当前位置: 仪器信息网 > 行业主题 > >

静态变形模量测定仪

仪器信息网静态变形模量测定仪专题为您提供2024年最新静态变形模量测定仪价格报价、厂家品牌的相关信息, 包括静态变形模量测定仪参数、型号等,不管是国产,还是进口品牌的静态变形模量测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合静态变形模量测定仪相关的耗材配件、试剂标物,还有静态变形模量测定仪相关的最新资讯、资料,以及静态变形模量测定仪相关的解决方案。

静态变形模量测定仪相关的论坛

  • 静态容量法比表面及孔隙率测定仪

    静态容量法比表面及孔隙率测定仪在努力研发动态氮吸附仪的同时,我们也一直在关注静态容量法比表面及孔隙率仪的发展,毕竟在国外一直重点发展静态容量法比表面及孔径分析仪,而且近年来改进提高很快,目前进口仪器在我国仍然有相当大的市场占有量,为了进一步提高我国仪器的水平,尽快赶上国际先进,彼奥德从06年开始研究静态容量法氮吸附仪。说实在的,有关这方面的具体资料非常缺乏,除了原理,一切均需从头开始。经过近两年的努力,终于攻下了所有技术难关,我国自有的静态容量法比表面及孔径分析仪研制成功,并迅速进入市场,我们的静态仪器性能已经接近国际先进水平,而且具有许多自己的特色,有自己的独到之处。实事求是的看,静态容量法比表面及孔径分析仪的优点还是很多的。(1)静态容量法是在真空条件下改变氮气的压力,通过压力传感器直接测量氮压力,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到;(2)容量法样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡;(3)静态容量法样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,静态法不但节省了时间,而且大大减少了液氮的消耗;(4)只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本;(5)静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间;(6)在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围一般可达到0.5~400nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品全面的吸附特性,进而可对样品的吸附类型和孔结构作出判断;其三,只有静态法才有可能对微孔进行定量分析;(7)静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果;(8)样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。总之,静态氮吸附仪是技术上更高一档的仪器,国产静态仪器的成功,无疑又提升了我国在这一领域的国际地位。

  • 投影莫尔技术应用于静态物面微小变形测试的研究

    [*][作者]:[b][url=https://kns.cnki.net/kcms2/author/detail?v=Xlf5kQqXAOlm7l-65OU2lurUkXQXDNnV80swK9r6DI4FW-qMCaOI3BZE4rrkm7O0yKdNrnffasjG8N7d-CSnhfhYoDlEKF9h2DB8TeXPVEpkXvt55_Bp45HyZNWwC-6X&uniplatform=NZKPT&language=CHS][b]王学礼[/b][/url][/b][*][题名]:[b][b][url=https://iopscience.iop.org/book/mono/978-0-7503-3167-8][b]投影莫尔技术应用于静态物面微小变形测试的研究[/b][/url][/b][/b][list][/list][*][b]【期刊】:cnki[/b][*][b]【链接】:[url=https://www.wiley.com/en-it/Digital+Signal+Processing%3A+Theory+and+Practice%2C+10th+Edition-p-9781394182664]投影莫尔技术应用于静态物面微小变形测试的研究 - 中国知网 (cnki.net)[/url][/b]

  • 【求助】DMA TAQ800静态力的设定

    请问使用DMA多频应力模式测试样品时,静态力的设定为多少N较合适?是否静态力设定越大测试的储能模量越高?样品为环氧树脂。一般使用多频应变模式,振幅设定为15um。谢谢!

  • 投影莫尔技术应用于静态物面微小变形测试的研究

    [*][作者]:[b][url=https://kns.cnki.net/kcms2/author/detail?v=Xlf5kQqXAOlm7l-65OU2lurUkXQXDNnV80swK9r6DI4FW-qMCaOI3BZE4rrkm7O0yKdNrnffasjG8N7d-CSnhfhYoDlEKF9h2DB8TeXPVEpkXvt55_Bp45HyZNWwC-6X&uniplatform=NZKPT&language=CHS][b]颜菁菁[/b][/url][/b][*][题名]:[b][b][url=https://iopscience.iop.org/book/mono/978-0-7503-3167-8]投影莫尔技术应用于静态物面微小变形测试的研究[/url][/b][/b][list][/list][*][b]【期刊】:cnki[/b][*][b]【链接】:[url=https://www.wiley.com/en-it/Digital+Signal+Processing%3A+Theory+and+Practice%2C+10th+Edition-p-9781394182664]阴影莫尔测量装置及其调整技术的研究 - 中国知网 (cnki.net)[/url][/b]

