当前位置: 仪器信息网 > 行业主题 > >

无线话筒天线放大器

仪器信息网无线话筒天线放大器专题为您提供2024年最新无线话筒天线放大器价格报价、厂家品牌的相关信息, 包括无线话筒天线放大器参数、型号等,不管是国产,还是进口品牌的无线话筒天线放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无线话筒天线放大器相关的耗材配件、试剂标物,还有无线话筒天线放大器相关的最新资讯、资料,以及无线话筒天线放大器相关的解决方案。

无线话筒天线放大器相关的资讯

  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。br//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院)/ppbr//ppbr//p
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。  声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。  在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。  无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。  新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。  关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。  高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • Moku:Go轻松助力校园无线电接收实验的教学
    Moku:Go轻松助力校园无线电接收实验的教学Moku:Go将10几种实验室仪器结合在一个高性能设备中,具有2个模拟输入、2个模拟输出、16个数字I/O和可选的集成电源。 一. 介绍本实验的目的是介绍调幅无线电接收器的基本原理,并演示使用锁相放大器的基本原理。你将使用Moku:Go的锁定放大器、数字滤波器、频谱分析仪和集成电源来设计和优化AM无线电接收器。调幅(AM)无线电,虽然在很大程度上被调频(FM)无线电所取代,但它仍然是通过无线电波传输信息中非常有用的一种方法。本实验设计并实现一个调幅无线电接收器。可以学习到如何找到本地AM无线电频率,并使用锁定放大器实现无线电接收器。图1显示了使用频谱分析仪在澳大利亚堪培拉接收到的AM无线电信号。图1 堪培拉地区频谱分析仪的例子 扫码查看产品详情二. 背景2.1 调幅广播在调幅收音机中,信号的振幅是经过调制的;与调幅收音机相比,调频收音机的信号频率是经过调制的。这种差异可以从图2中看出,在调幅调制波形中,波的振幅明显变化,而在调频调制波形中,正弦波的频率随时间变化。两种类型的无线电传输都有优点和缺点。商业调幅广播电台工作在535kHz至1605kHz的范围内,因此与调频广播相比,其覆盖范围通常更大在88-108 MHz范围,但它更容易受到噪声的影响,与基于音乐的广播节目相比,更适合谈话广播。图2 使用Moku:Go上的波形发生器的调幅波形和调频波形示例。 AM收音机通过使用正弦载波工作,该载波由消息信号(音频信号)调制;正在发送的信息就是这个音频。在这种类型的调制中,载波的振幅被信息信号被改变(因此称为AM)。特定无线电台的调制信号在频域中可以清楚地被视为尖峰(例如图1),尽管在时域中通常很难看到。Moku:Go的FIR滤波器生成器可以帮助我们在无线电台周围设置一个窄带通滤波器,去除电台以外的几乎所有信号。图3给出了一个例子,FIR滤波器生成器挑选出一个大约600 kHz的AM无线电台。蓝色轨迹中可以清楚地看到用语音信号调制的AM载波。红色的轨迹(天线输入)表明,如果没有窄带通,就不可能接收这个或任何其他电台;事实上,该信号完全由截图所在办公室的可调光LED照明的~25 kHz开关控制。 图3 FIR滤波器生成器将AM广播电台(蓝色轨迹)与背景信号(红色)隔离开来。 为了接收和收听消息信号,无线电接收器需要接收特定的AM无线电频率并对其进行解调,以从消息信号中分离出载波信号。简单AM无线电接收器的框图如图4所示。图4 调幅无线电接收器框图接收器通过使用无线电天线检测无线电波来工作;然而,这种信号通常相对较弱,因此需要一个RF放大器来增强信号,以便进一步处理。由于天线将捕捉所有可能的频率,因此需要一个调谐器来找到所需的特定频率。 图5 LC电路原理图示例 2.2 模拟解调模拟解调调谐器通常由一个LC(电感电容)电路组成,如图5所示。根据所用的电感和电容,电路将在特定频率下谐振。高于和低于该谐振频率的所有其他频率将被阻挡。消息信号可以被整流为仅给出DC信号,并通过二极管和旁路电容器从载波中解调。该信息信号然后可以被放大并发送到扬声器、耳机等。2.3 锁定放大器锁定放大器是一种功能强大的器件,可以从噪声背景中分离出调制信号,在我们的情况下,是从一系列信号中分离出特定的AM信号。这意味着锁定放大器可以作为无线电接收器,因为它包含无线电接收器的几个关键部件。Moku:Go的锁定放大器能够通过使用相敏检波器(PSD)解调调制信号,例如无线电波。它使用与载波信号频率相同的正弦参考信号。它可以跟踪参考信号的任何变化,因此能够跟踪频率漂移。PSD将两个信号相乘或“混合”在一起,产生两个信号的和项和差项。所需频率和参考信号由相同的频率组成,因此频率之间的差异为零。因此,所需的无线电波信号被设置为DC。混合信号然后通过低通滤波器发送,该低通滤波器去除调制信号的交流分量。这仅留下与信号幅度成比例的DC信号,在这里,信号然后可以使用直流放大器放大。输出幅度可以从通过混频器和低通滤波器发送的信号中找到。这些可以在直角坐标或极坐标中找到。振幅R可以通过坐标之间的转换得到,其中 。对于AM信号,只需要振幅或R(在极坐标中);信号的相位可以忽略。三. 实验前练习找到并详细列出你所在地区的AM电台列表。你觉得什么信号会最强?为什么?实验装置成分:○ Moku:Go [2x]○ 天线○ 扬声器○ 低噪声放大器(可选)1○ 鳄鱼夹○ 实验室程序3.1 第一部分确保您拥有最新版本的在地址:Moku: desktop app2将磁性电源适配器插入每个Moku:去等待前面的LED变成绿色。这些最初的步骤将解决Moku:Go #1的配置问题。将天线连接到Moku:Go的输入1,如图6和图7所示。图6 第一部分照片Moku:去设置 1、常用的30分贝LNA。如需完整的物料清单,请联系我们。2、Moku:Go可以通过三种不同的方式连接到笔记本电脑:以太网、USB-C和Wi-Fi。请参考Moku:Go Quick StartGuide 如何连接你的Moku:去你的电脑。一旦连接,Moku:Go将出现在Windows或MacOS应用程序的设备选择屏幕上。图7 Moku:go:设置第1部分 双击频谱分析仪。找到调幅范围,并随意平均频谱,以改善图表。找到最主要的调幅无线电信号频率,你可以通过添加一个跟踪光标来完成。信号应在小于2 MHz的范围内。频谱分析仪和设置配置的示例如图8所示。 图8 如何配置频谱分析仪 ○ 将您的扬声器连接到Moku:Go #1的输出1。○ 返回仪器选择屏幕,双击锁定放大器。打开示波器部分,确保可以看到A和b。○ 将探针A添加到输入1(天线)○ 将探头B添加到输出1(扬声器)在图9中可以看到锁定放大器仪器页面的一个例子。 图9 锁定放大器解调AM广播电台的示例。上面(红色)的轨迹是天线信号,下面(蓝色)的轨迹是音频。 改变本地振荡器到你最主要的调幅信号的频率。首先将低通滤波器设置为12kHz。根据需要改变极性和增益。您可能需要改变低通滤波器和增益,以改善信号并产生尽可能清晰的声音。小心不要让信号饱和。图10给出了堪培拉地区各种变量的设置示例。 图10 堪培拉地区锁定放大器设置示例。 3.2 第二部分在第2部分中,我们将使用第二个Moku:Go作为数字滤波器来进一步增强接收到的无线电信号。将扬声器连接电缆移至Moku:Go #2的输出2。将一根电缆从Moku:Go #1的输出1连接到Moku:Go #2的输入2。这种设置可以在图11和图12中看到。 图11 Moku的照片:去设置第2部分 图12 Moku:go:设置第2部分 返回主屏幕,双击Moku:Go #2的图标。