当前位置: 仪器信息网 > 行业主题 > >

人类染色体核型分析

仪器信息网人类染色体核型分析专题为您提供2024年最新人类染色体核型分析价格报价、厂家品牌的相关信息, 包括人类染色体核型分析参数、型号等,不管是国产,还是进口品牌的人类染色体核型分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人类染色体核型分析相关的耗材配件、试剂标物,还有人类染色体核型分析相关的最新资讯、资料,以及人类染色体核型分析相关的解决方案。

人类染色体核型分析相关的资讯

  • Nature!首个Y染色体完整测序结果发布
    随着两篇最新研究论文在顶尖学术期刊《自然》正式上线,人类Y染色体的完整序列终于展现在世人面前。这条染色体是人类的性别决定染色体之一,也是人类46条染色体中最后一条完全解码的染色体。▲人类Y染色体是人类基因组中最后一条得到完整测序的染色体(图片来源:参考资料[3];Credit:Darryl Leja, National Human Genome Research Institute)2022年,在国际科研团队“端粒到端粒”联盟(T2T)的通力合作下,最新版的人类参考基因组(被命名为T2T-CHM13)问世,包括所有22条常染色体和X染色体的“无缝组装”,含有30.55亿对碱基。这份参考基因组达到了前所未有的完整程度,解开了染色体着丝粒等结构复杂的区域。然而,人类参考基因组中的Y染色体,仍有一大半序列是缺失的。Y染色体成为人类基因组的最后谜团,与其重复结构的异常复杂有关。所有染色体都有一些重复序列,但在Y染色体中,重复序列所占的篇幅特别大,将近一半——约3000万个碱基是重复序列,因此要把测序读取到的片段重新拼装起来就特别困难。玩过拼图的朋友知道,缺乏线条的纯色图案最具挑战。为了解决这一难题,T2T联盟领导的这项新研究应用了前沿的长读取测序技术和新型的计算组装方法,借鉴此前无缝组装人类其他染色体时的成功经验,首次完成了Y染色体的测序和组装。其结果填补了Y染色体长度50%以上的空白,同时纠正了原先人类参考基因组序列中Y染色体上的多个错误。▲全球100多名研究人员组成的团队对人类Y染色体进行了全面测序“最大的惊喜是,那些重复序列是如此有序。”论文通讯作者、T2T联盟的联合主席Adam Phillippy博士在美国国立卫生研究院(NIH)的新闻稿中指出,“过去我们不知道缺失的序列是如何组成的,有可能非常混乱。但事实相反,染色体中近一半由两段特定的重复序列——即‘卫星DNA’——交替组成,构成了拼布一般的图案。”根据此次获得的完整序列(T2T-Y),人类的Y染色体由62,460,029对碱基组成。科学家们从中新鉴定出了41个过去未知的蛋白编码基因,也揭示了影响生育的重要基因组特征。▲一条人类Y染色体的完整序列(图片来源:参考资料[1])例如,Y染色体有一段被称为“无精子症因子区”,包含了与精子生成有关的几个基因。而这段DNA中有一组回文序列。这种回文结构会形成环状结构(DNA loop),有时DNA环被意外切断,造成缺失。而“无精子症因子区”的DNA缺失会破坏精子生成,导致不育。研究人员指出,有了完整的Y染色体序列,现在就可以更精确地分析这类缺失及其对精子生成的影响。这项研究还重点关注了TSPY(testis-specific protein Y)基因家族,即睾丸特异性蛋白编码基因,新发现的41个基因中有38个属于这一家族。它们的一大特征是串联重复拷贝非常多。研究人员在分析这一区域时发现,不同的个体含有的TSPY拷贝10~40个不等。Y染色体不仅结构复杂,还是人类染色体中变化速度最快的染色体,《自然》同期发表的另一篇研究论文便揭示了Y染色体在不同人群中的演化和变异。研究团队一共组装了43条来自不同男性个体的Y染色体,他们来自全球21个不同种群。这些组合提供了人类Y染色体在18.3万年间遗传变异的详细视图,揭示了新的DNA序列、保守区域的特征,并揭示了造成Y染色体复杂结构的分子机制。图片来源:123RF完整的人类Y染色体序列将为许多新发现打开大门。除了与性别决定有关的特征外,Y染色体上的基因对人类的其他性状和疾病也有影响,比如癌症的患病风险和严重程度。基于Y染色体的完整序列,后续将有更多研究可以围绕影响癌症或其他疾病的临床相关基因深入探索。一些研究发现,拥有Y染色体的人随着年龄增长会丢失部分或全部Y染色体,但科学家们还没有完全弄清这种情况为什么会发生、可能产生哪些影响。现在,解开这一谜团将变得容易。在意料之外的领域,研究论文也提供了一个有趣的发现:在过去有些研究中被认为是细菌DNA的遗传物质实际上来自人类的Y染色体,也就是被人类样本污染的结果。因为这些细菌样本在采集时,通常提取自人类皮肤,而过去由于人类参考基因组中Y染色体的大部分序列都是缺失的,一些未能被正确识别的序列就被误以为是细菌的。研究人员指出,更新的序列数据有望对细菌基因组的研究提供帮助。
  • PERKINELMER展示快速检测染色体新技术
    ACOG 会议上的演示资料展示了 PerkinElmer 的一项新技术  马萨诸塞沃尔瑟姆 – 2009 年 5 月 4 日 – 专注于提高人类及其生存环境的健康与安全的全球领先公司 PerkinElmer, Inc.,今天宣布其用于快速、经济高效的检测染色体异常的新技术 - BACs on BeadsTM。首次展示了 BACs on BeadsTM 技术用于快速、单次同时检测染色体结构和数目的异常。  今天在伊利诺伊州的芝加哥举行的美国妇产科学院年度会议上,阿尔伯特爱因斯坦医学院妇产科教授兼纽约贾克比医疗中心主席 Susan J. Gross 博士,展示了在其机构中开展的 BACs on BeadsTM 在羊水分析这一应用领域的结果数据。BACs on Beads™ 技术的此项应用目前正在 Gross 博士的实验室中进行临床验证。  “BACs on BeadsTM 是一项适用于实验室开展检测的理想技术。此技术有潜力检测孕期重度伤残和智力缺陷等其它病例,它超越了目前唐氏综合症检测的技术。”Gross 博士说。“此项技术为进行经济高效的分子核型分析提供了巨大机会。”  在 BACs on BeadsTM 中,针对兴趣基因位置的 DNA 探针与聚苯乙烯微珠结合在一起。样品中的互补 DNA 与微珠上的探针 DNA 杂交,然后进行测量以检测特定的染色体异常。  “BACs on BeadsTM 实现了我们要传递新技术以造福于人类的健康和幸福的承诺。对于 BACs on BeadsTM 分子核型分析技术的首次应用,我们感到非常兴奋,”PerkinElmer 的基因筛查业务总裁 Ann-Christine Sundell 说。“我们期盼着 Gross 博士的成就达到巅峰,以便将 BACs on Beads 技术应用到日常临床使用中。”  PerkinElmer 计划在今年下半年向全球推出用于研究用途的 BACs on BeadsTM 检测试剂盒。  有关详细信息,请访问 PerkinElmer 网站,网址为 www.perkinelmer.com  关于 PerkinElmer, Inc.  PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。   # # #  媒体联系人:  PerkinElmer:  Henri Storm, +358-40-53 666 84  Henri.Storm@PerkinElmer.com  或  Porter Novelli:  Amy Speak, 617-897-8262  Amy.Speak@porternovelli.com
  • NGS走进产前染色体筛查,势在必然
    p  最近,来自深圳华大基因、香港中文大学以及南京医科大学的研究人员通过实验证实了低覆盖全基因组测序应用于染色体变异a title="" style="color: rgb(0, 112, 192) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(0, 112, 192) "strong临床筛查/strong/span/a的可行性与重要性,他们的研究成果就刊登在最新的Genetics in Medicine上。/pp  实验过程中,研究人员通过高通量基因组测序对上百个产前及产后样本进行了染色体分析,有效检测结果率高达96%。研究样本共涵盖119例染色体异常与103例拷贝数异常,其中包括53%的流产胎儿以及14.7%的死胎。同时,研究人员根据样本来源为不同样本设计了多种诊断策略。/pp  根据他们的实验过程与研究结果,论文的作者持续强调着他们的工作突出了NGS在产前及产后样本基因检测中的潜在重要性,应用NGS技术,研究人员检测到了常规核型分析及染色体微阵列分析所不能发现的多种染色体变异。/pp  传统的微阵列比较基因组杂交以及SNP(单核苷酸多态性)阵列技术通常被用于诸如迪格奥尔格综合症、天使人综合症等疾病的致病性CNV(拷贝数变异)筛检。然而,对这些技术的回顾性研究却在不断暗示着NGS可能会发现一些诸如此类的传统筛检技术所不能发现的染色体错误。/pp  相比之下,基于测序的低覆盖染色体筛检技术具有更高的敏感性与特异性。通过测序技术,研究人员在570例产前与产后样本中检出了异倍或致病性CNV。其中包括186例产后血样、37例死胎与198 例早期流产胎儿的组织样本以及149例其他产前样本。这些样本由中国以及香港的科研中心于2013年至2015年之间收集。/pp  应用Illumina HiSeq 2000,研究团队成功地导出了549例样本的深度测序数据,剩余样本所导出的低质数据被研究人员归咎于原始样本的DNA质量过差。有赖于测序数据,研究人员揭示了119例样本中的染色体异常并在82例样本中发现了超过100种致病性CNV,82例样本中共计74例染色体缺失与29例染色体重复。同时,研究人员在11例样本中发现了镶嵌异倍体的存在。/pp  研究人员表示,染色体的测序结果与微阵列检测结果相一致,同时测序还发现了32例微阵列检测并未发现的突变样本。/pp  最终,文章的作者再次强调,他们的工作“突出了NGS在产前及产后样本基因检测中的潜在重要性, NGS有能力精确a title="" style="color: rgb(0, 112, 192) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(0, 112, 192) "strong检测/strong/span/a常规核型分析及染色体微阵列分析所不能发现的多种染色体变异。”/p
  • PerkinElmer推出快速检测染色体异常新技术
    马萨诸塞沃尔瑟姆 – 2009 年 5 月 4 日 – 专注于提高人类及其生存环境的健康与安全的全球领先公司 PerkinElmer, Inc.,今天宣布其用于快速、经济高效的检测染色体异常的新技术 - BACs on Beads™ 。首次展示了 BACs on Beads™ 技术用于快速、单次同时检测染色体结构和数目的异常。 今天在伊利诺伊州的芝加哥举行的美国妇产科学院年度会议上,阿尔伯特爱因斯坦医学院妇产科教授兼纽约贾克比医疗中心主席 Susan J. Gross 博士, 展示了在其机构中开展的 BACs on Beads™ 在羊水分析这一应用领域的结果数据。BACs on Beads™ 技术的此项应用目前正在 Gross 博士的实验室 中进行临床验证。  “BACs on Beads™ 是一项适用于实验室开展检测的理想技术。此技术有潜力检测孕期重度伤残和智力缺陷等其它病例,它超越了目前唐氏综合症检测的技术。”Gross 博士说。“此项技术为进行经济高效的分子核型分析提供了巨大机会。” 在 BACs on Beads™ 中,针对兴趣基因位置的 DNA 探针与聚苯乙烯微珠结合在一起。样品中的互补 DNA 与微珠上的探针 DNA 杂交,然后进行测量以 检测特定的染色体异常。  “BACs on Beads™ 实现了我们要传递新技术以造福于人类的健康和幸福的承诺。对于 BACs on Beads™ 分子核型分析技术的首次应用, 我们感到非常兴奋,”PerkinElmer 的基因筛查业务总裁 Ann-Christine Sundell 说。“我们期盼着 Gross 博士的成就达到巅峰,以便将 BACs on Beads™ 技术应用到日常临床使用中。”  PerkinElmer 计划在今年下半年向全球推出用于研究用途的 BACs on Beads™ 检测试剂盒。  有关详细信息,请访问 PerkinElmer 网站,网址为 www.perkinelmer.com.cn  关于 PerkinElmer, Inc.  PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,  为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或 致电 1-877-PKI-NYSE。  For Further Information  媒体联络  Henri Storm  PerkinElmer, Inc.  电子邮件:Henri.Storm@PerkinElmer.com  电话: +358-40-53 666 84  or  Amy Speak  Porter Novelli  电子邮件: Amy.Speak@porternovelli.com  电话:617-897-8262
  • 240万!山东省千佛山医院染色体全自动扫描显微镜和图像分析系统采购项目
    项目编号:SDGP370000000202202006132 项目名称:山东第一医科大学第一附属医院(山东省千佛山医院)染色体全自动扫描显微镜和图像分析系统采购项目 预算金额:240.0万元 最高限价:240.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A染色体全自动扫描显微镜和图像分析系统 1 详见附件 240.000000 合同履行期限:详见招标文件 本项目不接受联合体投标。
  • X染色体失活新机制:液-液相分离的成核作用
