当前位置: 仪器信息网 > 行业主题 > >

模块式植物成像分析

仪器信息网模块式植物成像分析专题为您提供2024年最新模块式植物成像分析价格报价、厂家品牌的相关信息, 包括模块式植物成像分析参数、型号等,不管是国产,还是进口品牌的模块式植物成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模块式植物成像分析相关的耗材配件、试剂标物,还有模块式植物成像分析相关的最新资讯、资料,以及模块式植物成像分析相关的解决方案。

模块式植物成像分析相关的仪器

  • 太阳辐射照射到植物叶片上,其中的蓝色波段和红色波段大部分被叶片吸收进行光合作用,另一部分(包括绿色波段、红外波段等)以反射光的形式返回到大气中,少量以荧光的形式发射到大气中,还有部分则以热的形式耗散。通过对叶片反射光成像测量分析(RGB彩色成像、多光谱或高光谱成像等)、多光谱荧光成像测量分析及叶片温度测量分析(红外热成像),可以全面分析植物的性状特征包括外部形态颜色、光合作用效率、气孔动态、次级代谢等形态与生理生态特征,使植物表型数字化、生理生态及功能可视化。模块式植物表型成像分析系统由植物多光谱荧光成像单元、红外热成像单元、RGB彩色成像单元等组成,可全面分析植物叶片及冠层的形态结构、颜色、光合作用、生理状态、气孔动态、生化色素分布、胁迫生理等,是目前市场上配置最灵活、功能最全面、性价比最高的植物表型与生理生态观测分析系统。左图:西葫芦感染病原菌成像分析,其中(a)为RGB彩色成像、(b)为红外热成像、(c)为F520绿色荧光成像、(d)为F520/F680绿红荧光比值成像;右图:向日葵幼苗列当寄生后的多光谱荧光成像主要功能特点与技术指标:1) 植物多光谱荧光成像技术,可以对具有4个特征性波峰的植物荧光光谱进行成像分析,进而可全面分析植物初级代谢(光合效率)、次级代谢、生理生态、胁迫与抗性筛选等2) 可选配UV紫外光、白色LED光源(用于模拟自然光源)、青色LED光源(用于气孔功能研究)、绿色LED光源、红色LED光源、蓝色LED光源等不同激发光源3) 可对UV紫外光激发的4个波峰的荧光进行成像分析,包括兰光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,由表皮及叶肉细胞壁和叶脉发出,F690和F740为叶绿素荧光Chl-F4) 红外热成像分析单元可测量分析叶片温度的异质性分布,并通过选区(ROI)工具得到不同区域的最高温度、最低温度、平均温度、温度分布频率直方图等,依次进一步分析气孔导度、水分胁迫等5) 40倍RGB成像可以对植物形态及颜色进行分析,既可明察秋毫到气孔分布,又可大视野宏观成像分析6) 配置灵活、使用方便,可选配不同单元组合7) 适于植物叶片、植物幼苗及小型全株植物,红外热成像可应用于植物冠层或多株植物成像分析8) 应用于作物遗传育种、遗传组学与表型组学研究、植物生理生态学、植物胁迫生理、抗性筛选等领域技术指标:1 红外热成像单元:1.1 非制冷红外焦平面检测器(uncooled VOx microbolometer),已经过欧盟标注校准,可直接测量温度,包括每个像素点的温度等1.2 分辨率:640x512像素1.3 光谱范围:7.5~13.5μm1.4 温度测量范围:-25~150°C1.5 灵敏度:≤0.03℃(30mK)@ 30℃1.6 帧频:9Hz或30Hz,最大60Hz1.7 数据传输:USB-3或千兆以太网1.8 19mm光学镜头,视野32℃x26℃,可选配13mm镜头或35mm镜头1.9 具备视频模式和快照模式1.10 具备14种调色板供任意选择,可多样化设置热成像假彩色1.11 具备差值功能,可内查图像形成平滑影像以避免像素化1.12 可通过软件设置大气温度、湿度、距离等参数1.13 具备等温模式功能,包括以上、一下、之间、及以下与以上四种等温模式1.14 结果在线报告功能,自动显示热影像、时距图及影像参数如发射率、反射温度、大气温度、湿度、外部光距离、传播等1.15 影像处理软件具备ROI选区功能,包括点、线、折线、矩形等,并可进行分区处理,每个ROI即时显示最小温度、最高温度、平均温度等1.16 热扫描功能及热剖面功能:可在线可视化显示线型ROI温度值、温度剖面图1.17 所有ROI工具的温度值均可显示在时距图中1.18 防护级:IP651.19 工作温度:-15°C~+50°C 1.20 支持GPS信息,可将位置信息显示在谷歌地图上2 植物多光谱荧光成像2.1 成像面积20x20cm2.2 紫外光激发多光谱荧光成像包括F440、F520、F690、F740四个波段的荧光成像2.3 高分辨率CCD镜头,20fps、1360x1024像素,有效像素大小为6.45μm,高速USB 2.0 (480Mbits/sec),可像素叠加(binning)以提高灵敏度(2x2,3x3,4x4);具备视频模式和快照模式2.4 自动测量分析功能(无人值守):可预设1个或2个试验程序,系统可自动测量储存2.5 激发光源包括紫外光、蓝色光源、红橙色光源,通过紫外激发荧光与红光LED激发荧光,可以分析植物类黄酮相对含量等2.6 成像分析软件具Live(实况测试)、Protocol(实验程序选择)、Pre-processing(成像预处理)、Result(成像分析结果)等功能菜单2.7 成像预处理可以自动选区或手动选择不同形状、不同数量、不同位置的区域(Region of interest,ROI),成像分析结果包括高时间解析度荧光动态图、直方图、不同参数成像图、不同ROI的荧光参数列表等2.8 Protocol实验程序可自由编辑,也可利用Protocol菜单中的向导程序模版客户自由创建新的实验程序2.9 多种Protocols供选配和自动运行,包括Fv/Fm、Kautsky诱导效应、叶绿素荧光淬灭曲线、光响应曲线等2.10 具备系统自动重复运行功能,可无人值守自动循环完成选定的实验程序,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机2.11 高度可调,以适应不同高度植株成像分析,最大植株高度50cm,可根据客户需求定制不同高度3. NDVI与PAR吸收成像模块:630nmLED红色光源和740nm LED红外光源,可对PAR(光合有效辐射)吸收及植物光谱反射指数NDVI成像分析 4. 可对绿色荧光蛋白GFP进行成像分析,可选配YFP成像分析5. RGB成像:科研级RGB成像镜头,分辨率2592x1944像素,信噪比54dB,1-40x放大,最小视野6.1x7.9mm(40x),最大视野20.8x25.4;可分析叶面积、长度、宽度、周长、比值、绿度指数、颜色分级分析、频率直方图等 应用案例与近期代表性参考文献: 西葫芦感染软腐病菌(Dickeya dadantii)RGB彩色成像、多光谱荧光成像及红外热成像分析(引自Maria L. Perez-Bueno等,Multicolor Fluorescence Imaging as a Candidate for Disease Detection in Plant Phenotyping. Frontiers in Plant Science, 2016)1) Monica Pineda etc. Detection of Bacterial Infection in Melon Plants by Classification Methods Based on Imaging Data. Frontiers in Plant Science2) Monica Pineda et. Use of multicolour fluorescence imaging for diagnosis of bacterial and fungal infection on zucchini by implementing machine learning. Functional Plant Biology, 20173) Carmen M. Ortiz-Bustos etc. Fluorescence Imaging in the Red and Far-Red Region during Growth of Sunflower Plantlets. Diagnosis of the Early Infection by the Parasite Orobanche Cumana. Frontiers in Plant Science, 2016 4)Maria Luisa Perez-Bueno etc. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiologia Plantarum, 2015
    留言咨询