  • 抗拉强度/拉伸强度/屈服强度/弯曲强度/弹性模量/抗拉强度计算公式

    抗拉强度(tensile strength)抗拉强度计算公式抗拉强度( бb )指材料在拉断前承受最大应力值。抗拉强度(tensile strength)拉力机,拉力试验机,万能材料试验机测试定义:试样拉断前承受的最大标称拉应力。抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。抗拉强度( Rm)指材料在拉断前承受最大应力值。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:N/mm2(单位面积承受的公斤力)抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用上海发瑞仪器的拉力机,万能材料试验机等来进行材料抗拉/压强度的测定! 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力)抗拉强度:extensional rigidity.抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定!拉伸强度(1) 在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。(2) 用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。(3) 拉伸强度的计算:σt = p /( b×d)式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。弯曲强度:材料在弯曲负荷作用下破裂或达到规定挠度时能承受的最大应力,用公斤/厘米2表示杆件在受弯时其断面的上部是受压区,而下面是受拉区.以矩形匀质断面为例,受压、受拉区的最外沿的强度就叫做弯曲强度。它与弯矩成正比与断面模数成反比。目前国内测量弯曲强度比较普遍的方法是采用上海发瑞仪器的拉力机,万能材料试验机等来进行材料弯曲强度的测定!可由下公式表示:σ=KM/W 其中K为安全系数,M为弯矩,W就是断面模数,不同的断面就有不同的断面模数可在材料力学手册中查到。一般材料的抗弯强度,采用三点抗弯。R=(3F*L)/(2b*h*h)F—破坏载荷L—跨距b—宽度h—厚度屈服强度拉力机,拉力试验机,万能材料试验机材料拉伸的应力-应变曲线yield strength是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)目前国内测量屈服强度比较普遍的方法是采用上海发瑞仪器的拉力机,拉力试验机,万能材料试验机等来进行材料屈服强度的测定!屈服强度的计算公式:σ=F/S,其中σ为屈服强度,单位为“帕”,对塑性材料来讲F为材料屈服时所受的最小的力,单位为“牛”,对脆性材料来讲F为材料发生塑性变形量为原长的0.2%时所受的力,单位还是:“牛”,S为受力材料的横截面积,单位为“平方米”。拼音:tanxingmoliang英文名称:Elastic Modulus,又称 Young 's Modulus(杨氏模量)定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。单位:达因每平方厘米。意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。在弹性范围内大多数材料服从胡克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。弹性模量 在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示 。弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。弹性模量计算公式E=(ΔF/S0)/(Δ1/Le1),简化就是E=(ΔF*Le1)/(S0*Δ1)其中,ΔF——应力(一般是0.5MPa到1/3轴向极限力的差值)Le1——测量标距(一般15cm)S0——混凝土试块承压面积(注意15*15cm和10*10cm是不一样的)Δ1——应变(一般是0.5MPa到1/3轴向极限力之间的变形)

  • 【分享】如何得知拉伸法测量金属的弹性模量

    最简单的形变是线状或棒状物体受到长度方向上的拉力作用,发生长度伸长。设金属丝(或杆)的原长为L,横截面积为S,在弹性限度内的拉力F作用下,伸长了L。比值F/S为金属丝单位横截面积上所受的力,叫做胁强(或应力),相对伸长量 L/L叫胁变(或应变)。据虎克定律,胁强和胁变成正比,即: (1)比例系数: (2)E叫做物体的弹性模量(或称杨氏模量)。E的大小与物体的粗细、长短等形状无关,只决定于材料的性质,它是表示各种固体材料抗拒形变能力的重要物理量,是各种机械设计和工程技术选择构件用材必须考虑的重要力学参量。 任何固体在外力作用下都会改变固体原来的形状大小,这种现象叫做形变。一定限度以内的外力撤除之后,物体能完全恢复原状的形变,叫弹性形变。 杨氏弹性模量的测量方法有静态测量法、共振法、脉冲传输法等,其中以共振法和脉冲法测量精度较高。杨氏弹性模量的静态测量法就是在物体加载以后,测出物体的应力和应变,根据一定的计算式得到E值,主要有拉伸法、梁弯曲法等。用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离处的绝对形变不同(AA'BB'),而相对形变则相等,即 (6-3)式中 称为切变角,当 值较小时,可用 代替 ,实验表明,一定限度内切变角 与切应力 成正比,此处S为立方体平行于底的截面积,现以符号 表示切应力 ,则 (6-4)比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。实验目的1. 掌握测量固体杨氏弹性模量的一种方法。2. 掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。3. 学会一种数据处理方法——逐差法。实验仪器杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02mm)及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平台水平。 光杠杆如图2所示,将一个小反射镜装在一个三脚架上,前两脚和镜子同面,后脚(或叫主杆、主脚)垂直镜架,其长度a可以调节。实验原理 由(1)式可知,只要测得F、S、L、 L各量,就可以求出物体杨氏模量。其中F可以从添加的砝码直接写出;S可用螺旋测微器(千分尺)量出金属丝的直径d算出;L可用米尺量度,唯有 L很微小,用一般工具不能量准,本实验用光杠杆对 L进行准确的间接测量。 光杠杆测量微小伸长量 L的基本装置如简图2所示。待测金属丝L上端固定,下端夹在小圆柱体的中央缝隙中,小圆柱体穿套在一个固定的小平台的圆孔中,并可以自由地上下移动,其下端有一个环,可以挂砝码,以产生作用力F,光杠杆前脚立在固定的小平台上,后脚尖立在小圆柱体上,光杠杆前方D距离处有观测的标尺和尺读望远镜。 假定添加砝码之前,光杠杆的小反射镜M的镜面竖直,从望远镜中的横丝上,可以见到标尺N0刻度经M反射所成的像。添加砝码之后,金属丝相应拉长了 L,光杠杆的后脚尖也随小圆柱下降了 L,此时,后脚将带动小镜转过一个小角度θ到M′处,因此,在望远镜中将看到以θ角入射和反射的标尺Ni刻度所成的像,入射线和反射线之前的夹角为2θ,据图3的几何关系,可得: ∵ 甚小,上两式可以写成: 消去 可得: (5)上式表明,如果D取值远大于 ,则 n将是 L的 倍( 》1), 就是光杠杆的放大倍数。(5)式右边各量均可用一般的测长工具直接度量,即 可由标尺上的读数差取得;D可用米尺量取;α为光杠杆后脚长,可把光杠杆取下印出三个脚尖,用卡尺量出后脚尖到前两脚连线中点的距离,即为 。从而通过(5)式可以算出 L,这就是光杠杆测 L的原理。将(5)式代入(1)式,得杨氏模量E最终的计算式为: E (6)实验方法 (1)先置水准仪于小平台上,检查、调节小平台水平(应在相互正交的两个方向上都达到水平指示),达到水平后,取下水准仪。 (2)小圆柱下端预先挂上2kg砝码,以拉直金属丝,然后调小平台高低位置,使小平台上表面与小圆柱体上端等高,抄记金属丝的长度L(固定端至小圆柱体上表面之间的距离)。 (3)把光杠杆立在小平台上(前脚置于小平台上的沟槽内,后脚立于小圆柱体上),并调节光杠杆的小镜面至铅直(目估即可)。 (4)调节尺读望远镜:把尺读远镜立在光杠杆小镜前约1.10~1.30m处,调节其高度,使望远镜大致与光杠杆小镜等高;用尺读望远镜瞄准线对准小镜;先用一只眼睛靠近目镜头上方直接朝小镜看去,应能见到镜子里有标尺的像;如看不到,可变动一下望远镜及标尺的相对位置,或移动尺读望远镜底座,或调整光杠杆镜面,直至上述现象出现。在上述状态下调节望远镜,分两步进行:① 先调望远镜的目镜,直至看到最清晰的十字丝,并转动望远镜目镜镜筒,使横丝水平;② 调节望远镜的调焦手轮(通过转动中部旋钮)直至看清标尺的像,且标尺像与十字丝同面,即当眼睛略上下移动时,横丝和标尺像无相对位移(无视差)。此后便可以进行观测,记下横丝所对准的标尺读数n0。 (5)依次添加砝码七次(每次添1kg),并逐次记录出现于望远镜中的标尺刻度n1、n2、…、n7。然后,依次减去砝码七次(每次1kg),并记录相应的读数n7、n6、n5、n4、…、n0,求同一拉力下的平均读数 、 、…、 。然后将平均读数分成 、 、 、 和 、 、 、 两组,用逐差法算出每增添4kg砝码时的平均读数差 。计算式为: =[( - )+( - )+( - )+( - )]/4 (6)用尺读望远镜测量标尺至光杠杆的前脚距离D;尺读望远镜上下叉丝对齐标尺刻度之差×100倍为D的2倍值。用卡尺测量光杠杆后脚长a(方法见光杠杆测量装置末段所述);用螺旋测微器测量金属丝的直径d(应在不同位置量五次,求平均值 )。 (7)记录金属丝长度L,四个砝码的拉力F,以及D、a。它们的不确定度及L值由实验室给出。用(6)式算出杨氏模量E,计算出E的不确定度,写出E±UE。