    性别决定过程中会出现X染色体失活(X chromosome inactivation,XCI)现象,其中涉及到一个非常关键的长非编码RNA Xist,在XCI过程中Xist由两条X染色体中的一个转录出来,覆盖在X染色体之上对X染色体进行沉默【1,2】。Xist通过招募染色质修饰蛋白、转录沉默因子以及其他的RNA结合蛋白,启动基因沉默并对X染色体进行大规模的重塑,形成非活性X染色体中心(inactive X chromosome,Xi)【3,4】。但X染色体上需要被沉默的基因有一千多个,而Xist只有几十个,并不与需要沉默的基因数量级相对应,因此X染色体的沉默的具体机制还不得而知。2021年11月4日,美国加州大学洛杉矶分校Kathrin Plath研究组与Tom Chou研究组以及Yolanda Markaki(第一作者)合作发文题为Xist nucleates local protein gradients to propagate silencing across the X chromosome,揭开了Xist通过对局部蛋白进行成核作用,促进Xist以及相关蛋白在X染色体上的覆盖,从而导致X染色体失活的分子机制。为了检测Xist如何介导X染色体失活,作者们将雌性小鼠胚胎干细胞分化形成外胚层类似细胞(Epiblast-like cells,EpiLCs),此时会促进Xist的表达以及X染色体失活的诱导(图1)。在分化培养的第二天D2到D4是基因沉默的关键时期。通过RNAs-seq,作者们对所有的X染色体相关的基因进行了检测,确认D2-D4是Xist发挥作用的时间框,与其相互作用蛋白一起促进了基因的逐渐沉默。因此,作者们将D2时期的X染色体称为pre-Xi,而将D4时期的染色体称为Xi。图1 外胚层类似细胞中Xist诱导X染色体失活通过对D2-D4转换过程中Xist覆盖体积的统计,作者们发现pre-Xi与Xa的体积相似,而D4的时候Xi的体积与体细胞中凝缩程度相似。而且通过原位杂交实验,作者们发现pre-Xi到Xi的过程中结构出现了显著变化,因此X染色体失活过程中出现了染色体高阶结构的不同。那么首先作者们想知道X染色体失活过程中Xist的数量具体是多少,为此作者们使用三维结构照明显微镜(Three-dimensional structured illumination microscopy,3D-SIM)对Xist的数量进行了统计,利用MS2-MCP实验系统【5】作者们发现Xist的数量大约是50个,每个点中包含两个Xist分子,在pre-Xi到Xi的过程中Xist的数量也没有出现显著的变化。但Xist点联合起来将X染色体上1000多个基因进行了沉默,Xist与被沉默的基因之间庞大的数量差引起了作者们的兴趣。能做到这一点的其中一个可能性是靶标基因之间可以通过快速扩散和瞬时的相互作用而被沉默。为了对这一假设进行检测,作者们检验了Xist点的移动性。作者们惊讶地发现,Xist点的位置几乎没有明显的融合和分裂,说明Xist点的信号位置是被严格限制的,而且主要位于开放的A-compartment之中。图2 Xist招募蛋白效应因子促进超复合体的形成那么Xist是如何做到沉默X染色体上的基因的呢?为此作者们想知道Xist点是否是通过招募其他的效应因子蛋白而导致在X染色体上的沉默的。作者们诱导基因沉默的效应因子蛋白进行检测,发现Xist点会招募其他效应因子比如SPEN等在Xist存在的局部区域形成大分子复合体(图2),增加局部蛋白质浓度形成Xi。SPEN能够形成大分子复合体依赖于其中存在内在无序序列【6】,通过敲除该内在无序序列,作者们发现SPEN蛋白招募进入Xist形成的复合体中也依赖于其内在无序序列,同时该序列对于X染色体失活过程也是非常关键的。Xist与形成的超复合体逐渐对X染色体进行塑形,促进X染色体上基因的沉默,形成X染色体失活中心区域(X-inactivation center,Xic),该区域包含正是Xist基因所存在的区域。图3 工作模型总的来说,该工作发现X染色体失活并非Xist通过扩散到整个染色体上促进基因沉默的,而是通过招募相关的效应因子蛋白形成大规模的、动态的蛋白质复合体(图3),促进X染色体高阶结构变化,逐渐凝缩并最终导致X染色体上的基因沉默。原文链接:https://doi.org/10.1016/j.cell.2021.10.022
  • 240万!中国医学科学院血液病医院全自动染色体扫描分析仪采购项目
    一、项目基本情况项目编号:TJBD-2022-A-012项目名称:中国医学科学院血液病医院(中国医学科学院血液学研究所)全自动染色体扫描分析仪采购项目预算金额:240.0000000 万元(人民币)最高限价(如有):240.0000000 万元(人民币)采购需求:全自动染色体扫描分析仪1台,具体内容及要求详见项目需求书,经财政部门审核同意,本项目允许进口产品投标,同时也接受满足需求的国内产品参与竞争。合同履行期限:合同签订后3个月内交货(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • Nat Genetics | 染色体碎裂驱动癌基因扩增
    2019年,BioArt曾解读Nature Reviews Cancer上的一篇观点文章(这篇观点文章是3月发表),讲述了染色体外DNA的(Extrachromosomal DNA,ecDNA)过去和未来(详见BioArt报道:特别推荐丨环状DNA的过去和未来),详细介绍了癌基因在ecDNA上扩增的重新发现的过程,强调ecDNA在肿瘤发病机制和加速癌症进化中的重要性。然而ecDNA的结构如何呢?同年11月21日,美国加州大学圣迭戈分校的Paul Mischel教授团队(注:Mischel正是Nature Reviews Cancer的通讯作者之一另外在2017年,Mischel团队曾发表一篇Nature文章揭示了染色体外癌基因扩增与肿瘤的关系)发表了Nature文章对ecDNA进行了详细解析,利用各种技术手段证明了ecDNA的存在形式是—环状,即ecDNA变成了eccDNA(详见BioArt报道:Nature亮点 | 吴思涵等首次解析肿瘤染色体外DNA的环状结构与功能)。功能上,eccDNA在癌症中扮演了重要的角色,尤其是原癌基因(详见BioArt报道:Nat Genet 丨ecDNA:在癌症基因组图谱上画出浓墨重彩的一笔);来源上,eccDNA不仅来自于染色体,甚至可以整回到染色体中(详见BioArt报道:再一篇!Nat Genetics报道染色体外环状DNA新功能:驱动神经母细胞瘤基因组重排),那么,还有一个问题,eccDNA是否有序列或位置特异性,表观遗传学领域大佬哈佛医学院张毅教授于今年10月20日在Nature上给出了否定的回答,并提到eccDNA可能是基因组DNA随机断裂产生片段的环化产物(详见BioArt报道:专家点评Nature | 突破!张毅团队揭秘染色体之外环状DNA的前世今生)。再回到癌症,基因扩增对于癌症的发展“功不可没”,其扩增可以分为染色体外扩增(如双微体,double minutes,DM)和染色体内扩增(如均匀染色区,homogeneously staining regions,HSR)。除了DM和HSR,还有一种是巨型标记染色体(giant marker chromosomes)或者新染色体(neochromosomes)。这些概念也说明了癌症基因扩增中演化的复杂性。尽管扩增演化中的部分形式的机制已经相对比较明确了,比如串联重复等,但大部分还是不甚清楚。2021年11月15日,德国科隆大学儿童医院Matthias Fischer在Nature Genetics上发表了文章Chromothripsis followed by circular recombination drives oncogene amplification in human cancer,利用小儿神经母细胞瘤的全基因组测序发现一种新型扩增,并命名为“地震扩增”(seismic amplification,注:这一术语原本属于地质学或者地震相关学科),这一扩增的特点为多重重排和不连续的拷贝数,并且在38种不同类型肿瘤的发生率为9.9%(在38种不同类型肿瘤共计2756例病人中,出现例数为274,占9.9%)。机制上,地震扩增起始于染色体碎裂,产生染色体外环状DNA,之后是环状重组,由此导致原癌基因拷贝数增加、表达升高,从而促进癌症的发生。首先,研究人员检测了79例神经母细胞瘤样本的全基因组数据,对其基因扩增进行了详细分析,并将经历过14次及以上内部重排的扩增子定义为“地震扩增”。根据这一定义,神经母细胞瘤中228个扩增子中有20个属于“地震扩增”,并且影响了79例样本中的19例。其热点区域主要有两个,2p24(内部有MYCN)和12q13/12q15(内部有CDK4和MDM2)。除了神经母细胞瘤,研究人员进一步分析了TCGA上37种不同类型癌症的2677个肿瘤样本,对其“地震扩增”进行了描述。由于染色体碎裂可产生大规模的基因重组,研究人员比对了染色体碎裂和“地震扩增”的区域,发现77.6%的地震扩增子与染色体碎裂区域至少部分重合,其中34.9%是完全重合。同时研究人员排除了断裂—愈合—染色体桥循环(breakage-fusion-bridge cycles)是地震扩增起始事件的可能性。之后,研究人员对重排和扩增事件进行了分析,描述了“地震扩增”的过程模型:1)一个或多个染色体区域发生染色体碎裂;2)将随机片段整合为环状DNA;3)发生环状重组事件(这些环状重组事件与肿瘤细胞高频突变有关);4)扩增区域或保留在双微体中、或以均匀染色区形式整合进染色体中、或形成新染色体。重要的是,“地震扩增”在肿瘤细胞中是稳定的,而非变化的。总之,该研究定义了一种复杂的基因扩增形式——“地震突变”,并描述了其扩增过程,为理解癌症基因组演化包括染色体外环状DNA提供了新的解读。原文链接:https://doi.org/10.1038/s41588-021-00951-7
  • 日研究人员制成植物人工染色体有助开发新品种
    日研究人员制成植物人工染色体有助开发新品种 日本冈山大学资源植物ELISA试剂盒研究所教授村田稔率领的研究小组25日宣布,他们成功在植物细胞内人工制造出了带有遗传信息的染色体。这一成果将有助于开发新的作物品种。 ELISA试剂盒研究小组使用拟南芥,利用“自顶向下分析法”,通过操控细胞内原有的染色体,并进行改编,制作出了比通常染色体要小的环状人工染色体。即使是自花授粉的种子,也有40%以上继承了这种人工染色体。 ELISA试剂盒研究小组说,利用植物制作出能被下一代继承的人工染色体,这在世界上尚属首次。通过向这种染色体植入特定的基因,就可培育出能抗病虫和抗倒伏的新植物和作物品种。 村田稔说:“利用这种技术,还可以只在水稻生长期间,植入抗病虫和抗倒伏的基因。”Mouse Linker for activation of T cell,LAT ELISA Kit 小鼠T细胞活化连接蛋白(LAT)ELISA试剂盒规格:96T/48TMouse lipoprotein lipase,LPL ELISA Kit小鼠脂蛋白脂酶(LPL)ELISA试剂盒规格:96T/48TMouse lipoprotein α,Lp-α ELISA Kit小鼠脂蛋白α(Lp-α)ELISA试剂盒规格:96T/48TMouse lipoprotein-associated phospholipase A2,Lp-PL-A2 ELISA Kit小鼠脂蛋白相关磷脂酶A2(Lp-PL-A2)ELISA试剂盒规格:96T/48TMouse L-Phenylalanine ammonla-lyase,PAL ELISA Kit 小鼠L苯丙氨酸解氨酶(PAL)ELISA试剂盒规格:96T/48TMouse L-phenylalanine,LPA ELISA Kit小鼠苯丙氨酸(LPA)ELISA试剂盒 规格:96T/48TMouse L-Selectin ELISA Kit 小鼠L选择素(L-Selectin/CD62L)ELISA试剂盒规格:96T/48TMouse Luteinizing Hormone-Releasing Hormone,LHRH ELISA Kit小鼠黄体生成素释放激素(LHRH)ELISA试剂盒规格:96T/48TMouse luteotropic hormone,LH ELISA Kit小鼠促黄体激素(LH)ELISA试剂盒规格:96T/48TMouse lymphocyte factor ELISA Kit小鼠淋巴细胞因子ELISA试剂盒 规格:96T/48TMouse lymphocyte function associated antigen 3,LFA-3 ELISA Kit小鼠淋巴细胞功能相关抗原3(LFA-3/CD58)ELISA试剂盒规格:96T/48TMouse lymphotactin,Lptn/LTN ELISA Kit小鼠淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒规格:96T/48TMouse Lysozyme,LZM ELISA Kit 小鼠溶菌酶(LZM)ELISA试剂盒 规格:96T/48TMouse Macrophage Colony-Stimulating Factor,M-CSF ELISA Kit 小鼠巨噬细胞集落刺激因子(M-CSF)ELISA试剂盒规格:96T/48TMouse Macrophage Inflammatory Protein 1β,MIP-1β ELISA Kit 小鼠巨噬细胞炎性蛋白1β(MIP-1β/CCL4)ELISA试剂盒规格:96T/48TMouse Macrophage Inflammatory Protein 1δ,MIP-1δ ELISA Kit 小鼠巨噬细胞炎性蛋白1δ(MIP-1δ/CCL15)ELISA试剂盒 规格:96T/48T
  • 《Science》回答:那么多条染色体,分离的时候怎么不掉队?
    有机体从单个细胞开始,经过数百万代的分裂,最终生成骨骼、心脏、大脑和其他组成生物的成分。在这个复杂的过程中,DNA的转移是通过染色体这种离散包来进行的。在细胞分裂的每一代中,所有染色体的复制和精确分布是至关重要的。如果遗传的染色体成分发生改变,即使是轻微的改变,也可能导致出生缺陷和某些癌症。博士后学者Pablo Lara Gonzalez,生物科学部教授Arshad Desai和他们的同事在《Science》杂志上发表了一项新的研究,研究了每次细胞分裂时染色体如何正确遗传的奥秘。Lara Gonzalez和Desai使用了一种新的探针来监测这一过程的一个关键方面,他们详细研究了“等待”信号背后的机制,以确保细胞分裂不会过早启动。研究人员将他们的研究集中在 “纺锤体检查点”上,这是一种质量控制机制,可以确保细胞分裂过程中染色体的准确遗传。纺锤体检查点通路在染色体上的一个叫做着丝粒的位置被激活,着丝粒是一个机械界面,蛋白质纤维在这个界面上耦合,将染色体拉开。细胞与发育生物学(生物科学)和细胞与分子医学系(医学院)教授Desai说:“当着丝粒没有附着在这些蛋白质纤维上时,它们会发出‘等待’信号,使细胞停止有丝分裂(细胞分裂),从而为附着物的形成提供时间。”通过这种方式,细胞确保所有染色体正确连接,并准备在细胞分裂前被拉开,从而不留下任何染色体。在这篇论文中,研究人员描述了等待检查点信号是如何在未连接染色体的着丝粒上产生的。巧合的是,他们研制出了一种荧光探针,使他们第一次能够观察到活细胞着丝粒中等待信号产生的关键分子事件。Lara Gonzalez说:“这项研究发现了一个关键的‘媒人’分子,它将等待信号的两个成分结合在一起,而这两个成分不喜欢单独联系在一起。这些发现有助于解释为什么‘等待’检查点信号选择性地产生于动粒而不是细胞的其他部位。”研究人员说,这一发现为在某些疾病状态(如癌症)下如何降低染色体遗传的准确性提供了一个框架。
  • Y染色体检测助白银案告破 基因技术千亿级市场待开启
