院五所、中航609、兵器203、4724、5721、南京海泰、重庆东风小康、三川智慧水表、中山名门等。报告题目: 集成电路静电放电失效分析与评价【摘要】报告聚焦集成电路静电放电失效分析与评价技术,介绍了生产工序中典型的静电风险来源以及静电放电诱发失效的放电路径、失效类型和深层机理过程;以真实工程案例为基础,介绍了在产线失效或者客退品分析工作中,如何排查静电诱发失效并进行整改的工作思路和技巧;最后,介绍了集成电路的静电放电评价方法和相应的防护措施。会议联系会议内容仪器信息网康编辑:15733280108,kangpc@instrument.com.cn会议赞助周经理,19801307421,zhouhh@instrument.com.cn
  • 专家约稿|功率器件可靠性研究和失效分析的全面解析
    功率器件可靠性研究和失效分析的基本介绍邓二平(合肥工业大学 电气与自动化工程学院 230009)摘要:功率器件可靠性是器件厂商和应用方除性能参数外最为关注的,也是特性参数测试无法评估的,失效分析则是分析器件封装缺陷、提升器件封装水平和应用可靠性的基础。可靠性测试项目的规范性、严谨性和可追溯性,对于功率器件可靠性评估和失效分析至关重要,也是保障分析结果全面性、准确性和有效性的基础。本文结合团队多年的可靠性和失效分析研究的相关经验,对研究步骤等进行了基本介绍,旨在为行业的发展提供可能的参考。1、引言功率器件近年来在国内得到了大力发展,尤其是第三代半导体器件SiC MOSFET与新能源汽车应用的结合,迎来了功率器件国产化的重大发展机遇,包括芯片、封装、测试和设备等。而可靠性研究和失效分析则是器件封装后评估器件长期稳定运行的基础,对器件封装改进、可靠性评估等具有重要意义。本文结合团队多年的可靠性研究经验,主要介绍了进行功率器件可靠性研究和失效分析的一些基本步骤、原理和需要注意的事项等,具体测试电路请参考相应的测试标准(如IEC、MIL、JESD和AGQ等测试标准)。功率器件主要包括:Si IGBT/diode, Si MOSFET/diode, SiC MOSFET/diode, GaN器件,目前市场上比较成熟的产品还是以硅基为代表的IGBT器件,电压等级最高可到6500V,电流目前最大到3600A。随着使用开关频率的提升、能耗要求和基础材料的发展,SiC基的功率器件己逐渐成熟,典型的代表是SiC MOSFET,新能源汽车的800V平台正大量使用1200V的SiC MOSFET。进一步地,GaN工艺的不断成熟以及在射频领域的发展经验,目前600V左右的高频开关领域GaN器件非常有优势,尤其是车载充电机(OBC)。不同类型的功率器件具有不同的特性,因此在测试方法和细节上要有所区分,如SiC器件由于栅极的不稳定性以及GaN动态的快速性需要重点关注。2、测试项目分类功率器件的测试一般分为基本特性测试来表征器件性能优良、极限能力测试来评估器件的鲁棒性、可靠性测试来评估器件长期运行稳定性以及失效分析助力器件改进和优化升级,具体如下。2.1 基本特性测试主要包括:静态特性测试(以IGBT为例一般指饱和压降Vces,阈值电压Vgeth,集-射极漏电流Ices,栅-射极漏电流Iges,稳态热阻Rth等静态参数)和动态特性测试(一般指双脉冲测试,包括开通延时时间td(on),下降时间tf等动态参数),其中动态特性测试还可包括安全工作区SOA的测试,有RBSOA和SCSOA。静态特性主要表征模块的一些基本性能参数,是表征模块优良的重要指标,如饱和压降Vces表征器件的导通能力,Vces越小,模块工作过程中的导通损耗越小,相同条件下温升越小。器件加速老化可靠性实验前必须进行模块的基本特性测试,尤其是静态特性测试,一方面确保被测器件功能的完整性,另一方面可用于老化后的对比分析,助力器件失效模式的分析。但一般在可靠性老化测试中不进行器件的动态特性测试,即使是进行栅极老化的高温栅偏实验,一方面是动态特性测试时间很短,封装的老化并不会影响器件的动态特性,另一方面器件的部分动态特性可通过Iges和Vgeth表征,甚至可进行栅极电容的测试来表征。2.2极限能力测试主要包括:短路能力测试、浪涌能力测试和极限关断能力测试,考核的是器件在极端工况下的能力,尤其是关断能力。如短路能力测试主要考核器件在短路(一般有3类短路情况)条件下器件的极限关断能力,一般为10µs能关断电流的数值,主要考核芯片的能力。浪涌能力则是考核反并联二极管抗浪涌能力,一般是10ms正弦半波的冲击,尤其是SiC MOSFET的体二极管非常重要,可能还会影响栅极的可靠性,由于时间较长,主要考核封装的水平。极限关断能力则是考核器件饱和状态下在毫秒级的关断能力,如电网用的直流断路器需要在3ms关断6倍的额定电流。从物理和传热学理论来看,短路测试虽然会有大量的能量产生,最终也是由于能量超过芯片极限而损坏,但由于测试时间非常短,反复的短路测试不会引起封装的老化,而浪涌能力和极限能力测试则将进一步影响封装的老化,是加速老化测试未来应该重点关注的测试。进一步地,极限能力是特种电源等极端应用时需要重要关注的测试。2.3可靠性测试主要包括:功率循环、温度循环、温度冲击、机械冲击、机械振动、高温栅偏、高温反偏、高温高湿反偏和高低温存储等,额外的还包括盐雾等测试。按照应力的来源区分其实可分为电应力加速老化和环境应力加速老化,从器件研发到量产以及应用过程中,需要经过大于10项可靠性测试,机械冲击、机械振动、温度存储等主要考核的是器件在运输或者存储过程中的可靠性,而最重要的测试主要有高温栅偏、高温反偏、高温高湿反偏、温度循环和功率循环。这些实验也是工业界和学术界研究最多,最复杂的测试,尤其是功率循环测试。通过上述加速老化实验,提前暴露器件在芯片设计、封装工艺、样品制备、运输存储、实际应用过程中可能存在的问题,一方面可为器件厂商提供改进建议,优化器件的性能并提高器件可靠性,另一方面可为器件的应用方提供技术指导以及实际产品设计和可靠性验证提供数据支撑。2.4失效分析主要包括:SAM超声波扫描分析、X-ray材料损伤检测分析、SEM电子显微镜分析、光学显微镜分析和有限元仿真分析。SAM超声波扫描分析主要是通过超声波对器件内部各层材料进行探伤,尤其是材料的界面处,当存在一个空洞时,返回的超声波能量和相序发生了变化,即可进行定位。X-ray则更多是用于材料本体探伤研究,多用于材料级的失效分析,SEM电子显微镜和光学显微镜也是一样,但光学显微镜需要打开模块才能对相应的位置进行深入探究。有限元仿真分析是一个除实验外最好的检测、分析和研究手段,通过实验测量数据的对比和修正,完全重现实验过程中器件内部的细节和薄弱点,也是失效分析最难和最为重要的环节。3、可靠性研究步骤可靠性研究的基本步骤如下图1所示,一般需要在可靠性测试前进行一些基本特性测试确保器件的性能以及方便与老化后的进行对比分析,然后进行加速老化等可靠性测试,再进行基本特性测试和失效分析,探究器件的失效模式和失效机理。为了进一步深入探究器件内部各层材料在可靠性测试过程中的应力分布情况,可采用SAM超声波扫描以及有限元分析方法配合进行相应的失效分析。上述可靠性测试中高温栅偏100%与芯片有关、高温反偏约80%情况与芯片有关,也有因为封装老化导致的退化、高温高湿反偏测试也是类似的情况,其他所有可靠性测试均与封装有关,尤其是热特性和机械特性有关。图1所示的基本步骤也只是通用的研究过程,对于具体的问题还需要进行特定的对待和分析。比如大部分情况在可靠性研究中是不会进行极限能力测试的,但如果要研究器件老化对极限能力的影响,则需要进一步考虑,包括多应力的耦合测试。图1 功率器件可靠性测试基本流程这里以Si基IGBT器件的功率循环为例简单介绍一下可靠性加速老化的基本流程和各项参数测试的必要性,如下图2所示。以Infineon公司1200V, 25A Easypack封装的IGBT器件为例进行功率循环的老化测试、寿命评估和失效机理研究等。第I步:确定研究对象,也就是FS25R12W1T4,此封装内有6个开关组成的三相全桥,如下图3所示。上桥臂的IGBT开关共用一个上铜层,下桥臂的IGBT开关均是独立的,这里以U相的下桥臂开关S2为例,减小热耦合影响。S2的上铜层面积与芯片面积相当,热扩散角小,导致散热条件相对较弱,热量会更集中于芯片焊料层。第II步:器件基本特性测试,包括常温下饱和压降Vces (@VGE=15V,Ic=25A,Tvj=25ºC),阈值电压Vgeth (@VGE= VCE,Ic=0.8mA,Tvj=25ºC),集-射极漏电流 Ices (@ VGE=0V,VCE=1200V, Tvj=25ºC),栅-射极漏电流 Iges (@VCE=0V,VGE=20V,Tvj=25ºC),具体条件来源于器件的数据表datasheet。需要说明的是,这里只测试了器件常温下的基本特性,一方面是用于判断器件的性能与好坏,另一方面用于老化后进行对比,常温下的数据即可满足要求。若测试过程中发现某个器件的某个参数超过datasheet里的规定值,则说明此器件是不良品,需要更换新的器件进行测试。进一步地,还可通过此数据来评估各器件间的一致性。第III步:SAM超声波扫描,通过专有设备如SAM301进行器件封装内部各层材料连接状态的检测和参照,将模块倒置于装有去离子水的设备中,超声波从器件的基板开始向下探测,可得到器件各层材料的二维平面图,如下图4所示。此模块没有系统焊接层,因此只展示了器件最薄弱的,也是可靠性测试最为关注和重要的芯片焊料层和芯片表面键合线连接状态,对于新器件而言,各层的连接状态良好。做完SAM后还有一个非常重要的一步,尤其是对于硅胶封装的模块,将模块拿出后必须倒置放置24小时以上,以充分晾干模块内的水分 。进一步地,还需要通过加热板或者恒温箱将器件放置在85ºC环境中至少半小时以上,更加充分的挥发模块内的残余水分以不影响模块的性能。对于TO封装的器件来说,尤其有环氧树脂的充分保护以及环氧树脂吸水性差等特点,加上放置时间很短以及没有高温作用等,可不进行此步骤,但做电学特性实验前必须保证器件表面己无明显水分。