双击数字滤波器框。数字滤波器盒界面如图13所示。 图13 数字滤波器盒用户界面 将探针A添加到输入2,将探针B添加到输出2。首先,将滤波器改为贝塞尔带通滤波器,并根据需要改变增益。改变频率,仅隔离信息信号,即音乐或声音,从而尝试去除低频噪音。试着瞄准音乐和声音产生的频率。图14给出了堪培拉地区的数字滤波器盒变量。 图14 堪培拉地区的数字滤波器盒示例 3.2 第3部分将低噪声放大器连接在天线和Moku:Go #1的输入1之间。为低噪声放大器供电,将鳄鱼夹连接到电源连接和Moku:Go #1的背面。设置如图15所示。图15 Moku的框图:设置第3部分 确保它连接到PPSU2或类似的12 V电源。单击 打开电源,并将电压设置为12 V。电源弹出窗口可能如图16所示。 图16 PPSU的例子 根据需要改变数字滤波器盒和锁定放大器的变量,以产生尽可能清晰的信号。尝试改变你所在区域的其他AM信号,你能通过改变锁定放大器和数字滤波器盒中的变量来优化你的音质吗?3.3.1 摘要本实验探索在Moku:Go上使用锁定放大器作为AM无线电接收器。锁定放大器是一个强大的工具,帮助学生了解如何从嘈杂的背景中解调信号。此外,学生还能够学习如何利用许多其他工具进一步提高信号清晰度。在Moku: App中,通过截屏或文件共享可以轻松发布和报告结果。您可以通过点击屏幕顶部的云图标来完成此操作。Moku的好处:Go面向教育工作者和实验室助理有效利用实验室空间和时间易于实现一致的仪器配置专注于电子设备而非仪器设置最大限度地利用实验室助教的时间个人实验室,个人学习通过屏幕截图简化评估和评级对于学生来说各个实验室按照自己的节奏加强理解和保留便携式,选择实验室工作的速度、地点和时间,无论是在家里、在校园实验室,甚至是在熟悉的Windows或macOS笔记本电脑环境中进行远程协作,同时使用专业级仪器。3.3.2 Moku:Go演示模式您可以在Liquid Instruments网站下载适用于macOS和Windows的Moku:Go应用程序。演示模式操作不需要任何硬件,并提供了使用Moku:Go的一个很好的概述。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title="微信图片_20170518091903_副本.jpg"//pp style="text-align: center "文章封面以及毛细力构筑单热点结构示意图/p
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp style="text-align: center "img width="250" height="321" title="ea14fe0b8668f5b02fa47ae1ab982279.jpg" style="width: 250px height: 321px " src="http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border="0" vspace="0" hspace="0"//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。/p
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括:正要建立新电生理实验室的教授及研究人员大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC.请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与!若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 对生命进行远程控制:无线生物工程学成为医学研究的前沿领域
    据英国《新科学家》周刊网站近日报道,随着纳米技术、生物技术以及无线通讯技术等领域的迅猛发展和交叉融合,现在,科学家们已经能够使用无线电信号来对细胞、药品甚至动物等进行控制了。尽管远程无线控制医学这一前沿领域可能面临着安全性等问题,但是,其发展潜力和蕴藏的好处都让人不容小觑。  无线生物工程学方兴未艾  美国纽约州立大学水牛城分校的阿诺德普拉勒制造出的线虫看起来与其他蠕虫毫无二致,体长约为1毫米。接着,当普拉勒打开一个磁场,这些滑溜的、不断蠕动的蠕虫会停止动作,随后,在犹豫了片刻之后,接着开始向后退。然后,普拉勒将磁场关闭,再打开,一遍又一遍地重复这个动作,蠕虫会随着他的拍子跳舞,协调一致地前后移动。  这些都是可以进行远程控制的蠕虫。此前,普拉勒和同事已经将纳米大小的接收器植入线虫头部的神经细胞中。无论何时,只要该接收器探测到高频磁场,神经细胞就会通电,蠕虫也因此会转动。  普拉勒的远程控制蠕虫仅仅只是个开始。目前,生物学家们正在研究对其他宿主进行控制 也在研究将接收器植入离子通道、DNA片段和抗体中。他们的目标是使用比无线电更小的电波来控制活体细胞。  这个方兴未艾的无线电远程医学技术融合了纳米技术、生物技术和无线电物理学技术,该领域目前正在为研究人员提供一个强大的研究工具,而且也在创造一类新科学:科学家们将其称为无线生物工程学或者电磁药理学。不管叫什么名字,该领域目前正吸引着很多科学家为之而倾倒,而且,其应用潜力也非常大。  美国西北大学的物理学家贝纳尔多巴尔别利尼-阿米德去年帮助美国国家科学基金会组织了一场与这个课题有关的研讨会。巴尔别利尼-阿米德指出,一个新的医学领域正慢慢向我们走来。很多疗法,包括基于免疫系统、基因甚至干细胞的疗法都有潜力被远程控制。  与传统药物需要经过几小时才会起作用而且会一直停留在身体里不同,使用无线方法激活的药物几乎能立刻起作用或者随时关闭。美国洛克菲勒大学的萨拉史坦利表示:“使用无线电场能诱导细胞提供具有治疗效果的蛋白质,而采用其他方法做到这一点的成本很高。”  他所在的研究团队也已经找到了使用无线电波来控制胰岛素的生产和释放的方法。我们甚至能够大胆设想:下一代用智能手机应用程序激活并起作用的药物距离我们并不遥远了。巴尔别利尼-阿米德说:“纳米无线系统在医学治疗领域拥有巨大的应用潜力。”  电磁场能“遥控”体内细胞  在很多疗法中,科学家们和医生都会使用强大的磁场来作为治疗手段。例如,名叫经颅磁刺激(TMS)的技术通过诱导大脑内的电流来工作,鉴于其具有一定的疗效,使用该技术治疗抑郁症在美国已经获批。  但是,TMS并非一种十分精确的方法,而且,目前,很多科学家正在研发其他专门使用磁场进行疾病治疗的方式。2005年,加拿大蒙特利尔综合理工大学纳米机器人实验室的西尔万马特尔就想出了一个点子:使用磁感应细菌来制造“迷你型”的药物递送系统。  马特尔的具体想法是,使用一种名为MC-1的菌株作为小拖船。MC-1会沿着地球磁场的磁力线游动——它们使用嵌入身体内名为磁小体的结构中的氧化铁粒子链来感应地球的磁场。马特尔解释道:“每个磁小体就像一根指南针或者一个纳米导航系统。”  2007年,马特尔的团队将细菌同大小为其数倍的塑料小珠连接在一起,并且使用由一台MRI扫描仪产生的、由计算机控制的磁场证明,细菌会遵循精确的路线行进,并且,将它们身上负载的东西铺展在特定的目标上。随后,该研究团队用像细胞一样的胶囊(脂质体)替换下这种塑料小珠子,接着,再让脂质体胶囊负载抗癌药物,该计算机控制的磁场能引导该脂质体胶囊通过血管到达肿瘤所在地。  科学家们已经使用这种方法,引导了很多同纳米尺度的磁体依附在一起的抗癌药物阿霉素通过一只实验老鼠的肝脏的动脉到达肿瘤。科学家们认为,最新方法可以让健康的细胞尽量少暴露在强大的药物下,因此,在治疗时副作用应该可以达到最低。马特尔团队目前正在研究如何使用这一方法治疗直肠癌。  科学家们表示,这一方法真的好处多多,电磁场或许可以通过操控身体内细胞的生物化学特性,从而直接干预身体内的这些内部细胞。这样的无线控制方法提供的精确度很少有药物能够做到。  2002年,美国麻省理工学院的约瑟夫雅各布森领导的科研团队证明了这一点。在研究中,他们认识到,金属纳米粒子能够像天线一样并从以无线电频率振动的磁场那儿吸收能量。这些能量可以被转化为热,而且,雅各布森还认为,这或许对触发细胞内部的生物化学变化非常有用。  随后,他和同事决定用DNA来测试这一想法。他们制造出了DNA片段,其中的碱基对相互依附在一起形成一个像束发夹一样的圆环。接下来,他们让一个个金纳米粒子依附到每个DNA片段上。