    很多人认为,“白银案”告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用  位列“中国四大谜案”之首的一桩陈年悬案告破,受害人家属得到欣慰的同时,传统的DNA技术以及新一代基因测序技术也都跟着走红了。  公安部刑侦局8月27日发布消息,1988~2002年间强奸、杀害多名女性的犯罪嫌疑人高承勇在甘肃省白银市落网。高承勇对犯罪事实供认不讳,甘蒙“805”系列强奸杀人残害女性案(白银案)成功告破。  由于帮助办案人员找到犯罪嫌疑人的是一种叫作Y-DNA遗传标记的技术,有人将该案的最终告破归因于基因技术的进步。事实上,Y-DNA遗传标记技术已有30多年历史,是一项十分成熟的技术,警方也并非第一次使用。  相比Y-DNA遗传标记技术,新一代基因测序技术更为先进,基于新技术,寻人(寻亲)或许将不再是一件难事。未来,在医疗健康等领域,基因技术将开启一个新的千亿级市场。  Y染色体检测技术立功  提及司法侦破中的基因技术,很多人都会觉得“酷炫”,因为侦查人员可以仅凭现场的血迹、精液、指纹等身体特征线索,就能在茫茫人海中锁定犯罪嫌疑人。  事实上,从线索到锁定嫌犯,中间还要跨越巨大的数据库鸿沟。  甘肃省白银市在1988~2002年先后发生了9起女性惨遭入室杀害的案件。其间,内蒙古自治区包头市昆都仑区也发生过两起类似案件。  虽然历次罪案现场都留下了数量不等的血迹、精液、指纹、足印等线索,但因为上世纪90年代西部地区的街头几乎没有监控探头,案发前后也几乎没有目击者和间接证人,警方一直未能查出凶手的身份。  直到近期,与案犯同姓氏的远房堂叔因为在甘肃省武威市民勤县犯了罪被监视居住,白银警方采集到了他的血样,经Y-DNA检验分析后发现,结果与“805”大案嫌犯的Y-DNA信息相符合。这一初步检测的结果表明,案犯与此人有相同的Y染色体遗传,是同一家族的男性成员。  警方随后启动家系排查,对其家族上下直系男性逐一筛排分析,尤其是警方已经掌握的嫌犯的大致年龄,最后确定此人的远房侄子高承勇具备作案条件。  高承勇归案后,其本人指纹和DNA与案发现场的指纹和DNA相同。经审讯,案犯对犯罪事实供认不讳。  30多年的老技术  很多人认为,白银案最终告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用这一技术。  Y染色体鉴定为基础的姓氏检测,是一项生物技术,最早来源于亲子鉴定技术。DNA中有一种特异性的碱基序列称短串联重复顺序(Short Tandem Repeat, STR),Y染色体上的STR称Y-STR,具有家族特异性。  目前已在Y染色体上发现30个左右的STR标记物,通常选取其中6~10个标记物即可满足姓氏检测鉴定的基本要求。另有数据显示,如果把中国12.5亿的汉族人口按照Y-DNA的家系来区分,中国大约有100万个姓氏家系。  华大司法研究人员张博士告诉记者,2006年8月告破的陕西汉阴邱兴华案也用到了这一技术。  在山阴道观铁瓦殿杀害了10名道观管理人员和香客后,邱兴华逃离现场。公安人员从他抽过的烟蒂携带的脱落细胞上,进行了Y-染色体DNA检测,加上相关证人的描述,确定了邱兴华是犯罪嫌疑人并对他进行了抓捕。  Y-DNA遗传标记技术出现了30多年,公安应用也较为广泛,只是普通人并不常接触。当然,这一技术的应用对于数据库内的DNA样本量也有一定要求。  在业内人士看来,DNA技术用于司法破案的震慑作用比实际作用更大,只要在案发现场发现任何蛛丝马迹,公安人员就能通过一定的科技手段找到犯罪嫌疑人。  千亿级市场待开启  随着新一代基因测序仪的出现,新一代基因测序技术也将更多在司法领域“大显神威”。  张博士告诉本报记者,比如新技术可以进行“基因画像”,和传统的画像方式相比,基因画像更加逼真。同时,对于一些复杂的犯罪现场,犯罪嫌疑人的DNA非常微量,可能还混杂了细菌、微生物等,用传统的技术无法检测,新一代基因测序技术都可以解决。  新一代基因测序技术虽然更高效,但在司法鉴定中的推广比较慢,原因之一是成本高。新一代基因测序技术的成本与之前的技术相比,实现了“超摩尔定律”的降低速度,个人全基因组数据从最初的30亿美元,降低到目前的1000~1300美元左右,如果这一成本在几年内有望降低到100美元甚至更低,那普通人都可以到专业的基因机构存储自己的DNA信息。  除了抓捕犯人,让走失的老人或儿童回家,也是DNA信息的重要作用。如果一名孩子或老人录入过DNA信息,一旦走失,被公安人员发现后,便可通过DNA信息比对,迅速找到失散的家人。  基于寻人(寻亲)目的而存储的DNA信息不需要存储个人全基因组数据。张博士表示,只需要存储一些中立DNA,就能在茫茫几十亿人中确定并找到唯一的个人,也不会涉及这个人的功能基因和疾病信息。  尽管市场上也有一些基因检测公司推出瞄准儿童走失的“基因ID”产品,但是,国内像华大司法一样具备司法部核准的第三方鉴定机构且掌握新一代基因技术的机构并不多。  有些走失了孩子的家庭,父母并不知道可以通过孩子用过的牙刷、鞋袜提取到DNA信息,存储下来,未来如果孩子再有机会录入DNA信息,就能通过比对找到父母。  华大司法近期推出的公益项目,就是免费帮助丢失儿童的家庭建立DNA档案,但是至今只有三个家庭主动向华大司法求助。  “存储DNA的目的是为了让我们无论在哪儿都能找到家人。”张博士说。  除了寻人,新一代基因测序技术还能用于亲子鉴定。张博士表示,传统的DNA分型技术只能在孩子出生以后或通过羊水穿刺这种有创方式来进行取样,确定孩子和父母之间的血缘关系。而利用新一代基因测序技术,仅通过抽取怀孕妈妈的外周血,就能尽早知道亲子信息。  事实上,新一代基因测序技术除了司法领域的应用外,在临床医疗领域,很多基因测序公司已经研发出贯穿整个生命周期的产品,个体化医疗的时代正在被基因技术开启。  比如,怀孕前可以做夫妇双方的遗传病基因检测,针对一些有经常性流产史的人也可以对流产组织进行基因检测辅助诊断,新生儿出生后可以做遗传代谢病、遗传性耳聋等儿童期高发遗传病检测,做到防患于未然。  针对肿瘤基因检测,可以通过抽取外周血检测与肿瘤相关的508个基因,可以指导个体化用药,以及预测家族遗传性肿瘤的风险,在一些癌症治疗中,基因检测也可起到常规用药指导的作用。  业内人士表示,如果这些检测产品能够经过监管部门审批,和医疗机构合作,进入临床使用,基因技术打开的将是一个千亿级的市场,而现在正处于市场看到光明前的黑暗期。
  • 微生物所创建全染色体编辑的高产丁醇细胞工厂
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  利用代谢工程与合成生物学技术,创建高效生产天然或非天然化学品的微生物细胞工厂,已展现出良好的应用前景和巨大的市场潜力。然而,实验室构建的工程菌株大多基于质粒系统完成,通常需要抗生素和诱导剂来保证功能基因和途径的稳定存在,这为大规模低成本生产带来挑战。在染色体水平上进行基因编辑与操作,创建完全没有质粒、基因表达无需诱导的高产工程菌株,对于化学品的生物制造具有重要意义。然而,由于染色体拷贝数少、目标靶点不清楚、基因表达水平低、基因操作相对困难等因素,见诸报道的全染色体编辑的高产工程菌株很少。/pp  针对这一挑战,中国科学院微生物研究所研究人员以大宗有机溶剂和潜在生物燃料——正丁醇为目标产品,以大肠杆菌为底盘细胞,创建全染色体编辑的丁醇细胞工厂。该研究的基本策略是将细胞工厂构建分为在染色体上创建生物合成途径与全染色体编辑优化两个部分,通过交互循环操作,不断强化丁醇途径以及底盘细胞对丁醇途径的支持能力,从而提高工程菌株的丁醇生产能力。经过以上策略获得的丁醇高产菌株,在简单批式发酵中可以产生20g/L的丁醇,达到产丁醇大肠杆菌最高水平;对葡萄糖的得率达到理论最大值的83%,超越天然的产丁醇梭菌,显示出全染色体编辑代谢工程的潜力。该菌株生产丁醇不需要添加任何抗生素和诱导剂,已在中科院天津工业生物技术研究所中试平台完成了放大测试,效果良好,具有工业化生产应用的潜力。/pp  该研究使用一系列基因组操作技术,包括同源重组、l噬菌体Red重组技术、CRISPR/Cas9、Tn5转座子突变等,在大肠杆菌染色体水平上对38个基因进行编辑和操作,通过理性和非理性策略相结合,解决竞争碳流的副产物较多、丁醇生产能量和还原力不足、染色体基因表达强度弱等问题,最终获得了具有工业应用潜力的高产丁醇细胞工厂,为创建全染色体编辑的化学品高产细胞工厂提供了范例。/pp  研究工作得到国家自然科学基金及国家863计划项目等资助,并已申请中国专利,相关研究成果在线发表在emMetabolic Engineering/em上。/ppbr//p
  • 央视新闻:合成生物学领域重大突破,首例人工单染色体真核细胞
    p  2018年8月2日,央视网消息(新闻联播):“经过四年研究攻关,中国科学院研究团队与国内多家单位合作,在国际上首次人工创建了单染色体的真核细胞,这也是继人工合成结晶牛胰岛素之后中国科学家在合成生物学领域取得的又一重大突破。这一成果8月2日在国际学术期刊《自然》在线发表。”/pp  据小编细查,新闻中提及的中科院团队具体为中国科学院分子植物科学卓越创新中心/植物生理生态研究所覃重军研究组为主的研究团队。该团队完成了将单细胞真核生物酿酒酵母天然的十六条染色体人工创建为具有完整功能的单条染色体。该项工作表明,天然复杂的生命体系可以通过人工干预变简约,自然生命的界限可以被人为打破,甚至可以人工创造全新的自然界不存在的生命。/pp  新闻里屡屡出现贝克曼库尔特流式经典产品——MoFlo™ XDP 超速流式细胞分选系统。其实在科学家的杰出成就中,MoFlo™ XDP的出现绝非偶然,甚至可以说是必备神器。因为作为世界上最强大的流式分选系统之一,MoFlo很早就建立了流式分选的金标准,它为推动细胞分选在科学界的应用做出了杰出贡献,在全球科学家中独享盛誉。此次MoFlo再度建立了流式分选的金标准,引领了流式分选的新潮流。/pp style="text-align: center "img width="557" height="428" title="微信图片_20180810174744.jpg" style="width: 458px height: 281px float: none " src="http://img1.17img.cn/17img/images/201808/insimg/e8f71d02-791c-4da8-87cd-781927f1a7e3.jpg"//pp style="text-align: center "img width="557" height="447" title="微信图片_20180810174751.jpg" style="width: 455px height: 253px float: none " src="http://img1.17img.cn/17img/images/201808/insimg/81b029b9-a828-4fc6-991c-2f3afc55e42e.jpg"//pp  2018年是MoFlo系列产品诞辰30周年,自1988年问世以来MoFlo以其优越的性能,高活性、高纯度、高得率、超高速度一直引领着流式细胞分选仪的技术发展。从最早的Cicero、MoFlo Legacy到如今的MoFlo XDP、MoFlo Astrios EQ,MoFlo不断帮助科学家们登上一座座科学新高峰。染色体分选、精子分选、干细胞分选、痕量细胞分选、以及现在热门的单细胞分选、微颗粒分选,贝克曼库尔特生命科学部与科学家们一起不断让其进步,以满足日益增长的科研需求。/pp style="text-align: center "img width="599" height="255" title="微信图片_20180810174758.jpg" style="width: 461px height: 196px " src="http://img1.17img.cn/17img/images/201808/insimg/8b909348-f55f-48da-ab57-bb20313bb91a.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "strong1.集高速、高活性、高纯度、高得率为一身/strong/span/pp  MoFlo系列流式细胞仪位于市面上速度最快的流式分选仪前列。最高每秒钟200,000的液滴形成能力超过其他产品一倍以上。在70,000 EPS分选条件下仍能保持99%以上的纯度及90%以上的得率。其高活性受到业界广泛认可,是干细胞及其他脆弱细胞研究的首选。/pp style="text-align: center " span style="color: rgb(0, 176, 240) "strong 2.多激光多参数/strong/span/pp  在MoFlo系统上最多可以配置7根高功率激光,最多同时检测44个参数。可以满足您任何实验的需求。/pp style="text-align: center "img width="599" height="336" title="微信图片_20180810174806.jpg" style="width: 442px height: 194px " src="http://img1.17img.cn/17img/images/201808/insimg/526dbf61-a018-4aae-b7c7-fb2af3b5db4e.jpg"//pp style="text-align: center " strongspan style="color: rgb(0, 176, 240) " 3.超大数据存储量/span/strong/pp  Summit软件有大于10亿事件的单文件存储能力,没有参数限制。让您在研究稀有痕量细胞时能看见明显的群体,而不是类似噪音的小点,结果更加可靠。/pp style="text-align: center "img width="600" height="322" title="微信图片_20180810174810.jpg" style="width: 445px height: 220px " src="http://img1.17img.cn/17img/images/201808/insimg/d97e8157-4587-433b-8150-330fa4df0d4a.jpg"//pp style="text-align: center " strongspan style="color: rgb(0, 176, 240) " 4.混合分选模式/span/strong/pp  在MoFlo的系统中,不管你做几路分选都可以对不同的分选液路设置独立的分选模式。富集、纯度、单细胞模式,适应不同群落要求,同时完成实验,不用多次分选。并且能对一群细胞设置多种分选模式,既要纯度又要得率,珍贵样本绝不浪费。/pp style="text-align: center " strongspan style="color: rgb(0, 176, 240) " 5.不加电垂直分选/span/strong/pp  单细胞测序最大的难题就是如何将一个目标细胞准确的分进仅有十几微升液体的管底。为了解决用户的难题,MoFlo独创不加电垂直分选功能。将废液流加电偏转,目标液滴不加电垂直下落,每一个目标细胞都可以精准的到达接受容器管底,不浪费您每一孔的努力!/pp style="text-align: center "img width="599" height="218" title="微信图片_20180810174817.jpg" style="width: 453px height: 176px " src="http://img1.17img.cn/17img/images/201808/insimg/182637d7-9edb-4c9b-b479-d5dc03ad0571.jpg"//pp style="text-align: center " strongspan style="color: rgb(0, 176, 240) " 6.卓越的小颗粒检测能力/span/strong/pp  具备增强型前向检测器(eFSC)的MoFlo Astrios EQ,将流式的颗粒分辨率带入纳米级别。细胞外囊泡、外泌体流式分析分选的时代已经到来!/pp style="text-align: center "img width="601" height="466" title="微信图片_20180810174823.jpg" style="width: 453px height: 250px " src="http://img1.17img.cn/17img/images/201808/insimg/ac1191ca-a7f0-44c5-bdde-0270afb55c71.jpg"//pp style="text-align: center "  strongspan style="color: rgb(0, 176, 240) "7.IntelliSort II全自动分选设置及维持系统/span/strong/pp  这么优秀的系统操作一定很复杂吧?No!No!No!有了IntelliSort II系统,分选设置只需依次点按三个扭,几分钟内分选设置自动完成。最重要的是还不需要微球哦!又快又省!而且系统还能自动维持分选状态,在一定范围内根据外部环境不断微调参数,保证从分选开始到结束效果始终如一。分选开始就可以干其他事情啦,让您可以真正实现walk away。/ppbr//p
  • iPad出新技能 通过显微镜头检测染色体
    近日台湾创业公司Aidmics便为iPad开发出一套新技能——用iPad检查自己祖传染色体的品质,该技能是通过一个名为iSperm的设备实现的,其中包含一个200倍光学放大器与1微米解析度的显微镜头、一个生物微流晶片以及一个精子分析App,只需要短短17秒便可让我们这种毫无医学知识的小白感受到祖先的荣光。  当然这17秒绝对不包括你自己的事前准备,其中7秒用于视频的载入,10秒用于分析处理,不过由于医学管理方面的相关规定,该设备最早也要等到明年才能进入千万家庭中,售价大约在100美元-200美元之间,适合那些想要宝宝的家庭使用,那种每天数蝌蚪的生活真是连想都不敢想!
  • 【重大喜讯】贝克曼MoFlo™ XDP助力世界首例人工单染色体真核细胞!