在进行热阻等测试前,还需要进行连线,最好通过焊锡连接,以确保连接的可靠性。图2 Si基IGBT器件功率循环测试基本流程 (a) 内部结构 (b) 等效电路图3 FS25R12W1T4模块的内部结构(a) 芯片焊料层 (b) 芯片表面键合线图4 FS25R12W1T4模块SAM超声波扫描结果第IV步:温度关系校准,对于功率器件而言,器件的结温是评估模块电学特性和热学特性最重要的参数,结温不仅可反映模块的散热能力,还可影响器件的电学特性,甚至是可靠性。现在方法中,只有电学参数法测量结温适用并广泛应用于器件可靠性测试中,如热阻测试、功率循环、高温反偏等测试。一般来说,对于低压器件,测量电流选择合适的话,温度校准曲线将呈现完美的线性关系,如下图5所示。可以看到4个器件的曲线均呈现很好地线性关系,虽然在截距上存在一定的差异,但斜率几乎一样,说明芯片的一致性好,此微小差异一般来源于热电源的位置或者加热源的差异,但这种小差异可忽略。图5 FS25R12W1T4的温度校准曲线@IM=100mA第V步:瞬态热阻抗Zth测试,在进行功率循环测试之前,一般为了获得模块内部芯片PN结到散热器甚至环境的热路径情况,以及用于与老化后的状态进行对比,以定位模块失效位置,需要进行瞬态热阻抗Zth测试。通过两次不同散热条件下Zth的测试,也称为瞬态双界面法,可直接获得模块结到壳的热阻值Rthjc,以评估模块的整体性能。将被测器件按功率循环测试的要求安装到测试设备的水冷散热器上,放置好热电偶以以测量相应位置的温度,如壳表面,散热器或环境温度。瞬态热阻抗测试其实相当于一次功率循环,通过给被测器件通过相应的测试电流以加热器件至热平衡状态,降温过程测量器件的结温变化。这里需要注意的是,测试电流越大,测量电路的信噪比越大,测试结果越好,但要保证器件的最大结温不能超过器件允许的最大结温。此器件测量得到的Zthjs如下图6所示,测试条件为升温时间ton=5s, 降温/测量时间toff=40s, 测试电流IL=25A, 水冷温度Tinlet=58ºC, 测量延时tMD=200µs。图6 FS25R12W1T4的瞬态热阻抗曲线,#40器件在功率循环前的结果第VI步:功率循环加速老化测试,做完Zth测试和所有准备工作后,即可进行功率循环的测试,本实验室的测试设备有3条测试支路,每条支路可串联4个器件,共计12个通道,实验过程可以用2条支路或者3条支路。本次测试的器件为4个,每条支路串联2个被测器件,先通过调节测试电流,使得所有器件的结温差在目标温度范围左右,然后再通过控制各个器件的栅极电压来达到精细化和逐点调节。进一步地,通过控制外部水冷的入口温度调整所有器件的最大结温在目标温度范围左右,然后再通过安装条件的修正来达到各个器件的精细化和逐点调节。最终得到的测试条件为升温时间ton=2s, 降温时间toff=2s, 测试电流IL=29.7A, 水冷温度Tinlet=58ºC, 最大结温Tjmax≈150ºC,结温差ΔTj≈90K,测量延时tMD=200µs。功率循环条件设置完成后,只需要在程序中设定相应的保护即可实现完全无人值守运行,保护变量一般应该包括电压Vce保护,电流IL保护,热阻Rth保护,结温Tj保护,水温Tc保护,电源输出保护等。设置完成后的程序运行界面如下图7所示,可看到4个器件的测试条件相应比较接近。值得注意的是,上述测试过程中设置了测量延时,这是由于在半导体器件电流关断时,载流子复合需要时间,尤其是双极性器件。在这个延时时间里,芯片的结温其实是持续下降的,这就导致我们在延时时间tMD后测量的结温并不是器件真正的最大结温,而存在一定的误差,需要通过一些方法进行修正,如根号t方法,具体这方面的内容需要参考相关论文。而此结温的误差将会导致器件的寿命数据存在一定的差异,需要通过现有的模型进行相应的修正。进一步地,我们也看到不可能使得所有器件的数据完全一致,达到我们的想要的测试条件,最终在进行寿命对比时,需将所有器件的条件均归一到同样的条件以保对比的公平性和数据的正确性,如下图8所示。图7 功率循环运行界面示意图图8 功率循环寿命数据第VII步:瞬态热阻抗Zth测试,当模块老化到一定程度或者达到失效判定条件后,需要停止功率循环测试,对其进行瞬态热阻抗测试,进一步准确定位老化位置。测试条件与功率循环前一致,下图8列举了#40器件在不同功率循环次数条件下的测试结果,可以看到,随着老化程度的增加,器件的热阻增加。进一步地,可以看到在模块功率循环前没有经过老化(No.68)时,整个曲线均较小,当老化到一定程度后(No.76888),热阻增加不是非常明显,可以理解为裂纹的形成过程。当功率循环加速老化持续进行(No.91522),这个过程为焊料裂纹生长过程,热阻增加非常明显。图9 #40器件功率循环前后Zthjs结果对比第VIII步:SAM超声波扫描,将功率循环测试后的器件,利用原有的参数设置进行SAM超声波扫描,通过对比可得到器件芯片焊料层和键合线的老化状态,利于器件的失效模式和失效机理研究。下图10展示的是#40功率循环老化后IGBT芯片焊料层和芯片表面键合线的连接状态,可以看到芯片焊料层出现了白点,有严重老化的迹象,这也与图9的结果相吻合。而键合线的状态由于焊料的老化,改变了超声波的路径,使得键合线的状态很难识别,从实验结果来看并没有发生严重的老化。(a) 芯片焊料层 (b) 芯片表面键合线图10 #40器件功率循环老化后的SAM结果值得说明的是,图中的S3和S6也出现了老化是因为之前做过不同ton的实验,但也可以看到S2和S6的老化程度和现象比较一致,更集中于中心区域,而S3则比较均匀,这是由于S3具有更大的散热面积,使得S3焊料的温度分布更均匀。这里想给大家展示的是如何通过SAM图来获得相应的老化信息,要有全局观念,要知道整个实验的计划、过程、细节和数据等,才能给出更为准确的结论。第IX步:器件特性参数测试,完成器件的SAM测试后,仍然要将器件放置干燥处理后才能进行相应的电气特性测试,采用相同的实验条件对上述参数进行测量。一般情况下,上述参数在功率循环老化后不会发生变化,SiC MOSFET由于栅极可靠性问题可能会存在一定程度的阈值电压偏移。同时,Si IGBT一般也会存在轻微的阈值电压偏移,而且是负偏移,但一般在5%以内,这也侧面说明利用阈值电压作为温敏参数可能存在的误差。一般器件的温敏关系约为-2mV/ºC,假定器件的初始阈值电压为5V,则电压偏移25mV,最终导致约12 ºC的误差。第X步:有限元仿真分析,没有仿真解释和验证的实验数据是不可信的,因为实验数据很大程度依据于测试人员、经验、测试方法、测试条件等各方面因素;而没有实验验证的仿真分析也是不可信的,能否解释实际现象很关键。因此,有限元仿真分析其实与实验是相辅相成的,仿真的第一步必然是建立仿真模型,并修正和验证仿真模型的有效性。对于功率循环来说,考核的主要是器件封装在往复周期性温度变化过程中的热应力,因此,模块的热流路径至关重要,可通过瞬态热阻抗来修正模型。下图11为仿真和实验获得的模块S2瞬态热阻抗曲线,仿真与实验结果有非常高的吻合度,最后的些许差异来源于不同的安装条件,从两个实验结果也可看到。图11 S2的瞬态热阻抗曲线对比实验验证后的有限元仿真模型就具备与真实器件相同的热流路径了,可以用来进行功率循环仿真分析。这里值得一提的是,对于功率循环的功率循环仿真分析,必须使用电-热耦合仿真,一方面是纯热仿真没有芯片的电热耦合作用,另一方面是纯热仿真没有键合线的自发热现象,这会导致仿真结果的偏差。这里以S2和S3的有限元仿真来进行说明,下图12为功率循环仿真的结温变化曲线,芯片的结温提取的是芯片表面平均温度,这是与VCE(T)方法获得的值最接近的表征。仿真所用的条件均来源于实验测量结果,仿真过程与实验测试过程一样,通过调整芯片的电导率来获得不同的功率最终达到相同的结温差,调整环境温度来达到相应最大结温。(a) S2在不同ton条件下仿真的结温曲线 (b) S3在不同Tjmax条件下仿真的结温曲线图12 仿真得到的结温曲线获得与实验相同的结温后就可以进行器件内部更为细致和全面的分析,下图13为S2和S3在相同的功率循环条件下芯片表面的温度分布,由于铜散热面积的差异,导致温度分布有所差异,最终导致失效位置发生了变化,如图10所示。因此,通过电气参数的测试可以知道器件的整体变化情况,但无法定位到具体位置,而通过SAM超声波扫描则可获得基本位置信息,但无法准确分析其原因以及产生的机理。最终通过有限元仿真可以得到器件内部更为细节的信息,实现对器件的失效机理研究和封装结构优化。但最为根本的是要把握器件的所有信息,结果能进行相互验证,缺一不可。(a) S2, ton=2s, ΔTj=89.5K和Tjmax=147.7˚C (b) S3, ton=2s, ΔTj=90.9K和Tjmax=152.1˚C图13 芯片表面温度分布4、总结上述以功率循环为例详细描述了需要进行的哪些实验、步骤和原理,严格按照上上述实验步骤再加上一些经验基本上就具备了全面分析功率器件老化失效的能力。但要达到更高水平,尤其是能在做实验过程中主动解决所有遇到的问题,还需要更为细致和深入的学习,其中最最最为核心的就是要把握每个测试的基本原理。只有把握了这些参数、测试的基本测试原理,逻辑思路和功率器件的基本物理过程,才能更深刻的理解一些问题,并解决实际中遇到的问题。主要参考文献[1] MIL-STD-883G, United States Department of Defense Test Method Standard: Microcircuits, Method 1012.1 Thermal Characteristics, 1980.[2] Electronic Industries Association, Integrated Circuit Thermal Measurement Method – Electrical Test Method, EIA/JEDEC Standard, JESD51-1, 1995 (www.jedec.org ).