  • FluorCam-WIC模块式植物表型成像分析系统是一款高度灵活、应用广泛的植物生理生态研究仪器,系统采用模块化结构,由LED光源板、CCD成像传感器、支架、控制单元及FluorCam成像分析软件等组成,具备PAM叶绿素荧光成像、多光谱荧光成像及GFP荧光蛋白成像等功能,广泛应用于植物光合生理生态、植物逆境胁迫生理与易感性、气孔功能、植物抗性、作物育种等研究。 应用领域:1.植物光合特性和光合电子传递功能研究2.生物和非生物胁迫的检测3.植物抗胁迫能力或者易感性研究4.气孔非均一性研究5.代谢混乱研究6.长势与产量评估 功能特点:1.模块化,配置灵活,可自由安装更换成像模块与光源板、自由调整光源角度和高度、自由调整CCD镜头高度,方便被测植物的处理、操作等2.成像面积达20×20cm,可对各种植物/藻类样品、整株植物甚至多株植物(如拟南芥等小型植物)进行实验成像分析3.可进行自动重复成像测量,可设置一个实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳)4.可同时具备PAM叶绿素荧光成像、UV-MCF多光谱荧光成像及GFP荧光蛋白成像等功能,测量分析参数达50多个5.可选配WIC植物冠层红外热成像分析单元,用于气孔导度、干旱胁迫研究分析6.可选配TetraCam RGB可见光成像分析单元,最大成像面积20×25cm,用于叶片或植物形态测量分析技术参数:1.成像面积:20 × 20cm,可对植物叶片、果实、麦穗、花朵、藻类、苔藓、地衣、整株植物或多株植物、96孔板、384孔板等进行成像分析2.PAM叶绿素荧光成像测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数,每个参数均可显示2维荧光彩色图像3.紫外光激发多光谱荧光参数(选配): F440、F520、F690、F740、F440/F520、F440/F690、F440/F740、F520/F690、F520/F740、F690/F740等参数及二维荧光彩色图像。4.GFP荧光蛋白成像参数(选配):GFP荧光强度Ft及二维荧光彩色图像 5.具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑a) Fv/Fm:测量参数包括Fo,Fm,Fv,QY等b) Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数c) 荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个参数d) 光响应曲线LC:Fo,Fm,QY,QY_Ln,ETR等荧光参数e) PAR吸收率与NDVI成像(选配)f) Multi-color多光谱荧光成像(选配)g) GFP荧光蛋白成像测量(选配)6.高分辨率TOMI-2 CCD传感器a) 逐行扫描CCDb) 最高图像分辨率:1360×1024像素c) 时间分辨率:在最高图像分辨率下可达每秒20帧d) A/D 转换分辨率:16位(65536灰度色阶)e) 像元尺寸:6.45µ m×6.45µ mf) 运行模式:1)动态视频模式,用于叶绿素荧光参数测量;2)快照模式,用于GFP等荧光蛋白和荧光染料测量g) 通讯模式:千兆以太网7.光源板:4块大型高强度封装LED光源板,光源板有效面积20×20cm8.测量光:标配617nm红光,其它波段可选,持续时间10µ s–100µ s可调9.双色光化光:标配为2红光(617nm)+2白光,可选配2红光(617nm)+2蓝光(470nm或445nm)或其它波长光源组合, Actinic1最大光强300 µ mol(photons)/m² .s,Actinic2最大光强2000µ mol(photons)/m² .s;最大光化学光可升级至3000µ mol(photons)/m² .s10.饱和光闪:最大光强4000 µ mol(photons)/m² .s,可升级至6000 µ mol(photons)/m² .s11.PAR吸收率测量模块(选配):远红光735nm(FAR)、650nm双色LEDs光源板与7位滤波轮及专用滤波片,用于测量PAR吸收及NDVI12.紫外光激发多光谱荧光测量模块(选配):UV紫外光源板与7位滤波轮及4组专用滤波片,用于测量UV-MCF多光谱荧光13.GFP测量模块(选配):蓝色光化光源与7位滤波轮及专用滤波片,用于测量GFP(绿色荧光蛋白)14.WIC植物冠层红外热成像分析单元(选配):利用红外热成像技术,测量植物冠层与叶片温度,成像分辨率640×512像素15.TetraCam RGB可见光成像分析单元(选配):最大成像面积20×25cm,用于叶片或植物形态测量分析16.蓝色LED光源板(选配):470nm,测量EGFP(增强型绿色荧光蛋白)17.绿色LED光源板(选配):530nm,测量YFP(黄色荧光蛋白)18.其他可选配光源板:品蓝(447 nm),青色(505 nm),红色(627 nm),深红(655 nm),琥珀色(590 nm),远红(740nm)等*测量其他荧光蛋白或荧光染料需配备7位滤波轮及相应滤波片,可参考下图 19.FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单20.客户定制实验程序协议(protocols):可设定时间(如测量光持续时间、光化学光持续时间、测量时间等)、光强(如不同光质光化学光强度、饱和光闪强度、调制测量光等),具备专用实验程序语言和脚本,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序21.自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)22.快照(snapshot)模式:通过快照成像模式,可以自由调节光强、快门时间及灵敏度得到清晰突出的植物样本稳态荧光和瞬时荧光图片23.成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(1000)24.数据分析模式:具备“信号计算再平均”模式(算数平均值)和“信号平均再计算”模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差 25.输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等26.给光制度:静态或动态27.CCD检测范围:400–1000nm 28.Bios:固件可升级29.通讯方式:千兆以太网30.供电电压:90–240V 应用案例: 西班牙高等科学委员会的科学家使用加配紫外光激发多光谱荧光测量模块和植物冠层红外热成像分析单元的FluorCam系统,研究温室效应(温度与大气CO2浓度同步升高)对油菜生长状况与健康程度的影响(Pineda,2022)。产地:欧洲
    留言咨询
  • 来因科技植物活体成像系统 植物活体成像分析仪PLIS-68PLIS系列多功能植物活体成像系统搭载了超高灵敏度深冷背照式相机大光圈镜、RGB激光光源、IR激光光源、温控平台、全自动滤光轮,用于生物发光检测;植物活体荧光素酶检测;荧光检测;化学发光检测等满足客户多种实验需求的一套高性能植物活体成像分析系统。激光光源:相对LED 和卤素光而言,激光有更稳定的光谱以及更小的光衰,光源更纯净,无边缘效益, 在光斑处光都处于均匀的能量,使其成为最佳的荧光成像光源。背照式高灵敏度深冷相机:PLIS植物活体成像仪采用了660万高分辨深冷背照式相机其QE在峰值最高高达95%,制冷温度 达到-95℃, 配合F0.95大光圈镜头,同时具备的了出色的信噪比和灵敏度。专用滤镜:深度定制激光专用滤镜,双层镀膜,截止深度更是高达OD6, 杂散光通过率非常低,背景干净。植物活体成像应用:相对普通LED 的可见荧光,激光尤其红外激光因穿透力较强,背景低,激发效率高的特性,可以更好的拍摄活物体内的细胞活动和基因表达,有效地研究观测感染性疾病发生发展过程、植物转基因鉴定,植物突变体筛选,病毒侵染等。产品参数型号PLIS-68PLIS-95分辨率1200万像素(背照式相机)660万像素(背照式相机)制冷温度-68℃-95℃像素尺寸4.63um×4.63um11um×11um感光效率HighQE:95%像数密度16bit(0-65535)曝光时间1ms-60min像素合并1×1、2×2、4×4…8×8动态范围≥4.8个数量级电动镜头F=0.95/35MM自动聚焦镜头,可选配F0.8镜头RGB光源标配650nm、532nm、473nm(红绿蓝)激光器IR光源标配红外680nm、780nm激光器紫外反射254nm白光光源LED冷光滤光镜轮7位滤光轮滤光镜片标配535nm,570nm、605nm、699nm、720nm、820nm拍摄面积最大拍摄面积32×26cm×10cm(L×W×H),侧位相机选配光照模块选配旋转样品台选配输入气孔预留定时关闭1~60分钟
    留言咨询
  • PhenoTron-YZ植物表型与种质资源成像分析系统,是由易科泰生态技术公司最新推出的一款基于光谱成像与机器视觉技术的多功能、高通量实验室表型性状分析系统,采用国际先进的光谱成像传感器技术和易科泰光谱成像与无人机遥感研究中心设计研发的STP(Sensor-To-Plant)全自动作物表型XYZ扫描成像分析平台技术,可用于实验室高通量植物表型成像分析、作物种质资源检测鉴定、作物遗传育种、作物胁迫与抗性筛选、高通量考种等。系统采用STP技术,由主机系统和光谱成像系统组成,主机系统包括主机箱、控制单元、触摸显示屏、数据处理服务器等组成;光谱成像系统由光谱成像传感器、光源系统、自动扫描Y轴及Z轴同步升降双轴系统等组成。