    2018年8月2日,央视网消息(新闻联播):经过四年研究攻关,中国科学院研究团队与国内多家单位合作,在国际上首次人工创建了单染色体的真核细胞,这也是继人工合成结晶牛胰岛素之后中国科学家在合成生物学领域取得的又一重大突破。这一成果今天(2日)在国际学术期刊《自然》在线发表。据小编细查,新闻中提及的中科院团队具体为中国科学院分子植物科学卓越创新中心/植物生理生态研究所覃重军研究组为主的研究团队。该团队完成了将单细胞真核生物酿酒酵母天然的十六条染色体人工创建为具有完整功能的单条染色体。该项工作表明,天然复杂的生命体系可以通过人工干预变简约,自然生命的界限可以被人为打破,甚至可以人工创造全新的自然界不存在的生命。(相关报道请请见文末。)新闻一经播出,就有小贝家的粉丝迅速@小编。新闻里屡屡出现贝克曼库尔特流式产品线经典产品MoFlo™ XDP 超速流式细胞分选系统。其实在科学家的杰出成就中,MoFlo™ XDP的出现绝非偶然,甚至可以说是必备神器。因为作为世界上最强大的流式分选系统之一,Moflo很早之前就建立了流式分选的金标准,它为推动细胞分选在科学界的应用做了杰出贡献,在全球科学家中独享盛誉。此次MoFlo再度建立了流式分选的金标准,引领了流式分选的新潮流。2018年是MoFlo系列诞辰30周年,自1988年问世以来MoFlo以其优越的性能,高活性、高纯度、高得率、超高速度一直引领着流式细胞分选仪的技术发展。从最早的Cicero、MoFlo Legacy到如今的MoFlo XDP、MoFlo AstriosEQ,MoFlo不断帮助科学家们登上一个个科学高峰。染色体分选、精子分选、干细胞分选、痕量细胞分选、以及现在热门的单细胞分选、微颗粒分选,贝克曼库尔特生命科学部与科学家们一起不断让其进化,以满足日益增长的科研需求。那么MoFlo有什么独门秘诀呢?1.集高速、高活性、高纯度、高得率为一身;MoFlo系列流式细胞仪位于市面上速度最快的流式分选仪前列。最高每秒钟200,000的液滴行成能力超过其他产品一倍以上。在70,000 EPS分选条件下仍能保持99%以上的纯度及90%以上的得率。其高活性受到业界广泛认可,是干细胞及其他脆弱细胞研究的首选。2.多激光多参数;在MoFlo系统上最多可以配置7根高功率激光,最多同时检测44个参数。可以满足你任何实验的需求。3.超大数据存储量;Summit软件有大于10亿事件的单文件存储能力,没有参数限制。让你在研究稀有痕量细胞时能看见明显的群体,而不是类似噪音的小点,结果更加可靠。4.混合分选模式;在MoFlo的系统中,不管你做几路分选都可以对不同的分选液路设置独立的分选模式。富集、纯度、单细胞模式,适应不同群落要求,同时完成实验,不用多次分选。并且能对一群细胞设置多种分选模式,既要纯度又要得率,珍贵样本绝不浪费。5.不加电垂直分选;单细胞测序最大的难题就是如何将一个目标细胞准确的分进仅有十几微升液体的管底。为了解决用户的难题,MoFlo独创不加电垂直分选功能。将废液流加电偏转,目标液滴不加电垂直下落,每一个目标细胞都可以精准的到达接受容器管底,不浪费你每一孔的努力!6.卓越的小颗粒检测能力;具备增强型前向检测器(eFSC)的MoFlo AstriosEQ,将流式的颗粒分辨率带入纳米级别。细胞外囊泡、外泌体流式分析分选的时代已经到来!7.IntelliSort II全自动分选设置及维持系统:这么优秀的系统操作一定很复杂吧?No!No!No!有了IntelliSort II系统,分选设置只需依次点按三个扭,几分钟内分选设置自动完成。最重要的是还不需要微球哦!又快又省!而且系统还能自动维持分选状态,在一定范围内根据外部环境不断微调参数,保证从分选开始到结束效果始终如一。分选开始就可以干其他事情啦,让您可以真正实walkaway。See it, Sort it. Every well, every time. 分你所见,得您所愿。选择MoFlo,助您成功!赶快联系我们吧!相关报道:1. CCTV 1 新闻联播:[视频]我国合成生物学研究取得重大突破 创建世界首例人工单染色体真核细胞2.上海发布:【最新】中科院今早在沪宣布:我国实现合成生物学里程碑式突破!*本产品仅用于科研,不用于临床诊断。
  • 单染色体酵母第一作者选择申请海外博士,科学家再次疾呼:莫让“海归”标签“逼”走优秀博士生
    p  span style="color: rgb(255, 0, 0) "日前刚在英国 《自然》杂志发表领先世界的合成生物学成果,中国科学院分子植物科学卓越创新中心、植物生理生态研究所合成生物学重点实验室覃重军研究员就在媒体面前流露出内心焦虑:论文的第一作者、掌握了自己学术思想和实验关键技术的博士生邵洋洋正在申请海外博士后,其中就包括此次与他们同时发表类似论文的美国同行实验室。/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/ef2459e4-3725-47d6-a971-944dcbf97e7b.jpg" title="640-3.jpeg"//pp style="text-align: center "▲覃重军研究员(右)与论文第一作者也是团队成员之一的邵洋洋在实验室进行试验研究。/pp  “为了学生的前途考虑,我希望她出国,但为国家考虑,我真希望能留住她。”覃重军无奈地说,span style="color: rgb(0, 112, 192) "按照国内学术圈现行的 “游戏规则”,年轻人若在国外实验室做出好的工作再回国,获得的待遇会好很多。能否根据真实学术水平和实际科研贡献,给予海内外青年人才同等待遇?这个近来被诸多讨论的话题,再次摆在我们面前。/span/pp  strongspan style="color: rgb(255, 0, 0) "国内不乏孕育重大产出的优秀“学术土壤”/span/strong/pp  将酿酒酵母中16条天然染色体,通过基因编辑的方法合成一条,覃重军研究团队在 “合并染色体”的国际竞争中拔得头筹。连他最强劲的竞争对手——美国科学院院士、纽约朗格尼医学中心的杰夫· 博伊克,都忍不住来问他,究竟是怎么会想到要这么做,又是怎样完成染色体 “十六合一”的?因为博伊克的实验室用了相同的技术路线,但只融合到两条染色体。/pp  “这是只有外行才敢想的念头,一开始没多少人觉得我能做出来。”覃重军非常感谢植生所给了他宽松的氛围,支撑他度过了最艰难的时光,“整整五年,我没有发表一篇与酵母相关的论文,换在别的单位,或许早就让卷铺盖走人了。”/pp  span style="color: rgb(0, 112, 192) "覃重军说,这次成功的关键是他在初期作了大量思考,清晰界定了实验的原则,同时实验室也在进行系统的技术积累。/span中国科学院上海植物生理生态研究所所长、中国科学院院士韩斌告诉记者,尽管覃重军没有出论文,但研究所更看重人才的长期发展,在国际评估中,他的研究方向一直得到认可,span style="color: rgb(0, 112, 192) "“需要五到十年才能出的重大成果,我们就该耐心等待。”/span为了让科学家安心做科研,植生所为各研究组长提供稳定的年薪,而非根据各研究组的科研经费多少来核算。/pp  维持研究团队运转的人头费一直是件头疼事。多年来,覃重军研究组的“赤字”超过300万元。 “有些单位的研究组账面少于50万元,就可能被要求关闭,更不可能赤字运行。”为此,他感到十分幸运, “现在无论哪里要我去,我都不会离开植生所这片宽容的学术土壤。”更何况,这里每年都会冒出两三项引发学术界关注的重大成果,已初具国外著名实验室的创新氛围。/ppspan style="color: rgb(255, 0, 0) "strong  优质“小环境”还需“大环境”扶持滋养/strong/span/pp  宽松而有活力的 “学术土壤”在国内尽管还不多,但越来越多的 “星星之火”已经出现。不必远寻,就在生命科学领域,上海就有多个研究所具备了专注学术、宽容失败、奋力创新科研氛围,而且具备了国际一流的研究实力。/pp  照理说,span style="color: rgb(0, 112, 192) "这样的研究所对优秀博士毕业生应该具有相当吸引力。但邵洋洋斟酌再三,还是决定申请海外博士后。/span的确,以此次单染色体人工酵母的工作,她可以申请到全球合成生物学领域任何一个顶尖实验室,去那些实验室接受训练和熏陶,这是每个年轻博士所向往的。然而,更吸引人的,是去一个优秀海外实验室学习上两三年,做出杰出工作再回国,就能比不出国的青年科学家获得更多科研经费支持和房贴,申请人才计划、科研项目都更有优势。/pp  “可我又有什么理由阻止她出国做博士后呢?尽管我的研究组人手十分紧张,她走之后,很多后续工作可能难以开展。”span style="color: rgb(0, 112, 192) "尽管植生所的 “小环境”不错,但从整个科研大环境来看, “海归”标签依然在科研经费获取、人才评价等方面起着重要作用。这让覃重军如鲠在喉。/span/pp  不久之前,中国科学院神经科学研究所博士后刘真受聘为研究组长,他也曾为是否出国做博士后而纠结过。尽管他留在国内并做出了世界首批克隆猴这样的杰出工作,但在科研启动期所获得的资助仍比不上 “海归”们。/pp  span style="color: rgb(0, 112, 192) "“一个优秀博士生的流失,不仅意味着一段黄金创造力的流失,也可能将国内实验室的创新科研思路带给竞争对手。”痛心之余,覃重军疾呼,能否更公平地对待不同路径成长起来的人才,适时转变人才评价方式,让优秀博士生不必为了 “海归”标签而出国。/span/p
  • 基于Perturb-seq技术,绘制首个全基因组范围的人类细胞基因型-表型综合图谱
    近日,美国加州大学旧金山分校与纪念斯隆凯特琳癌症中心等单位的研究人团队合作Cell期刊发表了题为“Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq”的研究性文章。研究团队利用一种紧凑的、多路CRISPR干扰文库(CRISPRi),结合单细胞转录组测序、Perturb-seq技术等分析了数千个功能缺失的基因扰动在不同细胞类型中的作用,揭示了细胞表型、基因功能和调控网络的多维信息,绘制了第一个全面的人类细胞基因型-表型综合图谱。文章发表在Cell研究概要图,来源:Cell新基因功能数据可供其他科学家使用。图片来源:Jen Cook-Chrysos/Whitehead Institute建立遗传变化和表型之间的关联对于理解基因和细胞功能至关重要。经典的研究方式主要包括以表型为中心的“正向遗传”,即揭示驱动表型的基因变化;以及以基因为中心的“反向遗传”,即对确定的遗传变化引起的不同表型进行解析。近年来,基因技术的革新也推动了表观遗传遗传研究的进展。其中,CRISPR-Cas9基因编辑技术可以轻松地对基因进行编辑,进而抑制或激活基因,在揭示基本细胞机制、分化因子和遗传疾病相关基因以及识别癌症驱动基因等层面提供了有力工具。单细胞技术的发展也使在单细胞层面读取表观遗传学、转录组学、蛋白质组学和成像信息等成为可能,同时单细胞维度的研究也可以深入分析选择性遗传扰动影响的具体细胞类型和细胞状态。因此,单细胞CRISPR筛选可以同时分析单细胞的遗传干扰和高维表型,从而将正向遗传学的基因与反向遗传学丰富的表型相结合。虽然单细胞CRISPR筛选技术前景广阔,但其应用仅限于最多几百个基因扰动研究,并且这些基因扰动研究也通常被用来解决预先确定的生物学问题。目前,高通量、无偏颇的单细胞CRISPR筛选研究仍然缺失。主要研究内容全基因组Perturb-seq的多路CRISPRi策略Perturb-seq是指利用CRISPR-Cas9技术将基因变化引入细胞内,然后使用单细胞转录组测序捕获特定基因变化导致的转录组信息变化,能够研究给定细胞类型的全面遗传扰动影响,可以以前所未有的深度跟踪打开或关闭基因的影响。基于Perturb-seq,研究团队探究了可以提高可扩展性和数据质量的关键参数,例如遗传扰动模式和sgRNA库,并最终设计了一种包含多个时间点和细胞类型的Perturb-seq筛选方法,并可利用10x Genomics的液滴法单细胞转录组测序技术对所有筛选策略下的细胞状态进行解析。图1. 基因组尺度Perturb-seq的多路CRISPRi策略示意图,来源:Cell为了揭示基因扰动的功能后果和基因型-表型关系,研究团队使用人类血癌细胞系以及来自视网膜的非癌细胞,对超过250万个细胞进行了Perturb-seq,并使用这些数据构建了一个基因型-表型综合图谱。研究团队根据基因的共同调控将其聚类到特定表达程序中,并计算每个扰动簇中每个基因表达程序的平均活性。分析结果包含多个与基因干扰相关的已知表达程序,包括蛋白酶体功能障碍导致的蛋白酶体亚基上调、 ESCRT蛋白缺失时NF-kB信号通路的激活,以及胆固醇生物合成上调对囊泡运输缺陷的反应等。有趣的是,聚类分析发现了许多驱动红系或髓系分化的基因扰动,与K562细胞的多系潜能也是一致的。正如预期的那样,红细胞生成的关键调控因子(GATA1、LDB1、LMO2和KDM1A)的缺失导致了髓系分化增强,BCR-ABL及其适配体GAB2的抑制则促进了红细胞的分化。接下来,研究团队分析了选择性必需基因的分化作用,因为这些基因可能是颇具前景的治疗靶点。研究发现,在K562细胞中必需的酪氨酸磷酸酶PTPN1的缺失驱动了髓细胞分化。此外,在靶向实验中,联合敲除PTPN1和KDM1与单独敲除任意一个基因相比,导致分化和生长缺陷的表型会显著增加,表明这些靶点是通过不同的细胞机制发挥作用。以上结果强调了表型在了解细胞分化和治疗靶点方面的效用。图2. 基于Perturb-seq的基因型与表型关系汇总,来源:Cell单细胞中非整倍体的基因驱动和影响探索单细胞异质性可以揭示在整体或平均检测中被遗漏的机制。为了评估基因扰动诱导表型的外显率,研究团队采用SVD评分作为单细胞表型大小的衡量标准,通过单细胞SVD分数的变化对基因扰动进行表型影响评估。SVD评分是量化每个受扰动细胞的转录组相对于对照细胞的离群程度。分析结果表明,许多与染色体分离有关的基因都是细胞异质性的主要驱动因素,包括TTK、SPC25、DSN1,这些遗传干扰导致的极端转录变化可能是由于有丝分裂错误分离导致的染色体拷贝数的急性变化。为了探究这一点,研究人员使用inferCNV估算了基因组中单细胞DNA拷贝数变异。与预期一致,干扰纺锤体装配检查点的核心组成部分TTK,可以导致非整倍体和近整倍体细胞的染色体拷贝数发生显著变化。此外,干扰TTK的细胞中有76%发生了核型改变,未受干扰的细胞中只有2%发生了核型改变。值得注意的是,由于染色体的随机增加或减少,TTK敲除细胞具有高度可变的核型,这也是其表型异质性的原因。同时,该分析还揭示了单细胞CRISPR筛选可以用来解析表型,而不是预先定义的实验终点。图3. 单细胞中非整倍体的基因驱动和后果,来源:Cell发现线粒体基因组的应激特异性调控因子当前,领域内一个关键的科学问题是如何理解细胞核和线粒体基因组的表达来应对线粒体压力。该最新研究的实验设计为探究这一问题提供了可能。为了确定基因扰动引起的差异表达模式,研究团队检测了单细胞转录组测序数据在线粒体基因组中的分布。为了验证这种基于位置的分析的有效性,首先证实了已知线粒体转录调控因子(TEFM)和RNA降解(PNPT1) 的敲除会导致线粒体基因组位置发生重大变化。相比之下,研究发现许多基因扰动似乎导致了mRNA相对丰度的变化,而不是位置排列的总体变化。鉴于观察到的反应的复杂性,研究人员提出可能有多种机制影响不同线粒体编码转录本的水平,以应对不同的压力。图4. 解析压力应激下线粒体基因组的调控机制,来源:Cell结 语 单细胞CRISPR筛选代表了一种新兴的工具,可用于生成丰富的基因型-表现型图谱。但目前单细胞CRISPR筛选研究仅限于预先选择的基因,研究重点也是预先确定的生物学问题。在该最新研究中,研究团队进行了全基因组规模的单细胞CRISPR筛选,并展示了这些筛选策略是如何使用数据驱动的分析来解剖广泛的生物学现象,强调了关键的基因功能和衍生原则,同时绘制了丰富的基因型-表型图谱以指导未来的研究。该研究为系统探索遗传和细胞功能提供了源动力,同时也为领域提供了宝贵的数据资源。在未来,研究人员希望将Perturb-seq用于癌细胞系之外的不同类型细胞研究,也希望继续探索基因功能图谱。文章共同通讯作者Thomas M. Norman博士表示:“该研究是多个科研团队多年合作工作的结晶,很高兴看到它继续取得成功和扩展,我认为这个数据集甚至将使来自生物医学以外领域的研究团队进行各种分析成为可能。”参考文献:1. Replogle et al., Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq, Cell (2022).2. Fianu, I., et al., (2021). Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887.3. Kummer, E., and Ban, N. (2021). Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 22, 307–325.