  • 如何测定弹性模量?

    本公司产品中有光缆增强用碳素钢丝,其中有关于钢丝弹性模量的测定?再次咨询各位,钢丝的弹性模量有无标准的试验规程?

  • PA66 用Q800 单悬臂测试,得到的储能模量偏大,不知道是什么原因,请各位前辈指导

    材料PA66,Q800 单悬臂模式,试件尺寸是35*10*2,给定最大总应变为0.1%,升温速率3℃/min, 测试温度-80~110℃。现在的问题是,当测试温度上升至室温时,得到的储能模量约2G,但是普通静态单轴压缩曲线获得的弹性模量为1 G左右,想知道这种偏差的原因是什么?已通过公式知道了转换了DMA频率与单轴压缩应变率之间的关系,但是弹性模量和储能模量差距很大。在原始文件中可以看到,测试时输入的试样长度为17.5,实验员应该是考虑到单悬臂的原因,不知道是不是这个影响了测试得到的储能模量呢?如果是的话,我该如何处理呢?如果不是这个原因,烦请各位前辈能给予指点!非常感谢!

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 【原创】关于静态比表面仪“氮气+氦气标准测试模式”的质疑

    近来,某比表面仪公司极力宣传他们静态仪器的“测试模式”:创新研制的集成“单一氮气测试模式”和“氮气+氦气标准测试模式”于一体,供客户根据实际需要选择使用;采用“氮气+氦气标准测试模式”符合国际标准,可确保结果的准确性和一致性,且操作简单;对于低温下可吸附氦气的样品,不适宜采用氦气测定自由空间,可通过采用“单一氮气测试模式”获得理想的测试结果。 许多用户向我们质询,什么是静态“氮气+氦气标准测试模式”?存在这种国际标准吗?为解答上述疑问,现将有关于氦气用途的论述择录于下: 1. 摘自:GB/T 19587—2004(ISO9277:1995,NEQ)气体吸附BET法测定固态物质比表面积。(第7页,7.2.1中)“死体积必须在吸附等温线测量之前或之后来确定。这个体积用氦气在测量的温度下进行标定。对于某些吸附氦气的材料,标定应在测定了氮气的吸附等温线后进行。”2. 摘自:GB/T21650.2—2008/ISO15901-2:2006,气体吸附法分析介孔和大孔。(第7页)9.3.4“测定自由空间 在测定吸附等温线之前或之后,应测定自由空间。在测定温度下,采用氦气进行体积校准。需注意,某些材料会吸附和/或吸收氦气。对于这种情况,在测定吸附等温线之后,可以进行修正。如果自由空间的测定可以与吸附测定分开,则可以避免使用氦气。空样品室的体积在环境温度下使用氮气测定。随后,对该空样品室在与吸附测定相同的实验条件(温度和相对压力范围)下进行一次空白实验。通过输入样品密度,或通过在吸附分析开始时(如果氮气吸附效应可以忽略)采用氮气进行环境温度下的比重测定,对样品体积进行必要的修正。”(第8页)9.3.7和9.3.8“测定吸附等温线---测定脱附等温线---” , 说明测试的全过程,与氦气毫无关系,哪有所谓“单一氮气测试模式”和“氮气+氦气标准测试模式”。3. 摘自:美国康塔NOVA操作手册(C-1).使用简介:介绍样品分析中各个步骤,1.校准歧管体积 2.校准样品管 3.脱气 4.设置分析参数 5.分析样品 6.分析数据并生成报告;“在常规使用时,步骤1和2没有必要在每次分析时都重复做。如果歧管体积和样品管已校准过,分析可以从步骤3开始。------”“准确测量歧管体积非常重要,---运输前在工厂内已进行了歧管校准(以氮作吸附质气体),因而无需经常校准(比如:每四个月进行一次),或者在对系统进行保养时可能影响体积的情况下校准。”“样品管必须在分析前进行校准。一旦校准完毕,没有必要进行重复校准。”样品管校准数据存于文件夹中,备使用时调用。样品分析过程,已不需用户再进行氦气校正;4. 摘自:美国康塔公司“全自动比表面及孔径分布分析仪”性能介绍中,10. 无需氦气,降低了分析费用,无需氦气钢瓶和压力表(一瓶氦气约2000元)5. 摘自:美国麦克公司“全自动比表面及孔隙度分析仪”主要性能与特点:------ 2. 自由空间校正可以不使用氦气,可实现高精度的测量模式。------5. 测量5点比表面仅需20分钟。 问题一目了然,我们可以做出如下的答复:1. 自称“氮气+氦气标准测试模式”符合国际标准,但在相关国际(国家)标准中均无类似表述,其实这种所谓静态仪器的“标准测试模式”并不存在,是“自制的”。2. 因为是自制的,所以“氮气+氦气标准测试模式”的内容无地可寻,在氮吸附的测试过程中氦气怎能介入谁也说不清。3. 清楚的是,氦气用于死体积的测定,大部分先进厂家在仪器的制造过程中已经完成,无需用户在测试时每次都要重复校准,这是技术发展的进步与趋势。而鼓吹静态“氮气+氦气标准测试模式”的厂家显然技术上还做不到,于是把氮气的吸附、脱附测试过程,与前面制造过程中氦气的死体积校准混淆起来,有意把二者硬拉在一起,还把它包装成国际“标准测试模式”,显然这只是他们用于制造推销自己产品“卖点”的雕虫小技,其用心可算良苦。劝用户无需当真,仅此而已。