主要技术特点:1) 标配400-1000nm高光谱成像,或400-1000与900-1700nm双镜头高光谱成像,可选配1000-2500nm高光谱成像2) 选配Thermo-RGB红外热成像与RGB成像分析3) 选配叶绿素荧光成像分析4) 选配3D激光扫描5) 称重式360度旋转平台(选配),可实现植株顶部和侧面(Z轴)全方位成像分析6) 全自动样带式扫描(Y轴)成像,可同时对多盆植株成像分析,还可对样品盘内的根系、叶片、果实、种子进行高通量成像分析7) 模块式结构,主机系统采用5G通信技术,星型组网物联网模块,可任意扩展增加传感器和控制模块如光源、秤重、旋转平台、温湿度监测等8) 可远程控制、自动运行数据采集存储等功能9) 系统自动保护功能,发生短路、过载、欠压时自动紧急断电,避免设备损坏10) 系统平台具万向脚轮,方便移动主要技术指标:1) 控制单元为嵌入式操作系统,全中文触控屏,方便系统调试、试运行等2) 用户可通过PC端全中文GUI软件实现远程操控相机及平台3) 10英寸触摸显示屏,集移动扫描、同步升降、相机控制、光源开关、快门触发、一键秤重及显示于一体4) 支持组合命令:最高可设置10条命令,实现无人值守工作5) 模块式结构,5G无线通信技术,传感器及控制单元星型组网,具备强大的扩展功能6) Y轴自动移动扫描行程1.2m,Z轴同步升降行程60cm,安全负载高达40kg7) 移动速度与精度:1-40mm/s可调,移动及定位精度1mm8) 有效扫描成像范围:120cm×60cm9) VNIR高光谱成像:a) 波段范围:400-1000nmb) 波段数:224通道c) 光谱分辨率:FWHM 5.5nmd) 空间分辨率:不低于1024×1024e) 信噪比600:1f) 分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数10) SWIR近红外高光谱成像:a) 波段范围:900-1700nmb) 波段数:224通道c) 光谱分辨率:FWHM 8nmd) 空间分辨率:不低于640×640e) 信噪比:1000:1f) 分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等 11) 红外热成像:a) 分辨率:640×512像素b) 测量温度范围:-25℃-150℃c) 灵敏度:0.03℃(30mK)@30℃d) 光谱范围:7.5-13.5μme) 传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)f) 1-14倍数码变焦g) 软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、选区分析(点、线、多边形等)、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等;可进行控制设置12) RGB彩色成像:高分辨率 RGB 成像,分辨率达 18MPixels,10 倍光学变焦,可选配其它分辨率镜头,配备专业形态测量与颜色分析软件13) 叶绿素荧光成像单元(选配):a) 专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x×560像素,像素大小8.6×8.3μmb) 光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1c) 可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolsd) 50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图e) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图14) 可选配ENVIS环境因子监测模块,如空气温湿度监测及CO监测等15) 系统平台规格:标配约190cm×170cm×60cm(长×宽×高)
    留言咨询
  • PlantScreen-R移动式植物表型分析系统(PlantScreen rover system)为知名大型移动式叶绿素荧光成像系统(Rover FluorCam)的升级版,4个轮子带驱动,以便于大田移动,适于温室及野外大田作物原位表型成像分析测量,具备PlantScreen几乎所有成像分析功能及表型大数据数据库等。标配为RGB成像分析、FluorCam(35x35cm)叶绿素荧光成像分析,可选配高光谱成像、红外热成像、3D激光扫描等功能模块,成像高度可调(标配最高植株高度可达1m),是田间作物高通量表型分析、植物生理生态研究的重要仪器设备,可直接对野外植物或田间栽培作物进行原位成像测量分析,还可与SoilTron多功能小型蒸渗仪配合使用,直接对SoilTron培养植物进行成像分析。 主要技术特点:1) 结构紧凑,配置灵活,功能全面,大田等环境使用方便,非损伤、高通量,表型大数据采集与在线分析并可视化展示2) 全球领先的FluorCam叶绿素荧光成像技术,是作物生理生态功能性状的必备分析技术,配备独有的高灵敏度叶绿素荧光成像镜头,大量参考文献和应用案例3) 可选配不同的表型成像分析模块:a) 叶绿素荧光成像单元,单幅成像面积35cm x 35cmb) RGB可见光成像分析单元c) 高光谱成像分析单元,有VNIR高光谱和SWIR高光谱供选配d) NIR(近红外)成像单元,用于对植物水分状态分析e) 红外热成像分析单元,用于对植物干旱胁迫、气孔导度成像分析f) 3D激光扫描单元,用于对作物3D成像和形态结构分析4) 可选配大田环境监测单元或定制网络化监测方案、微环境监测方案,如空气温湿度与太阳辐射/PAR(光合有效辐射)监测、土壤水分温度与盐分监测(不同点或不同剖面深度)、降雨量监测、CO2/O2测量监测等5) 可选配作物根系监测方案6) 可选配冠层温度监测、冠层光谱监测、冠层O2与CO2监测等技术指标:1) 主机框架平台:标配为铝制结构,具4个驱动轮便于大田移动,高度可调(标配植株最高高度可达100cm);可选配其它农具车式平台(需客户定制) 2) FluorCam叶绿素荧光成像分析(详细指标参见FluorCam叶绿素荧光成像技术),用于植物生理功能性状如光合效率、胁迫与抗性筛选等a) 成像面积:35×35cmb) 橙色620nm LED脉冲调制测量光源,用于测量最小荧光Fo等c) 双色光化学光,橙色620nm LED和冷白LED光源d) 冷白LED饱和光闪,最大光强4000 μmol(photons)/m2.s,用于测量最大荧光产量Fm等e) 735nm LED红外光源用于测量Fo’等f) 高灵敏度CCD传感器镜,分辨率1.4M,A/D 16比特,具备视频模式和快照模式g) 测量参数:Fo、Fm、Fv、Fo' 、Fm' 、Fv' 、Ft、Fv/Fm、Fv' /Fm' 、PhiPSII、NPQ、qN、qP、Rfd、ETR等,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等h) Fv/Fm、Kautsky诱导效应、荧光淬灭分析等完备自动化测量程序(protocols)与测量参数,如Fv/Fm程序测量时间仅需10si) 叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能3) RGB成像,用于植物形态结构与颜色成像分析a) CMOS彩色传感器,分辨率5MPix、2560 x 1920(可选配12MPix镜头)、1/2”、14.1fps,像素大小2.2μmb) 测量参数:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、生长高度、相对生长速率等c) 可进行颜色分割分析、植物适合度评价、实验生长期叶面积动态变化比较分析、绿度指数、颜色分级分析(健康绿色、亮绿色、暗绿色、其他颜色)等表型参数 4) 红外热成像,用于气孔导度、干旱胁迫指数及其它胁迫成像分析a) 成像传感器:焦平面阵列微测热辐射计,分辨率 640×480 像素,灵敏度30mK(0.03°C),波段7.5-13μmb) 温度范围 -20 – 120℃,分辨率0.03℃@30℃/30mKc) 具备温度动态Protocols,光照强度、持续时间、热成像分布数据同步获取,以研究分析植物温度分布动态等d) 具备温度参考传感器(reference sensors)e) 测量参数:植物每一点的实际温度,植物表面温度分布图5) NIR近红外成像分析单元:用于成像监测分析植物水分状态分布,具备假彩调色板,可以方便对比分析,快速监测脱水植物,因而可以监测评估干旱胁迫条件下植物水分的动态变化响应及水分利用效率等a) 可与RGB成像形态结构参数及FluorCam光合效率参数进行相关分析等;可完整记录追溯干旱过程与复水过程的动态响应等b) 通过测量水分吸收光谱和940nm参考光谱,有效避免环境光及阴影效应c) InGaAs传感器,有效芯片大小9.6x7.7mm,波段范围900-1700nm,分辨率638x510像素,帧频118fps,A/D 14比特6) 3D激光扫描分析,可建立3D点云模型,用于植物形态结构分析,可分析植物结构、生物量、叶片数量、叶面积、叶片倾斜角度、植物高度等结构形态参数7) 表型组学研究分析系统:包括客户端应用服务器、可编程序逻辑控制器及专业分析软件等a) 自动控制与分析功能:具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示b) 触摸屏操作界面,在线显示植物状态(可视化)、光线强度、分析测量状态及结果等c) 所测量的所有数据都是透明的、可以追溯的d) 具备用户权限分级功能,防止其他人员误操作影响实验e) 厂家远程故障诊断,软件终身免费升级
    留言咨询