当他们打开一个高频磁场时,来自于纳米粒子的热量会破坏这些碱基对之间的链接,而且,这个束发夹一样的圆环也会弹开。随后,他们将磁场关闭,分子冷却下来,链接也重新形成。这个循环能够一遍一遍地重复进行,而且,雅各布森也表示,它或许会成为一个有用的工具,可以用它来控制基因的功能。  普拉勒则认为,这种方法还有其他用途:打开和关闭细胞壁上的小孔。这些以蛋白质为基础的小孔调节着离子进出细胞的通道,如果能对这一关键的过程进行很好的控制,会有非常大的用处。  作为美国加州大学伯克利分校的博士后研究员,普拉勒已经研究了一个名为TRPV1的离子通道,疼痛感应神经元中经常会发现这个离子通道。在身体体温为正常的37摄氏度时,这个离子通道是关闭着的,但是,如果温度上升到43摄氏度,TRPV1会打开,而且,钙离子会通过该通道,触发一个会制造出热感的神经脉冲。具体到人体上,辣椒等产生的灼热感也同TRPV1通道脱不了干系。  刚开始,普拉勒考虑使用一个红外激光器来打开该通道,但随后,他无意中看到了雅各布森的研究。他说:“我开始思考另外一个方法,那就是我们能够使用温度来直接刺激TRPV1。”计算结果显示,单个纳米粒子无法聚集到足以打开离子通道那么多的能量。但是,他推断,固定到嵌入有TRPV1的细胞膜上的一小撮纳米粒子提供的热量足以将小孔加热到43摄氏度。  为了测试这一想法,普拉勒和同事修改了位于细胞膜内的TRPV1附近的一个蛋白质,使得该蛋白质同几个由铁锰制成的磁纳米粒子依附在一起。随后,事情果然按照普拉勒他们所想象的那样进行:他们打开一个强大的40兆赫兹的磁场,在短短的10秒钟内,通道的温度上升了6摄氏度,并且,细胞壁上的小孔张开了。  普拉勒的团队使用秀丽隐杆线虫(现代发育生物学、遗传学和基因组学研究重要的模式材料)进行了同样的测试。他们将他们制造出的TRVP1天线系统添加到线虫对热敏感的“鼻子”内,果然不出所料,当鼻子内经过修改的神经细胞探测到磁场时,线虫避开了对它们来说像热源一样的事物。  科学家们几个月前才开始关注这个开关并研究这个开关的应用前景(《科学》杂志第336期第604页)。由美国洛克菲勒大学的杰弗瑞弗里德曼领导的科研团队制造出了经过遗传修改的细胞,在这些细胞中,由TRVP1通道释放出的钙离子触发了胰岛素的产生。接着,科学家们直接将铁纳米粒子添加到TRVP1通道内,并将细胞直接注射进入实验老鼠体内。当他们开启一个以无线电频率震动的磁场时,实验老鼠的血糖浓度下降,这意味着胰岛素已经生成并开始在老鼠体内“发威”。  弗里德曼的团队甚至想出了方法让细胞制造出自己的铁纳米粒子,他们的方法就是赋予细胞合成铁蛋白(铁蛋白是一种将铁原子收集成簇的蛋白质)所必需的遗传机制。科学家们表示,他们也可以对这一方法稍作改变,使用其来远程触发诸如依靠钙离子的肌肉收缩等过程。它甚至可以用来处理大脑内的肿瘤,这里的肿瘤很难对付,因为血脑屏障让血液中的大分子无法进入大脑中。  史坦利表示,他们可以通过修改病人自己的干细胞,制造出一种对无线电信号做出反应的重组抗体,而且,他们也可以将其植入中央神经系统中以递送治疗抗体。普拉勒表示:“很多无线控制方法都有望通过这种方法或者其他方法来实现,这很酷。”  如果这类远程加热方法能起作用,那么,这种方法也不必破坏铁通道中的蛋白质或者伤害附近的分子。普拉勒认为,其中一个原因在于它使加热过程变得更有效。如果他能够在接下来的研究中,找到方法减少提高离子通道的温度所耗费的时间,那么,让附近的分子受到影响的热能也会相应减少。为此,他正在设计更好的纳米大小的热吸收器。  无线拉伸细胞可诱使肿瘤细胞凋亡  科学家们发现,除了可以使用热来对细胞进行远程控制之外,还有其他方法也能对细胞进行远程控制。美国哈佛医学院的唐因格伯进行的研究表明,细胞会通过使用自己身体的扭转来相互交流。他的团队发现,他们可以仅仅通过采用特别的方式来拉伸细胞,从而改变细胞内的基因活动的模式甚至触发细胞自杀——也就是所谓的细胞凋亡。  因格伯的研究团队采用的方法是,将具有磁性的纳米小珠依附到整联蛋白上,整联蛋白是一种出现在细胞的外膜内的蛋白质,其会将纳米小珠锚定到细胞的外基质上。打开一个磁场会对塑料小珠施加一种力,这个力会拖动整联蛋白并将细胞拉变形。  2007年,因格伯就已经证明,他能够将细胞拖成扁平的形状,而且,当磁场关闭时,细胞会死亡。他表示:“这表明,我们可以通过磁场的关闭这种方式来控制细胞的命运。”而且,他和他的团队也已经发现,让一个干细胞变形可以决定它会发育成为哪类身体组织。因格伯解释道:“力学在发育过程中和基因一样重要。”  使用磁场拖拉细胞也能影响我们的免疫系统。在另外一套实验中,因格伯团队让磁性纳米粒子依附到肥大细胞表面的抗体受体上,这种抗体受体会对特定抗原产生过敏免疫反应。在一个磁场中,纳米粒子形成一簇,将这些抗体受体聚拢到一起,其采用的方式与抗原依附于其上一样。在一般情况下,这个聚簇行为会触发一系列的生物化学事件,导致组织胺释放出来——这是一种免疫反应。结果表明,磁场是这一切事件背后的幕后推手。因格伯说:“磁场在这方面表现得非常好。”  因格伯表示,这样通过无线触发方法释放出的组织胺可以更好地控制炎症。组织胺影响血管扩张、肌肉收缩以及肠道内的胃酸分泌。它也能像神经传递素一样影响人的清醒和睡眠状态。而且,这种聚簇效应也能同细胞表面的其他分子结合在一起以制造抗癌药物,例如,制造能触发肿瘤细胞死亡的抗癌药物。  目前,普拉勒打算厘清一个问题,那就是,这种远程加热技术是否能通过激活动物嗅球内特定的神经元(嗅球是大脑内与处理气味有关的组织)来刺激老鼠的触觉。实际上,也就是通过这种方法,让老鼠“闻到”并不存在的物质。去年,他的团队接受了美国国立卫生研究院(NIH)提供的130万美元的资助来研发这项技术。他说:“嗅觉提供了一个大的实验场地,因为嗅球能够从外面送达,因此,递送纳米粒子相对来说也比较容易。”  细胞自身或许就拥有无线机制  要想对细胞进行无线控制,小磁铁可能并非最好的接收器。据《科学美国人》杂志报道,早在2007年,美国加州大学伯克利分校的物理学家亚历克斯策特尔就已经证明,纳米管完全可以作为无线电接收机来使用:可以被当做一个配备了放大器和谐调器的天线来使用。  为了制造出一个能对无线电波做出反应的纳米管,策特尔团队在该碳纳米管的尖端施加了一个电荷。当出现无线电波时,电荷会在管内制造出振动,这种振动能被转化回来成为一个震动的电磁信号。通过改变碳纳米管的长度可以改变其共振频率——策特尔发现,采用这种办法能让纳米管与特定的无线电频率保持一致。策特尔甚至也证明,他的碳纳米管无线电接收机能够通过播送与披头士乐队齐名的沙滩小子乐队的歌曲《Good Vibrations》来重复产生传送信号。在纳米管接收器的音频输出那儿,很容易看到这种谐调。  策特尔宣称,纳米收音机可以被“轻松嵌入一个活细胞中,届时,科学家们可以制造出一个与大脑或肌肉功能接口的装置,用无线电控制在血管中游动的器件也将不再只是梦想”。  然而,甚至纳米无线电接收机可能也并不是必须要有的。科学家们表示,细胞或许拥有自己的无线机制。2009年,法国免疫学家、2008年诺贝尔生理学或医学奖获得者之一吕克蒙塔尼断言,DNA分子可以使用无线电波来传送信息,他之所以做出这一判断是因为,他找到了从富含细菌的水中传来的无线电信号,而且,即使当细胞被杀死时,只要他们的DNA完好无损,信号就会保持。  不过,很少有科学家接受这个观点。但是,去年,美国西北大学的物理学家阿兰维多姆计算出,这样的信号可能源于细菌染色体内的DNA环周围的电子,此前,科学家们就认为,循环的电荷能产生电磁波。维多姆指出,人们很早就知道,有些古老的细菌能够通过导电的纳米线将其同电网相连。维多姆预测道:“那么,或许会有很多现代细菌会使用无线电来做事。”  安全问题首当其冲  然而,尽管一切看上去都很美好,这项技术的应用潜力似乎也非常大,但是,我们仍然不能忽视可能会存在的问题。其中一个关键的挑战是,如何将所有这些功能(包括感应无线信号并将其变成有用的反应)整合为一个安全的集成系统。很多科学家们也认为,手机等发射出的电磁信号对细胞具有危险的影响,其会改变基因表达甚至诱发癌症。因此,迄今为止,无线生物工程学这一理念还存在诸多争议。  安全问题则紧随其后。今年2月,西雅图信息安全测试公司McAfee的主管巴纳比杰克表示,他找到了一种方法,可以用无线信号探测糖尿病患者所携带的胰岛素泵,同时控制这些胰岛素泵。他随后进行的初步研究也证明,依靠无线连接的胰岛素递送系统、起搏器、除纤颤器有可能受到黑客的攻击或者被修改。有鉴于此,美国政府问责局目前正着手进行调查,以弄清楚是否应该为医疗设备工业制定更加严苛的安全规则,研究报告预计今年出炉。  显然,不管是无意的还是有意为之的,任何这样的干扰和破坏都会带来令人担忧的问题。巴尔别利尼-阿米德表示:“我们应该关注纳米世界内计算机和通讯领域的安全问题。未来的医用无线纳米设备必须包含更加严谨的安全机制。”  科学家们也表示,尽管面临着一定的风险,但是,我们应该花大力气来解决目前面临的挑战。这是值得的,因为,无线生物工程学具有非常巨大的应用潜能。