  • 国内有没有动态静态结合的试验机呢

    我的意思是静态试验机有动态的加力效果,而不是简单的动静态试验机,详细说一下吧,客户有台MTS的机器,看着明明是静态试验机,但是客户在做往复试验的时候加力的曲线竟然是类似于动态的正弦曲线,而且频率也固定。据我了解的国内的动态机只能达到这样的加力效果,但是最后只能得到循环次数,或力-时间曲线,想测某次循环的力值和变形等方面就不行了,而MTS的机器加力类似于动态机,得到的力-变形曲线和数值等等却类似于静态机,不知道人家是怎么做的

  • 【原创大赛】静态电位溶出法测定茶叶中铅

    写在前面:今天整理自己之前的工作资料,发现有几篇文章还未曾公开过,现发上此文上来与各位同仁分享和交流,如有问题请大家共同讨论探讨。谢谢!静态电位溶出法测定茶叶中铅食品中铅的测定,目前国家标准检验方法多采用双硫腙法和原子吸收光谱法。前者操作繁琐,灵敏度低,使用的试剂毒性较强;后者仪器昂贵,实验条件要求高,不易基层推广。本人采用溶出分析仪对茶叶中铅的测定,获得满意的结果,而且该方法操作简单,灵敏度高,重现性好,便于我们基层实验室的推广应用。现将实验方法介绍如下: 实验方法 一、原理 被测铅离子在酸性介质中,选择一定电位条件下,电解而富集在玻碳电极上与汞形成汞齐。当沉积一定时间后,断开电解电源,汞齐化金属与酸溶液中氧化剂反应,金属铅又重新回到溶液中以离子形式存在。溶出过程经显示器或记录仪记录,根据溶出电位曲线及峰高作定性和定量分析。二、仪器及试剂 l、MP~2型溶出分析仪(原山东电讯七厂生产);2、MCP—lT极谱工作台;3、Epson LQ~300K打印机; 4、玻碳电极、铂电极、甘汞电极;5、100ml容量瓶、50ml烧杯、瓷坩埚; 6、马弗炉;7、优级纯硝酸(2+8);8、铅标准使用液(10.O ug/mL)。三、分析步骤 1、样品处理: 按照GB/T 5009.12灰化法,称取2.OOg样品,置于瓷坩埚中加2ml硝酸(2+8)湿润样品,放置电炉小火加热蒸干至炭化,然后移入马弗炉中,500℃灰化完全(约2~3h),冷却后,取出坩埚,加2ml硝酸(2+8)溶解灰分,移入100ml容量瓶中,用去离子水少量多次洗涤坩埚,洗液合并移入容量瓶中,加水至刻度,混匀备用。 2、测定: 打开仪器电源,预热5分钟。直接吸取20.OOmL上述处理好的样品溶液及吸取1mL硝酸(2+8)加水19mL做空白试验,分别置于50mL小烧杯中,放置极谱工作台上,插入三电极系统(玻碳电极已处理好,镀汞四次),选择好测定条件,进行静态电位溶出法测定。实验参数的选择为:清洗时间(T1)=10s;搅富时间(T2)=40s;灵敏度(N)=20;恒电流(I)=0;上限电位(E1)=-O.9V;下限电位(E2)=-O.1V;富集电位(E)=-l.OV;清洗电位(E3)=O V。 首先测定试剂空白值峰高,存入峰高1(H1);再测定样品溶液峰高,存入峰高2(H2);然后根据样品峰高情况,采用标准加入法,加入铅标准使用液10 uL或20 uL,测定加标峰高,存入峰高3(H3),按动计算键进行计算,结果即为样品溶液每毫升铅的含量。 四、结果讨论 1、酸与转速对溶出峰的影响,本实验选择硝酸作为样品的底液,选择转速为2500r/rain,对铅的溶出峰有较高的灵敏度,而且铅含量与溶出峰有良好的线性关系。但底液硝酸浓度过高电极汞膜容易洗脱,增加反复镀汞的次数,转速太快电极汞膜极易发生断裂,降低汞膜的稳定性及灵敏度。因此酸的浓度及转速控制在一定的范围内,则呈现出较好的溶出峰曲线。 2、方法精密度及回收率,取一份样品液加标测定,连续测定5次,铅的溶出峰高分别为63、62、64、60、61格,平均62格,标准偏差1.4 1,变异系数2.27%。取5份茶叶加铅标准溶液O.5ug,进行加标回收率试验,测定5份样品溶液的回收率分别为92、95、97、103、107%,平均99%。 五、小 结 本法测定茶叶中铅的含量,方法操作简便易行,灵敏度高,取样量少,最低检出浓度O.lO ug/ml,如提高样品取样量测定,最低检出浓度0.05mg/kg。用本法测定12份茶叶,均检出铅,检出范围在O.049~1.27 mg/kg之间,大大提高了茶叶铅含量的检出灵敏度。因此静态电位溶出法测定茶叶中铅的含量,具有回收率和精密度好,操作简单快速,成本低的优点,适用于基层实验室对铅的测定。