  • 30纳米染色质高精度三维冷冻电镜结构成功解析
    p style="line-height: 1.5em " DNA如何包装成染色体,是科学家们一直努力破解的重要科学问题。近30年来,由于缺乏系统、合适的研究手段,作为染色质包装过程中承上启下的关键部分,30纳米染色质高级结构研究一直是现代分子生物学领域面临的最大挑战之一。/pp style="line-height: 1.5em "  科学家已经发现,染色质包装分4步完成,对应了染色质的四级结构:第一级结构是核小体 第二级结构是核小体螺旋化形成30纳米染色质纤维 第三级结构是30纳米染色质再折叠成更为复杂的染色质高级结构,即超螺旋体 第四级结构是超螺旋体进一步折叠形成在光学显微镜下可以看到的染色体。/pp style="line-height: 1.5em "  为解析30纳米染色质的高精度三维冷冻电镜结构,中科院生物物理所研究员李国红课题组及其合作者(朱平课题组和许瑞明课题组)在基金委重大研究计划“细胞编程与重编程的表观遗传学机制”支持下,自主建立了染色质体外组装和冷冻电镜技术(11埃)。利用这一技术,研究人员在国际上首次发现30纳米染色质纤维是以4个核小体为结构单元形成的左手双螺旋结构。同时,连接组蛋白H1在单个核小体内部及核小体单元之间的不对称分布及相互作用促成30纳米高级结构的形成,从而明确了H1在30纳米染色质纤维形成过程中的重要作用。/pp style="line-height: 1.5em "  2014年4月25日,在DNA双螺旋结构发现61周年的纪念日,《科学》杂志以Double Helix,Doubled(《双螺旋,无独有偶》)为题介绍了这项重要成果,并同期刊发英国剑桥大学教授Andrew Travers撰写的题为The 30-nm Fiber Redux(《30纳米纤维的归来》)的评论。该评论指出:(本文)结果明确地界定了染色质纤维中DNA的走向,解决了染色质到底是单股纤维还是双股纤维这个根本性的问题。本来似乎已经陷入困境的30纳米染色质纤维结构研究,又会重新成为生物学家们继续关注的焦点。该成果发表后受到国内外学术界的广泛关注,被多部世界知名最新版本教科书收录(《生物化学》《结构生物学》等)。/pp style="line-height: 1.5em "  据李国红介绍,在30纳米染色质纤维结构解析的基础上,他们通过与中科院物理所李明课题组合作,利用单分子磁镊技术对30纳米染色质纤维建立和维持的动力学过程进行了深入的探讨。在后续研究中,研究人员正在建立和完善描绘全基因组染色质结构的MNase-seq技术——gMNase-seq(细胞核内染色质结构分析方法),通过蛋白质融合或不同大小的金颗粒修饰和改造MNase,提高MNase-seq的空间分辨率,进一步描绘了细胞核内染色质纤维三维结构的动态调控及其分子机制。/pp style="line-height: 1.5em "  “30纳米染色质纤维结构”先后入选“十八大以来中国科学院重大创新成果”和“中国科学院‘十二五’标志性重大进展核心成果”。该研究成果表明我国科学家在攻克30纳米染色质纤维高级结构这一30多年悬而未决的重大科学问题上取得了重要突破,这使我国在染色质结构研究领域达到国际领先水平。同时,也为预测体内染色质结构建立的分子基础以及各种表观遗传因素对染色质结构调控的可能机理提供了结构基础。/ppbr//p
  • Nat Methods | 汤富酬课题组开发出基于单分子测序平台的scNanoHi-C技术,可精准检测单细胞高阶染色质互作
    真核生物基因的表达受到基因组中顺式作用元件的复杂调控。哺乳动物基因组中存在大量的顺式作用元件,例如:启动子、增强子、沉默子、绝缘子等等,其数量远远超过蛋白编码基因。目前人类基因组中已知的顺式调控元件就有一百多万个,而蛋白编码基因只有大约两万个。遗传学研究也表明基因调控不仅仅是单个基因之间一对一的简单调控事件,而是以调控网络的形式发挥作用,不同的调控元件以及靶基因之间存在着复杂的相互作用。例如,一个基因的启动子可以整合来自多个增强子或者沉默子的调控作用,一个增强子元件也能够同时影响多个基因的表达1-3。随着三维基因组技术的发展,人们对基因表达调控相关的染色质构象已经有了一定的理解,但由于技术的限制,大部分研究都是集中在成对的相互作用(pair-wise interaction)上,而对于多个顺式调控元件同时与一个基因启动子之间的高阶相互作用(high-order interaction)的研究仍然比较有限。此外,多个基因组元件是如何通过三维基因组构象的变化同时参与基因表达调控的机制目前也尚不清楚。近年来,为了探究更精准和全面的染色质互作情况,检测高阶染色质互作的技术也相继出现。然而这些技术往往局限于基因组的特定位点,或是需要特殊的仪器设备。得益于三代测序平台(单分子测序平台)的日渐成熟,最近开发的基于牛津纳米孔技术 (Oxford Nanopore Technology, ONT) 的Pore-C方法4在检测染色质高阶相互作用方面表现出优异的性能,可以通过应用新的统计方法有效地分析全基因组中多个染色质位点之间高阶相互作用的协同性。尽管上述这些基于大量细胞的研究方法能够有效地检测染色质的高阶相互作用,但它们无法解决细胞间的异质性问题,阻碍了它们在复杂组织器官样品中的应用。而现有的单细胞Hi-C(single-cell Hi-C,scHiC)技术受限于二代测序较短的读长(通常是双端总共300bp)也难以对染色质高阶相互作用进行检测。目前除了单细胞超分辨率成像以外,2022年开发的scSPRITE5是唯一一种可以在单细胞水平检测染色质高阶相互作用的测序方法。但是该方法更适用于远距离的间接染色质高阶相互作用,而对于与基因调控更相关的直接染色质高阶相互作用的检测能力很有限。此外,scHi-C 的另一个挑战是很难平衡捕获细胞群体异质性所需的高通量(每次实验能够检测大量单细胞)与探索高分辨率 3D 基因组结构所需的高深度(每个单细胞中捕获大量染色质相互作用)之间的矛盾。因此,需要一种可扩展的 scHi-C方法来剖析高阶染色质三维结构,并在单细胞水平上研究这些染色质高阶相互作用在不同生物过程中的协同调控机制。为了应对这些挑战,2023年8月28日,北京大学生物医学前沿创新中心汤富酬课题组在Nature Methods上发表题为scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells的文章。该研究在国际上率先使用单分子测序平台开发了一种基于邻近连接的单细胞染色质构象捕获方法,称为 scNanoHi-C。该方法实现了在单细胞水平的高阶染色质相互作用检测,并且在通量上具有很好的灵活性,能够满足不同的实验需求。在实验上,scNanoHi-C依次使用 1% 甲醛 (FA) 和 1.5 mM 戊二酸二琥珀酰亚胺酯 (DSG) 孵育进行交联,以降低连接反应的随机噪音并兼顾对短程和长程染色质相互作用的高灵敏度检测。为了尽可能完整地保留单细胞中固定连接后的染色质三维结构信息,该研究设计了一种灵活的单细胞基因组长片段扩增方法。该方法使用两端具有相同接头的低浓度Tn5转座酶以提高DNA片段扩增长度和基因组覆盖度,并通过设计24种带有不同条码标签的 Tn5 酶结合后续PCR扩增中引入的条码标签共同控制测序的通量。通过这种方式,scNanoHi-C 能够在一次 PromethION 测序中对少至几个单细胞进行低通量、高覆盖度测序或者对数千个单细胞(最高可达 24×96=2304个细胞)进行高通量、低覆盖度测序,可以根据实验需求灵活进行选择(图1)。为了评估scNanoHi-C技术的可靠性,该研究首先将scNanoHi-C应用于正常二倍体的GM12878细胞系,并分别使用低深度(~0.2Gb/cell)、中等深度(~1Gb/cell)、高深度(~4Gb/cell)三种策略进行测序,并与基于二代测序平台的大量细胞原位Hi-C标准数据集进行比较,结果显示出很高的一致性。同时每个策略检测到的串联体(含有有效染色质相互作用的测序读段)中大约一半为高阶串联体(包含三个以上不同调控元件间的相互作用)。在这些高阶串联体中,大约58%是三联体,26%是四联体,其余为五联体以上的多联体(基数从5到11不等)。图1:实验流程示意图以及高阶串联体的检测接着该研究在多个方面对scNanoHi-C的应用进行了探索:1.scNanoHi-C可以在单细胞水平上精准捕获染色质三维结构的异质性。scNanoHi-C能够在单细胞水平检测各层级染色质结构特征,包括染色体领域(整条染色体,50Mb-200Mb尺度的结构特征)、A/B区室(常染色质区域与异染色质区域,5Mb-20Mb尺度的结构特征)、以及拓扑关联结构域样结构(TAD-like,0.5Mb-5Mb尺度的结构特征)。同时,scNanoHi-C的单个染色质片段长度(单体长度,平均610 bp)相较于传统基于二代测序平台的scHi-C(测序不超过150bp)显著提高,这大大增加了其在染色质相互作用对中捕获到单核苷酸多态性(SNP)位点的机会,能够在二倍体细胞中直接判定单倍型的单体比例由原来二代测序平台的大约9%提高到了25%。因此,scNanoHi-C也可用于有效地重建单个二倍体细胞的基因组三维构象。同时,利用单细胞A/B 区室化值(single-cell A/B compartment value, scA/B value), scNanoHi-C对GM12878、HG002 和 K562 三种人类细胞系进行了聚类分析,能够在单细胞精度准确将三种细胞分开,并识别了细胞类型间的染色质差异区室化区域。此外, scNanoHi-C也能够准确地检测每个单细胞的基因组拷贝数变异(CNV)特征。分析结果表明,scNanoHi-C准确地捕获了GM12878细胞培养过程中产生的非整倍体亚克隆以及K562细胞的拷贝数变异。同时,scNanoHi-C也可应用于结构变异的检测,如准确检测出了K562 细胞中 BCR-ABL1 和 NUP214-XKR3 的基因融合事件(染色体易位事件)。图2:scNanoHi-C串联体和单体的长度分布、单倍体分型的比例、细胞分群结果和单细胞拷贝数变异(CNV)图谱2.scNanoHi-C能够在单个细胞中准确鉴定高阶染色质相互作用。该研究在GM12878 细胞数据集中,使用scNanoHi-C得到的单细胞高阶串联体信息结合ABC模型(Activity-by-contacts model)6预测的增强子-启动子 (E-P) 相互作用关系共同鉴定了增强子-启动子高阶相互作用。通过这种方式,该研究首次在单个细胞中以20 kb的分辨率直接观察到1,097 个基因的单个启动子能够与多个增强子同时发生相互作用,表明这些基因可能同时受到多个增强子的调控。这些受到高阶调控的基因主要富集在与GM12878这种B淋巴细胞的功能相关的免疫信号通路上,并且通常表现出更高的表达水平。特别地,这些基因中还包括一些B细胞谱系特异性转录因子如EBF1以及EBV 超级增强子相关基因如MIR155HG、IKZF3和ETS1等。这些结果表明,多个增强子的协同调控可能是确保关键基因高水平稳健表达的一种潜在机制。通过类似的方法,该研究还在单个细胞中鉴定出了1,422 个能够与多个启动子同时发生相互作用的增强子。此外,该研究发现部分高阶基因调控作用能够在多个单细胞中被检测到,这可能与细胞中频繁使用的关键转录程序有关,后续可以通过发展基于富集策略的具有更高分辨率的Hi-C技术进行进一步的深入研究。图3: scNanoHi-C技术对多向基因调控网络的检测3.scNanoHi-C能够揭示不同基因组区域之间的协同调控关系以及染色体外环形DNA与线性基因组间的复杂相互作用。倾向于形成高阶相互作用的一组基因组位点称为“基因组协同调控区域”。该研究针对scNanoHi-C的数据特点对鉴定基因组协同调控区域的算法进行了优化,并将该算法运用到GM12878细胞活跃启动子和增强子的集合中,在全基因组范围内共鉴定出了917组增强子-启动子协同调控区域。其中,大约20%(187/917)的协同调控区域包含来自不同染色体的基因组位点(提示不同染色体之间的反式相互作用)。这些协同调控区域在活跃转录的基因组区域、淋巴细胞特异性转录因子和染色质环相关因子(CTCF等)的结合位点区域中高度富集。此外,在917个协同调控区域中,有167个被发现与GM12878细胞特异性的超级增强子有关。接着,该研究将scNanoHi-C运用到携带大量染色体外环形DNA(ecDNA) 的COLO320DM 人类结直肠癌细胞系中,检测到了染色体外环形DNA与线性基因组(染色体内的基因组)之间存在广泛的染色质高阶相互作用,并且首次在单个细胞中观察到四个主要的染色体外环形DNA的基因位点之间存在复杂的高阶相互作用。这些结果表明,染色体外环形DNA可能通过建立复杂的高阶染色质三维结构来驱动癌基因的过量表达。图4: scNanoHi-C技术对染色体外环形DNA(ecDNA)相关的协同作用的检测4.scNanoHi-C能够高效辅助单细胞基因组从头组装。在可用细胞数量有限的情况下,该研究表明使用scNanoHi-C辅助单细胞基因组(single-cell whole genome sequencing,scWGS)从头组装7可以大幅度提高组装质量。例如,使用20个单细胞的基因组长读长测序数据和12个单细胞的scNanoHi-C数据组装的人类基因组支架(scaffold)的NG50要优于使用30个单细胞的基因组长读长测序数据直接组装的效果(2.49 Mb vs. 1.34 Mb)总之,scNanoHi-C具有很好的可扩展性和灵活性,在一次测序中可对少至几个单细胞或多达数千个单细胞进行染色质三维结构测序,并且实验流程相对简单、易于操作,仅需要基本的PCR仪等分子生物学设备,适合于各种生物学实验室使用。scNanoHi-C还是一种强大且多功能的工具,可用于在单细胞分辨率准确区分细胞类型、对单个二倍体细胞进行高效单倍型分型、检测单个正常细胞和肿瘤细胞中的基因组拷贝数变异和各种复杂结构变异以及高效辅助单细胞基因组从头组装。更重要的是,scNanoHi-C 首次实现了在单个细胞中在全基因组水平对增强子-启动子的高阶直接相互作用的检测,在单个细胞中准确鉴定了高阶基因调控事件,同时能够对复杂的染色体外环形DNA与线性基因组间的高阶相互作用进行精准检测。scNanoHi-C显示了单细胞长读长Hi-C测序技术在分析由高阶染色质三维结构介导的不同细胞间基因调控异质性方面的潜力,为将来进一步研究发育和疾病进展过程中高阶染色质结构变化机制,揭开基因组中各种复杂调控关系中的“暗物质”奠定了坚实的基础。北京大学生物医学前沿创新中心、前沿交叉学科研究院生命科学联合中心博士生李文、生命科学学院博士生卢健森为该论文的共同第一作者,北京大学生物医学前沿创新中心汤富酬教授为该论文通讯作者。该研究得到了国家自然科学基金基础科学中心项目、北京未来基因诊断高精尖创新中心、昌平实验室的资助,北京大学高通量测序平台以及北京大学“北极星”高性能计算平台的协助与支持,北京大学邢栋课题组为本研究提供了重要的帮助。论文链接:https://www.nature.com/articles/s41592-023-01978-w参考文献:1 Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat Rev Genet, doi:10.1038/s41576-022-00526-0 (2022).2 Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat Rev Genet 22, 154-168, doi:10.1038/s41576-020-00303-x (2021).3 Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341-1345, doi:10.1126/science.aau0320 (2018).4 Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat Biotechnol 40, 1488-1499, doi:10.1038/s41587-022-01289-z (2022).5 Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nature Biotechnology 40, 64-73, doi:10.1038/s41587-021-00998-1 (2021).6 Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet 51, 1664-1669, doi:10.1038/s41588-019-0538-0 (2019).7 Xie, H. et al. De novo assembly of human genome at single-cell levels. Nucleic Acids Res 50, 7479-7492, doi:10.1093/nar/gkac586 (2022).汤富酬,博士,北京大学BIOPIC/ICG研究员,国家“优青”(2013)、“杰青”(2016)。1998年本科毕业于北京大学,2003年在北大获得细胞生物学博士学位,2004-2010年间在英国剑桥大学Gurdon研究所从事博士后研究, 2010年回到北京大学组建实验室,主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用一系列技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他表观遗传学关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎表观遗传调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。
  • 中国学者领衔,联合119位学者,人类“泛基因组”成果登上Nature封面!