  • 山西农业大学135.00万元采购高压灭菌器,超纯水器,过氧化氢灭菌,冷冻干燥机,微波消解仪
    详细信息 山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的采购公告 山西省-晋中市 状态:公告 更新时间: 2022-08-14 招标文件: 附件1 项目概况山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的潜在报价人应在山西省政府采购网-政府采购云平台线上获取谈判文件,并于2022年08月23日下午14点30分(北京时间)前提交报价文件。 一、项目基本情况 项目编号:1499002022ATP01814 项目名称:山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目采购方式:竞争性谈判预算金额(元):1350000元;其中第一包:350000元,第二包:1000000元;最高限价(元):第一包:350000元,第二包:1000000元;采购内容:本项目共分二个包,参与报价的报价人提交的报价文件必须实质上响应本谈判文件要求,内容如下: 包号 序号 设备名称 技术参数 数量 单位 是否进口 第一包 1 86寸智慧黑板 详见竞争性谈判文件 2 台 否 2 斜挂式拓展屏(含液压壁挂支架) 详见竞争性谈判文件 2 台 否 3 同步无线时钟显示 详见竞争性谈判文件 2 台 否 4 高清矩阵 详见竞争性谈判文件 1 台 否 5 智能融合信息终端 详见竞争性谈判文件 1 套 否 6 智能触摸面板 详见竞争性谈判文件 1 套 否 7 远程空调控制器 详见竞争性谈判文件 1 台 否 8 多合一传感器 详见竞争性谈判文件 1 台 否 9 触控型电源控制器 详见竞争性谈判文件 2 个 否 10 电动窗帘套装(4个) 详见竞争性谈判文件 1 套 否 11 三路电源控制器 详见竞争性谈判文件 1 台 否 12 音箱 详见竞争性谈判文件 4 只 否 13 功率放大器 详见竞争性谈判文件 1 台 否 14 数字音频处理器 详见竞争性谈判文件 1 台 否 15 无线领夹话筒 详见竞争性谈判文件 1 套 否 16 无线鹅颈话筒 详见竞争性谈判文件 1 台 否 17 电源时序器 详见竞争性谈判文件 1 台 否 18 智慧讲台 详见竞争性谈判文件 1 套 否 19 机柜(含辅材) 详见竞争性谈判文件 1 台 否 20 功率放大器 详见竞争性谈判文件 1 台 否 21 有线鹅颈话筒(2对) 详见竞争性谈判文件 2 套 否 22 录播平台服务器 详见竞争性谈判文件 1 台 否 23 资源管理平台软件 详见竞争性谈判文件 1 台 否 24 互动平台服务器 详见竞争性谈判文件 2 台 否 25 互动教学管理平台 详见竞争性谈判文件 5 台 否 26 互动录播一体机(含软件) 详见竞争性谈判文件 1 套 否 27 教师高清云镜摄像机 详见竞争性谈判文件 1 套 否 28 学生高清云镜摄像机 详见竞争性谈判文件 1 套 否 29 音频处理器 详见竞争性谈判文件 1 套 否 30 全向麦克风 详见竞争性谈判文件 2 支 否 31 控制面板 详见竞争性谈判文件 1 台 否 包号 序号 设备名称 技术参数 数量 单位 是否进口 第二包 1 微波消解仪 详见竞争性谈判文件 1 台 否 2 正置显微镜 详见竞争性谈判文件 1 台 否 3 全自动液氮冷冻研磨机 详见竞争性谈判文件 1 台 否 4 阔叶分析系统 详见竞争性谈判文件 2 台 否 5 植物根系分析仪 详见竞争性谈判文件 1 台 否 6 光谱仪 详见竞争性谈判文件 1 台 否 7 实验型冷冻干燥机 详见竞争性谈判文件 1 台 否 8 整形机 详见竞争性谈判文件 1 台 否 9 高压灭菌锅 详见竞争性谈判文件 1 台 否 10 便携式植株自动测高仪 详见竞争性谈判文件 1 台 否 11 气压式揉捻机 详见竞争性谈判文件 1 台 否 12 96孔板甩板离心机 详见竞争性谈判文件 1 台 否 13 烘焙提香机 详见竞争性谈判文件 1 台 否 14 中型杀青机 详见竞争性谈判文件 1 台 否 15 糖酸测定仪 详见竞争性谈判文件 4 台 否 16 PAR光量子计 详见竞争性谈判文件 10 台 否 17 真空干燥器 详见竞争性谈判文件 1 台 否 18 油浴锅 详见竞争性谈判文件 1 台 否 19 电泳槽 详见竞争性谈判文件 2 台 否 20 超纯水系统 详见竞争性谈判文件 1 台 否 注:按照财政部《政府采购进口产品管理办法》(财库[2007]119号)的有关规定,本项目涉及的所有采购内容除特别标注为“进口产品”外,均必须采购国产产品,即非“通过中国海关报关验放进入中国境内且产自国外的设备”。所采购的货物必须符合国家的强制性标准。 合同履行期限:第一包:合同签订后15日内供货并完成安装调试;第二包:合同签订后30日内供货并完成安装调试;交货地点:采购人指定地点;本项目不接受联合体。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:面向中小企业;3.本项目的特定资格要求:无。三、获取采购文件时间:2022年08月15日至2022年08月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:山西省政府采购网-政府采购云平台线上获取(http://www.ccgp-shanxi.gov.cn/home.html)方式:只允许在线获取凡有意参加报价的报价人,请按照以下步骤获取谈判文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于谈判文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取谈判文件。四、报价文件递交截止时间:2022年08月23日下午14点30分(北京时间)地点:登录山西省政府采购网-政府采购云平台投标客户端提交。电子报价文件递交及格式要求 1、报价文件递交截止时间前在政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)完成递交(上传),递交截止时间前未完成报价文件上传的,视为撤回报价文件,报价人自行承担责任。2、纸质报价文件请在递交截止时间前到开启现场递交,五、报价文件开启时间:2022年08月23日下午14点30分(北京时间)地点:山西省政府采购网-政府采购云平台。六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1、报价人应在报价文件递交截止时间前按照山西省政府采购平台的操作流程将电子报价文件上传至山西省政府采购采购平台系统。2、有关本项目谈判文件的变更信息以上述网站公告为准,采购代理机构不再另行通知。3、报价文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成报价文件上传的,视为无效报价;报价人自行承担责任。4、纸质报价文件请在开启时间前到开标现场递交,(截止时间后送达的报价文件将被拒收)。5、纸质报价文件递交地点:太原市高新开发区新岛科技园D座四层会议室。6、报价人仅提交电子报价文件但未提交相对应纸质报价文件的,均视为该报价人未按照要求提交报价文件,其相应的报价文件将被视为无效且被拒绝。7、针对本项目的质疑需一次性提出,多次提出将不予受理八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:山西农业大学地 址:山西省晋中市太谷区铭贤南路1号联系人:张老师联系方式:0351-62853732.采购代理机构信息名 称:山西德汇招标代理有限公司地 址:太原市高新开发区新岛科技园D座四层403室联系方式:0351-72315533.