  • 全球首款移动式(Mobile)PlantScreen植物表型分析平台在荷兰植物生态表型中心(NPEC)安装运行,这是该中心成立后安装运行的首套植物表型分析系统,整个平台采用可移动式设计,有轮子可以方便在温室内移动,被称为“可移动的高通量植物表型成像分析平台”。 该表型平台包括3个功能模块:自动叶绿素荧光成像测量、3D激光三角测量、RGB 3D成像测量。Automated Chlorophyll Fluorescence, 3D laser triangulation and RGB imaging. The data looks promising !主要功能特点? 自动叶绿素荧光成像:PSI于上世纪90年代首次将叶绿素荧光脉冲调制技术(PAM)与CCD技术结合,研制成功叶绿素荧光成像技术并商业化生产(FluorCam)(Ladislav Nedbal, etc. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research, 2000),开创了叶绿素荧光技术的二维甚至三维时代,FluorCam叶绿素荧光成像技术成为植物生理性状表型分析的必选技术,也是目前灵敏度高、应用广泛、发表论文多的植物生理生态与表型分析技术,脉冲调制叶绿素荧光成像技术是目前被学术界广泛认可和应用的植物生理性状表型分析技术(Henning Tschiersch, etc. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods, 2017),适用于从拟南芥、种苗(种子萌发幼苗)到水稻、小麦等中型作物及玉米等大型作物(可高达300cm)的光合作用效率、胁迫与抗胁迫等生理性状表型高通量分析与筛选。 ? 3D激光扫描成像测量:可对植株进行 3D建模;并自动获得叶面积、植株总叶面积、叶片投影面积、植株叶片投影总面积、叶面积指数、植株总叶面积指数、叶片紧实度、植株紧实度、株高、数字生物量、茎秆高度、茎秆长度、分枝数量等形态学参数。并可将叶绿素荧光成像、高光谱成像、红外热成像等在激光3D模型上进行投射,生成叶绿素荧光、高光谱、温度3D图像,实现真正的3D表型成像分析。? RGB 3D成像:对植株进行形态结构分析测量和颜色分割测量并计算相应参数指数等。独有的叶片生长追踪分析技术(leaf tracking protocol)和RGB“面具”功能,可为其它叶绿素荧光成像、高光谱成像、热成像等设置精准的ROI或者定义边界。 运行leaf tracking protocol叶片追踪分析功能、叶片分割分析功能、颜色分析? 可选配VNIR高光谱(光谱范围350-900nm或400-950nm)或SWIR高光谱(900-1700nm或1000-2350nm)成像分析单元,在线分析归一化指数NDVI、简单比值指数SR、改进的叶绿素吸收反射指数MCARI、改进的叶绿素吸收反射指数1MCARI1、优化土壤调整植被指数OSAVI、绿度指数G、转换类胡罗卜素指数TCARI、三角植被指数TVI、ZMI指数、简单比值色素指数SRPI、归一化脱镁作用指数NPQI、光化学植被反射指数PRI、归一化叶绿素指数NPCI、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数、花青素反射指数等 ? 可选配标配版红外热成像(分辨率640x480像素,灵敏度0.03摄氏度)或高分辨率高灵敏度红外热成像分析单元(分辨率1024x768像素,灵敏度0.02摄氏度)? 可选配3D NIR红外热成像单元,以研究分析植物水分分布情况,波段范围900-1700nm,分辨率638x500像素? 可选配可移动(集装箱式)生长舱/气候舱(Growth Capsule)。该生长舱/气候舱采用集装箱式设计,可方便移动运输,由一个独立的单元或两个单元组成其主要技术特点:1) 每个单元可独立调节环境条件,温度、湿度、光照及CO2调控并在线监测显示在触摸屏上2) 光照调控采用智能多通道LED光源,可选配冷白光、RGB三色光源、近红外等多色光源,不同波段光源可按不同比例搭配组成不同光质条件,可模拟昼夜节律、有云天气等,具备day/night、dawn/dusk、cloudy/sky等protocols3) 温度控制范围:-5~40摄氏度或10~40摄氏度(不受光照影响)4) 湿度控制范围:40%~80%5) 大小(双座):12.2m(L) x 2.45m(W) x 2.9m(H)6) 可遥控、远程数据下载7) 应用于植物培养监测:可选配叶绿素荧光、植物生理生态、光合作用监测8) 应用于植物表型分析:可选配XYZ三维扫描式PlantScreen植物表型成像分析系统 易科泰生态技术公司为您提供植物表型分析全面解决方案:? 手持式或便携式叶绿素荧光测量与成像技术? 手持式或便携式植物光谱与高光谱成像测量技术? 手持式或便携式红外热成像技术 ? FluorCam叶绿素荧光成像全面解决方案? FluorCam多光谱荧光成像技术全面解决方案? FKM多光谱荧光动态显微成像技术方案——细胞亚细胞水平分析植物性状? Specim高光谱成像技术全面解决方案? PlantScreen高通量植物表型成像分析技术? 叶绿素荧光成像、高光谱成像、红外热成像、多光谱成像、RGB成像综合集成技术方案
    留言咨询
  • 欧洲知名植物表型分析技术公司PSI与荷兰植物生态表型中心(NPEC)合作,隆重推出PlantScreen全自动高通量琼脂培养植物表型成像分析平台。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是一套新型高通量、自动化的植物表型成像系统。植物样品种植于专门设计的方形琼脂培养皿中。该平台是一个开创性的解决方案,重新定义了植物表型的研究方法。全自动高通量琼脂培养植物表型成像分析平台为全自动机器人操作,包括倾倒琼脂、播种、层积催芽、接种、成像分析全自动运行。可容纳2160个特制培养皿的全自动全流程(倾倒琼脂、播种、培养、成像分析)高通量表型分析。该平台由具备GMO(转基因生物)控制区的环控室(可选配)、操作台、培养柜(包括层积催芽柜)、机器人及成像工作站等组成,可进行根系形态成像分析、GFP等荧光蛋白成像分析、叶绿素荧光成像分析、多光谱成像分析、高光谱成像(透射光)分析及香豆素荧光高光谱成像分析等。 系统组成:1. 植物(琼脂)培养柜2. 层积催芽柜3. 培养皿操作台4. 用户缓冲区5. 液体操作台6. 叶绿素荧光与多光谱荧光成像工作站7. VNIR高光谱成像工作站8. 机器人主要模块功能:§ 培养皿操作台:准备培养介质、自动浇注培养皿、机器人自动播种 § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 植物(琼脂)培养柜:多通道LED培养光源(白光/红光/远红光)、最大光强400µ mol/m² .s、可调控红光/远红光比例模拟光调控条件§ 表型成像工作站:根系形态、叶绿素荧光(光合表型)、荧光蛋白、多光谱荧光(次生代谢)、高光谱等表型成像分析§ 液体操作台:自动化液体操作、生物安全柜、机器人自动细菌接种 § 机器人:高精度SCARA机器人,完成培养皿在各功能模块间的全部自动化转运作业 技术指标:§ 植物(琼脂)培养柜布局:共3个培养柜,4培养架/柜,9培养盒/架,20培养皿/盒§ 系统通量:2160专用培养皿§ 样品托盘类型:专用培养皿,129×129×16.5mm§ 培养光源:每层培养架上均配备光源,每个培养架和LED通道均可独立调控§ 光质:配备冷白光、红光和远红光,红光/远红光比例调控范围:0.5-0.82§ 光强:距离光源30cm处最大光强400µ mol/m² .s § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 培养皿操作台容量:1500培养皿§ 无菌处理:HEPA高效空气过滤,UV-C紫外杀菌§ 成像站:2台叶绿素荧光与多光谱荧光成像站、形态成像站、VNIR高光谱成像站 § 成像传感器:&Yuml 传感器类型:CMOS &Yuml 分辨率:4112×3006,12.36MP;binning模式2056×1503,3.09MP&Yuml 位深度:12bit&Yuml 传感器尺寸:1.1”&Yuml 快门:全域快门&Yuml 自由运行模式最大fps:2&Yuml 像素尺寸:3.45µ m;binning模式6.9µ m&Yuml 通讯接口:GigE千兆以太网§ 叶绿素荧光测量光源:620nm红橙光、5700K冷白光、735nm远红光§ 多光谱荧光与荧光蛋白测量光源:365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光§ 形态测量光源:5700K冷白光§ 叶绿素荧光成像参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数§ 荧光蛋白成像:GFP、YFP、RFP、BFP等§ 滤波器:F469、F483、F513、F565、F586、F593、F520、F635、glass等(选配)§ VNIR高光谱成像&Yuml 光谱范围:350-900nm&Yuml 谱带尺寸:520nm&Yuml 入射狭缝宽度:50μm&Yuml 像素色散:0.28nm/pixel&Yuml 波长分辨率:2nm FWHM&Yuml 光谱分辨率:480 pixels&Yuml 空间分辨率:500 pixels&Yuml 帧频:45fps&Yuml 传感器类型:CMOS &Yuml 图像分辨率:1920×1000&Yuml 位深度:12bit&Yuml 像素尺寸:5.86µ m&Yuml 动态范围:67dB&Yuml 光源:反射模式:白光;荧光模式:紫外光&Yuml 控制与数据接口:GigE千兆以太网安装实例:荷兰植物生态表型中心NPEC已与PSI公司合作建设了多套PlantScreen植物表型成像系统,应用于拟南芥、烟草、番茄、藜麦等植物的表型研究。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是他们的最新合作成果,于2023年刚刚建设完成。产地:欧洲