[3] ECPE/AQG 324, Qualification of Power Modules for Use in Power Electronics Converter Units (PCUs) in Motor Vehicles [S], 2018. [4] U. Scheuermann and R. Schmidt, “Investigations on the Vce(T)-Method to determine the junction temperature by using the chip itself as sensor,” in Proc. PCIM Europe, 2009, pp. 802–807. [5] E. Deng and J. Lutz, "Measurement Error Caused by the Square Root t Method Applied to IGBT Devices during Power Cycling Test," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 545-548, [6] 邓二平,严雨行,陈杰,谢露红,王延浩,赵雨山,黄永章.功率器件功率循环测试技术的挑战与分析[J/OL].中国电机工程学报:1-20[7] 赵雨山,邓二平,马丛淦,谢露红,王延浩,黄永章.考虑器件结构布局的功率循环失效模式分离机制[J].中国电机工程学报,2022,42(07):2663-2672.[8] 陈杰,邓二平,张一鸣,赵子轩,黄永章.功率循环试验中开通时间对高压大功率IGBT模块失效模式的影响及机理分析[J].中国电机工程学报,2020,40(23):7710-7721.[9] 邓二平,赵雨山,孟鹤立,陈杰,赵志斌,黄永章.电动汽车用功率模块功率循环测试装置的研制[J].半导体技术,2020,45(10):809-815.[10] 邓二平,陈杰,赵雨山,赵志斌,黄永章.90 kW/3000 A高压大功率IGBT器件功率循环测试装备研制[J].半导体技术,2019,44(03):223-231.作者简介邓二平(1989),男,教授,博士,“黄山学者”优秀青年,中国能源学会专家委员,2013年哈尔滨工业大学获得学士学位,2018年华北电力大学获得博士学位,2018年6月留校任教(2018年~2022年华北电力大学),2018年10月,德国开姆尼茨工业大2年学博士后,2022年5月,合肥工业大学教授。第二完成人获2021年电工技术学会技术发明二等奖1项,主持、参与多项国家项目和企业项目(30余项),发表高水平论文70余篇,其中SCI检索论文30余篇,申请专利30余项。研究方向为功率器件(IGBT、SiC MOSFET和GaN器件)封装、可靠性和失效机理研究,如可靠性测试方法、测试技术、失效分析以及寿命状态监测等。
  • 第16届IEEE国际集成电路物理与失效分析会议在苏州成功召开(IPFA 2009)
    2009年7月6-10日,第16届IEEE国际集成电路物理与失效分析会议(IPFA2009)在苏州独墅湖高等教育区隆重召开。会议由IEEE南京分会、IEEE 电子器件协会、IEEE可靠性协会IEEE Reliability/CPMT/ED新加坡分会,IEEE广东分会联合主办,苏州大学、苏州工业园管委会、苏州集成电路行业协会、东南大学、尚德太阳能电力有限公司、电子元器件可靠性物理及其应用技术国家重点实验室联合承办,上海华碧检测技术有限公司承办并执行。  会议为期五天,前两天为培训内容,后三天为研讨会,同期还举办了相关检测与分析仪器展览。此次会议是按照国际惯例举办的大型学术会议,得到了苏州工业园区的大力支持。仪器信息网作为支持媒体, 也特派编辑出席了本次会议。    本次IPFA 2009国际会议是半导体集成电路、电子元器件、太阳能光伏产品失效分析物理机制及器件可靠性领域全球最高级别国际会议。  会议内容涉及八个专题:样品制备、检测分析技术以及材料特性,先进失效分析技术,芯片级和封装级失效分析案例研究以及失效机理研究,先进的可靠性评估和途径,新颖的器件可靠性和失效机理,新型的堆叠栅/绝缘体和FEOL可靠性以及其失效机理,先进的互连和BEOL可靠性以及其失效机理,光伏可靠性和失效机理。会议分为培训、研讨会、设备展览三个部分。  大会主席宋宪忠先生首先回顾了IPFA的发展历史以及重要意义,并介绍了IPFA最终决定在中国举办的经过。宋宪忠先生强调IPFA 2009将继续发扬IPFA的传统:在电子器件可靠性与失效物理分析方面高质量的、广泛的国际参与 使电子器件可靠性与失效物理分析更加科学地统一、公平、严谨 这些都需要长时间不断的创新、努力扎实的工作以及大量的实践。IPFA 2009 会议主席宋宪忠先生致开幕辞  7月8日上午,IPFA 2009大会准时开幕。苏州大学副校长张学光、苏州工业园科技局局长张东驰参加了开幕式并发表了重要讲话。大会主席、尚德太阳能电力有限公司产品研发及质量负责人宋宪忠、IEEE Nanjing Section主席何振亚分别致开幕辞。工信部电子第五研究所所长/电子元器件可靠性物理及其应用技术国家重点实验室主任孔学东、东京工业大学Hiroshi Iwai应邀作做大会报告。IEEE Electron Devices Society前主席C.Yang、现任副主席J.J.Liu到会祝贺。 苏州大学张学光副校长致开幕辞IEEE南京分部何振亚主席致开幕辞   来自世界各地30余国家和地区的集成电路物理和失效分析领域的30余名顶级科学家、400余名专家、学者、工程师在会议上研讨了最新科学发现和研究成果。   部分作报告专家:工信部电子第五研究所所长/电子元器件可靠性物理及其应用技术国家重点实验室孔学东主任作报告:Develement of Microelectronics Reliability Technology in China东京工业大学Hiroshi Iwai教授作报告:Logic LSI Technology Roadmap For 22nm and BeyondEran Gur, Bar LLan University,Israel:Improving failure analysis navigation using optical super resolved imagingHuang Sung Lin, Taiwan:Using Nanoprobe and SEM doping contrast techniques for failure analysis of current leakage in CMOS HV technologyTed Lundquist, Germany:RF performance increase allowing IC timing adjusements by use of backside FIB processing  本次IPFA 2009共收到来自30个国家和地区共500余篇论文,经过该领域专家盲审严格筛选出高质量论文共198篇,论文将被EI和ISTP同时收录。上海华碧检测技术有限公司高级顾问林天辉博士为获奖论文作者颁奖IPFA 2009 会议主席宋宪忠先生为获奖论文作者颁奖  此次会议相关参展厂商28家,部分参展厂商:  赞助单位:   关于IEEE和IPFA  IEEE是英文“The Institute of Electrical and Electronics Engineers”的缩略语,其中文名称为“电气与电子工程师学会”。IEEE是全球最大的跨国性的专业技术学会,引领着国际电力、电子、计算机、通信、控制、生物工程等技术领域的最新发展方向。1985年IEEE成立了失效分析分会,2009年IEEE Nanjing Section成立了IEEE EDS/SSC Chapter, IEEE失效分析分会于1987年在新加坡组织了首届IPFA国际会议。在举办22年来,IPFA国际会议于2009年首次在中国大陆举办。
  • 元器件厂商诺冠收购AFP公司布局中国分析仪器市场
    仪器信息网讯 2013年10月23日,BCEIA 2013在北京展览馆隆重召开。在本次展会上,仪器信息网编辑(以下简称&ldquo Instrument&rdquo )有幸采访了仪器元器件供应商诺冠生命科学中国区高级行业经理汪盛先生,就诺冠公司为何进入分析仪器领域、以及目前发展情况进行了简短的访问。汪盛经理(中)与仪器信息网工作人员合影  Instrument:诺冠中国的整体情况如何?  汪盛:诺冠是世界著名的气动与流体控制产品的制造和供应商,为全球客户提供气动和流体控制解决方案。 诺冠中国于1996年在上海正式成立,是英国IMI集团在中国大陆投资的第一家公司。诺冠于2006年在上海设立了亚洲技术中心,并于2009年在上海建立了大型的制造基地,并在上海、北京、 青岛、沈阳、武汉等地设立了办事处及分公司。截止至2012年底,诺冠在中国拥有近400名员工。  Instrument:为何要进入分析仪器领域?  汪盛:首先,诺冠的流体控制业务分为液体和气体控制两方面,诺冠之前比较强势的业务领域是在气体控制方面,主要集中应用在医疗器械和相应的分析仪器领域,液体控制主要应用在体外诊断和分析仪器领域。这两块业务在这三个领域有些重叠,但仪器领域一直是诺冠重点关注却没有重点投入的领域,随着诺冠在其他两个业务领域的逐渐成熟,将会把更多的精力投入到分析仪器领域业务的发展中去,以强化公司业务发展。  其次,分析仪器行业是一个非常专业的行业,意味着有一批非常专业的生产制造商在这个行业中,这生产批制造商会对产品元器件的要求非常高,并有自己独特的需求,而诺冠正好具有高度多样化的产品线,并擅长满足这种定制化、个性化的需求。