项目联系方式项目联系人:刘女士、游先生电 话:0351-7231553邮 箱:3497054244@qq.com附件信息: 园艺学院蔬菜花卉 竞争性谈判文件(定稿).doc943.3K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:高压灭菌器,超纯水器,过氧化氢灭菌,冷冻干燥机,微波消解仪 开标时间:2022-08-23 00:00 预算金额:135.00万元 采购单位:山西农业大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山西德汇招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的采购公告 山西省-晋中市 状态:公告 更新时间: 2022-08-14 招标文件: 附件1 项目概况山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目的潜在报价人应在山西省政府采购网-政府采购云平台线上获取谈判文件,并于2022年08月23日下午14点30分(北京时间)前提交报价文件。 一、项目基本情况 项目编号:1499002022ATP01814 项目名称:山西农业大学园艺学院蔬菜花卉种质资源创新与利用重点实验室及智慧教室设备购置项目采购方式:竞争性谈判预算金额(元):1350000元;其中第一包:350000元,第二包:1000000元;最高限价(元):第一包:350000元,第二包:1000000元;采购内容:本项目共分二个包,参与报价的报价人提交的报价文件必须实质上响应本谈判文件要求,内容如下: 包号 序号 设备名称 技术参数 数量 单位 是否进口 第一包 1 86寸智慧黑板 详见竞争性谈判文件 2 台 否 2 斜挂式拓展屏(含液压壁挂支架) 详见竞争性谈判文件 2 台 否 3 同步无线时钟显示 详见竞争性谈判文件 2 台 否 4 高清矩阵 详见竞争性谈判文件 1 台 否 5 智能融合信息终端 详见竞争性谈判文件 1 套 否 6 智能触摸面板 详见竞争性谈判文件 1 套 否 7 远程空调控制器 详见竞争性谈判文件 1 台 否 8 多合一传感器 详见竞争性谈判文件 1 台 否 9 触控型电源控制器 详见竞争性谈判文件 2 个 否 10 电动窗帘套装(4个) 详见竞争性谈判文件 1 套 否 11 三路电源控制器 详见竞争性谈判文件 1 台 否 12 音箱 详见竞争性谈判文件 4 只 否 13 功率放大器 详见竞争性谈判文件 1 台 否 14 数字音频处理器 详见竞争性谈判文件 1 台 否 15 无线领夹话筒 详见竞争性谈判文件 1 套 否 16 无线鹅颈话筒 详见竞争性谈判文件 1 台 否 17 电源时序器 详见竞争性谈判文件 1 台 否 18 智慧讲台 详见竞争性谈判文件 1 套 否 19 机柜(含辅材) 详见竞争性谈判文件 1 台 否 20 功率放大器 详见竞争性谈判文件 1 台 否 21 有线鹅颈话筒(2对) 详见竞争性谈判文件 2 套 否 22 录播平台服务器 详见竞争性谈判文件 1 台 否 23 资源管理平台软件 详见竞争性谈判文件 1 台 否 24 互动平台服务器 详见竞争性谈判文件 2 台 否 25 互动教学管理平台 详见竞争性谈判文件 5 台 否 26 互动录播一体机(含软件) 详见竞争性谈判文件 1 套 否 27 教师高清云镜摄像机 详见竞争性谈判文件 1 套 否 28 学生高清云镜摄像机 详见竞争性谈判文件 1 套 否 29 音频处理器 详见竞争性谈判文件 1 套 否 30 全向麦克风 详见竞争性谈判文件 2 支 否 31 控制面板 详见竞争性谈判文件 1 台 否 包号 序号 设备名称 技术参数 数量 单位 是否进口 第二包 1 微波消解仪 详见竞争性谈判文件 1 台 否 2 正置显微镜 详见竞争性谈判文件 1 台 否 3 全自动液氮冷冻研磨机 详见竞争性谈判文件 1 台 否 4 阔叶分析系统 详见竞争性谈判文件 2 台 否 5 植物根系分析仪 详见竞争性谈判文件 1 台 否 6 光谱仪 详见竞争性谈判文件 1 台 否 7 实验型冷冻干燥机 详见竞争性谈判文件 1 台 否 8 整形机 详见竞争性谈判文件 1 台 否 9 高压灭菌锅 详见竞争性谈判文件 1 台 否 10 便携式植株自动测高仪 详见竞争性谈判文件 1 台 否 11 气压式揉捻机 详见竞争性谈判文件 1 台 否 12 96孔板甩板离心机 详见竞争性谈判文件 1 台 否 13 烘焙提香机 详见竞争性谈判文件 1 台 否 14 中型杀青机 详见竞争性谈判文件 1 台 否 15 糖酸测定仪 详见竞争性谈判文件 4 台 否 16 PAR光量子计 详见竞争性谈判文件 10 台 否 17 真空干燥器 详见竞争性谈判文件 1 台 否 18 油浴锅 详见竞争性谈判文件 1 台 否 19 电泳槽 详见竞争性谈判文件 2 台 否 20 超纯水系统 详见竞争性谈判文件 1 台 否 注:按照财政部《政府采购进口产品管理办法》(财库[2007]119号)的有关规定,本项目涉及的所有采购内容除特别标注为“进口产品”外,均必须采购国产产品,即非“通过中国海关报关验放进入中国境内且产自国外的设备”。所采购的货物必须符合国家的强制性标准。 合同履行期限:第一包:合同签订后15日内供货并完成安装调试;第二包:合同签订后30日内供货并完成安装调试;交货地点:采购人指定地点;本项目不接受联合体。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:面向中小企业;3.本项目的特定资格要求:无。三、获取采购文件时间:2022年08月15日至2022年08月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:山西省政府采购网-政府采购云平台线上获取(http://www.ccgp-shanxi.gov.cn/home.html)方式:只允许在线获取凡有意参加报价的报价人,请按照以下步骤获取谈判文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于谈判文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取谈判文件。四、报价文件递交截止时间:2022年08月23日下午14点30分(北京时间)地点:登录山西省政府采购网-政府采购云平台投标客户端提交。电子报价文件递交及格式要求 1、报价文件递交截止时间前在政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)完成递交(上传),递交截止时间前未完成报价文件上传的,视为撤回报价文件,报价人自行承担责任。2、纸质报价文件请在递交截止时间前到开启现场递交,五、报价文件开启时间:2022年08月23日下午14点30分(北京时间)地点:山西省政府采购网-政府采购云平台。六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1、报价人应在报价文件递交截止时间前按照山西省政府采购平台的操作流程将电子报价文件上传至山西省政府采购采购平台系统。2、有关本项目谈判文件的变更信息以上述网站公告为准,采购代理机构不再另行通知。3、报价文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成报价文件上传的,视为无效报价;报价人自行承担责任。4、纸质报价文件请在开启时间前到开标现场递交,(截止时间后送达的报价文件将被拒收)。5、纸质报价文件递交地点:太原市高新开发区新岛科技园D座四层会议室。6、报价人仅提交电子报价文件但未提交相对应纸质报价文件的,均视为该报价人未按照要求提交报价文件,其相应的报价文件将被视为无效且被拒绝。7、针对本项目的质疑需一次性提出,多次提出将不予受理八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:山西农业大学地 址:山西省晋中市太谷区铭贤南路1号联系人:张老师联系方式:0351-62853732.采购代理机构信息名 称:山西德汇招标代理有限公司地 址:太原市高新开发区新岛科技园D座四层403室联系方式:0351-72315533.项目联系方式项目联系人:刘女士、游先生电 话:0351-7231553邮 箱:3497054244@qq.com附件信息: 园艺学院蔬菜花卉 竞争性谈判文件(定稿).doc943.3K