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。植物表型成像系统WIWAM Line产品说明WIWAM Line是一款高通量可重复性表型机器人,用于对小型植物,如小玉米植物研究。该机器人可定期对多种植物参数进行自动化灌溉和并测量多种植物生长参数。WIWAM line代替了很多手工处理,省时省钱,精度较高。WIWAM Line由花盆定位桌面,不同个体线路,底层端口机器人以及1或多个成像或称重/浇水站组成。全套系统可以安装在现有生长室,内置高品质工业部件。植物在各自花盆内生长,预设时间间隔,机器臂提取植物,将其带到成像和称重浇水工作站。机器人将桌面上的线路移到旁边,生成机械臂到定位花盆所需空间,并将其提升脱离桌面。RFID读取装置以及花盆底部的RFID标签,可作为额外花盆识别法,识别和校正桌面上因手工花盆安置造成的错误。通常旁边取景照相机从不同角度获得图像。成像站可安装一系列照相机系统。组合称重/浇水站集成在机器臂上。花盆中植物在浇水时旋转以获得较佳水分布。灌溉精度较高可达+/- 0.1 mL。另外,灌溉可基于自动目标重量计算或固定量。在整个实验过程中,可有效控制土壤湿度水准。集成光温度和湿度传感器可监控温度,详细记录实验生长条件。植物表型成像系统WIWAM Line产品特点1、浇水时花盆旋转以获得水分布2、高精度灌溉(达0.1mL !).3、WIWAM Line 可配置环境传感器4、WIWAM Line 配有直观用户界面5、开放式数据库结构6、可提供全定制系统成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • PhenoTron-SR植物表型成像分析系统可同时对作物根系及苗、作物冠层进行表型成像分析。系统由主机系统和光谱成像系统组成:主机系统包括系统平台(主机箱)、控制单元、样品托、数据处理服务器等组成;光谱成像系统由光谱成像单元(包括成像传感器、光源、云台等)和自动扫描轴组成。其主要技术特点如下:Phenotyping from shoot to root: 可对植物地上部分(shoot)和地下根系(特制RhizoTron植物根系观测培养盒RhizoBox)进行表型性状成像分析标配为60度倾斜自动扫描成像,同时对RhizoBox根系和幼苗进行高光谱成像分析和RGB成像分析,可选配其它角度如45度、70度和90度(垂直扫描成像)可选配顶部冠层RGB成像分析、红外热成像分析、高光谱成像分析、叶绿素荧光成像分析(可选配适于正常培养盆的样品托)可选配iPOT数字化植物培养盆或RhizoBox根系培养盒,持续监测土壤水分温度、重量、植物生长、光合效率、PI(performance Index)、茎流等生理生态指标,可自动采集土壤渗漏水并进行土壤营养盐分析模块式结构,具备强大的系统扩展功能,系统平台自动万向脚轮,方便移动可远程控制、自动运行数据采集存储等功能 自左至右依次为:系统透视图、系统内部结构图(包括侧面倾斜自动扫描轴、RhizoBox、顶部成像传感器等)、棉花根系RGB成像、棉花根系高光谱成像分析(900-1700nm) 技术指标:控制单元为嵌入式操作系统,全中文触控屏,方便系统调试、试运行等用户可通过PC端全中文GUI软件实现远程操控相机及平台支持组合命令:最高可设置10条命令,实现无人值守工作串口通信和TCP/IP协议,实现与单片机的通信控制和远程通信协议标配自动扫描轴60度倾斜,可防止倾斜根系培养盒的土壤扰动影响自动扫描轴推扫速度与精度:1-90mm/s可调,移动精度1mm有效扫描范围:标配120cm样品托:标配RhizoBox根盒40cm宽(宽度可调,40cm为标配最大宽度)、最大高度可达100cm,可选配其它规格样品托盘适配于单个大培养盆或多个小培养盆,可根据客户需求定制VNIR高光谱成像:波段范围:400-1000nm波段数:224通道光谱分辨率:FWHM 5.5nm空间分辨率:不低于1024x1024信噪比600:1分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数SWIR近红外高光谱成像:波段范围:900-1700nm波段数:224通道光谱分辨率:FWHM 8nm空间分辨率:不低于640x640nm信噪比:1000:1分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等红外热成像(选配):分辨率:640x512像素测量温度范围:-25°C-150°C灵敏度:0.03°C(30mK)@30°C光谱范围:7.5-13.5μm传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)1-14倍数码变焦软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、选区分析(点、线、多边形等)、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等;可进行控制设置 RGB彩色成像:高分辨率 RGB 成像,分辨率达 18MPixels,10 倍光学变焦,可选配其它分辨率镜头,配备专业植物根系和shoots分析软件叶绿素荧光成像单元(选配):专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x560像素,像素大小8.6x8.3μm光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图可选配空气温湿度、光照及顶部激光测距模块系统平台规格:标配约120cm x 60cm x160cm(长x宽x高)、重量约50kg 左图为顶部冠层高光谱成像(NDVI),右图为根系成像提取(易科泰生态技术公司Ecolab实验室提供)
    留言咨询
  • PhenoPlot 轻便型作物/植物表型成像分析系统由轻便型表型扫描成像台架、表型光谱成像传感器及分析软件等构成,采用STP(sensor-to-plant)技术,成像单元可沿台架横轴左右自动定位成像(样带式),高度可调。可用于野外原位(in-situ)植物/作物表型成像分析、盆栽植物或蒸渗仪系统植物/作物表型成像分析及植物-土壤光谱成像分析等。主要功能特点: 1.模块式快速拆装结构,轻便、可折叠、可扩展,单人即可拿到大田内对 Plot 样地作物/植物进行表型成像测量分析,或对基于Soiltron蒸渗仪专利技术的iPOT培养盆、miniPlot样方进行扫描成像分析2.标配400-1000nm高光谱成像、900-1700nm高光谱成像,可选配其它波段高光谱成像、RGB 成像、多光谱成像、红外热成像、Thermo-RGB融合成像、叶绿素荧光成像等不同作物表型成像传感器3.标配为单轴样带式扫描成像分析,高度可调,可客户定制XY双轴表型成像分析平台4.采用星型组网物联网技术,兼容5G通讯技术,可实现远程控制等功能5.内置温湿度、光照度、GPS、时钟(时钟可根据GPS信息自动校准),可扩展增加传感器如土壤水分、土壤温度、空气CO2、太阳辐射、冠层温度等6.支持组合命令(Protocols),实现自动运行protocols7.内置大容量锂电,双路并联,可野外运行8小时以上8.可选配侧面(垂直)光谱成像分析,还可选配旋转式高光谱扫描成像平台9.应用于植物/作物表型监测分析、植物/作物生理生态测量研究、作物胁迫与抗性评估、种质资源研究检测、N含量评估等 主要技术指标: 1.单轴(X轴)标配跨度(扫描幅度)1.5m,可选配2m跨度,扫描定位精度 1cm ?2.标配最大高度180cm,高度80-180cm可调整3.支持组合命令,可设置10条命令protocols,实现系统自动运行4.高分辨率 RGB 成像(选配),分辨率达 18MPixels,10 倍光学变焦 可选配同等分辨率多光谱 NDVI 成像镜头5.科研级红外热成像(选配):分辨率 640x512 像素,温度范围-25~150摄氏度,温度分辨率 0.03 摄氏度具视频模式和快照模式NUC功能以获得高质量高稳定性热成像图,插值功能可形成平滑热成像图(除去马赛克效果)具备热成像自动分级分级功能14种调色板,可随意选配不同假彩成像USB-3接口或网络接口多点温度及黑体校准并具校准证书专业温度分析软件,可形成温度分布曲线、IOR点线区域温度分析、频率直方图、3D温度分布图等6.Thermo-RGB红外热成像与RGB真彩成像融合技术(选配),可测量阳光照射叶片的温度和覆盖度等,以精确反映作物气孔导度动态,使作物冠层温度测量精准区分阳光照射叶片、阴影叶片及土壤背景,并可进行ROI选区分析、频率直方图分析显示等7.VNIR 高光谱成像分析单元波段范围400-1000nm,波段数224光谱分辨率 FWHM:5.5nm空间分辨率:1024像素视野38度,信噪比600:1可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数8.SWIR高光谱成像分析单元波段范围900-1700nm,波段数224光谱分辨率 FWHM:8nm空间分辨率:640像素视野38度信噪比1000:1可成像分析评估作物N素含量、水分含量指标与水分胁迫等9.内置空气温湿度、光照度、GPS、时钟,可选配扩展PAR、土壤水分、土壤温度等传感器10.内置大容量可充电电池,不低于14000mAh,可在野外运行8小时以上11.可选配植物生理生态监测(客户定制):包括叶面温度、叶面湿度、茎流、茎杆生长、果实生长、叶片叶绿素荧光监测及光合作用监测等
    留言咨询