同时,诺冠在流体控制方面具有很好的经验,能够有助于仪器厂商的产品进行样品分析。  Instrument:目前在分析仪器领域的发展情况如何?今后重点发展的仪器领域在哪里?  汪盛:目前我们在分析仪器领域已有很多知名的仪器厂商用户:进入中国以前,赛默飞、安捷伦、沃特世等跨国仪器厂商已经是诺冠的客户 进入中国后,天瑞、聚光等本土优秀企业,已成为我们的客户,会用到我们公司的一些标准产品,如旋转阀、注射器、注射泵等。但在该领域,我们产品研发投入较少,今后会加大投入力度,推出一些新产品。  重点是气相色谱领域,今后还将会向液相色谱领域深度拓展。  Instrument:诺冠的产品定位是怎样的?  汪盛:诺冠产品的市场定位在高端客户,与一些科学仪器领头羊企业致力于做一流的企业的理念相吻合。如果在中国销售情况良好,在实现量产后,将会有本土化生产的一些措施,可能会出现价格下调,但仍会定位于高端市场。  Instrument:将为分析仪器厂商提供怎样的服务?  汪盛:凭借多年的行业经验,我们已开发出一套核心产品和技术。我们擅长针对生命科学行业的精密控制、重复性精度、最小死区面积和安全需求进行设计。此外,除提供高质量的元器件产品外,诺冠还提供模块化的设计,即&ldquo 整体解决方案&rdquo ,从而保证整个系统的精准度。诺冠为气相、液相色谱生产厂商提供的解决方案  Instrument:诺冠未来的发展目标如何?  汪盛:希望在5年内,在中国泵、阀等分析仪器元器件领域的市场份额达到30%以上。  Instrument:据悉,诺冠日前收购了加拿大AFP公司,此项收购将会对诺冠产生怎样的影响?  汪盛:诺冠于2个月前收购了位于加拿大魁北克省的AFP(Analytic flow products)公司,预期将在6个月内完成整合。AFP公司同样专注于流体控制产品的制造,主要生产流体阀、隔膜阀等产品。  该项收购的完成,补充了诺冠的高压产品线,丰富了诺冠的产品布局。在BCEIA上展出的加拿大AFP公司的产品
  • 首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级
    meta charset="utf-8"/meta http-equiv="X-UA-Compatible" content="IE=edge"/meta name="viewport" content="width=device-width, initial-scale=1"/meta name="SiteName" content="国际科技频道"/meta name="SiteDomain" content=""/meta name="SiteIDCode" content="N0000083288"/meta name="ColumnName" content="今日视点"/meta name="ColumnDescription" content=""/meta name="ColumnKeywords" content=""/meta name="ColumnType" content=""/meta name="ArticleTitle" content="首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮"/meta name="PubDate" content="2020-10-23 10:57:52"/meta name="Keywords" content=""/meta name="Description" content="从电子到磁振子,量子计算元器件再升级"/meta name="others" content="页面生成时间 2020-10-23 10:57:52"/meta name="template,templategroup,version" content="386,32,2.0"/title首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮-今日视点-国际科技频道/titlemeta name="keywords" content=""/meta name="description" content="首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮"/meta name="baidu-site-verification" content="8VsUZuJwJp"/link href="/cxzg80/xhtml/css/bootstrap.min.css" rel="stylesheet" type="text/css"/link href="/cxzg80/xhtml/css/xwpd_xq.css" rel="stylesheet" type="text/css"/p/p!--link rel="stylesheet" type="text/css" href="http://www.cis2016.org/cis2016/xhtml/css/tupk.css"--link href="/cxzg80/xhtml/css/xwpd_list.css" rel="stylesheet" type="text/css"/script src="http://push.zhanzhang.baidu.com/push.js"/scriptscript src="https://hm.baidu.com/hm.js?d11e62e2e2c8d774bb326bab95dd0a4d"/scriptscript src="/cxzg80/xhtml/js/jquery.min.js"/scriptscript src="/cxzg80/xhtml/js/xwpd.js" type="text/javascript"/scriptscript src="/index/xhtml/js/jquery.PrintArea.js" type="text/javascript" charset="utf-8"/scriptscript src="/index/xhtml/js/article.js"/scriptscript src="/index/xhtml/js/common_detail_zhxx.js"/scriptscriptwindow._bd_share_config = {"common": {"bdSnsKey": {},"bdText": "","bdMini": "2","bdMiniList": false,"bdPic": "","bdStyle": "0","bdSize": "24"},"share": {},"image": {"viewList": ["qzone", "tsina", "weixin"],"viewText": "分享到:","viewSize": "24"}} with(document) 0[(getElementsByTagName(' head' )[0] || body).appendChild(createElement(' script' )).src = ' http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion=' + ~(-new Date() / 36e5)] /scriptscript src="http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion=445429"/scriptp/p!--[if lt IE 9]script src="//cdn.bootcss.com/html5shiv/3.7.2/html5shiv.min.js"/scriptscript src="//cdn.bootcss.com/respond.js/1.4.2/respond.min.js"/script![endif]--div cdata_tag="style" cdata_data=".rightFloat {width: 360px }" _ue_custom_node_="true"/divlink href="http://bdimg.share.baidu.com/static/api/css/share_style0_24.css" rel="stylesheet"/link href="http://bdimg.share.baidu.com/static/api/css/imgshare.css?v=754091cd.css" rel="stylesheet"/link href="http://www.stdaily.com/cxzg80/xhtml/css/f_header.css" rel="stylesheet" type="text/css"/div class="container " style="position:relative "div class="article" style="background:#fff padding:15px "div class="pages_content" id="printContent"div class="content"p style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "近日,在追求更小、更节能的计算机方面科学家取得重要进展。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "为了解决电子移动产生的焦耳热限制,科学家们充分利用波的潜力,开发出一种磁振子电路,用自旋波来传播和处理信息。