  • 吹扫捕集与静态顶空的比较

    [align=center][size=32px][b]吹扫捕集与静态顶空的比较[/b] [/size][/align][size=16px]在我国用于测定环境水样中挥发性有机化合物(VOCs)多采用静态顶空法,但静态顶空法的灵敏度低,不能满足微量测定要求。运用吹扫捕集与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用技术可测定饮用水、地表水及海水中的μg/L(甚至ng/L级)的VOCs,其检出限可以比静态顶空技术低10-1000倍。[/size][size=16px]那么,两种进样方式究竟有哪些区别呢?[img]http://p9.itc.cn/images01/20201118/e268952d807e456cb70bef711ea39b27.jpeg[/img]动态顶空也称吹扫捕集(purge-trapping)分析法,该方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个盛有吸附剂的容器进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱中进行分析。吹扫捕集分析法适用于从液体或固体样品中萃取沸点低于200℃、溶解度小于2%的挥发性或半挥发性有机物,具有富集的功能,对痕量组分的分析比较有利。吹扫捕集法对样品的前处理无需使用有机溶剂,对环境不造成二次污染,而且具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点。但是吹扫捕集法易形成泡沫,使仪器超载。且所用时间较多,吹扫中有可能引入杂质以及吸附剂性能的选择等。此外伴随有水蒸气的吹出,水对火焰类检测器也具有淬火作用。[b][size=20px]吹扫捕集与静态顶空比较[/size][/b]相同点:用氮气或氦气,或其他惰性气体将被测物从样品中抽提出来。不同点见下表。[img]http://p5.itc.cn/images01/20201118/8810823e39d14ee9b48cfa62b242b918.png[/img]静态顶空分析法普遍应用于环境样品土壤、泥浆和水等机体中易挥发物的分析。例如,水中三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三溴甲烷等。同时也普遍用于制药行业中溶剂残留的分析。例如,药品中二氯甲烷、氯仿、三氯乙烯、1、4-二氧六环和苯等。许多用静态顶空技术分析的样品也可以用吹扫捕集技术分析。在我国用于测定环境水样中挥发性有机化合物(VOCs)多采用静态顶空法,但静态顶空法的灵敏度低,不能满足微量测定要求。运用吹扫捕集与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用技术可测定饮用水、地表水及海水中的μg/L(甚至ng/L级)的VOCs,其检出限可以比静态顶空技术低10-1000倍。GB/T5750.8-2006 《生活饮用水标准检验方法有机物指标》附录A吹脱捕集/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法测定挥发性有机化合物中详细说明了采用吹扫捕集法对生活饮用水中28种挥发性有机物的检测方法。[b][size=20px]使用注意事项[/size][/b]1、温度选择样品的吹扫温度。水溶液大多在室温下吹扫,只要吹扫时间足够长,就能满足分析要求。有时为缩短吹扫时间,也可对样品加热,但升高温度的副作用增加了水的挥发。对于非水溶液,如某些肉类食品,则采用高一些的吹扫温度。捕集器温度。这里又有吸附温度和解吸温度之别。吸附温度常为室温,但对不易吸附的气体也可采用低温冷漠捕食技术。即用冷气、液态二氧化碳或液氮控制捕集管的温度。至于解吸温度,是吹扫--捕集技术的重要参数,应依据待测组分的性质和吸附的性质来优化确定。商品化自动吹扫—捕集进样器的解吸温度最高可达450℃,但在部分环境分析的标准方法(如美国EPA方法)均采用200℃左右的吹扫温度。连接管路的温度,它应足够设防止样品冷凝.环境分析常用的连接管温度为80-150℃。2、吹扫气流与吹扫时间吹扫气流速取决于样品中待测物的浓度、挥发性、与样品基质的相互作用(如溶解度)以及其在捕集管中的吸附作用大小。用氦气,流速范围为20-60ml/min。用氮气时可稍高一些,但氮气的吹扫效果不及氦气。原因是氮气在水中的溶解度比氦气大。注意,吹扫流速太大时会影响样品的捕集,造成样品组分的损失。解吸时的载气流速主要取决于所用色谱柱。用填充柱时为30-40ml/min,用大口径柱时为5-10ml/min;用常规毛细管柱时则要按分流或不分流模式来设置载气流速。吹扫时间是吹扫-捕集技术的重要参数之一,须根据具体样品来优化确定。原则上,吹扫时间越长,分析重现性和灵敏度越高。但考虑到分析时间和工作效率,应在满足分析要求前提下,选择尽可能短的吹扫时间。实际工作中可通过测定标准样品的回收率来确定吹扫时间。[/size]

  • 材料中的弹性模量啥意思?