    人类基因组计划于2003年完成了第一个完整的人类基因组序列,在具有里程碑意义的人类基因组计划的第一份基因组草图发布20多年后,由国际人类泛基因组参考联盟牵头,由美国国立卫生研究院国家人类基因组研究所 (NHGRI) 资助的研究人员发布了一份人类“泛基因组”草稿——这是一个新的、可用的基因组学参考,它结合了来自不同祖先背景的 47 个人的遗传物质,以便更深入、更准确地理解全球基因组多样性。值得一提的是,该篇Nature封面总共有119位学者,第一作者为中国学者Wen-Wei Liao,通讯作者分别为Erik Garrison, Tobias Marschall, Ira M. Hall, Heng Li, Benedict Paten。Figure 1. Nature封面什么是泛基因组?它是一组来自许多个体的基因组,放在一起以显示序列相同或不同的位置。人类泛基因组草案由47个基因组组成,该项目将持续到 2024 年,届时研究人员计划发布包含 350 个人基因组信息的最终泛基因组。目前,由于依赖于单一参考基因组,一些变异对研究人员来说基本上是不可见的。等等,什么是参考基因组?它是一种地图。当研究人员对某人的DNA进行测序时,他们会根据它们在参考基因组中的适合位置得到很多片段。这有点像通过查看解剖学教科书来查看每块骨头适合的位置来组装骨架。对于绝大多数骨骼来说,这很好,但有些人有额外的骨骼,例如教科书中没有的颈肋骨。目前,当科学家绘制来自患者的序列图时,总是有一小部分序列,有时是相当大的一部分,无法被绘制出来。参考基因组基于谁的DNA?参考基因组本应由20名匿名捐赠者的DNA混合而成,但最终,其中73%来自一个人。后来的分析表明,那个人是非裔美国人,而且第二大捐助者(大约6%)主要是东亚血统。科学家已经对数百万个基因组进行了测序,为什么还没有泛基因组?这是因为测序的许多基因组远未完成——事实上,当人类基因组计划宣布“完成”时,单一参考基因组仅完成了92%。当时只能对短的DNA片段进行测序,而且由于大部分基因组是高度重复的,因此许多这些小片段无法重新组装。泛基因组项目使用了产生更长片段的方法,称为“读取”。因此,泛基因组基于99%完整的极高质量序列。我们为什么需要它?——【了解基因组变异】每个人的基因组略有不同——与下一个人相比平均相差约 0.4%——了解这些差异可以深入了解他们的健康状况,有助于诊断疾病、预测医疗结果和指导治疗。使用泛基因组参考将提高科学家在未来研究中检测和理解变异的能力。Figure 2. 人类泛基因组通常,当科学家和临床医生研究个体的基因组以寻找变异时,他们会将个体的 DNA 与标准参考的 DNA 进行比较,以确定一个或多个碱基对的差异所在。到目前为止,参考基因组主要由每个人类染色体的单个序列表示,主要来自一个个体。但是,这个参考已有将近 20 年的历史,并且从根本上受到限制,因为它不能代表人类群体中存在的丰富的遗传变异。这在基因组分析中引入了一个称为参考偏差的问题。相比之下,新的泛基因组是一个参考,它结合了来自不同祖先背景的 47 个个体的基因组。泛基因组在序列具有相同碱基的区域看起来像线性参考,并扩展以显示存在差异的区域。它同时代表了人类基因组序列的许多不同版本,并为科学家提供了一个更准确的比较点,用于比较某些人群中存在的变异,而不是其他人群中存在的变异。在泛基因组参考中添加的 1.19 亿个新碱基中,大约有 9000 万个来自结构变异。结构变异很复杂,可能是序列倒置、插入、缺失或串联重复——两个或多个碱基重复多次的片段。这些新碱基将帮助研究人员研究基因组中以前没有参考的区域,并有可能在未来的研究中将结构变异与疾病联系起来。与使用标准参考的检测相比,使用泛基因组参考进行基因组分析可将结构变异的检测提高 104%。由于泛基因组中存在的数据量增加,泛基因组参考还提高了调用小变体(那些只有几个碱基长)的准确性约 34%。每个人都携带一对染色体——一组遗传自母亲,一组遗传自父亲。泛基因组参考中的个体基因组包含单倍型解析信息,这意味着它可以自信地区分两组父母的染色体——这是一项重大的科学壮举。掌握这些信息将有助于科学家更好地了解各种基因和疾病是如何遗传的。图 1. 呈现 47 个准确且接近完整的多样化二倍体人类基因组组合【创建泛基因组】通过开发先进的计算技术将多个基因组序列对齐到一个称为泛基因组图的结构中的可用参考,使泛基因组成为可能。Paten 和 UCSC 计算基因组学实验室的研究人员帮助领导 HPRC 努力开发创建这种泛基因组图结构所需的算法方法。由于该项目使用的方法,泛基因组参考中的所有基因组都具有极高的质量和准确性,覆盖了每个人类基因组的 99% 以上,准确率超过 99%。通过 Asri 的管道后,各种基因组通过复杂的算法方法编译成泛基因组图结构。在视觉上,图形基因组允许研究人员将各种参考序列中的差异视为其他共享路径中的发散区域。图 2. 组件的转录组注释图 3. 泛基因组图代表不同的变异图 4. 泛基因组图评估【建立可访问的资源】泛基因组草案中的所有前 47 个二倍体基因组都来自参与千人基因组计划 (1000G) 的个人,这是一项有影响力的工作,根据公开同意的样本创建了一个常见的人类遗传变异目录,并于 2015 年完成。这些样本的同意状态允许任何研究人员访问资源,而无需通常伴随基因组研究的隐私障碍,目的是让尽可能多的人可以访问泛基因组。除了关注可访问性外,HPRC 项目还有一个专门的道德团队,专注于该项目的社会和法律影响。他们正在努力预测具有挑战性的问题并帮助指导知情同意,优先研究不同样本,探索与临床采用有关的可能监管问题,并与国际和土著社区合作,将他们的基因组序列纳入这些更广泛的努力。图 5. 可视化复杂的泛基因组位点图 6. 泛基因组辅助分析短读 WGS 数据的性能提升【继续遗产和未来的工作】人类泛基因组是加州大学圣克鲁兹分校的科学家为了解构成人类生命基础的生物密码而进行的数十年努力的延续。研究人员正在朝着到 2024 年完成完整泛基因组的目标取得进展。该团队正在招募新个体来代表一些未包括在千人基因组计划中的人群,尤其是中东和非洲血统的人群。除了完成最终的泛基因组参考,研究人员还在努力组建一个国际人类泛基因组项目,该项目将与世界各地的研究人员建立合作伙伴关系。这些伙伴关系将包括双向技能和知识交流,旨在将创建高质量参考基因组所需的技能和技术交到全球研究人员手中,以便他们能够开展自己的研究。原文链接:https://www.nature.com/articles/s41586-023-05896-x
  • 第六届亚太人类蛋白质组大会隆重召开
    仪器信息网讯,由中国军事医学科学院放射与辐射医学研究所、北京蛋白质组研究中心和复旦大学共同承办的“第六届亚太人类蛋白质组组织(AOHUPO)大会”于2012年5月5日-7日在国家会议中心(北京)隆重召开,这也是该会议首次在中国召开。第六届亚太人类蛋白质组组织(AOHUPO)大会现场(国家会议中心)  来自色列、美国、日本、英国、法国、俄罗斯等20多个国家和地区的1000多名专家学者参加了此次大会,提交学术论文近400篇。2004年诺贝尔化学奖得主、以色列技术研究院Aaron Ciechanover教授,美国系统生物学研究所所长Leroy Hood教授,北京生命科学研究所所长、美国科学院王晓东院士,中国科学院饶子和院士,中国科学院张玉奎院士,中国人民解放军总医院陈香美院士、军事医学科学院贺福初院士、张学敏院士等应邀作专题报告,国家卫生部、科技部、自然基金委和总后卫生部领导也应邀出席大会。  亚太人类蛋白质组组织主席中村和行(Kazuyuki Nakamura)教授(日本),中国人类蛋白质组组织名誉主席、军事医学科学院贺福初院士和中国人类蛋白质组组织主席、复旦大学杨芃原教授共同担任此次大会主席。 左至右:中村和行(Kazuyuki Nakamura)教授(日本)、贺福初院士和杨芃原教授  AOHUPO由在亚洲、大洋洲地区一批知名蛋白质组学科学家于2002年组建而成。在创立者的共同努力下,该组织已发展成为人类蛋白质组组织的重要分支机构之一。从AOHUPO成立至今,一直致力于积极推动该地区研究团队之间的蛋白质组学学术交流。迄今为止,AOHUPO 已成功举办了五届(每两年一次)亚太人类蛋白质组大会。随着中国蛋白质组学研究的迅速发展,AOHUPO 理事会决定在中国北京举办第六届亚太人类蛋白质组大会。  本次大会主题为“蛋白质组学:让生活更美好”,议题包括人类染色体蛋白质组计划、蛋白质-蛋白质相互作用国际合作计划、疾病蛋白质组学和个性化医疗、植物与微生物蛋白质组学、药物蛋白质组学和蛋白质药物及其体内代谢、结构蛋白质组学、蛋白质翻译后修饰、定量蛋白质组学、生物信息学和蛋白质组学新技术新方法等研究领域。  另外,在中国人类蛋白质组组织(CNHUPO)成立十周年即将到来之际,CNHUPO为在中国蛋白质组学相关领域做出杰出贡献的中国科学院张玉奎院士,中国科学院饶子和院士,军事医学科学院贺福初院士、复旦大学杨芃原教授颁发了杰出贡献奖。 CNHUPO为在中国蛋白质组学相关领域做出杰出贡献的中国科学家颁奖,上:中国科学院张玉奎院士,复旦大学杨芃原教授;下:军事医学科学院贺福初院士,中国科学院饶子和院士  大会特邀报告:
  • 梁咏琪成为无创产前检测首位代言人
    日前,据香港媒体报道,准妈妈梁咏琪怀孕6个多月,初为人母她最担心是胎儿的健康,2014年12月初获邀接受无创产前DNA测试,并成为首位代言人。  梁咏琪透露测试只需要抽取7ml血液便可进行16种染色体测试,现在她跟老公知道胎儿健康便安心得多了。  关于唐氏综合症  每一对夫妻都希望能得到健康的宝宝,但是在600-1000个活产婴儿中就有一个21-三体综合征患儿,又称唐氏综合征,亦称先天愚型,是人类最早被确定的染色体病,它是人类最早发现、最为常见的染色体畸变,占小儿染色体病的70%~80%。本病发病率随孕妇年龄增高而增加。  临床主要特征为智能障碍、特殊面容和体格发育落后,并可伴有多发畸形。  目前尚无有效治疗方法,要采用综合措施,包括医疗和社会服务,对患者进行长期耐心的教育。要训练弱智儿体能训练,促进智能发育,掌握一定的工作技能。对患儿宜注意预防感染,如伴有先天性心脏病、胃肠道或其他畸形,可考虑手术矫治。这需要家庭和社会大量的资源,唐氏综合征的患儿很难融入社会。  虽然孕妇生育唐氏患儿的风险随其年龄增长而递增,但高龄孕妇产前诊断做得比较好,加上年轻孕妇远多于高龄孕妇,80%的唐氏综合征患儿是年轻的孕妇所生,因此年轻的孕妇也不要放松警惕。  传统的产前筛查诊断方法  1. B超测量胎儿颈项皮肤厚度  2. 血清学方法(测定孕妇血清白绒毛膜促性腺激素(HCG)、甲胎蛋白(AFP)、游离雌三醇(FE3),根据孕妇检测此三项值的结果,并结合孕妇年龄,计算出本病的危险度,以决定是否进行产前诊断。)  3. 羊水细胞染色体核型分析是本病产前诊断的确诊方法,其常见核型与外周血细胞染色体核型相同。羊膜穿刺术属于侵入性的检查,可能会造成0.5-1%的流产风险,也有0.05%的机率会造成新生儿外型的伤害。  更安全、准确、无创的检测方式&mdash &mdash 无创产前基因检测  传统的产前诊断方法准确度低,有些还可能给孕妇和胎儿造成不可逆的伤害。因此急需一种更安全、更准确、更快捷的检测方法来满足目前临床的这种迫切需求。1997年,科学家在孕妇的血液中发现了胎儿游离DNA片段,基于这一发现,无创产前基因检测应运而生。通过10ml的孕妇的血液,可以预先知道胎儿是否患唐氏综合征。  无创产前基因检测通过采集孕妇外周血提取游离DNA,采用新一代高通量测序技术并结合生物信息分析,得出胎儿发生染色体非整倍体的风险率。检测具体流程包括采血、将采集的血液进行样本处理、基因测序、生物信息分析、报告发放和解读。  目前无创产前基因检测的适宜检测时间是12~24孕周。在早于12孕周时进行检测,可能会因外周血中胎儿DNA浓度过低而达不到检测要求。超过了24孕周的孕妇可以由专家进行检查后再决定是否需要进行该项检测。  如今,无创产前基因检测技术正逐步得到应用,为孕妈妈们带去了安心。随着技术的不断完善和检测经验的不断积累,无创产前基因检测技术还可更广泛地应用于其他染色体非整倍体和染色体微缺失微重复等染色体疾病的检测,减轻患者的负担,让更多的家庭避免悲剧的发生。
  • 广州生物院等在染色质高级结构调控细胞命运机制研究中获进展 成果发表于Cell Reports
    真核生物基因组DNA缠绕在组蛋白八聚体上形成染色质,并在染色质架构蛋白的作用下逐级折叠形成远距离的染色质相互作用(或染色质环)、拓扑相关结构域和染色质区室等染色质高级结构。远距离染色质互作可以调控基因表达,在细胞命运决定过程中具有关键作用。CCCTC结合因子(简称CTCF)最早被认为是绝缘子结合蛋白,随后发现CTCF在转录激活/抑制、基因印记、X染色体失活等方面均发挥重要的调控作用。近年来,CTCF被认为是染色质架构蛋白,与Cohesin复合物等在调控远距离染色质相互作用和维持染色质“成环”等方面起到重要作用。然而,CTCF是否在同一生物学过程中发挥其多重功能至今尚不清楚。4月5日,中国科学院广州生物医药与健康研究院研究员姚红杰课题组联合美国加州大学圣地亚哥分校教授付向东课题组,在Cell Reports上,发表了题为CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming的研究论文。该研究运用体细胞重编程到诱导多能干细胞为模型,结合多维组学技术,并联合生物信息分析,揭示了CTCF介导的染色质绝缘和染色质结构变化协同调控干细胞多能性获得的新机制。研究发现,CTCF在体细胞重编程过程中表达逐渐升高,并发挥促进体细胞重编程为诱导多能干细胞的作用。在这一过程中,CTCF具有同时抑制体细胞相关基因表达和促进多能性基因网络激活的双重功能。机制分析发现,CTCF通过发挥染色质绝缘功能抑制体细胞相关基因的表达,同时,CTCF具有维持多能性基因染色质开放的作用,CTCF还结合在部分多能性基因启动子区,促进这些多能性基因增强子(Enhancer)和启动子(Promoter)之间的相互作用(EP互作)。此外,该研究还揭示了CTCF与染色质重塑因子SMARCA5形成蛋白复合物,有助于维持多能性基因的染色质开放和多能性转录因子的结合,促进多能性基因网络的激活。研究表明,在体细胞重编程为诱导多能干细胞过程中,CTCF发挥了介导染色质绝缘和染色质重塑的协同调控作用。该研究进一步完善了CTCF的生物学功能,并为后续研究细胞命运决定的调控机理提供了新思路。研究工作得到国家杰出青年科学基金、国家重点研发计划、国家自然科学基金联合基金项目和中科院战略性先导科技专项等的支持。  论文链接 本研究的模式图
  • 岛津“火眼金睛” 鉴别染色黄鱼
    你高高兴兴地从商店买回的新鲜、泛着诱人金色的黄鱼有可能是被染料装扮过的!近期,媒体披露了染色黄鱼事件,食品安全问题再次刺痛了民众的心。 事件涉及的黄色染料&ldquo 酸性橙Ⅱ&rdquo 赫然列在国家卫生部颁布的《食品中可能违法添加的非食用物质名单(第四批)》中。此类违禁黄色化学染料及违规色素经常使用在黄鱼、鸡肉、咸菜及豆制品中,国家监督部门已严加禁止非食用类化学染料在食品中的使用。但仍有不法商人使用违禁化学染料来掩盖食品的真相(掺伪)达到卖相好,以次充鲜、以假乱真、抬高价格以谋取暴利的目的,此类掺伪现象的存在,使消费者的健康受到严重危害。 在这些违禁黄色化学染料中,主要有碱性橙、碱性嫩黄O、酸性橙Ⅰ、酸性橙Ⅱ和酸性黄36这五种毒性较大的化学物质(图1),均为国家禁止在食品中使用的黄色有毒化学染料,且碱性橙、酸性橙Ⅰ、酸性橙Ⅱ和酸性黄36为偶氮类工业染料,比食用色素更易与鱼类表皮着色,不易退色,染色后的杂鱼和养殖黄鱼的表面颜色与野生黄鱼的颜色极为相近。使用黄色染料对杂鱼进行染色的目的是对鱼体泛白、脱鳞、质量偏差的小黄鱼起到美色以谋取暴利。图1 几种黄色染料的结构式 在发生食品安全事件之际,总在第一时间提供问题食品检测解决方案的岛津公司,此次鉴于在染色黄鱼、染色豆制品事件中暴露出的问题,为解决常规液相色谱方法在鱼类等复杂基质食品中检测灵敏度低的问题,根据独家离子阱飞行时间谱技术开发出&ldquo 食品中快速筛查非法添加色素的检测方法&rdquo 。 该方法在复杂基质中,可同时快速筛查多数染料(碱性嫩黄、碱性橙、酸性橙Ⅰ、酸性橙Ⅱ和酸性黄36),并最终给出定量结果。该方法突显高效液相-离子阱飞行时间质谱(LCMS-IT-TOF)分析速度快、分辨率高和灵敏度高的特点,可广泛应用于食品化妆品领域中非法添加及禁用物质的快速筛查和准确定量。 为使民众&ldquo 吃得安全、吃得安心&rdquo ,岛津在食品安全检测解决方案的开发之路上,从未停歇、始终领跑! 有关&ldquo LCMS-IT-TOF测定食品中五种偶氮类黄色染料&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_162930.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 一片蓝海 上游仪器国产化程度低——中国辅助生殖行业产业白皮书发布