  • PlantView100植物活体成像系统主要应用于植物活体基因表达分析、植物活体克隆筛选、植物生物节律研究、植物光周期相关研究、植物抗逆性研究、植物病菌害研究、植物生长的连续观察以及基因育种的筛选等。PlantView100植物活体成像系统是新型的植物学研究平台,其将植物学研究从分子水平提升到整体水平,能够反映细胞或基因表达的空间和时间分布,从而了解活体植物体内的相关生物学过程、特异性基因功能和相互作用;其次,在转基因植物研究过程中,可以更早期、更快速、高通量精确筛选目标植株,缩短育种周期;对植物的性状进行跟踪检测、对表型进行直接观测和(定量)分析,具有廉价、灵敏、定量和可重复性的检测特性,节约时间成本,提高实验效率。 产品优势 超大视野,双位相机 最大成像面积可达280mm×280mm, 满足常见植物全株成像的同时, 可实现幼苗、 种子、 果实, 培养皿等样品的批量成像。 特有的双相机模式, 除顶部主相机外还可搭配一台侧位相机, 可实现植物从种子萌发到幼苗自然垂直生长的长时间连续观察。 超灵敏,高品质 采用超高量子效率、 深度制冷科研级CCD相机, 制冷温度低至绝对-100℃, 具备针对微弱荧光或发光的强大捕获能力; 配备全密闭抗干扰暗箱, 避免外界光源及宇宙射线对成像的影响; 搭配OD6高品质滤光片, 结合背景干扰扣除功能, 在快速成像的同时保证超高的灵敏度与成像质量。 多功能 配备植物光照模拟模块,可用于植物生长节律及光周期等实验。 同时具备通用接口,连接多种装置,便于模拟多种特殊实验环境。 还可连接X-Ray成像模块, 紫外或蓝光透射台等, 满足更多实验研究需求。 多光源 荧光光路系统全部采用高功率窄带宽LED,强度更高、光衰更小,环形全局排列具有更均匀的光线输出。且系统最多可配备20种激发光源,10种发射滤光片,满足更多荧光成像需求。 智能软件,专业可靠 人性化的全中文软件可自动控制样品台升降及各种光源强度大小, 预设多种成像模式、 一键快速成像、 多种伪彩及定量单位自由切换、 量化分析功能、 具备国际公认标准单位(p/s/cm2/sr)、 符合GLP原始数据、 操作记录规定、 可直接输出实验报告。 中文软件, 操作简化, 快速上手, 软件终身免费升级。 应用示例菌种筛选(GFP)植物全株基因表达(Luc)蛋白互作(Luc)病毒侵染(Luc)植物防御机制(Luc)叶绿素荧光
    留言咨询
  • PlantScreen SC植物表型成像分析系统 PlantScreen SC移动式植物表型成像分析平台为实验室和温室植物表型分析的理想平台,植物传送系统与成像分析系统内置于一体式紧凑机箱内,有脚轮可以移动,方便大型温室内不同区域间移动使用,极大地提高了载样方便性和使用效率。植物样品放入平台传送带上自动传送至成像单元进行成像分析,最 后自动传送归原位完成一个测量循环。PlantScreen SC包括叶绿素荧光成像测量和RGB 3D成像测量,以提供完备的作物表型形态测量和光合生理测量分析,可选配或客户定制3D激光扫描三角测量、高光谱成像分析、红外热成像分析等其它成像测量单元。标配PlantScreen SC适于最 大高度70cm、冠幅50cm的植物表型分析,可定制其它规格大小。 功能特点l FluorCam叶绿素荧光成像分析l RGB三维成像形态结构与颜色分析l 传送带系统自动传送植物、自动定位成像分析、自动将植物传出l 整套系统有脚轮可以移动l 可选配3D激光扫描,三维形体结构测量并构建3D模型l 可选配高光谱成像、红外热成像、NIR近红外成像l 可选配大型步入式生长室 系统组成1. 传送系统PlantScreen SC配备半自动化的植物装载和识别系统。只需将盛有植物的标准托盘放于传送带上,按下装载按钮,植物即可进入封闭的成像室内进行成像测量,测量完成后自动传送出来。标准托盘上贴有二维码,进入成像室后能够被识读并录入数据库,用于植物的自动编号。传送系统使实验过程变得简单轻松。标准托盘有4种规格:5 × 4(盆,250 mL)、2 x 2(盆,1L)、1 x 2(盆,3L)、1 × 1(盆,5L),适用于拟南芥、草莓、草坪草、烟草及大豆、玉米等作物的幼苗。 2. 测量成像单元测量成像单元包含基本的RGB成像单元和叶绿素荧光成像单元。RGB成像单元包括顶端及侧面多角度的RGB成像,通过高质量RGB图像的采集和专业的图像分析,获得植物的形态参数(如冠层面积、株高、冠幅、形状系数)及颜色分布情况。 叶绿素荧光成像单元采用脉冲调制式叶绿素荧光成像技术,能够对植株的光合生理进行无损、非接触的测量,高灵敏度、高通量检测和评估各类胁迫因子对植株的生理影响。 3. 环境传感器系统包含温湿度等环境传感器,持续记录测量环境的温湿度变化。环境信息数据和测量数据同步存储在数据库中,便于特定实验的相关性分析。4. 软件系统配备的高性能服务器电脑预装了用于系统控制、实验规划、数据自动采集、数据自动分析和数据库管理的全套软件。此外,系统配备了RGB分析和叶绿素荧光成像分析的独立软件,便于数据的再处理。安装案例1. 瓦赫宁根大学Shared Research Facilities,2018年11月安装,是荷兰植物生态-表型中心(Netherlands Plant Eco-phenotyping centre)的第 一台安装完成的设备,面向科研用户和商业伙伴开放使用。 2. 成都某生物技术公司,2020年10月安装,是国内首套由公司购买使用,用于生物农药、植物源生物刺激剂及土壤调理剂研发的大型高通量表型分析系统。 3. 孟加拉国,2020年4月,技术和生物测试完成。 易科泰生态技术公司提供植物/作物表型分析全面技术方案:1) 叶绿素荧光成像分析、多光谱荧光成像分析2) 高光谱成像分析、Thermo-RGB成像分析3) 细胞亚细胞水平显微叶绿素荧光成像、多光谱荧光成像分析4) RhizoTron根系表型分析系统、PhenoTron实验室植物表型成像分析系统5) PlantScreen植物自动传送式、XYZ三维扫描式植物表型分析平台6) SpectraScan样带扫描式、田间机器人式及PhenoUAS无人机遥感植物表型分析平台Ecolab植物表型实验室装备有400-1700nm高光谱成像、FluorCam叶绿素荧光成像、多光谱荧光成像、Thermo-RGB红外热成像等先进表型分析仪器技术,并与中科院植物所PlantScreen表型分析平台合作,提供全面表型分析技术服务与合作研究。
    留言咨询
  • 核磁共振植物成像分析仪采用脉冲式核磁共振方法测试样品的含油含水率及成像分析。主要应用于植物,农作物,粮食及油料作物中含油量、含水量的测定以及内部结构及水油分布的磁共振成像分析,如:油菜籽、大豆、芝麻、花生、棉籽、玉米胚芽、米糠、茶籽、稻谷、饼、粕等。通过仪器测量可以迅速得到农作物中的干基含油量、湿基含油量、含水量。 分析仪避免了传统的萃取法要求操作人员接触有害试剂,同时弥补了连续波核磁共振分析仪无法测量含水量、测量精度低,稳定性差等缺点。同时可以通过MRI成像分析水份的扩散、迁移,为育种、出芽、存贮等提供动态研究分析结果。特点优势:测量范围广,可测量各种油料样品。含油量、含水量可同时测量,无需烘干。测量速度快,每测一个样品仅需十几秒 。非破坏测量,样品可重复分析。符合GB/T15690-2008国标,ISO10565国际标准。具有多种成像功能如T1加权像、T2加权像、PD加权像、T2*加权成像。具有水份抑制成像功能、油份抑制成像功能,分别获得种子内油、水的成像结果。
    留言咨询
  • PSC公司成立于2004年,2年后其首款产品植物根系X-光扫描成像分析系统RootViz FS面世,并于今年6月获得2006年度美国R&D 100大奖。RootViz FS是在美国能源部创新项目资助下研发成功的一套新型、高效率、高精度、非破坏性的测量系统,用于对盆栽植物的根系进行原位成像分析,可以拍摄根系的立体X-光照片。是继根视系统后植物根系研究领域最激动人心的发明。美国R&D 100大奖被称为"发明界的奥斯卡奖",RootViz FS刚一面世即获此大奖,足见其影响力之大。这套系统是植物根系研究领域继根视(rhizotron)系统(如加拿大Regent WinRHIZO根系分析系统)后最激动人心的发明。根视系统需要将根取出清洗后,借助扫描仪进行分析,这个过程往往会折断植物的根尖等脆弱部分,而且属于离体分析,不能进行动态监测。而植物根系X-光扫描分析系统是非破坏性的原位分析系统,可以全方位分析植物根系所有部分(包括根尖等),并且可以在植物生长的不同阶段对根系的生长进行长期动态监测。这套系统非常适合于研究植物根系对胁迫的动态响应。根系X-光成像的特性* 高分辨率的X-光立体成像* 进行长期动态监测* 获得原位根系角度信息* 完全可控条件下的生理、病理实验* 大规模快速筛选根系突变株根系X-光扫描成像系统的主要技术参数* X-射线发生器: 25KeV@800uA* X-射线数码相机: 2002 x 2054 CMOS;GdOs Scintillator* 精确的三维调节工作台* 速度:平面图25株/h;立体图15株/h* 范围:最大根长0.6 m;最大高度2.1 m* 分辨率:2002× 2054像素
    留言咨询