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "这种磁振子电路采用极简的二维设计,所需的能量比目前先进的电子芯片少约10倍,将来有望在量子计算和类脑的神经网络计算等领域获得应用。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "span style="font-weight: bold "磁振子,电子的替代品/span/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "电子器件中信息的传输和处理是通过对电子的操控完成的,但是电子移动所产生的焦耳热限制了电子器件向小型化和低功耗方向的发展。于是科学家不断寻找电子的替代品,例如光子或磁振子。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "在量子力学的等效波图中,磁振子可以被看作是量化的自旋波。利用磁振子开发磁控器件组件,包括逻辑门、晶体管和非布尔计算单元,已经获得成功。但作为电路组成部分的磁定向耦合器,由于其毫米尺寸和多模频谱始终无法实用。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "现在,德国凯泽斯劳滕工业大学和奥地利维也纳大学的科学家成功开发出一款亚微米尺寸的磁定向耦合器,并通过波的非线性效应设计了一个易于加工的基于二维平面的半加器,实现了用自旋波来传播和处理信息。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "科学家们开发的这个集成磁振子电路尺寸极小,采用了极简的二维设计,所需的能量比目前最先进的电子芯片要少约10倍。相关成果发表在《自然· 电子学》上。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "span style="font-weight: bold "充分利用自旋波的波动性/span/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "研究负责人、维也纳大学的安德列· 丘马克教授说:“最初计划的磁振子电路非常复杂,现在的版本比最初的设计至少好了100倍。”他把这归因于论文的第一作者,来自中国的王棋。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "博士毕业于德国凯泽斯劳滕工业大学,目前在维也纳大学从事博士后研究的王棋介绍说:“该研究源自我博士期间的一个项目,从概念提出、理论计算、仿真设计以及实验制备和测试,整个工作持续了近4年时间,光是仿真设计就重复了几百次,现在这个设计已经是第四个版本。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "接受科技日报记者采访时,王棋介绍说:“目前的电子设备,信息都是用电子携带的,但是电子的定向移动会导致焦耳热,功耗高。我们现在用自旋波(磁振子)来携带信息,进行计算,可以大幅降低功耗。而且由于磁振子是一种波,波的一些特性可用来简化设计,从而降低器件的尺寸。简单地说,波的基本量有振幅和相位,我们的研究中主要用波的振幅来携带信号,即振幅大,信号为1;振幅小,信号为0。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "王棋说:“起初我们的思路是模仿电子设备,通过构造14磁振子晶体管实现半加器,后来发现结构太复杂而且不容易实现。我们意识到还没有充分利用自旋波的波动性。因此,在最新的设计中我们利用了波的干涉,使用了自旋波导之间偶极作用与自旋波能量相关这个非线性效应来实现了半加器的设计。不过出于成本的考虑,整个半加器是在一个二维平面上加工的。目前这个设计只是功耗更低,速度还没有电子芯片快。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "span style="font-weight: bold "自旋波研究有重要意义/span/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "王棋表示,这种磁振子电路的特殊之处在于,其信息由自旋波携带,信息的传播和处理过程中没有电子的参与,因此没有焦耳热,极大地降低了能量损耗。另一方面,通过利用波的干涉、衍射和非线性效应,又极大地简化了器件的设计。王棋说:“典型的半加器在电子芯片中需要14个晶体管,而我们的设计中只需要3根彼此靠近的纳米线。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "王棋说:“目前的计算机都是建立在布尔体系(逻辑运算)之下的,我们的研究让人们看到了波的波动性的潜力,对于非布尔体系的计算,波比电子有很大的优势。目前的研究思路还是在和布尔体系下的电子计算机相比,这种情况下波的优势没有完全显现出来,将来我们要跳出布尔体系。”/pp style="line-height: 1.5 text-indent: 2em font-family: 宋体 font-size: 12pt margin-bottom: 0.5em "丘马克教授认为,磁振子电路在量子计算和类脑的神经网络计算等方面有广阔的应用前景。自旋波无热耗散、容易实现室温玻色-爱因斯坦凝聚等宏观量子效应的优点正在得到越来越多的关注。基于自旋波的信息传输、逻辑计算有可能成为后摩尔时代信息传输、处理的重要方式之一。因此,自旋波研究具有重要的科学意义和应用潜力。/p/div/div/div/divlink href="http://www.stdaily.com/index/xhtml/images/ico/icon.ico" rel="icon" type="image/x-icon"/link href="http://www.stdaily.com/index/xhtml/images/ico/icon.ico" rel="shortcut icon" type="image/x-icon"/link href="http://www.stdaily.com/index/xhtml/css/f_footer.css" rel="stylesheet" type="text/css"/
  • 泰思肯(TESCAN)出席第24届国际集成电路物理与失效分析盛会(IPFA2017)
    2017年7月4-7日,第24届国际集成电路物理与失效分析会议(IPFA2017)在四川成都富力丽思卡尔顿酒店隆重召开,TESCAN CHINA出席了此次盛会,并向与会专家和学者介绍了TESCAN在失效分析领域的最新技术成果和分析解决方案。IPFA2017国际会议是半导体集成电路、电子元器件、太阳能光伏产品失效分析物理机制及器件可靠性领域全球最高级别国际会议。本届大会邀请了来自中国、美国、欧洲、新加坡、日本及亚太其他各国的著名专家和学者作了大会报告和分会报告,并吸引了来自全球300多名业界代表参会。第24届国际集成电路物理与失效分析研讨会半导体行业的目标是更高集成度、更高密度和更微型逻辑器件的制造,然而,更复杂的集成电路需要更为复杂的研究和分析工具,而扫描电子显微镜(SEM)和聚焦离子束(FIB)技术的结合解决了半导体行业在芯片设计及加工过程、加工效率等方面的疑难问题,在芯片电路修改、截面分析、透射样品制备、材料鉴定等方面被广泛应用,是半导体行业研究和分析的理想工具。TESCAN在FIB领域一直保持技术领先和创新,其首创的Xe等离子超高速双束FIB系统,离子束流高达2uA,溅射速率是传统Ga等离子源的50倍以上,在大尺寸材料去除,特别是TSV的半导体封装技术以及MEMS和TSVs的三维测量,缺陷和故障分析等方面是非常好的应用解决方案。TESCAN FIB-SEM系统在半导体行业中的应用此外,TESCAN “All In One” 的产品设计理念,使得TESCAN的任何系统在接入EDS、WDS、RAMAN、TOF-SIMS等更多分析附件和设备上有更好的兼容性和更优异的性能表现,为样品的进一步组合分析提供了很大的便利。尤其是随着半导体产业越来越小的加工尺寸,对失效分析的要求也越来越高,FIB与TOF-SIMS的联用开始受到半导体行业越多越多的关注。TESCAN是第一个将TOF-SIMS和自己的SEM/FIB成功集成在一起,创新成为一体化系统的电镜制造商,其双束聚焦离子束与飞行时间二次离子质谱联用系统(TOF-SIMS)已经在地矿、核工业和生物等领域有成熟应用,在此次IPFA盛会上也受到了参会观众的广泛关注。IPFA2017会议TESCAN掠影关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。
  • 大立科技:收到中央财政下达的“某部2022年电子元器件研制”项目启动资金
    1月8日,大立科技发布公告称,近日,公司收到中央财政下达的“某部2022年电子元器件研制”项目启动资金,金额为320.00万元,标志着公司已正式中标本项目并已进入启动实施阶段。截至目前,公司已累计收到该项目资金320.00万元。根据公告,本项目研制内容为非制冷红外焦平面探测器领域氧化钒技术路线相关产品并实现产业化,前期经某部组织专家评审及公示,公司以评审总分第一中标项目承担任务。本项目是公司继连续多年承担非晶硅技术路线重大专项后,首次承担氧化钒技术路线相关研制任务,标志着公司在氧化钒技术路线相关研究成果得到国家认可。大立科技已于2021年实现了国内唯一双技术路线(非晶硅与氧化钒)非制冷红外焦平面探测器的量产,并行发展非晶硅和氧化钒技术路线有利于巩固公司在红外热成像核心芯片——非制冷红外焦平面器件的研制和产业化领域的领先地位。大立科技称,本项目成功实施后,将有助于提升我国在红外热成像核心芯片及装备领域的竞争力,也有利于公司红外整机及光电系统业务发展,对公司发展具有长期战略意义。后续公司将严格遵照项目管理方的相关规定和要求开展工作。