    昨天看到这个说明:本携带式布氏硬度计适用于测定弹性模量近似等于2x10MPa的黑色金属布氏硬度值,特别适合于工作现场对大型零部件进行布氏硬度检测.其中对于弹性模量不懂啥意思?看了网站也说的太那个专业了,有没有通俗点的,好理解的?还有说明下弹性模量对材料的影响,谢谢!~~~

  • 【原创】动态仪器和静态仪器有什么区别?

    比表面及孔径分布是基于样品对氮气的等温吸附曲线,当氮气分压在0.05~0.35范围内,可根据BET方程计算比表面,当氮气分压≥0.4时,根据毛细凝聚理论计算孔径分布。静态容量法是测量氮气的等温吸附和脱附曲线的理想方法:在一个真空系统中,按设计要求逐步增加或减少氮气压力,利用气体状态方程,计算出每一个氮分压下样品的饱和吸附量或脱附量。和动态法相比,静态容量法比表面及孔隙率分析仪有以下八大优点: 1、精准度更高:氮气的压力是通过压力传感器直接测量得到的,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到; 2、真正达到吸附和脱附平衡:样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡; 3、省液氮:样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,不但节省了时间,而且大大减少了液氮的消耗; 4、测试成本低:只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本; 5、省时:静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间; 6、传感器更精密,测试结果更全面具有说服力:在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围可达到1~300nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品完整的吸附特性,进而可对样品的吸附类型和孔结构作出判断; 7、真正的全自动控制:静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果; 8、预处理更合理:样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。

  • 【原创大赛】瞬稳静态注射化学发光法测定环境水中总磷

    【原创大赛】瞬稳静态注射化学发光法测定环境水中总磷

    瞬稳静态注射化学发光法测定环境水中总磷摘要:文中介绍了测定水中总磷的瞬稳静态注射化学发光法,在0.04mg/L—0.20mg/L浓度范围内,通过用静态注射化学发光法测定几个样品的总磷含量,对其实验原理、条件、操作步骤进行了详细讨论。说明化学发光法由于较高的灵敏度和较宽的动态响应范围,正在逐渐用于水中总磷的测定。本文基于在酸性介质中,磷酸盐与钼酸铵反应生成的磷钼杂多酸,在碱性条件下与鲁米诺产生化学发光反应,且发光强度与磷的浓度在一定范围内成线性响应的原理,建立了测定磷的瞬稳静态注射化学发光法,方法的线性范围为0.04~0.2mg/L。所建立的方法用于地表水和饮用水中溶解的痕量磷的测定,回收率为80%~120%。静态注射化学发光法可以为测定水中总磷提供方便。关键词:瞬稳静态注射;化学发光;鲁米诺;总磷引言:磷在自然界分布很广,与氧的化合能力较强,因此在自然界中没有单质磷。在天然水和废水中,磷几乎都是以各种磷酸盐、缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐(如磷脂等),存在于溶液和腐殖质粒子或水生生物中。天然水中磷酸盐含量不高。化肥、冶炼、合成洗涤剂等行业的工业废水以及生活污水中含有较大量的磷。磷是生物生长必需的元素之一,是地表水超营养化的关键元素,在生物生长过程中发挥重要的作用。过量的磷(如超过0.2mg/L)对水生植物的快速增长、物种组成、浮游生物和海藻的过度繁殖有很大的影响,造成湖泊,河流的透明度降低.水质变坏,使水资源丧失了饮用、养殖和游览等方面的利用价值。因此水体中磷的含量测定已经被列为环境监测的重要内容之一。总磷是指水体中各种形态的磷的总量,是反映水体受污染程度和湖库水体富营养化程度的重要指标之一。水体中含磷量的增加导致水体质量下降,特别对于湖库水体,由于含磷量的增加,使水体中浮游生物和藻类大量繁殖而消耗水中溶解氧,从而加速湖库水体的富营养化。为了保护水资源,控制水体的富营养化,我国已将总磷列为正式的环境监测项目,制订了环境质量标准和污水排放标准,作为水质评价的重要指标。水中总磷是评价水体受污染程度的重要指标之一,国内外卫生及环保部门非常重视水中总磷的测定。目前,国内外检测水中总磷的方法很多,其中主要有钼蓝光度法,钒钼磷酸比色法,磷钼杂多酸光度法、原子吸收光谱法、色谱法等,但此类方法大多操作烦琐,需要化学药剂多,干扰大。化学发光法准确度和精密度较高、操作更简便、测定快捷、样品用量少,试验所用仪器及相关试剂方便、安全。我国测定水中总磷的国家标准方法是《水质总磷的测定钼酸铵分光光度法》(GB11893-89)。其反应原理是:在酸性介质中正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物,通常即称磷钼蓝 但是国标方法操作步骤繁复,且量程较小。化学发光法提高了量程,简化了测量操作,大大提高工作效率。1.实验材料与方法1.1实验仪器与试剂1.1.1.仪器 YN-FGⅠ型瞬稳静态注射化学发光分析仪(河南农业大学迅捷测试技术有限公司研制) http://ng1.17img.cn/bbsfiles/images/2013/09/201309251036_467175_2222989_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/09/201309251036_467176_2222989_3.png 图1YN-FG 1型瞬稳静态注射化学发光分析仪图样