    在我国,生育既是家事、也是国事,是基础性、全局性和战略性的话题。辅助生殖作为现代医疗技术在响应国家人口问题上的应用,方兴未艾;生殖健康检测作为提高人口质量和防控出生缺陷的重要手段,未来大有可为。为此,2022年6月19日,弗若斯特沙利文(Frost & Sullivan,简称“沙利文”)正式发布《中国辅助生殖行业产业现状与未来发展白皮书》(以下简称“《白皮书》”),详述行业发展历程与产业现状,洞察行业未来发展趋势,为辅助生殖与生殖健康检测领域的关注者提供参考。中国辅助生殖行业产业白皮书发布基于最新人口统计数据,少子及老龄化已成为21世纪我国面临的最大灰犀牛之一。在中国,对于生育和人口质量的重视已经上升到了国家高度;随着2022年“两会”拉下帷幕,对于生育问题的讨论延续至今。辅助生殖技术指运用医学技术和方法对配子(精子和卵子)、合子(受精卵)、胚胎进行人工操作,以达到受孕目的技术。随着技术的发展,辅助生殖为不孕不育夫妇带来了曙光,而生殖健康检测则有利于减少出生缺陷,实现优生优育。《中国辅助生殖行业产业现状与未来发展白皮书》对辅助生殖行业的行业现状、检测手段、技术发展、重要意义以及重点公司进行了梳理,旨在分析辅助生殖行业现状与痛点,以及生殖健康检测作为辅助生殖流程的关键一环对于辅助生殖行业、国家人口出生缺陷防控的重要意义,并聚焦中国辅助生殖行业市场竞争态势,反映该市场上下游行业龙头企业的差异化竞争优势。政策助力行业发展,辅助生殖行业热度持续上涨辅助生殖技术(ART)概述辅助生殖技术类型主要可以分为人工授精(Artificial Insemination,AI)和体外受精(In Vitro Fertilization,IVF)及其各种衍生技术。其中,子宫内授精是人工授精的主要类型,是现有的辅助生殖技术中最简单的办法,但效果有限,受孕率较低。体外受精(IVF),俗称试管婴儿,是目前应用最广泛的辅助生殖技术。一个IVF周期可能需要2-3周,一般包括获取卵子、体外受精、胚胎培养和胚胎(受精卵)移植等一系列治疗流程。IVF技术分为三代:第一代体外受精-胚胎移植(IVF-ET)、第二代胞浆内精子注射(ICSI)、以及第三代植入前基因/遗传学检测(PGT),每一代IVF适用于不同患者。作为现今治疗不育症最有效的辅助生殖技术,体外受精IVF已形成较为完善的检测和治疗操作流程,在辅助生殖市场中占据重要地位。资料来源:沙利文分析辅助生殖行业总览辅助生殖行业是围绕着辅助生殖技术的一系列参与者所共同组成的行业统称。辅助生殖行业以ART技术为核心,通过技术干预,使受孕发生,旨在治疗不孕不育症,造福患者乃至社会。按照发生的流程来看,辅助生殖行业可以分为上游和下游两部分,上游生殖健康检测和下游辅助生殖治疗共同构成完整的辅助生殖行业产业链。资料来源:沙利文分析辅助生殖行业顺应宏观环境,受到国家政策倾斜在世界许多国家,不孕不育症干预措施的可及性和质量仍是一大挑战。不孕不育症的诊断和治疗往往未被列为国家人口与发展政策和生殖健康战略的优先事项,也很少能获得公共卫生资金。但是在中国,无论是医疗技术的发展,还是连续推出的“二胎”甚至“三胎”的人口政策的积极落地,昭示着在中国大环境下,对于生育问题的重视已经上升到了国家高度。中国辅助生殖行业产业白皮书2021年5月11日,国家统计局公布第七次全国人口普查主要数据结果:2020年全国人口总数达到14.12亿人,十年间复合年增长率约为1%;2020全年出生人口1,200万人,人口出生率为8.50‰,出生人口数量连续三年滑落,出生率为1952年该数据公布以来最低。为了减缓我国老龄化的进程以及出生率的下滑态势,国家人口政策逐步放开:从2015年“双独二胎”政策进阶到2021年5月提出的“三胎”政策,鼓励生育的人口政策极大利好辅助生殖行业;同时,政府出台监管政策完善行业顶层设计,行业监管趋于规范,足见国家政府重视生育和人口问题、积极支持进行人类辅助生殖技术发展的总体态度。通过推动重点地区试点辅助生殖纳入医保支付,减少患者经济负担,利好政策助力辅助生殖加速渗透和深度发展。辅助生殖行业发展现状分析中国辅助生殖渗透率远低于全球其他发达地区,但增长速度快。在辅助生殖需求增大和技术的提高等多重驱动因素作用下,与发达国家渗透率差距逐渐缩小。随着宏观政策的倾斜以及不孕不育疾病负担的加重,近年辅助生殖拿证机构呈现逐年增加的趋势。过去,中国经批准开展人类辅助生殖的医疗机构主要分布在华北地区以及华南地区(广东),随着行业快速发展,地域分布的差异逐渐缩小。此外,相比于行业发展更为成熟的国家,我国开展三代辅助生殖的机构数量较少。截至2020年12月31日,只有78家医疗机构被批准有资质实施三代PGT;此外,大量因染色体结构异常以及其他单基因遗传病导致的不孕不育夫妇也无法有效就医,反映出中国医疗资源尤其是拥有高端技术的医疗资源缺口较大。生殖健康检测对于提高个体生命质量和减轻社会宏观疾病负担意义重大生殖健康检测介绍在辅助生殖领域,生殖健康检测主要指在孕前时期需要对于孕前男女双方进行生殖健康检查和检测,保证健康的精子与卵子结合,排查孕期可能出现的潜在不利因素,减少流产或出生缺陷的发生。生殖健康检测可作为辅助生殖流程中重要的一环,有助于提高辅助生殖成功率。资料来源:沙利文分析按照检测阶段来分,生殖健康检测主要包括在备孕期对于孕前男女双方的生殖健康相关检测,以及产前对于胚胎的检测。其中,孕前男女双方生殖健康检测项目包括:精子质量检测、激素检测、父母遗传病筛查、无创产前基因检测、染色体核型检测;产前胚胎检测主要包括:超声产检、穿刺产检、胚胎植入前遗传学诊断(PGT)、染色体微阵列分析检测CMA。资料来源:沙利文分析生殖健康检测产业链分析在生殖健康检测行业中,上游包括检测器械与耗材的提供商,提供包括检测设备、图像扫描设备、检测试剂等;以及检测结果分析系统开发者,提供用于化验结果分析的数据分析系统和用于染色体检测分析的图像扫描分析系统。行业下游包括检测分析专家网络、检测服务提供方、以及生殖健康检测消费者。资料来源:沙利文分析生殖健康检测的重要意义分析生殖健康检测不仅对于公民个体生活质量及健康和家庭幸福意义重大,也对整个国家的人口素质和社会经济的健康可持续发展具有正面影响。中国是人口大国,也是出生缺陷人口较多的国家。出生缺陷给家庭和社会带来巨大负担和潜在寿命损失,已成为影响人口素质和群体健康水平的公共卫生问题。在我国,出生缺陷目前是导致早期流产、死胎、婴幼儿死亡和先天残疾的主要原因。为了减轻出生缺陷给人民和社会带来的严重负担,我国大力推行出生缺陷一级、二级和三级防控措施,三级防控由于可操作性高,已经在全国各地得到普及;以超声检测、胎儿基因检测为代表的二级防控也逐渐被大众所认同。但由于二三级防控的时间窗口依然较为滞后,检测时间已接近生产期或在患儿出生后,伴随着我国出生缺陷防控关口前移的趋势,以婚前孕前阶段检测为主的一级防控预计将快速推广。资料来源:沙利文分析在一级防控手段中,对备孕家庭进行染色体检测,筛查双方可能存在的染色体异常,针对性地应用辅助生殖技术,减轻因不明原因反复流产带来的个体伤害和家庭创伤,对整个社会的出生缺陷防控意义非凡。生殖健康检测除了作为辅助生殖流程重要组成部分对于个人的意义重大之外,也可潜在应用于国家和政府对公民大范围的筛查。通过完善的生殖健康检测项目,排除可能威胁新生人口健康的遗传因素(如出生缺陷、癌症等),对于全人口的优生优育计划具有宏观的意义。染色体核型检测的重要意义分析在众多出生缺陷致病因素中,染色体异常是导致严重新生儿出生缺陷的重要原因,最新的真实世界数据表明,中国染色体异常发生率已达到1.3%;而染色体核型检测等生殖健康检测有助于对这一情况进行排查,可帮助前置性发现一些高流产风险的胎儿,直接在胚胎移植前重新进行受精培育。在育龄人口中常规开展这样的检测不仅对个体健康和家庭幸福意义重大,更极大利好整个国家的人口素质和社会经济的健康可持续发展。染色体检测技术经过多次迭代,逐步实现数字化和智能化,效率不断提高。根据科技水平和自动化智能化程度的不同,我国染色体核型检测技术可分为三代:资料来源:沙利文分析其中,三代染色体检测技术融合了人工智能设备和技术,对检测机构配置存在一定要求,不仅需要检测机构具有相当的人才储备与硬件设备和技术储备,更需要大量的检测样本信息积累用于优化系统与算法。生殖健康检测市场潜在容量可观,目前仍属一片蓝海目前,中国生殖健康检测潜在市场涵盖约4,000万对备孕夫妇,以此估算染色体检测市场潜能可突破550亿元人民币;未来检测范围有望拓展,甚至潜在可延伸至对于我国近3亿育龄人口,作为其常规开展的检测。目前生殖健康检测行业在我国初步形成了完整的产业链;但行业上游硬件部分国产化程度低,且大范围、高质量的常规检测服务尚未开展。总而言之,在我国,生殖健康检测行业生态仍在构建和逐步完善中,广阔市场仍是一片蓝海。生殖健康检测及辅助生殖治疗技术持续发展,对于配套器械的创新研发及国产替代逐渐成为趋势长久以来,我国生殖健康检测面临检测成本高、医院普及度低、检测灵敏度不足、国家基因信息安全难保障等痛点;同时,辅助生殖治疗器械有自研自产能力不足,进口品牌仍占据主导等情况。随着技术水平的提升,研发创新和产品更新迭代不仅是有效解决上述痛点的有效手段,更是行业进步的重要动力。辅助生殖与生殖健康检测行业生态参与者分析《报告》对重点布局生殖健康检测行业的国内外公司进行了梳理,展现了差异化的技术竞争优势,以下为部分参与者介绍:辅助生殖行业上游参与者:生殖健康检测上游生殖健康检测领域涵盖影像检测、体液生化检测以及遗传学检测。其中,染色体核型检测作为在新生儿遗传病筛查领域具有里程碑意义的技术,可分为三代技术,其代表供应商差异较大,第二代染色体检测技术的代表供应商为国际显微成像巨头——徕卡和蔡司;第三代技术的代表企业为中国德适生物。徕卡显微系统公司(Leica-Microsystems):徕卡显微系统是全球显微镜与科学仪器的领导者。徕卡显微成像系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的全球领导厂商。徕卡显微系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡显微系统在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构。徕卡显微系统历史悠久,作为第二代染色体检测的传统优势品牌,在全球各地区均有较高的市占率。蔡司显微镜(Zeiss Microscopy GmbH):蔡司作为显微镜制造商,主要提供用于生命科学、材料研究、教学和临床应用的全套显微镜系统及服务。蔡司显微镜始建于1846年;2006年,光学显微镜的各部门正式合并组建了Carl Zeiss MicroImaging GmbH,并于2011年合并了电子显微镜业务。蔡司染色体分析产品属于第二代技术,通过摄像机将显微镜下观察到的染色体实时图像拍摄下来并传输到电脑上,再利用染色体图像分析软件进行图像调节处理、分割粘连和重叠的染色体、核型识别与排列等操作。受益于其高分辨率和分析多条染色体核型的功能,蔡司显微镜在全国各地生殖健康检测中心分布较为广泛。德适生物(DIAGENS):德适生物是中国生殖健康领域领军企业,秉承“让生命更好的传承”愿景,专注遗传疾病诊断、辅助生殖领域。在生殖健康检测领域,作为第三代染色体核型检测技术的探索者与先行者,德适推出全球首创AI染色体诊断设备MetaSight 和 AutoVision,获得全球唯一欧盟、中国两地上市许可。德适运用其染色体核型检测领域的专业能力,集研发、产业化及应用于一体,整合领域内的杰出人才与专家资源,为第三代技术保驾护航。在公司强大的技术实力及团队搭建能力支撑下,不仅保证了第三代技术下染色体检测报告快速出具,且极大促进AI核心算法不断高效优化与迭代。安诺优达(Annoroad):安诺优达基因成立于2012年,总部位于北京,是中国基因组行业的平台型企业,是国家卫健委首批高通量基因测序临床应用试点单位。安诺优达通过采集流产组织、成人及儿童的血液等样品,进行新一代高通量测序,并通过生物信息学比对分析,即可准确分析样本染色体数目非整倍性变异及0.1M以上的染色体缺失/重复异常。辅助生殖行业下游参与者:辅助生殖治疗下游辅助生殖治疗领域目前高端试剂/耗材由国际供应商如瑞典Vitrolife、美国Origio等为代表的欧美企业占据主要份额,国产辅助生殖无菌试剂器材产品市场份额不超过10%。但随着政策环境利好“国产替代”,国家计划对于辅助生殖医疗产品的自主研发与国产化进行立项研究。例如由山东大学牵头,联合仁济医院、中山大学、南京医科大学等医学科研机构,与德适生物、贝康医疗等机构合作开发辅助生殖相关试剂与耗材。Vitrolife:Vitrolife是一家瑞典医疗技术公司,成立于1994年,2001年在斯德哥尔摩交易所上市。Vitrolife专注于开发、制造和销售用于体外受精的医疗器械,为其客户提供广泛的产品和解决方案,包括培养基、检测试剂、和一次性耗材。Vitrolife 是一家全球性公司,业务遍及约110个国家/地区。Vitrolife主要提供IVF以及诊所和测试实验室所需耗材来支持辅助生殖治疗,同时也提供胚胎评估相关的软件和设备,用于PGT服务,协助辅助生殖机构评估和筛选优质胚胎。德适生物(DIAGENS):德适生物作为生殖健康领域国内全流程领军企业,在辅助生殖领域下游亦有布局。伴随中国医疗器械国产替代的大潮,德适生物依托国家对于辅助生殖相关试剂与耗材重点科研项目的支持,发展核心高值耗材和试剂,自主生产打破辅助生殖耗材生产技术的国际垄断,顺应政策趋势。孩子是每个家庭快乐的源泉,然而我国已步入不孕不育率较高的国家行列。随着技术的发展,辅助生殖为不孕不育夫妇带来了曙光,而生殖健康检测则有利于减少出生缺陷,实现优生优育。辅助生殖作为现代医疗技术在响应国家人口问题上的应用,方兴未艾;生殖健康检测作为提高人口质量和防控出生缺陷的重要手段,未来大有可为。精彩会议预告:点击图片免费报名参加“第五届基因测序网络大会”
  • 铀的替代方案!生物电镜染色新方法
    醋酸铀酰(UA)通常用作生物电子显微镜超薄切片的染色溶液。醋酸铀酰作为一种放射性核材料,受严格的国际法规约束。日本科研人员为了开发一种替代的、易于使用的超薄切片染色方法,研究了各种商用光学显微镜染料。研究人员发现,Mayer' s苏木精(MH)-Reynold’s柠檬酸铅溶液的染色结果与醋酸铀酰-Reynold’s柠檬酸铅溶液的染色结果相当,因此,该方法被认为是可靠且有希望的替代醋酸铀酰染色的新方法。1958年,Watson报道了用醋酸铀酰对生物标本进行电镜染色的方法。此后,醋酸铀酰和铅溶液的双重染色法因其简单和最佳的染色结果,已在世界各地的电子显微镜设备中使用。此外,电子显微镜(EM)中的阵列层析成像(如有连续截面透射电子显微镜(TEM)或扫描电子显微镜(SEM)、连续块面成像SEM)和聚焦离子束SEM)最近在很多生物科学学科中得到了越来越广泛的应用。阵列层析成像比串行块面部成像SEM和聚焦离子束SEM更具灵活性,因为它保留了所有部分。最近的技术进步使我们能够制备300–5000个连续超薄切片标本,用醋酸铀酰染色,并通过TEM获取图像,从而产生万亿字节的数据。在此过程中,需要大量醋酸铀酰。然而,由于严格的国际法规,获得铀酰化合物最近变得很困难。此外,由于它们被用作武器的核材料,预计在世界范围内对其使用以及可用性、储存和处置的限制也将更加严格。虽然已经提出了几种醋酸铀酰替代品用于染色,但没有一种能够有效地替代醋酸铀酰。因此,醋酸铀酰仍是生物研究领域电镜研究的最佳染色液。日本科研人员建立了一种新的染色方法,使用易于处理的预染色剂,作为醋酸铀酰和其他重金属双重染色的替代方法。科研人员检查了光镜方法中常规使用的各种基本染色溶液,以确定替代试剂,该试剂可以染色嵌入环氧树脂中的常规制备的薄片和半薄片。(a–h)小鼠肝脏的EM图像用各种染料染色,然后用RPb染色。用醋酸铀酰、MH、Gill No.3和Kernechtrot以及RPb染色的小鼠肝细胞的定量分析用MH和RPb染色的各种细胞和组织的EM图像铀酰铅染色流程可追溯到1958年。目前(2022年),透射电子显微镜已经发展成为一种对比度极大提高的仪器。现代电子光学、可变加速电压、可变孔径、高对比度和高分辨率图像传感器(CCD)或互补金属氧化物半导体(CMOS)相机图像记录以及高性能图像处理软件无疑将改善图像质量,即使是低对比度试样。然而,醋酸铀和铅的双重染色可能仍将在世界各地的许多电子显微镜设备中广泛使用。MH具有以下优势:稳定供应商业和经济可用的染料溶液,无需担心液体废物(因为它广泛用于对临床样本的石蜡切片进行染色以进行诊断)。染色时间为5-20分钟,与醋酸铀酰相同。然而,MH的一个缺点是,它染色为深蓝紫色,这使得在浸泡过程中很难看到网格。这可以通过污染MH溶液液滴上的网格来克服。国际原子能机构的“电离辐射防护和辐射源安全国际基本安全标准”(BSS)规定了具体的豁免水平,国际上正在通过立法制定放射性材料的新法规。如上所述,与使用醋酸铀酰(放射性物质)的染色方法相比,MH RPb染色方法在试剂购买、搬运、储存和废液处理方面是一种简单而有用的方法。参考资料:https://www.nature.com/articles/s41598-022-11523-y