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对 10 μm的样品测试灵敏度较低、坚硬的金属界面可能会在接触样品表面时损坏ATR探针,以及污染可能在凹凸的区域,甚至在狭窄的缝隙内,使得ATR接触式测量难以实现。所以,如何在亚微米分辨率别和非接触条件下,实现芯片/半导体器件的有机缺陷和污染物的识别和表征是非常重要以及创新的一种手段。此外,许多样品的厚度小于100 nm,这在传统的FTIR测量中也是不可能实现的。 仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
  • 目标2.1万亿!被动元器件竞争加剧
    “2019年我国的电子元器件销售额超过了人民币1.86万亿元,2023年预测达到2.1万亿元,其中有15家企业营收规模或将突破100亿元。”这是《基础电子元器件产业发展行动计划》起草参与者王若达在最近一次研讨会上发表的看法。我国作为电子元器件产业的大国,但不是强国,高端MLCC的企业分布在日韩,电感同样,高端电感产品都掌握在村田、TDK等日厂手中。日本出口暴增日本电子情报技术产业协会6月30日公布统计数据显示,因来自欧美的需求暴增,带动4月份日本电子元器件在全球的出货额同比大增38.2%,达到3578亿日元。同时日本电子元器件出货额连续8个月突破3000亿日元大关,创下了2014年来最好纪录。从区域来看,中国仍然是日本电子元器件最大的出口地。4月份日本对中国市场的出货额为1382亿日元,同增17.4%,对亚洲其它地方的出货额为763亿日元,同增46%。在所有地区中,欧美地区的出货额增长最高,其中美洲出货额为341亿日元,同增129.2%,对欧洲的出货额为344亿日元,同增103.4%。从品类来看,电容仍然是电子元器件的主力,日本的电容出口已经连续11个月呈现增长,连续8个月突破1000亿日元大关,在4月份实现1238亿日元的出口额,同增39%。半导体重镇封国日本是被动元器件强国,但马来西亚是被动元器件的生产重镇。全球第二大钽电容厂商美国AVX、全球第一大MLCC厂商日本村田、全球第四大MLCC厂商太阳诱电、全球前两大铝电容厂佳美工和尼吉康、固态电容龙头松下等都在大马设厂。另外还有中国台湾地区的芯片电阻及MLCC大厂华新科、旺诠、凯美等。不过受到当前疫情的影响,马来西亚宣布原定6月28日结束的全国封锁措施无限期延长。当地众多半导体及元器件厂商仍需遵守当地政府政令管制,维持降载生产,不少厂商仍只能保留6成员工。TrendForce集邦咨询表示,包括MLCC日厂太阳诱电 、石英晶体日厂NDK & Epson、电解电容大厂日本松下、芯片电阻厂华新科技等,于当地的生产和货运排程皆持续受阻。尽管太阳诱电于马来西亚的厂房已于6月14日复工,并依当地政府规定调配60%的出勤人力,使其产能稼动率逐渐恢复至80%,然受到七月延长管制影响,整体产能应无法再往上突破。日本扩产一方面缺货,另一方面需求旺盛。由于第三季度苹果将推出新品,所以iPhone与Macbook Pro的MLCC主要供应商村田、太阳诱电与京瓷,将在第三至第四季逐渐迎来需求高峰。太阳诱电已于6月16日宣布,由于服务器、智能汽车、5G终端设备与基站的需求旺盛,带动MLCC持续增长。因此计划在八幡原工厂厂区内兴建MLCC材料新工厂、生产MLCC材料钛酸钡。该厂区投资50亿日元,将于今年9月动工,12月可完工。预计这个财年MLCC产能将同增10%~15%。此外,东洋纺也将扩增生产MLCC所必须的离型膜产能,计划投资约100亿日元在宇都宫工厂内增建新产线(新厂房)、并预计于2024年启用生产,届时离型膜年产能将扩增约7成。国巨收购6月30日早上,被动元件大厂国巨和全球第三的电感厂奇力新双双停牌。随后下午,国巨宣布,将以股份为对价,和奇力新进行股份转换,取得奇力新全部股权,奇力新自此成为国巨100%持股子公司,并终止上市及公开发行。收购奇力新之后,国巨预估营收将会增加15%左右,奇力新高端产品在未来每年将有10-15%的增长。同时,国巨将在电容、电感、电阻统统跻身全球前三。纵观国巨近几年的发展,有一条清晰的成长路径,那就是不断的进行产业并购与投资,扩大自身的市场份额以及借机冲击高端市场。仅仅是2018年,国巨就完成了5次收购,2次入股投资。当年4月,国巨公开收购上市公司君耀控股,5月,国巨以7.4亿美金收购美国普思电子,这两项收购帮助国巨强化了自身在汽车及工业产品上的竞争力。同时国巨的孙公司凯美还分别并购了帛汉,斥资新台币3.51亿元入股保护元件厂佳邦。2019年,国巨又以16.4亿美元收购了美国被动元器件大厂基美。根据公开信息,基美的钽质电容市占率全球第一,而且仅是钽质电容的获利就跟国巨全公司相当,全球主流的车厂都是基美的客户。并购完成之后,基美将成为国巨进军高端市场的关键。竞争加剧被动元器件产能紧张,价格上涨,交货周期拉长的现象已经持续许久,此前央视也曾报道关注。但目前被动元器件的产能以及价格短期内难以恢复正常水位,尤其是随着马来西亚的封国,产能或将再次出现紧缺。另一方面,村田、太阳诱电、TDK、国巨、华新科以及中国大陆的风华高科等全球知名被动元器件厂,都在拼尽全力扩产,以最大努力取得更高的市场份额。随着智能汽车的发展和5G终端的普及,对被动元器件的需求也在不断增强。在行业竞争加剧的情况下,本文开篇所述的预计2023年我国电子元器件销售额将达到2.1万亿元,其中15家企业营收规模将突破100亿元的目标能否实现,我们拭目以待。
  • 访楼氏电子(北京)有限公司失效分析实验室
    ——基恩士国际贸易(上海)有限公司客户回访实录  为了更好的了解用户使用基恩士数码显微镜产品的情况,更直接的获取用户的需求信息,基恩士国际贸易(上海)有限公司相关人员于2012年7月30日对楼氏电子(北京)有限公司失效分析实验室进行了拜访,深入了解客户仪器的使用状况及服务需求。仪器信息网编辑应邀随同前往,全程记录用户的反馈信息。  楼氏电子(北京)有限公司研发部分析组李爱华经理接待基恩士一行,并为大家介绍了失效分析实验室的相关情况,重点针对基恩士的数码显微镜产品进行了深入的沟通。  楼氏电子(北京)有限公司失效分析实验室概况  楼氏集团是世界上领先的高灵敏微型麦克风与扬声器的制造商,公司总部位于美国伊利诺伊州的艾塔斯卡(Itasca),在中国有北京、苏州、潍坊三个部分。其中楼氏电子(北京)有限公司前身为飞利浦中国投资有限公司,后被美国楼氏电子收购,目前公司在北京拥有研发及区域销售中心、生产基地及技术支持中心,拥有二十余条全自动化微型扬声器生产线,主要为手机制造商提供微型扬声器和受话器。楼氏电子(北京)有限公司失效分析实验室  楼氏电子(北京)有限公司于2006年成立了失效分析实验室(Failure Analysis Lab,FA组),成立之初隶属于生产部,后由于公司内部组织架构调整,FA组于2012年初转到了研发部,不仅支持生产线上的测试工作,更重要的是支持产品研发阶段的工作。楼氏电子(北京)有限公司失效分析实验室部分仪器设备(第一排:LAICA MS5,美国OGP Starlite 200影像测量仪 第二排:SONY LT10-205B高度计,KLIPPEL声学测试装备)  VHX-1000产品优势:3D扫描、实时测量及录像、分屏对比  李爱华经理介绍到,楼氏电子(北京)有限公司现有三台基恩士的数码显微镜。早在恩智浦(北京)有限公司时期(楼氏电子(北京)有限公司原名),公司分析组就购买过一台VHX-500FE,主要用来做一些耳机外观的检测及尺寸方面的测量 2010年6月份又购买了一台VHX-1000,增加了PCB切片的分析工作 2011年11月份,研发部门追加了第三台VHX-1000。后因公司组织结构调整,现在两台在研发部失效分析实验室,一台在生产部。  谈到为什么选择购买基恩士的数码显微镜,李爱华经理介绍说:“在观察失效产品的时候,我们需要给一些尺寸不合适、外形有缺陷、有异物存在以及位置偏心的产品进行清晰的拍照,有些还需要在拍照的过程中测量尺寸,并且需要将好坏产品进行对比等。实验室之前的显微镜存在拍照不清晰、难于测量尺寸、操作不方便等问题,不能满足工作需求。另外,公司成立材料组之后,我们还需要做一些高倍的金相分析。基于以上各面原因,我们决定再购置一台数码显微镜。当时生产部已经有两台,使用效果不错,所以我们就直接与基恩士联系又购置了一台VHX-1000仪器”。基恩士VHX-1000系列数码显微镜3D scanning of a kind of thin film 3D scanning of a metal groove comparison _different appearance of 4 plating layers on metal surface(楼氏电子(北京)有限公司提供)  据李爱华经理介绍,基恩士的VHX-1000数码显微镜分辨率高,操作简单,一个按键就可以完成一个相关的功能,几乎所有人都可以轻松操作,现在公司有30-50人都使用过这台仪器,确实给日常工作带来了很大的便利,主要体现在以下几个方面:  (1)可根据不同的样品选择不同的镜头,20-200倍的镜头可以从全貌逐级放大到缺陷部位,100-1000倍的金相镜头可以用来观察直径在毫米到微米范围内的细线的外观伤痕和断面情况   (2)在观测的过程中可以实现尺寸的实时测量,并可以做3D扫描。此外,该仪器还可以在样品通电震动的过程中一边放大一边录像,方便查看部件细节   (3)屏幕可以一分为二(水平或垂直)或分为四个部分以便进行比较观测,可将不同状况的产品置于同一屏幕对比,便于发现问题   VHX-1000数码显微镜诸多优良的性能和便利之处不仅提供了可靠的数据,而且也提高了日常工作效率。对此,李爱华经理是这样描述的:“用光学显微镜拍样品照片是以分钟来计算的,用基恩士的数码显微镜是以秒来计算的。现在实验室中的VHX-1000数码显微镜平均一天使用时间超过8个小时,一个工作日的样品量为100个左右”。  此外,楼氏分析组和基恩士相关人员还就现有基恩士设备的配件采购、将来潜在的追加采购以及基恩士售后服务等交换了意见,基恩士工作人员表示在日后的工作当中不仅要加深对购买产品客户本身的了解,还应对其所在单位及现有仪器设备的概况进行了解。最后,双方均表示在日后的工作中将加强联系,确保共赢。楼氏电子(北京)有限公司外景  附件:VHX-1000系列产品简介.pdf