  • 公交司机发明微声探测仪 可检测车是否漏气
    邵师傅发明的微声探测仪  天然气公交车如果路上发生漏气将很危险,可是检测起来又很困难,有了微声探测仪就轻松多了。记者近日了解到,为了检测天然气泄漏情况,公交驾驶员邵明德师傅发明了一种微声探测仪。  “这是话筒探头,将探头放在燃油管路上,如果有天然气泄漏就会有‘嗤嗤’的声音,”6月7日,在公交20路队,驾驶员邵明德给记者试验了他的新发明微声探测仪,其中探头是驻极体话筒,话筒通上线,插入经过改造的收音机,“这个收音机经过改造就有了放大器的功能,通过这个放大器和耳机,话筒所收到的‘嗤嗤’天然气泄漏的声音就能听到了”。同时,为了夜间使用这套设备,邵师傅还在探头处装有LED灯,一通上电LED 灯还挺亮的。  “由于路颠和管线老化,难免会出现管线天然气泄漏情况。”据邵师傅说,自从2007年开上天然气汽车后,他就发现天然气管线有些时候发生泄漏,但是检测起来很麻烦,要在车的燃油管路上涂抹肥皂水试验是否漏气,从那时起他就在琢磨如何检测天然气泄漏问题,最终发明了微声探测仪。
  • 中国科大彭新华教授团队实现新型自旋量子放大技术
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授研究组在自旋量子精密测量领域取得重要进展,首次提出和验证了Floquet自旋量子放大技术,该技术克服了以往只在单个频率处量子放大的局限性,实现了多频段极弱磁场信号的量子放大,灵敏度达到了飞特斯拉水平。相关研究成果于6月9日以“Floquet Spin Amplification”为题在线发表于著名国际学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 128, 233201 (2022)],并被选为“编辑推荐(Editors’Suggestion)”文章。现代自然科学和物质文明是伴随着测量精度的不断提升而发展的。随着量子力学基础研究和科学技术的发展,通过原子、分子、自旋等物理系统可以实现微弱信号的量子增强放大。相比于基于经典电路的传统放大技术,量子增强放大受限于更低的量子噪声且具有更高的放大增益,为提升测量精度提供了强有力的研究手段,因此受到大家的广泛关注和研究。目前,量子放大技术已经在诸多测量过程发挥不可替代的作用,催生出许多革命性成果,例如微波激射器、激光器、原子钟,甚至宇宙微波背景辐射的首次发现等,诺贝尔物理学奖也曾多次授予相关领域。然而目前对量子放大精密测量技术的探索仍然有限,实现信号放大主要依赖于量子系统固有的离散能级跃,由于可调谐性的限制,量子系统固有离散跃迁频率往往无法满足放大需要的工作频率,因此限制了量子放大器的性能,如工作带宽、频率和增益等。如果能够克服以上困难,量子放大技术的性能将可以得到很大改善,对探测极弱电磁波和奇异粒子等基础物理和实际应用具有重要意义。成果示意图:(a)Floquet能级;(b)Flqouet量子自旋放大器原理图;(c)磁探测灵敏度。针对以上难题,本文研究人员提出了Floquet自旋量子放大技术,成功克服了以往探测频率范围小等限制,实现了对多个频率的极弱磁场放大。这项技术得益于该组之前提出的“自旋放大技术”[Nat.Phys. 17, 1402 (2021)]和“Floquet调制技术”[Sci. Adv. 7(8), eabe0719 (2021)],将二者有机结合,从而将量子放大技术推广到Floquet自旋系统:利用Floquet调制技术调控自旋的能级与量子态,将固有的二能级系统(如129Xe核自旋)修饰为周期性驱动Floquet系统,从而具有很多独特的性质,使得系统形成了一系列等能量间距分布的Floquet能级结构,在这些能级之间可以发生共振跃迁,因此有效拓广了磁场放大的频率范围。通过理论计算和实验研究,首次展示了Floquet系统可以实现多个频率待测磁场2个数量级的同时量子放大,测量灵敏度达到了飞特斯拉级级别。该工作首次将量子放大技术扩展到Floquet自旋系统,有望进一步推广到其他量子放大器,实现全新的一类量子放大器——“Floquet量子放大器”。彭新华研究组长期瞄准量子精密测量领域,利用量子精密测量技术来解决世界前沿科学问题。包括于2018年自主研发出超灵敏原子磁力计,并且利用该技术实现了无需磁场的新型核磁共振技术——“零磁场核磁共振”[Sci. Adv. 4(6), eaar6327 (2018)];于2019年至2020年发展新型原子磁力仪技术[Adv. Quantum Technol. 3, 2000078 (2020),Phys. Rev. Applied 11, 024005 (2019)],达到了国际领先水平的磁场探测灵敏度;通过进一步研究,于2021年实现了新型的自旋微波激射器,在低频段创造了国际最佳的磁探测灵敏度[Sci. Adv. 7(8), eabe0719 (2021)]。之后,该研究组将已发展的平台型量子精密测量技术用于寻找超越标准模型的新粒子,取得了一系列对推动学科领域发展有实质性贡献的研究成果。包括于2021年利用新型量子自旋放大器搜寻暗物质候选粒子,首次突破国际公认最强的宇宙天文学界限[Nat.Phys. 17, 1402 (2021)],以及实现了对一类超越标准模型的新相互作用的超灵敏检验,实验界限比先前的国际最好水平提升至少2个数量级[Sci. Adv. 7, eabi9535 (2021)]。中科院微观磁共振重点实验室江敏副研究员、博士研究生秦毓舒和王鑫为该文共同第一作者,彭新华教授为该文通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.233201量子自旋放大技术论文链接:https://www.nature.com/articles/s41567-021-01392-z
  • 苹果天线设计实验室首度曝光
    苹果17日在加州总部举行了iPhone 4新闻发布会,以回应最近被媒体热炒的iPhone 4信号门事件。新闻发布会结束后,苹果邀请数名记者和知名博客作者参观了它的天线设计实验室,介绍了它的无线电频率测试设备,首次对外公开其无线产品如 iPhone和iPad的设计过程。苹果高级工程师和天线专家鲁宾卡巴莱罗(Ruben Caballero)带领大约10名记者和博客作者参观了苹果的定制无线测试实验室。苹果无线测试实验室由数个消音室组成,用于检测每一款产品在不同环境 下的频率。           苹果天线设计实验室  在新闻发布会上,乔布斯强调iPhone 4的信号接收问题是手机产品中的一个普遍问题,他还特别列举了黑莓9000、宏达电Droid Eris和三星I8000等三款手机,声称它们也存在不同程度的信号接收问题。另外,乔布斯承认iPhone 4之前使用的信号强度算法是错误的,从而让iPhone 4的信号衰减问题看起来比实际情况更为严重。  在苹果内部,天线设计实验室被称作黑色实验室,因为它是一个比较隐秘的部门,甚至连苹果的部分员工也不知道它的存在。 苹果之所以对外公开该实验室的存在,主要是为了表明苹果在天线设计和无线测试上是非常认真的。  苹果营销副总裁菲尔希勒(Phil Schiller)称:“这是当今世界上最先进的射频研究实验室。 没有它,我们就不可能进行产品设计。”  每一个测试消音室都排满了蓝色金字塔形状的聚苯乙烯泡沫,那些泡沫可以吸收无线电频率辐射。 消音室中间还有一个机械臂,可以握持住iPad和iPhone等各种便携设备进行360度旋转,研究人员可以利用一款分析软件(具有讽刺意味的是,这款分析软件是在Windows XP系统上运行的)来检测每一款设备的无线电活动。 卡巴莱罗说,每一款设备都至少要在实验室中进行24小时的检测。  在另一个测试项目中,苹果还让人拿着设备在消音室内部坐30分钟,然后利用专业软件来分析设备的无线性能以及评估设备与人体的相互影响。 某些测试项目中还用到了模拟人头、手和脚的人造道具。  苹果的测试实验室看上去与Celecom的手机辐射测试实验室很相似。 无线产品厂商必须得到独立实验室的检测认证,独立实验室对无线厂商的各种产品进行检测,看它们是否符合联邦通讯委员会制定的可接受辐射标准的规定。  与众不同的是,苹果为了便于控制产品的设计和设计修改,建造了自己的实验室。 每一款样机在被确定成为苹果的正式产品之前,都需经过反复测试。 (当然,拥有自己的实验室还有助于苹果更好地保密。)  卡巴莱罗说,在iPhone 4成为正式产品之前,它的样机一共经过了大约两年时间的各种测试,然后苹果才确定最终的设计方案。  卡巴莱罗说:“天线设计可不是小事。”他回忆说,过去的天线只有一个单一的频率。  在参观的过程中,苹果向记者们展示了一辆装满了人造手的小货车,每一个人造手中都拿着一部iPhone 4手机。  苹果Mac电脑硬件高级副总裁鲍勃曼斯菲尔德(Bob Mansfield)说:“为了做好世界上最有挑战性的设计工作,我们必须这么做。”