  • 临床应用丨数字PCR在产前诊断中的应用
    产前诊断是运用各种技术手段,在出生前对胚胎或胎儿的发育状态、是否患有疾病等方面进行检测诊断,对可治性疾病可选择适当时机行宫内治疗;不可治疗的疾病做到知情选择。而产前诊断中胎儿组织取材,通过介入性产前诊断时不可避免混入母体成分,容易影响胎儿遗传物质诊断的准确性;无创产前诊断虽可避免流产风险,但孕早期胎儿游离DNA(cfDNA)含量低,大量母体DNA的存在,对核酸提取技术及检验技术提出更高要求。相较于普通荧光定量PCR及其他分子诊断技术,数字PCR 以其超高灵敏度、不受背景信号干扰、绝对定量等特点在产前诊断技术中占有一定优势。 数字PCR在无创产前诊断中的应用 ┃数字PCR用于胎儿染色体非整倍体产前检测 新羿团队开发了一种实用的基于数字PCR的 NIPT 方法,选择 chr21 上的 20 个基因座和 chr18 上的 20 个基因座并设计了相应的引物对和探针,通过chr21 总拷贝数与chr18 总拷贝数的比值测定胎儿是否为非整倍体[1]。为了验证基于多重数字PCR的 NIPT 的准确性和临床适用性,测试来自 30 名孕妇的血浆 DNA 样本,其中包括 16 名男性胎儿和 14 名女性胎儿。使用 NGS 对所有样本进行三体风险状态分类,数字PCR检测结果与NGS检测结果完全一致。图 使用数字PCR检测30例临床样本结果 ┃基于重复片段用于无创产前诊断的新方法厦门大学生命科学学院、分子诊断教育部工程研究中心李庆阁教授团队与厦门大学健康医疗大数据国家研究院、苏州市立医院合作,基于新羿生物的微滴式数字PCR,提出了创新NIPT方案[2]。文章围绕人类染色体非整倍体检测的生物标记物——重复片段(segmental duplication,SD)开发了计算程序ChAPDes筛选靶点,使用多色探针熔解曲线技术和数字PCR技术进行染色体非整倍体检测及临床队列研究,其中,新羿生物数字PCR技术平台在评估SD片段和验证无创产前检测方法学中起到关键作用。 图A 数字PCR方法检测染色体非整倍体 图B 数字PCR方法用于NIPT的理论模型分析与临床评价 收集孕周为 14-20 周的 NIPT 样本进行临床评价,使用基于数字PCR方法进行21三体综合征的无创检测和双盲分析,检测结果与 NGS 完全一致。本研究证实SD片段可作为人类染色体非整倍体检测的首选生物标记物,为大规模产前诊断提供了新的途径。结合数字PCR技术,类似的检测策略也可用于诊断其他染色体数目异常和遗传疾病。 数字PCR在单基因遗传病诊断中的应用 脊髓性肌萎缩症(Spinalmuscularatrophy,SMA)是儿童最常见的遗传性神经肌肉病,目前用于SMA相关基因检测和拷贝数确定的方法复杂、耗时或无法同时检测多个靶标。新羿生物基于其自主知识产权的5色荧光流式数字PCR技术,与清华大学等单位合作,建立了能够在单管检测,同时提供 SMN1 与 SMN2 拷贝数的方法,具有准确、快速、操作简单、样本用量少和适用于多种类型样本的优势[3]。与现有的检测方法如限制性片段长度多态性(RFLP)和荧光定量PCR(qPCR)相比,本方法能精准检测更多靶标,且本方法对模板量要求低(≥ 1.5 ng);与金标准方法多重连接探针扩增(MLPA)相比,本方法检测周期更短(首次出结果由24 h缩短为2.5 h)、操作更简单、对模板量的要求低和适用于更多种类型样本(羊水、绒毛膜、外周血、口腔拭子、干血斑)。为SMA的分子诊断、大规模筛查和疾病严重程度评估提供了一个有力的工具。 ┃参考文献[1] Tan, C. et al. (2019). A multiplex droplet digital PCR assay for non-invasive prenatal testing of fetal aneuploidies. Analyst, 144(7):2239-2247.[2] Chen, X. et al. (2021). Segmental duplication as potential biomarkers for non-invasive prenatal testing of aneuploidies. Ebiomedicine, 70, 103535.[3] Tan, C. et al. (2022). Single-tube multiplex digital polymerase chain reaction assay for molecular diagnosis and prediction of severity of spinal muscular atrophy. Analytical Chemistry, 94(8), 3517-3525.新羿生物生殖遗传相关检测试剂盒目录
  • 凉席随机抽检:甲醛超标1.25倍 或因为染色
    在夏季,由于凉席直接接触身体,甲醛超标的凉席会对皮肤产生一定刺激,加上夏天人们大量出汗,这些不良物质更容易被人体吸收,尤其对于孩童,可能引起过敏性皮炎、色斑等问题。凉席甲醛测试最后一步,工作人员在分析成分凉席甲醛测试取样凉席脱色测试  秋意渐起,家中的凉席到了该收起来的时候——但是别急,收之前先看看自家凉席是否合格。近日,北京市工商局发现部分凉席存在甲醛超标、染色不牢等情况。对随机购买6张凉席的甲醛与染色牢度进行检测,发现质量参差不齐,甚至有的超出标准限值1.25倍。  随机购买的2号竹席(实验后甲醛值测出169mg/kg,超标1.25倍,且有明显脱色现象)的淘宝店铺,其商品页面写着“正面采用100%天然无污染的多年老竹为原材料̷̷天然,绿色,健康̷̷头层竹青,本色,无染色”。  不过,当询问店家,竹席会不会出现甲醛超标情况时,店家称店内产品不存在这种隐患,那些“看上去很漂亮、光的,上过油漆的”才会存在这样的问题,因为“不上油漆胶水就不漂亮了”,而他们的产品是最普通的竹席,不会用甲醛进行处理,同时称产品也没有经过染色。  中国农业大学食品健康教授朱毅介绍,甲醛对人体的危害以呼吸为主,通过呼吸吸收的甲醛比通过食物吃下去的甲醛危害更大。在夏季,由于凉席直接接触身体,甲醛超标的凉席会对皮肤产生一定刺激,加上夏天人们大量出汗,这些不良物质更容易被人体吸收,尤其对于孩童,可能引起过敏性皮炎、色斑等问题。  实验室:  北京理化分析实验室  采用标准:  GB/T 2912《纺织品甲醛的测定》《竹编制品》《藤编制品》《草编制品》  实验对象:  随机购得的2张竹席、2张藤席、2张草席  实验时间:  2016年9月2日  ■ 实验过程  甲醛检测 草席藤席均合格 竹席有一张超标  实验步骤  根据GB/T 2912《纺织品甲醛的测定》,采用了水解的方法测试游离甲醛,以此检验各凉席中的甲醛含量。  实验人员先将3种共6张凉席进行标号(竹席1,竹席2,藤席1,藤席2,草席1,草席2),然后用剪刀分别剪下6根张凉席的小块样本,在天平中进行称重,待样品重量稳定在1g左右后,将这些小块样本分装入对应标号的容器中,然后将100mL水倒入容器内浸泡样品。这6个容器随后被盖紧、放入水浴仪器中,在40摄氏度左右的温度下振荡1小时,然后在桌上静置至室温状态,随后从中过滤出样品溶液。  这些过滤出的样品溶液,之后被分别吸取5mL,放入6根相对应的试管内,实验人员向每根试管中加入5mL乙酰丙酮溶液,然后摇动试管,随后,这6根试管也被放入40摄氏度左右的水浴中,进行半个小时的显色,取出之后,在常温下避光冷却半小时。  最后一步,是将6根样品液试管以及1根对照液试管,分别与装有蒸馏水的试管一同放入10mm的吸收池,在分光光度计412nm波长处,测定吸光度。  实验结果  根据《竹编制品》、《藤编制品》、《草编制品》三种标准,其均规定相应材质的凉席,其甲醛含量不超过75mg/kg。  而这6张凉席中,2张草席和2张藤席检出数值均小于20mg/kg,而2张竹席的数值分别为69mg/kg和169mg/kg,一个接近标准限值,一个超出标准限值1.25倍。  染色牢度测量 两张竹席均有明显脱色现象  实验步骤  根据标准,三种凉席的染色牢度的测量方式与标准均相同。  实验人员先兑出浓度为65%的乙醇溶液,然后带上胶质手套,拿出脱脂纱布在乙醇溶液中充分浸泡,随后在凉席上的染色部位,用力往返擦拭10次。  实验结果  经过测量,其中2张竹席均有明显的脱色现象,而1张草席和1张藤席呈现轻微脱色,剩下2张色牢度较高,没有脱色。  ■ 专家说法  “凉席甲醛超标可能是因为染色”  北京服装学院教授龚公式介绍,凉席中出现甲醛,除极少量的植物天然分解外,可能是因为染色。他解释,有些商家为了使竹凉席看上去青绿色好看而人为染色,染料及助剂中可能含有甲醛。  另一方面,有些竹席是双面竹席或者会附加底层,而将两层产品固定在一起的过程中,很多会选择用胶来黏接,一些不合格的黏胶中可能含有甲醛,还可能会有其他挥发性有机物等有害气体。另外,在进行防蛀工艺时,也可能使用含有甲醛的材料。  在测试中,2张竹席的甲醛含量明显高于草席与藤席,那么凉席的甲醛含量是否与材质有关?对此,龚公式表示,凉席的甲醛含量与材质关系不大,而与厂家后续的加工关系密切,竹席甲醛含量较高,可能是因为相比草席与藤席,竹席被上色的可能性更大。  “最好购买无特殊气味的凉席”  由于甲醛对人体存在危害,那么如何挑选凉席才能避开甲醛超标的产品呢?  中国农业大学食品健康教授朱毅介绍,首先还是要买质量过硬的产品,价格太低的不要买,其次,不管是竹席、草席或藤席,购买的时候都要注意一下味道,如果有刺鼻气味,那么很有可能甲醛含量较高,因此最好购买无特殊气味的凉席。  如果凉席已经买回家,闻起来有刺鼻气味,那么先不要急于使用,可以先用温水浸泡、清洗一下,若材质不宜泡水,可以用湿毛巾擦一下,甲醛溶于水,这样处理可以降低凉席中的甲醛容量。清理之后最好再晾晒几天,等味道散了再使用。  此外,消费者购买凉席时也要注意颜色,应尽量选择原色或浅色凉席。在过程中应观察凉席的用料色泽是否匀称,有些外观艳丽、色泽均匀一致的凉席,可能添加了工业染料。
  • 首个完整无间隙人类基因组序列公布
    被誉为生命科学“登月计划”的人类基因组测序再次取得重大进展:国际科学团队端粒到端粒联盟(T2T)发表了第一个完整的、无间隙的人类基因组序列,首次揭示了高度相同的节段重复基因组区域及其在人类基因组中的变异。这是对标准人类参考基因组,即2013年发布的参考基因组序列(GRCh38)的“重大升级”。当地时间31日,《科学》杂志连发6篇论文报告这一成就。2001年2月12日,由6国科学家共同参与的国际人类基因组计划首次公布人类基因组图谱及初步分析结果;2003年4月15日,公布了人类基因组序列草图。然而由于技术限制,当初的人类基因组计划留下了大约8%的“空白”间隙。这部分很难被测序,由高度重复、复杂的DNA块组成,其中包含功能基因以及位于染色体中间和末端的着丝粒和端粒。新的无间隙版本被称为T2T-CHM13,由30.55亿个碱基对和19969个蛋白质编码基因组成。增加了近2亿个碱基对的新DNA序列,包括99个可能编码蛋白质的基因和其中近2000个需要进一步研究的候选基因。这些候选基因大多数是失活的,但其中115个仍然可能表达。团队还在人类基因组中发现了大约200万个额外的变异,其中622个出现在与医学相关的基因中。此外,新序列还纠正了GRCh38中的数千个结构错误。具体而言,新序列填补的空白包括人类5条染色体的整个短臂,并覆盖了基因组中一些最复杂的区域。其中包括在重要的染色体结构中及其周围发现的高度重复的DNA序列,如染色体末端的端粒和在细胞分裂过程中协调复制染色体分离的着丝粒。新序列还揭示了以前未被发现的节段重复,即在基因组中复制的长DNA片段,已知其在进化和疾病中发挥重要作用。新序列还在识别和解释遗传变异方面具有重要改进,并揭示了关于着丝粒周围区域的前所未见的细节。这一区域内的变异性可能为人类祖先如何进化提供新证据。研究人员称,这一完整的、无间隙的序列对于了解人类基因组变异的全谱和了解某些疾病的遗传贡献至关重要。研究人员表示,下一阶段的研究将对不同人的基因组进行测序,以充分掌握人类基因的多样性、作用以及我们与近亲、其它灵长类动物的关系。【总编辑圈点】基因组的某些区域,其实是一遍又一遍的重复,这些重复区域包括细胞分裂中一些极其关键的部分,也包括可能帮助物种适应的新基因。在过去,所有这些重复使得科学家无法以正确的顺序“组装碎片”——就像高难度的、几乎每一块都相同的拼图,而人们不知道其中哪一块该放在哪,就在基因组图谱上留下了巨大空白。现在的最新成果不再有任何隐藏或未知的部分,或者也可以说,一个全新的基因宝库正在全人类面前徐徐打开。
  • PerkinElmer 在欧洲推出产前 BACs-on-BeadsTM 检测
    PerkinElmer 在欧洲推出产前 BACs-on-BeadsTM 检测,一种用于检测多种遗传性疾病的新型体外诊断技术。法国蒙彼利埃专注于人类健康及其生存环境安全的全球领先公司PerkinElmer, Inc.,今天在第10 届国际胚胎着床前基因诊断大会上宣布针对欧盟地区推出产前 BACs-on-Beads (BoBs)TM 体外诊断 (IVD)新产品,可实现对多种遗传性疾病的快速产前检测。 产前 BoBs 检测是BACs-on-Beads专利的基于微球的多重检测技术产品系列.的首款体外诊断产品。该检测是细胞遗传学实验室用于分析影响新生儿及其家庭的重大遗传性疾病相关染色体的一种体外诊断新型解决方案。产前 BoBs 检查可以通过微量 DNA 样品同时检测多种染色体异常,并在 24 小时之内获取结果。此外,临床医师可同时分析 40 个以上的样品,从而实现高通量诊断。 该产前 BoBs 检测是一种通过 CE 认证的分子核型分析技术,可实现对精心挑选的、产前相关的基因组区域的 DNA 扩增和缺失的目标检测。该检测可发现 13、18、21、X 和 Y 染色体非整倍体,同时还会检测 9 个微缺失综合症区域的DNA 拷贝数的变化情况。通过集中检测与导致严重体质性疾病相关的区域,使用该检测获取的信息比通过其它常用方法获取的信息对行动更具指导意义,而且可避免意义不明的检测结果。 产前 BoBs 检测系统可用于发现与以下疾病相关的染色体异常: DiGeorge Syndrome Williams-Beuren Syndrome Prader-Willi Syndrome Angelman Syndrome Smith-Magenis Syndrome Wolf-Hirschhorn Syndrome Cri du Chat Syndrome Langer-Giedion Syndrome Miller-Dieker Syndrome 产前 BoBsTM 只供欧盟地区销售使用。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的全球领先公司。据报道,该公司 2009 年收入约为 18 亿美元,拥有约 8,800 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。 有关其它信息,请致电800-820-5046 或 +86(0)21-39879510&ndash 3208或访问 www.perkinelmer.com.cn 。 # # # PerkinElmer 媒体联系人: Henri Storm 电话:+358-2-2678 284
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制