  • PlantScreen植物表型成像分析系统(植物自动传送版) PlantScreen植物表型成像系统由捷克PSI公司研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、自动条码识别管理、RGB真彩3D成像、自动称重与浇灌系统等多项先进技术,以最优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。作为全球第一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析功能使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备,使植物生长、胁迫响应等测量参数达100多个。左图为整套PlantScreen系统,中图为成像室,右图为成像室中的玉米PlantScreen系统包括如下成像分析功能: 1. 叶绿素荧光成像分析:单幅成像面积35x35cm,成像测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数2. RGB成像分析:成像测量参数包括:1) 叶面积(Leaf Area: Useful for monitoring growth rate)2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area))4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment))5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness)6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment))7) 叶片细长度SOL (Slenderness of Leaves)8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant)9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation))11) 节间距(Internodal Distances)12) 生长高度(Growth Height)13) 植物三维最大高度和宽度(Maximum Height and Width of Plant in 3 Dimensions)14) 相对生长速率(Relative growth rate)15) 叶倾角(Leaf Angle)16) 节叶片数量(Leaf Number at Nodes)17) 其它参数如用于植物适合度估算的颜色定量分级、绿度指数(Other parameters such as color segmentation for plant fitness evaluation, greening index and others)3. 高光谱成像分析(选配),可成像并分析如下参数:1) 归一化指数(Normalized Difference Vegetation Index (NDVI))2) 简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED)3) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)])4) 最优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16))5) 绿度指数(Greenness Index (G), Equation: G = R554 / R677)6) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI), ?Equation: MCARI = [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670))7) 转换类胡罗卜素指数(Transformed CAR Index (TCARI)?, Equation: TSARI = 3 * [(R700- R670) - 0.2 * (R700- R550) * (R700/ R670)])8) 三角植被指数(Triangular Vegetation Index (TVI)?, ?Equation: TVI = 0.5 * [120 * (R750- R550) - 200 * (R670- R550)])9) ZMI指数(Zarco-Tejada & Miller Index (ZMI), Equation: ZMI = R750 / R710)10) 简单比值色素指数(Simple Ratio Pigment Index (SRPI), Equation: SRPI = R430 / R680)11) 归一化脱镁作用指数(Normalized Phaeophytinization Index (NPQI), Equation: NPQI = (R415- R435) / (R415+ R435))12) 光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570))13) 归一化叶绿素指数(Normalized Pigment Chlorophyll Index (NPCI), NPCI = (R680- R430) / (R680+ R430))14) Carter指数(Carter Indices?, Equation: Ctr1 = R695 / R420 Ctr2 = R695 / R760)15) Lichtenthaler指数(Lichtenthaler Indices?, Equation: Lic1 = (R790 - R680) / (R790 + R680) Lic2 = R440 / R690)16) SIPI指数(Structure Intensive Pigment Index (SIPI), Equation: SIPI = (R790- R450) / (R790+ R650))17) Gitelson-Merzlyak指数(Gitelson and Merzlyak Indices?, ?Equation: GM1 = R750/ R550 GM2 = R750/ R700)4. 热成像分析(选配):用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱)5. 近红外成像分析(选配):用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。 系统配置与工作原理: 整套系统由自动化植物传送系统、光适应室、RGB成像、FluorCam叶绿素荧光成像、高光谱成像、植物热成像、植物近红外成像、自动浇灌施肥与称重系统、植物标识系统等组成,光适应室内的植物可由传送带传送到成像室进行成像分析等。 技术指标: 1. 自动装载与卸载植物样品,通过条形码或RFID标签识别跟踪样品2. 光适应室:用于光照适应或植物培养,LED光源光照强度达1000μmol/m2.s,无热效应,强度0-100%可调,可通过实验程序预设光照周期变化,可选配通用型或专用型如水稻生长观测室等,还可选配三维扫瞄成像分析功能(包括XYZ三维扫瞄成像系统和软件)3. 标配托盘架30x30cm,用于安放盆栽植物或可以盛放多个小花盆的托盘4. 自动传送系统由光适应室到成像室形成一个环形传送通道,传送带采用具变速器的三相异步马达,200-1000W,传送带宽320mm,负载力130kg,速度9m/min5. 移动控制系统中央处理单元:CJ2M-CPU33;数字I/O:最大2560点;PLC通讯:通过以太网100Mb/s高端PC;OMRON MECHATROLINK-II 最大16轴精确定位6. 植物成像测量室:150cm(长)x150cm(宽)x220cm(高),与环境光隔离(light-isolated),快速自动开启关闭门,开启关闭周期小于3秒,传送带入口具光幕传感系统、条码识别器和RFID读取器7. RFID读取器辨识距离:2-20cm;通讯:RS485;条码识别器可读取1维、2维和QR码,具LED光源便于弱光下辨识,RS485通讯8. F3EM2光幕系统,精确测量植物高度和宽度以便进入成像测量室后摄像头自动精确定位,测量范围150cm,分辨率5mm9. 叶绿素荧光成像:包括光隔离成像室、自动开启与关闭门、传送带、PLC控制自动上下移动聚焦系统、4个LED光源板、8位绿波轮等,单幅成像面积35x35cm,测量光橙色620nm,橙色和白色双波长光化学光,饱和光闪为白色或蓝色10. 自动灌溉与称重,可同时对5个植物种植盆进行浇灌和称重,精确度±1g;称重后精确浇灌,可通过实验程序(protocol)预设浇灌过程(regime)或干旱胁迫状态,还可选配营养供给系统随浇灌定量供给植物营养(如氮肥等);称重前自动零校准,还可通过已知重量(如砝码)物品自动进行再校准;防护级别:IP6611. 称重系统由4个称重单元组成,安全承载限:150% Ln;温度补偿:-10-40°C,标配测量范围7kg,可选配10kg、15kg或20kg12. RGB成像:顶部和侧面三维成像(3个摄像头),每个摄像头各自拥有独立的控制面盘以设置曝光时间、增益、白平衡等,通过控制面盘的快照键可即时拍照并显示分辨率等信息,还可通过自动模式自动成像并存储至数据库,每次扫瞄成像时间小于10秒13. RGB成像系统包括成像室(光隔离)、传送带及位置传感器、3个摄像头、光源及成像分析软件,标配成像范围150cm(长)x150cm(宽)x150cm(高),LED冷白光源(不对植物产生热效应)14. 标配USB以太网摄像头,有效像素4008x2672,像素大小9.0μm,比特分辨率12比特,光量子效率:蓝光峰值465nm,绿色峰值540nm,红色峰值610nm;28mm光学镜头,口径43.2mm,光圈范围2.8-F1615. NIR近红外成像单元:可成像采集1450-1600nm水吸收波段,以反映植物水分状况,在供水充沛情况下表现出高NIR吸收值,干旱胁迫情况下则表现出高NIR反射,NIR假彩色成像可以通过软件反映和分析植物水分状况16. 