  • 基于介质多层薄膜的光谱测量元器件
    近日,南京理工大学理学院陈漪恺博士与中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授合作,提出并实现了一种基于介质多层薄膜的光谱测量元器件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。研究成果以“Planar Photonic Chips with Tailored Dispersion Relations for High-Efficiency Spectrographic Detection”为题发表在国际学术期刊ACS Photonics。光谱探测技术被广泛应用在科学研究和工业生产,在材料科学、高灵敏传感、药物诊断、遥感监测等领域具有重要应用价值。近年来,微型光谱仪的研究受到了广泛关注,其优点在于尺寸小,结构紧凑,易于集成、便携,成本低。特别是随着纳米光子学的发展,光谱探测所需的色散元件、超精细滤波元件以及光谱调谐级联元件等,都可以利用超小尺寸的微纳结构来实现。如何兼顾器件的小型化、集成化,与光谱测量分辨率、探测效率一直是该领域的重点和难点之一。截至目前,文献报道的集成化微型光谱仪大多利用线性方程求解完成反演测算,信号模式之间的非简并性(不相似性)决定了重建光谱仪的分辨能力。这种基于逆问题求解的光谱反演技术易于受到噪音的干扰,从而降低微型光谱仪的探测分辨率和效率。近期研究工作表明,通过合理设计结构参数,调控介质多层薄膜的色散曲线,同时借助介质多层薄膜负载的布洛赫表面波极低传输损耗特性,可以实现了光源波长与布洛赫表面波激发角度之间的近似一一对应关系,如图1a,1b所示。它意味着无需方程求解,即可以完成光谱的探测与分析,避免了逆问题求解过程中外界环境噪声对反演过程的干扰,节约了时间成本,提升了探测效率。该介质多层薄膜由高、低折射率介质(氮化硅和二氧化硅)薄膜交替叠加组成,可通过常规镀膜工艺(如等离子体增强化学的气相沉积法)在各种透明衬底上大面积、低成本制备,其制作难度与成本远小于基于微纳结构的光谱测量元件。图1:一种基于介质多层薄膜的光谱探测元件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。作为应用展示,该光谱探测元器件被放置于微型棱镜或者常规反射式光学显微镜上,当满足布洛赫表面波激发条件时,即可实现光谱探测。如图1c,当激光和宽带光源分别入射到介质多层薄膜上时,采集到的反射信号分别为暗线和暗带,其强度积分及对应着光源的光谱(图1d,1e所示)。钠灯的光谱测量实验结果表明,该测量器件能达到的光谱分辨率小于0.6 nm (图1f所示)。不同于常规光谱仪需要在入射端加载狭缝,该方法无需狭缝对被测光源进行限制,从而充分利用信号光源,有效提升了光谱探测的信噪比和对比度,因此器件可以应用于荧光光谱和拉曼散射光谱等极弱光信号的光谱表征,展现出其在物质成分和含量探测上的能力,如图1g,1h所示。介质多层薄膜的平面属性,使得其可以在同一基底上加载不同结构参数的介质多层薄膜,从而实现宽波段、多功能光谱探测器件。该项工作表明,借助于介质多层薄膜负载布洛赫表面波的高色散、低损耗特性,可以实现低成本、高效率、高分辨率的光谱测量,为集成化微型光谱仪的实现提供了新器件。该项工作也拓展了介质多层薄膜的应用领域,有望为薄膜光子学研究带来新的生长点。陈漪恺博士为该论文第一作者,张斗国教授为通讯作者。上述研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、合肥市科技局、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
  • 川投信产:免费提供8000支红外线测温仪元器件
    p style="text-indent: 2em "日前,川投信产旗下宏科电子接到了某电子研究所打来的紧急求助电话,需要提供一批电容器,主要用于抗疫一线重要保障物资生产。经过为期5天的紧张生产,第一批8000多只元器件已经打包完成,免费投入抗疫一线。br//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/202002/uepic/17874daa-4bac-406a-a00a-1709c6f09254.jpg" title="1.jpg" alt="1.jpg" width="450" height="253" border="0" vspace="0"//pp style="text-align: left text-indent: 2em "川投信产宏科电子工人正在加班加点生产元器件。/pp  据了解,此次宏科电子交付的元器件是为应对此次新冠肺炎新研发出来的红外线测温仪的核心元件,该红外线测温仪主要用于医院、地铁站、机场等人群密集的地方。有了这个元器件,测温仪就能实时抓取检测范围内的高温人群,并形成数据记录下来。/pp  “这个产品本身具有体积小、容量大、可靠性高的特点,按我们正常的生产程序,大概需要一个多月。”成都宏科电子科技有限公司总经理张明介绍,“我们采用公司已有的,为宇航配套的高端电容器半成品进行加工,在川投集团、川投信产的领导下,我们组成党员先锋队,三班倒,最后用了五天时间生产出了满足用户需求的产品。”/pp  第一批8000多只货品已经完成生产,张明说,“后续还将提供多批次不同品种的价值几十万元的产品,我们是免费送给客户,最快时间用在防疫一线。”/pp  在产品生产现场,可以看到坚守岗位的员工手臂上都戴有一条写着“党员先锋队字样”的袖章。据了解,该企业148个党员主动报名,赶制这份货品。公司工程技术员徐琴就是其中一位,她说,“这个时候共产党员就要冲上去,尽管我们生产的只是一颗小小的电容器,但是我们想用我们的实际行动来告诉武汉人民,武汉加油,我们在一起!”/ppbr//p
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • 回放视频上线!第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会成功召开
    仪器信息网讯 2023年10月18-20日,仪器信息网联合电子工业出版社主办的第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会成功召开!本次大会共邀请到24位来自科研院所、第三方检测、工业和仪器企业的专家分享了精彩内容。会议共吸引约1100位行业从业人员报名,出席人数更是创历年新高!回顾本次大会,在内容上打破此前以材料为主题的专场划分,聚焦半导体材料分析、可靠性测试和失效分析、缺陷检测和量测等检测技术,直播间里报告专家与听众充分交流,会议也收到“内容质量高”,“收获很大”等良好反馈。同时,仪器信息网也在线征集和听取了听众们对于会议内容更多的需求与期待,以保证下一届会议更好地帮助到网友们的工作。应广大网友强烈要求,现将征得本人同意的报告视频整理如下。点击“回放”即可进入视频播放页面。半导体材料分析技术新进展等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)回放有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)回放牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)回放透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)无集成电路材料国产化面临的性能检测需求桂娟(上海集成电路材料研究院 工程师)无离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)回放拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)回放半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)回放宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)回放可靠性测试和失效分析技术碳化硅器件的新型电力系统应用与可靠性研究田鸿昌(中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人)回放集成电路激光试验测试技术研究马英起(中国科学院国家空间科学中心 正高级工程师)无失效半导体器件检测技术及案例分享江海燕(北京软件产品检测检验中心 集成电路测评实验室项目经理)回放半导体元器件材料分析、失效分析技术与案例解析贾铁锁(甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师)无可靠性测试和失效分析技术(赛宝实验室专场)高端集成电路5A分析评价技术师谦(工业和信息化部电子第五研究所 高级工程师)无光学显微分析技术在半导体失效分析中的应用刘丽媛(工业和信息化部电子第五研究所 高级工程师)无集成电路振动、冲击试验评价邓传锦(工业和信息化部电子第五研究所 高级工程师)无光发射显微镜原理及在失效分析中的应用蔡金宝(工业和信息化部电子第五研究所 部门主任/高级工程师)无半导体集成电路热环境可靠性试验方法与标准陈锴彬(工业和信息化部电子第五研究所 工程师)无电子制造中的可靠性工程邹雅冰(工业和信息化部电子第五研究所 高级工程师/工艺总师)无集成电路静电放电失效分析与评价何胜宗(工业和信息化部电子第五研究所 高级工程师)无缺陷检测与量测技术半导体芯片量检测技术及装备杨树明(西安交通大学 教授)无国家纳米计量体系与半导体产业应用施玉书(中国计量科学研究院纳米计量研究室主任 主任/副研究员)回放面向集成电路微纳检测设备产业的自溯源纳米长度计量体系邓晓(同济大学 副教授)无