  • 洪佳旭/王后禹/何耀团队开发无线便携式泪液分析传感器,通过眼泪灵敏检测眼病
    眼泪是由泪腺分泌的,其在全身循环并接触到身体的各个器官和组织。眼泪含有蛋白质、多肽、脂质、代谢物和电解质,可以作为多种疾病的生物标志物,不仅包括眼部疾病(例如干眼综合症、角膜炎、夜盲症、急性结膜炎等),还包括系统性疾病(例如癌症、糖尿病、帕金森病、阿尔茨海默病、囊性纤维化和多发性硬化症等)。此外,与血液检测相比,泪液分析更加方便、无创,且患者耐受性好。因此,泪液分析已成为临床监测健康的常规检查。然而,现有的泪液分析方法面临着三大障碍:1)泪液中目标分子的浓度极低(通常在皮摩尔水平);2)可收集的泪液量很小(仅微升水平);3)同时检测多种生物标志物有困难。这些挑战不可避免地导致了不准确的诊断。此外,基于质谱和或免疫分析的方法通常需要大型分析实验室设备,这使得POCT即时检测变得困难。近日,复旦大学附属眼耳鼻喉科医院洪佳旭主任医师与苏州大学功能纳米与软物质研究院王后禹教授、何耀教授合作,在 Advanced Materials 期刊发表了题为:Framework Nucleic Acids Combined with 3D Hybridization Chain Reaction Amplifiers for Monitoring Multiple Human Tear Cytokines 的研究论文。该研究开发了一种无线便携式泪液分析传感器,仅需3mL泪液即可灵敏检测泪液中的干眼综合症(DES)相关的四种细胞因子(IFN-γ、IL-6、TNF-α、MMP-9),检出限低至0.1 pg/mL。该研究为开发个性化、准确诊断多种眼病的泪液传感器奠定了基础。在这项研究中,研究团队开发了一种无线便携式泪液分析传感器,可以对泪液中的四种细胞因子——干扰素-γ(IFN-γ)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)和基质金属蛋白酶-9(MMP-9)进行灵敏的定量分析。这四种泪液细胞因子与干眼症(DES)密切相关。该传感器的检测策略基于DNA四面体框架(DTF)与三维杂交链反应(3D-HCR)放大器的偶联。最近,框架核酸使制造用于癌症诊断、药物递送、生物计算和智能治疗的多维有序纳米结构成为可能。此外,杂交链反应(HCR)提供了在各种环境中对分子信号进行多重、等温、无酶放大的解决方案,因此已被用于生物检测、原位成像和DNA纳米结构的构建。然而,其在泪液分析中的应用仍存在空白。在这项新研究中,研究团队利用DNA四面体框架(DTF)有效地捕获了具有可控多分支臂的3D-HCR产物。3D-HCR产物的组装由特定细胞因子触发,传统的1D-HCR具有不可控多分支臂,表现出相对较低的扩增效率,而3D-HCR产物显示出11.0倍的电化学信号增强。3D-HCR器件能够以100pg/mL、1pg/mL、1pg/mL和0.1pg/mL的检测限对MMP-9、IFN-γ、IL-6和TNF-α进行灵敏检测,且仅需3mL眼泪。研究团队使用所开发的传感器和商业ELISA试剂盒对临床干眼症(DES)样本进行的双盲测试显示,两者之间没有显著差异。与单一生物标志物诊断相比,基于多种生物标志物的这种传感器的诊断准确性提高了约16%。总的来说,该研究所开发的系统为泪液传感器提供了潜力,促进了各种眼病的创新诊断方法的开发,有望实现对各种眼病的个性化和准确诊断。长期以来,洪佳旭主任和何耀教授团队围绕角膜病的关键临床问题展开攻关,相关药物和器械研发均已推进至临床研究阶段,建立了良好的“临床-科研-转化”协作范式。
  • 中国科大实现量子增强的微波测距
    中国科学技术大学郭光灿院士团队在实用化量子传感研究中取得重要进展。孙方稳教授研究组利用微纳量子传感与电磁场在深亚波长的局域增强,研究微波信号的探测与无线电测距,实现10-4波长精度的定位。该成果于3月9日发表在国际知名期刊《自然通讯》上。   基于微波信号测量的雷达定位技术在自动驾驶、智能生产、健康检测、地质勘探等活动中得到广泛应用。尤其在当前智能化、信息化发展大趋势下,发展高性能雷达测距技术对国防安全和经济发展都方面有重要意义。   量子信息技术的发展为发展雷达技术提供了新的解决方案。量子传感和精密测量利用量子相干、关联等特性提升系统对物理量的测量灵敏度,有望超越传统测量手段的精度。孙方稳研究组面向量子信息技术实用化,长期研究固态自旋体系的量子传感技术。发展了电荷态耗尽纳米成像方法,实现基于金刚石氮-空位色心的超衍射极限分辨力电磁场矢量传感与成像(Phys. Rev. Applied 12, 044039(2019)),并利用超分辨量子传感探索了电磁场在10-6波长空间内局域增强的现象(Nat. Commun. 12, 6389(2021))。   在本研究中,研究组结合微纳米分辨力的固态体系量子传感与电磁场的深亚波长局域,发展高灵敏度微波探测和高精度微波定位技术。研究组设计了金刚石自旋量子传感器与金属纳米结构组成的复合微波天线,将自由空间传播的微波信号收集并汇聚到纳米空间,从而通过探测局域的固态量子探针状态对微波信号进行测量。该方法将自由空间弱信号的探测转换为对纳米尺度下电磁场与固态自旋相互作用的探测,提高了固态量子传感器的微波信号测量灵敏度3-4个量级。为了进一步利用高灵敏度的微波探测实现高精度微波定位,研究组搭建了基于金刚石量子传感器的微波干涉测量装置,通过固态自旋探测物体反射微波信号与参考信号的干涉结果,得到物体反射微波信号的相位以及物体的位置信息。同时,研究组利用固态自旋量子探针与微波光子多次相干相互作用,实现了量子增强的位置测量精度,达到10微米水平(约波长的万分之一)。审稿人认为该工作是金刚石量子传感器在量子测距中的首次应用(…To my knowledge, this is a first demonstration of quantum ranging platform, based on NV center…)。   与传统雷达系统相比,该量子测量方法无需检测端的放大器等有源器件,降低了电子噪声等因素对测量极限的影响。通过后续的研究,将可以进一步提高基于固态自旋量子传感的无线电定位精度、采样率等指标,发展实用化固态量子雷达定位技术,超过现有雷达的性能水平。   文章第一作者为中科院量子信息重点实验室陈向东副研究员,通讯作者为孙方稳教授。该工作得到了科技部、基金委、中国科学院和安徽省的资助。
  • 影院爆米花桶或含荧光增白剂
    小图:嘉禾万柳影城所出售的规格为85oz的大爆米花纸盒(内侧)在波长为365nm的紫外分析仪下呈蓝色。(含荧光增白剂)   大图:嘉禾万柳影城所出售规格为64oz的中爆米花纸桶(内侧)在紫外分析仪下呈自然乳白色。   一边看电影,一边美美地吃着在影院购买的爆米花,这一习以为常的动作,殊不知却埋藏着健康安全隐患。记者近日走访市场调查发现,京城多家影院的爆米花桶使用情况可谓是良莠不齐,多数影院内的爆米花桶都没有生产日期、生产厂家以及生产许可QS标识等基本信息 此外,有些包装在生产过程中使用含荧光增白剂的非食品级用纸,即由“社会白卡纸”制成,严重危害身体健康。  链接  荧光增白剂  一种荧光染料,可提高纤维织物和纸张等白度。荧光物质一旦进入人体,会对人体造成伤害,如果剂量达到一定程度还可能使细胞发生变异,成为潜在致癌因素。  爆米花桶内侧  主要有俩颜色  走访  记者走访北京嘉禾、华星、星美、万达、东都等多家影院并购买了不同规格大小的爆米花发现,从颜色上区分,这些爆米花桶基本可分为两类:一部分爆米花桶内侧看上去颜色较白较亮,另一部分爆米花桶内侧呈自然乳白色。  “这种看上去白亮的桶很可能是加入了大量的荧光增白剂”,业内权威人士告诉记者,制作爆米花桶的材料必须是“食品级白卡纸”,国家要求不能使用废纸、不能含荧光增白剂。然而有些生产厂家为了降低成本,用回收来的废纸生产,但又由于纸浆质量不过关,还要让杯子看上去更白,就加入大量的荧光增白剂。  “检测食品包装纸中是否含有荧光增白剂时,一般使用紫外分析仪检测”,上述人士告诉记者,使用“社会白卡纸”制成的包装在紫外分析仪下会呈现出鲜亮刺眼的蓝色,“食品级白卡纸”制成的包装在紫外分析仪下,则会呈现自然的乳白色。  合格与不合格产品被混用  试验  记者在位于海淀区巴沟路2号华联万柳购物中心5层的北京嘉禾万柳影城购买爆米花时发现,大爆米花(85oz)使用纸盒装,盒上无QS生产许可以及生产厂家信息等内容。记者随后与国际食品包装协会秘书长、著名食品包装打假专家董金狮联系,将该爆米花桶经紫外分析仪观察后发现,85oz的纸盒在紫外分析仪下呈蓝色,董金狮表示,这证明桶中肯定含有荧光增白剂。而该影院售卖的中桶爆米花(64oz)则呈乳白色(对比图片见图),底部上写有“北京中钜铖国际商贸有限公司”字样。  记者在众多影院发现,用来包装爆米花的桶可谓是鱼龙混杂,将合格包装的爆米花和不合格包装的爆米花一起出售。“这极有可能是为了应付送检”,董金狮分析认为,出售给消费者的可能是价格低廉的、不合格包装的爆米花,而在送检时拿出的却是合格的包装。  记者采访调查也发现,UME华星国际影城华星店以及万达影城石景山店的爆米花桶在紫外灯下呈现的都是乳白色。  有QS生产许可也散发蓝光  在金源时代购物中心5层星美国际影城(金源店),记者发现,该影院存在的问题较为严重。  该影院主要出售130oz的大爆、85oz的中爆以及46oz的小爆三种规格的爆米花,外形上与“北京中钜铖国际商贸有限公司”的桶相似,但后来在紫外分析仪下观察发现,所有桶样品都呈鲜亮刺眼的蓝色,证明是使用含有荧光增白剂的社会白卡纸。记者注意到,该影院所使用的桶底部写有“QS33-10202-00050”字样,记者通过国家质检总局网站查询发现,该产品由台州市路桥海军塑胶有限公司生产。  “很显然,这些产品虽然获得QS生产许可,但其产品可能存在着严重的隐患”。董金狮这样表示。  一个有趣的细节是,4月14日,记者在该影院购买爆米花时,希望了解桶是否安全并要求查看,该影院工作人员以各种借口拒绝,并表示:“你们是买爆米花的,还是来查我的桶的?”  不合格“爆桶”成本价低两成  调查  记者采访中了解到,一桶不起眼的爆米花就能卖出15-30元。一位生产食品包装企业负责人向记者透露,这些加包装的爆米花成本其实非常低。  记者在家乐福超市发现,一桶净重90克的爆米花售价4.9元。而记者从星美国际影城购买的一桶规格为46oz的爆米花,经电子天平测量显示,桶重16.22g,爆米花(含桶)总重为118.97g,而其价格则卖到19元。  上述业内人士还透露,不合格包装产品的价格平均要比合格产品低20%。  另据了解,有些影城票房收入仅占影城总收入的60%左右,其余40%收入全靠卖爆米花、饮料、冰激凌等附属产品。  超市“爆桶”也存安全隐患  记者昨天走访发现,各大超市内售卖的爆米花桶质量也参差不齐。  在欢乐谷公园东门正对面的乐购超市(欢乐谷店),记者发现了一桶外形酷似电影院中销售的有“中钜铖国际商贸有限公司”字样的爆米花,售价5元。但其桶身很软,此外,桶身上印有“QS42-10202-00365”的生产许可标识。记者随后通过质检总局网站查询得知,该生产许可证编号为武汉市江岸区永安纸品加工厂。而在紫外分析仪下检测时,该桶呈蓝色。  政府部门应加大监管力度  专家建议  据了解,自2009年开始,我国对食品用纸包装、容器、工具等制品实施市场准入制度。然而为什么在食品用纸包装、容器等制品生产许可证无证查处开展两年以来,市场上的无证纸桶仍会这么畅销?  “究其根本原因还是当地质监部门和工商部门的监管力度不够”,董金狮认为,质监部门应该主动出击,不要等产品出了问题才想到查一查。对使用不合格原辅材料进行生产的企业,要加大处罚力度。其次,工商部门应加强监管力度,对销售不合格产品的经销商不能手软。
  • 思仪科技发布开阳星系列全新一代经济型矢量网络分析仪3657系列
    6月28日思仪科技在2023MWC上海世界移动通信大会发布并展示了新一代经济型矢量网络分析仪3657系列产品,该系列网分频率范围覆盖9kHz~9GHz,是思仪开阳星系列的明星产品3656的升级型号,获得了众多通信制造客户的青睐。思仪开阳星是继思仪天衡星、思仪天玑星后发布的品牌五星架构中的第三颗星系列,开阳星在北斗七星中被称为武曲星,为夜空中著名的主辅双星。思仪开阳星系列经济型测试产品,始终与数字产业共发展,相伴相辅助推用户开启创新创业、提升测试的战斗力。新一代经济型矢量网络分析仪3657系列基于台式CPU架构设计;具有USB、LAN、HDMI、DP等多种接口;实现误差校准、时域、夹具仿真器、自动夹具移除、高级时域分析等多种功能;具备对数幅度、线性幅度、驻波、相位、群延时、Smith圆图、极坐标等多种显示格式。可快速、精确地测量被测件S参数的幅度、相位和群延迟特性。3657系列在操作体验方面更简单直观、测量更快速准确,专为无线通信、有线电视、教育及汽车电子等领域的工程师而精心设计,可广泛应用于滤波器、放大器、天线、电缆、有线电视分接头等射频元件的性能测量。3657系列矢量网络分析仪相较于3656系列产品进行了全面提升,主要性能提升如下:3657系列矢量网络分析仪在3656的基础上进行了频段扩展,动态范围与扫描速度等核心性能有了显著提高,增加四端口选件,并具备高级时域分析功能,可全方位地满足用户的不同测试需求。产品提供2端口和4端口两种机型,上架式(2U)和台式(5U)两种形态,用户可以根据测试需求选择不同的款式机型。3657A/B/BS矢量网络分析仪3657AM/BM矢量网络分析仪典型应用:信号完整性的快速分析高级时域分析功能基于网络参数的虚拟眼图生成及分析。可以在仿真眼图上施加抖动、噪声等干扰,通过预加重和均衡等校正算法的加入,模拟真实环境下高速链路不同位置的仿真眼图。快速高抑制比测量具有高达140dB(IFBW=10Hz)的动态范围,4us/point的测试速度,可以应用在高速线缆测试、芯片产线测试、滤波器调测等领域,非常适合工厂的批量生产测试工作,能够提高测量反应速度,提升测量效率。无源多端口器件和平衡器件测试3657系列矢量网络分析仪具备四端口测试功能,单次连接即可实现四端口网络全部16个S参数测量,非常适合工厂的多端口器件大批量生产测试工作;具有平衡参数测量功能。
  • 电科思仪5个项目入选国家重点研发计划
    近日,国家科技部发布了国家重点研发计划重点专项立项结果,中国电科牵头承担的12个项目入选。电科芯片的“抗辐照硅单光子探测器面阵项目”和“飞机故障预测与健康管理成套传感器及应用项目”入选,将分别为我国航天遥感、激光雷达研究提供持续的技术支撑和示范,提高我国航空领域MEMS传感器的源头创新和集成创新能力。电科思仪共有5个项目入选,其中,“光电集成电路及器件参数综合测试仪项目”用于超高速光电集成芯片及器件的光电网络参数测试,“高分辨率电源测量模块研制及应用开发项目”用于开发高性能伏安特性测试核心部件,“多通道混合信号示波器项目”将研制具有自主知识产权的高性能混合信号示波器产品,“天线环境效应多参数综合测试仪项目”聚焦开发温湿度环境精确可控、方向性与无线空口参数综合测试能力强的仪器产品,“高性能物联网综合测试仪项目”将开发高精密宽带物联测试仪表,构建多标准物联测试仪表产业链。2所的“超薄界面异质异构晶圆键合关键技术与装备项目”,针对通信、新能源等领域对新一代半导体器件迫切需求进行技术攻关,将为我国半导体装备领域的快速发展提供有力支撑。15所的“网络开源多模态科技情报智能分析项目”将提供公益化科技情报信息查询等服务,提升开源科技情报获取和分析能力。33所的“战略性科技创新合作项目”是山西省首个以“一带一路”联合实验室平台为依托的战略性科技创新项目,助力“一带一路”高质量发展。48所的“大尺寸超高真空分子束外延技术与装备项目”,将奋力突破一批关键核心技术与工艺难题,为实现我国MBE技术和装备的跨越式发展提供有力支撑。55所的“宽带射频功率放大器项目”将基于第三代半导体氮化镓开展超宽带射频功率管的设计与制造研究,为提升我国科学仪器自主创新能力和装备水平提供强力支撑。国家重点研发计划针对事关国计民生的重大社会公益性研究,以及事关产业核心竞争力、整体自主创新能力和国家安全的重大科学技术问题,突破国民经济和社会发展主要领域的技术瓶颈,项目定位高、技术难度大、竞争激烈。中国电科牵头承担多个国家重点研发计划项目,充分展示了作为“军工电子主力军、网信事业国家队、国家战略科技力量”的实力担当。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制