  • 【原创大赛】瞬稳静态注射化学发光法测定水果中的总铬

    【原创大赛】瞬稳静态注射化学发光法测定水果中的总铬

    瞬稳静态注射化学发光法测定水果中的总铬摘要利用Cr3+对鲁米诺一过氧化氢化学发光反应的催化作用,瞬稳静态注射化学发光法的优点,建立测定Cr3+的新方法,并通过硼氢化钾的还原作用,使Cr6+还原为Cr3+,从而实现对总铬的测定。确定此方法的最佳条件:放大倍数64×;铬(III)试液的pH为4.5;EDTA浓度为0.1mol/L。线性范围为1.0×10-5mg/mL一1.0×10-3mg/mL,该法测定苹果,红枣样品的回收率均在80%-120%范围内,符合要求。关键词化学发光法水果总铬引言随着我国对外开放的不断扩大和人民生活水平的提高,农产品的质量安全问题日益引起人们的重视。除了较明显影响人体健康的农药残留问题外,对人体有累积性影响的微量元素限量闯题也开始引起人们的关注。铅、铬、砷等公认有毒重金属对人体健康危害不仅受到医学界的重视,也成为食品检验、卫生标准和环境检测的重要分析项目。而锰、铜、锌等人体必须的元素,超过一定的限量范围也会对人体有害。为此,各国都对食品中的微量元素作出了限量规定。我国还发布了砷、铅、铜、锌、镉、汞、氟、硒、稀土、铬等10种(类)元素在水果中的限量卫生国家标准及相应的测定方法国家标准,这些标准的发布和实施,为我国衡量和测定水果中有害元素含量提供了科学依据。 三价铬是人体必须的微量元素之一,对维持正常血糖,胆固醇和脂肪酸代谢有影响。而六价铬则是明确的有害元素,能使人体血液中某些蛋白质沉淀,引起贫血、肾炎、神经炎等疾病,长期与六价铬接触还会引起呼吸道炎症并诱发肺癌或者引起侵入性皮肤损害,严重的六价铬中毒还会致人死亡。所以寻求一种快速的具有高灵敏度的测量水果中重金属含量分析方法对其安全营养性的探讨具有指导作用。 在我国的食品检验标准中,微量元素的测定大多采用传统的化学法和原子吸收法。化学法由于分析步骤烦琐,检测周期长,显然满足不了目前日益提高的检测需求。原子吸收法是目前普遍采用的一种方法,也是国家标准方法。而相对于原子吸收法,化学发光法作为一种有用的痕量分析技术具有灵敏度高,线性范围宽(常常在3-4个数量级,原子吸收法只有2-3个数量级),价格便宜(一般一台发光仪1-2万左右)等优点,在食品分析领域得到迅速发展,是目前测定食品中重金属含量前景非常大的一种方法。据此本文建立瞬稳静态注射化学发光测定水果中痕量铬的新方法,结果令人满意。1材料和方法1.1实验原理水果中的有机物可以被浓硝酸与高氯酸的混酸氧化,生成二氧化碳、水、氮气等氧化产物。有机物中常见非金属元素原子(C、H、O、N、P、S)氧化后大部分以气体形式逸出,金属元素原子则以高价离子形式存在于溶液中,水果中各种价态的铬可被硼氢化钾还原为三价铬,三价铬可以催化双氧水与鲁米诺的反应,在低浓度条件下,反应速度与催化剂浓度有关。1.2实验材料1.2.1实验仪器YN-FG1型瞬稳静态注射化学发光分析仪(河南农业大学迅捷测试技术有限公司),YN-2000微电脑多功能养分速测仪(河南农大机电技术开发中心),消化仪,电炉,移液管,烧杯,三角瓶,反应瓶,玻璃棒,50 ml比色管,500ml、100ml、[

  • 静态基线稳定性测试

    想问一下,在静态基线稳定性测试中的"瞬时”测定方式,是哪种测定方式,用的是AA-6300 C的仪器,可是它写的是:单光束仪器与铜灯同时预热30min,是双光束的呀,最大漂移量和最大瞬时噪声分别怎么测定呢,是一起测定的吗