  • 关于召开第四届“半导体材料、器件分析检测技术与应用”网络会议的通知(第二轮)
    半导体行业是一个资金密集型、技术密集型的行业,其生产工艺复杂,设备精密度要求高,整体流程涉及到成百上千道工序。随着半导体制造工艺越来越高,其制造难度及品质管控也在呈指数级增长。因此,半导体行业呈现出来材料纯度要求高、制造精度要求高,制作过程复杂等特点。而这也对材料、器件的分析检测技术都提出了极高的要求。基于此,仪器信息网2023年10月18-20举办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件和材料分析、可靠性测试、失效分析、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。一、主办单位:仪器信息网&电子工业出版社二、会议时间:2023年10月18-20日三、会议日程1.专场安排第四届“半导体材料器件分析检测技术与应用”主题网络研讨会时间专场名称10月18日全天半导体材料分析技术新进展10月19日可靠性测试和失效分析技术可靠性测试和失效分析技术(赛宝实验室专场)10月20日上午缺陷检测与量测技术2.详细日程(含拟邀请)时间报告题目演讲嘉宾专场1:半导体材料分析技术新进展(10月18日)专场主持人:汪正(中国科学院上海硅酸盐研究所 研究员)9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求王轶滢(上海集成电路材料研究院 性能实验室总监)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)专场2:可靠性测试和失效分析技术(10月19日上午)9:30碳化硅器件的新型电力系统应用与可靠性研究田鸿昌(中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人)10:00集成电路激光试验测试技术研究马英起(中国科学院国家空间科学中心 正高级工程师)10:30失效半导体器件检测技术及案例分享江海燕(北京软件产品检测检验中心 集成电路测评实验室项目经理)11:00半导体元器件材料分析、失效分析技术与案例解析贾铁锁(甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师)专场3:可靠性测试和失效分析技术(赛宝实验室专场)(10月19日下午)专场主持人:吕宏峰(工业和信息化部电子第五研究所 高级工程师)14:00高端集成电路5A分析评价技术师谦(工业和信息化部电子第五研究所 高级工程师)14:30光学显微分析技术在半导体失效分析中的应用刘丽媛(工业和信息化部电子第五研究所 高级工程师)15:00集成电路振动、冲击试验评价邓传锦(工业和信息化部电子第五研究所 高级工程师)15:30光发射显微镜原理及在失效分析中的应用蔡金宝(工业和信息化部电子第五研究所 部门主任/高级工程师)16:00半导体集成电路热环境可靠性试验方法与标准陈锴彬(工业和信息化部电子第五研究所 工程师)16:30电子制造中的可靠性工程邹雅冰(工业和信息化部电子第五研究所 高级工程师/工艺总师)17:00集成电路静电放电失效分析与评价何胜宗(工业和信息化部电子第五研究所 高级工程师)专场4:缺陷检测与量测技术(10月20日上午)9:30半导体芯片量检测技术及装备杨树明(西安交通大学 教授)10:00国家纳米计量体系与半导体产业应用施玉书(中国计量科学研究院纳米计量研究室主任 主任/副研究员)10:30面向集成电路微纳检测设备产业的自溯源纳米长度计量体系邓晓(同济大学 副教授)四、会议形式仪器信息网3i讲堂直播平台五、参会方式1. 本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容康编辑:15733280108,kangpc@instrument.com.cn2. 会议赞助周经理,19801307421,zhouhh@instrument.com.cn刘经理,15718850776,liuyw@instrument.com.cn仪器信息网2023年10月11日
  • 明日开播,抽奖送书!第四届“半导体材料与器件分析检测技术与应用”网络会议最终日程公布
    半导体行业是一个资金密集型、技术密集型的行业,其生产工艺复杂,设备精密度要求高,整体流程涉及到成百上千道工序。随着半导体制造工艺越来越高,其制造难度及品质管控也在呈指数级增长。因此,半导体行业呈现出来材料纯度要求高、制造精度要求高,制作过程复杂等特点。而这也对材料、器件的分析检测技术都提出了极高的要求。基于此,仪器信息网2023年10月18-20举办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件和材料分析、可靠性测试、失效分析、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。为答谢广大用户,本次大会每个专场都设有一轮抽奖送专业图书活动。一、主办单位:仪器信息网&电子工业出版社二、会议时间:2023年10月18-20日三、会议日程1.专场安排第四届“半导体材料器件分析检测技术与应用”主题网络研讨会时间专场名称10月18日全天半导体材料分析技术新进展10月19日可靠性测试和失效分析技术可靠性测试和失效分析技术(赛宝实验室专场)10月20日上午缺陷检测与量测技术2.详细日程(含拟邀请)时间报告题目演讲嘉宾专场1:半导体材料分析技术新进展(10月18日)专场主持人:汪正(中国科学院上海硅酸盐研究所 研究员)9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求桂娟(上海集成电路材料研究院 工程师)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)16:00专业图书介绍及抽奖送书主持人:王天跃(电子工业出版社电子信息分社 编辑)专场2:可靠性测试和失效分析技术(10月19日上午)9:30碳化硅器件的新型电力系统应用与可靠性研究田鸿昌(中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人)10:00集成电路激光试验测试技术研究马英起(中国科学院国家空间科学中心 正高级工程师)10:30失效半导体器件检测技术及案例分享江海燕(北京软件产品检测检验中心 集成电路测评实验室项目经理)11:00半导体元器件材料分析、失效分析技术与案例解析贾铁锁(甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师)11:30专业图书介绍及抽奖送书主持人:王天跃(电子工业出版社电子信息分社 编辑)专场3:可靠性测试和失效分析技术(赛宝实验室专场)(10月19日下午)专场主持人:吕宏峰(工业和信息化部电子第五研究所 高级工程师)14:00高端集成电路5A分析评价技术师谦(工业和信息化部电子第五研究所 高级工程师)14:30光学显微分析技术在半导体失效分析中的应用刘丽媛(工业和信息化部电子第五研究所 高级工程师)15:00集成电路振动、冲击试验评价邓传锦(工业和信息化部电子第五研究所 高级工程师)15:30光发射显微镜原理及在失效分析中的应用蔡金宝(工业和信息化部电子第五研究所 部门主任/高级工程师)16:00半导体集成电路热环境可靠性试验方法与标准陈锴彬(工业和信息化部电子第五研究所 工程师)16:30电子制造中的可靠性工程邹雅冰(工业和信息化部电子第五研究所 高级工程师/工艺总师)17:00集成电路静电放电失效分析与评价何胜宗(工业和信息化部电子第五研究所 高级工程师)17:30专业图书介绍及抽奖送书主持人:王天跃(电子工业出版社电子信息分社 编辑)专场4:缺陷检测与量测技术(10月20日上午)9:30半导体芯片量检测技术及装备杨树明(西安交通大学 教授)10:00国家纳米计量体系与半导体产业应用施玉书(中国计量科学研究院纳米计量研究室主任 主任/副研究员)10:30面向集成电路微纳检测设备产业的自溯源纳米长度计量体系邓晓(同济大学 副教授)11:00专业图书介绍及抽奖送书主持人:王天跃(电子工业出版社电子信息分社 编辑)四、会议形式仪器信息网3i讲堂直播平台五、参会方式1. 本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/icsmd2023/或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容康编辑:15733280108,kangpc@instrument.com.cn2. 会议赞助周经理,19801307421,zhouhh@instrument.com.cn刘经理,15718850776,liuyw@instrument.com.cn仪器信息网2023年10月17日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制