  • 动态图像仪与静态图像仪的发展

    动态图像仪与静态图像仪的发展一、图像法基本原理 根据在测量过程中颗粒是否运动,颗粒图像分析技术可分为静态颗粒图像分析仪与动态颗粒图像分析仪两种。 图像法是颗粒分析中唯一具有形貌分析能力的方法,可进行球形度,长径比等参数的分析统计,对某些行业有重要的意义。 颗粒在图像仪上成像,组成图像的最小单位是像素,每个像素有特定的尺寸。图像粒度仪就是通过统计每个颗粒在图像中所占的像素的多少,然后计算出它的面积,进而求出等面积圆的直径。准确的图像法测量都依赖于两个方面。一是图像获取,获得高质量额颗粒图像;二是图像处理,要有高效而准确的图像处理算法。二、我国动态图像仪的发展 静态图像仪是上个世纪八十年代才研发推出,由于静态颗粒图像仪取样的颗粒数有限,影响统计的代表性,以及存在颗粒数取向误差。上世纪末国外开始研发态图像仪,如荷兰、英国、法国、德国等不同品牌产品相继推出。我国上海理工大、天津国国家海洋研究中心也跟着研究过,但直到2007济南微纳才首次研发出国内第一台动态颗粒图像分析仪Winner100。并通过了济南市科技局的鉴定,专家评定为国内首创,达到国际先进水平。三、静态图像仪与动态图像仪的对比Winn99E显微颗粒图像仪是济南微纳研制的一款静态图像仪。使用过程是把少量样品放在载玻片上,用相应的分散介质分散均匀后。把载玻片放在显微镜载物台上,将物镜调至相应的放大倍数,让颗粒在镜头内显示清晰为止,即可观察颗粒的大小分布与形貌特征。也可以通过软件在电脑屏幕上直接观察颗粒的大小分布与形貌特征,通过图像分析,包括:灰度图、自动二值化、收缩、膨胀、消除边界黑点、消除颗粒粘连、消除空心、颗粒分析8种操作。软件会自动完成一系列图像处理操作,并进行颗粒的分析。静态图像分析仪最大的优点就是可以直观的观察样品的形貌,在小颗粒分布及形貌分析上更占优势。虽然静态颗粒图像仪有观测直观、数据丰富,但是取样量少、测试代表性不强。但是静态图像仪的市场价格比较便宜,在行业应用也比较普遍。 Winner100D动态颗粒图像仪,测样原理是由湿法激光粒度仪的循环系统配备先进的高速摄像系统,动态进样采集,通过软件分析获得具有代表性的粒径分布数据。 Winner100D在winner100的原理基础上,创新设计出封闭式大远景深远心光路,配合约束式平槽样品窗,大大提高颗粒清晰度。Winner100D已经解决了动态图像仪对运动图像易出现拖尾现象,成像质量也差,看不清颗粒形貌等问题。值得一提的是,本款产品软件中增加了颗粒圆形度(磨圆角)的计算模块,对颗粒圆形度的分析符合美国石油天然气标准:API_RP58.并且适应应用此版图的地质、磨料、石油天然气等行业规范、此计算模块为国内唯一,对于以上行业具有重要意义。此外,winner100D还是第一台应用了样品窗自清洗装置的颗粒测试设备,延长样窗寿命,但换洗频次大大降低,甚至可以终身不需拆洗。动态颗粒图像仪比较静态颗粒图像仪而言,测量的颗粒数目要更多,取样好代表性强;并且在介质中分散流动中进行测量,分散效果好,无需后续软件进行分割处理(注:图像分割算法再好结果也会损失颗粒信息)。动态颗粒图像仪在实际应用中更加的智能、快捷,操作简单,也是图像技术发展主要方向。四、图像技术的领先发展动态图像仪对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国内外现有的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,从而获得清晰的颗粒图像。这种技术能够很好的解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且的关键部件鞘流池如果有大的颗粒很容易发生堵塞现象,清理疏通也都很费时费力。Winner100、Winner219采用新技术对动态颗粒进行平面约束,使得颗粒在流动的过程中都能够保持在一个平面内流动,从而获得清晰的颗粒图像,且操作简单方便。其中Winner219采用静态动态双模式进行测量,采用同一光路,只需更换测量平台即可进行方便切换。静态图像测量模式平台采用二位运动控制精密平台,可选择上部光源或者背部光源进行打光,制备好样品后,将样品放置于平台上即可进行自动化测量,采集图像完毕后软件会自动进行图像拼接,能够将样品拼接成完整图像,从而使得测量结果更加智能精确可靠。动态图像测量模式下,更换为动态颗粒测量平台(液路循环系统),颗粒在约束平面内流动的过程中进行拍照测量,简单实用,易于操作。Winner219全自动颗粒图像仪是目前国内最先进的图像仪器,也是机械视觉技术工业实用化的经典之作。随着技术的发展,相信不久的将来微纳将会在技术上自我超越,研发出更高端的图像仪器。

  • 大家注意过空心阴极灯的静态漂移吗

    背景:有一天无意中发现了空心阴极灯静态漂移很严重,就用一天的时间观察了漂移情况。元素灯:铅灯刚刚点灯:(静态数值)0.65最高值(大约出现在点灯后1分钟):0.6610分钟后:0.6422一小时后:0.56二小时后:0.48三小时后:0.43四小时后:0.4219五小时后:0.4114从点灯后,静态数值每两小时的变化分别为0.1,0.08,0.05,0.01,0.01可以看出来几乎到点灯四小时后,数值才基本稳定下来,保持不变,那是否说明,每次开灯后,至少要预热四小时,仪器才能正常使用?这个静态数值到底代表了什么?它的下降对于测定结果有多大的影响?数值的下降是否说明灯的能量不足,需要更换呢?希望各位老师多多指教~

  • 静态容量法测试原理

    静态容量法测试通常在液氮温度下进行。在样品管中放置准确称量的经预处理的吸附剂样品,先经过抽真空脱气,再使整个系统达到所需的真空度,然后将样品管浸入液氮浴中,并充入已知量气体,吸附剂吸附气体会引起压力下降,待达到吸附平衡后测定气体的平衡压力,并根据吸附前后体系压力变化可计算吸附量。逐次向系统增加吸附质气体量改变压力,重复上述操作,测定并计算得到不同的平衡压力下的吸附量值。

  • 弯曲模量偏高

    我们公司有两台试验拉力机,一台MTS的,一台Instron,弯曲强度数值差别不大,但是弯曲模量差别很多,20%左右而且也跟第三方做过对比,MTS的就是模量偏高,不知道是什么原因?

  • 【求助】北京哪里能测脆性材料的弹性模量?

    做了一些粉末金属烧结块,不便通过拉伸试验测弹性模量,查了一下资料说有相应的仪器通过对试样进行超声波纵向振动的激发,然后测定其固有的共振频率,再按一定公式计算即可测出,现在是就不知道哪能测了,还望知道的朋友告一声,谢谢了:)

  • 静态顶空进样的常见问题

    静态顶空进样技术,是在一个密闭的容器中,将其中的样品与样品上方气体达到平衡,直接抽取样品上方气体进行分析测定的技术。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中静态顶空是一种常用的进样方式,本文就来讲讲静态顶空技术的相关问题。 提高样品温度并不会对体系中所有的化合物都产生灵敏度的增加,因此在选择顶空的萃取温度时需要考虑选取合适的温度。如果温度过高,样品中的某些组分也可能会发生热分解或者被顶空瓶中的空气氧化。 同一样品的体积增大,测定的灵敏度增加。但是,如果样品中的组成发生改变时,可能会这一样品中的某些组分的灵敏度产生影响。 顶空分析要求顶空瓶的质量要足够好,瓶体积要准确恒定,瓶口及其边缘要平并且没有刮痕和凹槽,密封垫及其铝帽要有足够的密封性能。 静态顶空分析中,样品瓶中的两相必须达到平衡时才能进入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定。两相之间达到平衡时所需要的时间取决于挥发性组分在两相之间的扩散速率。在恒温条件下,色谱测定的峰面积基本不变时的短时间间隔就是顶空分析这个样品的平衡时间。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制