高光谱成像单元包括光隔离成像测量室、自动开启关闭门、传送带、PLC控制自动移动聚焦镜头包括SWIR和VNIR镜头、光源、成像分析系统等,VNIR镜头波段380nm-1000nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速12-236 fps;SWIR镜头波段900-2500nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速60或100 fps,视野150x100cm17. 用户可通过实验程序选择SWIR成像、VNIR成像或两个镜头全波段成像,每个镜头成像时间分别为15秒18. 热成像单元:分辨率640x480像素,温度范围20-120°C,灵敏度NETD0.05°C@30°C/50mK,成像面积可达150x150cm19. 可选配人工气候室,植物生长面积9.5m2,生长高度2.0m,温度稳定性±1°C,430nm-730nm白色和IR LED 光源,1000μmol/m2/s(距离植物100cm高度的光强),可预设自动光照周期动态,20. 系统控制与数据采集分析系统:? 用户友好的图形界面? 用户定义、可编辑自动测量程序(protocols)? MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中? 植物编码注册功能:包括植物识别码、所在托盘的识别码等存储在数据库中,测量时自动提取自动读取条形码或RFID标签? 触摸屏操作界面,在线显示植物托盘数量、光线强度、分析测量状态及结果等,轻松通过软件完全控制所有的机械部件和成像工作站? 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像、称重及浇灌等? 实验程序(Protocols)具备起始键、终止键、暂停键? 可根据实验需求自动控制植物样品的移动和单一成像站的激活? 可提供3个相机视角的RGB数字生长分析,包含阈值分析和颜色分析? 对于叶绿素荧光成像图片,软件可批量进行淬灭参数分析,包含了在背景去除图像上用户感兴趣区域和像素值的平均。分析数据以原始图像和分析数据的形式存储在数据库中。? 对FIR热成像图,16位图可直接导出到MATLAB或通过软件生成温度分布的假彩图像。 部分用户: 1. 国际水稻研究所(菲律宾)The International Rice Research Institute, Los Banos Philippines 2. 澳大利亚联邦科学与工业研究组织植物表型组学中心The CSIRO Plant Phenomics Center, Canberra, Australia 3. 澳大利亚国立大学The Australian National University, Canberra. Australia 4. 孟山都公司(美国)Monsanto Corporation, St. Louis, USA. 5. 杜邦先锋国际良种公司Pioneer-Dupont, Des Moines, Iowa 6. 巴斯夫公司Metanomics(柏林)Metanomics (BASF), Berlin, GDR 7. 巴斯夫公司CropDesign(比利时)CropDesign (BASF), Nevele, Belgium 8. 美国合成基因公司Synthetic Genomics, La Jolla, USA 9. Palacky 大学Palacky University Olomouc, Czech Republic10. Masaryk 大学Masaryk University Brno, Czech Republic 产地:欧洲
    留言咨询
  • PlantScreen高通量植物表型成像分析平台由国际知名公司PSI公司研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析(可扩展多光谱荧光成像)、植物热成像分析、植物近红外成像分析、RGB真彩3D成像、高光谱成像、3D激光扫描成像分析、RhizoTron根系成像分析、自动条码识别管理、自动称重与浇灌系统等多项先进技术,以最优化的方式实现大量植物样品的全方位生理功能与形态结构自动成像分析,用于玉米、水稻、小麦、大豆及椰树等热带作物高通量表型成像分析测量、胁迫响应成像分析测量、生长分析测量、生态毒理学研究、性状识别、抗性筛选、作物遗传育种及植物生理生态分析研究等。PlantScreen技术特点:1.模块式结构,配置灵活,可选配不同的功能模块,系统具备强大的可扩展性2.全球领先的FluorCam叶绿素荧光成像技术,是作物生理生态功能性状的必备分析技术,配备独有的高灵敏度叶绿素荧光成像镜头,成像面积可选配35cm x 35cm或80cm x 80cm3.可选配不同的表型成像分析模块:1)叶绿素荧光成像单元,单幅成像面积35cm x 35cm或选配80cm x 80cm2)多激发光、多光谱荧光成像模块,包括GFP等荧光蛋白成像、多光谱荧光成像分析等3)3D RGB可见光成像分析单元,包括顶部和侧面两个高分辨率RGB镜头、0-360度旋转平台、光源灯4)高光谱成像分析单元,有VNIR高光谱和SWIR高光谱供选配5)红外热成像分析单元(标配顶部2维成像分析,可选配顶部与侧面3D成像分析),用于对植物干旱胁迫、气孔导度成像分析6)3D激光扫描单元,用于对作物3D点云模型和形态结构分析,PSI专业技术,可以把叶绿素荧光成像、高光谱成像等投射到3D点云模型上进行3D分析、作物生长模型研究等7)根系成像分析单元,RhizoTron根窗技术8)NIR(近红外)成像单元,用于对植物水分状态分析,可选配3D近红外成像9)自动称重与浇灌系统4.世界独创的智能LED光适应室,确保作物表型成像分析前稳定可比的光适应和暗适应5.Shoot & Root Phenotyping全面分析植物表型6.植物传送系统可根据客户需求定制、扩展7.客户定制智能LED温室或作物生长室(选配),可模拟昼夜节律、多云天气等,传送系统可自动将植物从生长室中传送至光适应室然后进入成像室进行成像分析,并远程在线浏览分析8.功能强大的操作系统及作物表型大数据平台,具备叶片跟踪监测功能、3D投射功能9.PSI表型研究中心专家团队技术支持,每年在美国和欧洲分别组织举办一次世界植物表型研讨会国际植物表型分析技术应用情况作为全球第一家研制生产FluorCam植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,其FluorCam叶绿素荧光成像系统最先应用于植物表型分析研究,代表性论文如Celine Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis, Plant Methods 2013)。在FluorCam技术基础上集成RGB 3D成像分析、高光谱成像分析、近红外成像分析、红外热成像分析及激光雷达扫描分析等先进技术的PlantScreen全自动高通量植物表型成像分析平台,成为目前世界上最先进的表型组学和作物遗传育种研究设备(应用案例另附)。系统配置与工作原理:整套系统由自动化植物传送系统、光适应室、FluorCam叶绿素荧光成像、RGB成像、高光谱成像、根系成像、植物红外热成像、植物近红外成像、自动浇灌与称重系统、植物标识系统、控制系统及表型大数据平台等组成,温室或生长室内植物通过自动识别传送系统运送到光适应室内,然后进行必要的浇灌称重,再由传送带到成像室进行成像分析等,最后植物自动返回原位。系统服务器及数据分析平台在线采集分析并自动存储至数据库系统技术指标:1. 光适应室:对作物成像分析前进行均一稳定的光适应或暗适应,以确保植物表型分析数据的可靠性智能冷白LED(6500K)+远红LED(735nm)光源,对植物无辐射升温效应,光强1000 μmoles /m2/s 0-100%(步进增幅1%)可调适应室内由通风系统保持空气交流通风具备植物高度激光监测系统,以根据高度调整成像高度等具备激光定位系统,以调整控制植物移动与成像程序(imaging protocols)的同步性垂直帘门确保与环境光线及成像系统的隔离具备IP监测镜头以始终保持对系统运行和植物移动状况的监视规格容量8盆/培养托2.RGB 3D结构成像分析单元?a)2个高分辨率RGB镜头(顶部和侧面),新一代CMOS彩色传感器,分辨率12.8Mpix(4096x3000),像素大小3.45μmb)成像高度可客户定义或设置,范围0-1050mm,精确度3mmc)360度旋转平台、LED均一光源照明d)数据传输:千兆以太网e)测量参数:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、生长高度、植物最大高度和宽度、相对生长速率等f)可进行颜色分割分析、植物适合度评价、实验生长期叶面积动态变化比较分析、绿度指数、颜色分级分析(健康绿色、亮绿色、暗绿色、其他颜色)等表型参数3.FluorCam叶绿素荧光成像单元a)成像面积:35×35cm或选配80x80cmb)橙色620nm LED脉冲调制测量光源c)双色光化学光,橙色620nm LED和冷白LED光源d)冷白LED饱和光闪,最大光强4000 μmol(photons)/m2.se)735nm LED红外光源用于测量Fo’等f)可选配蓝色光源与7位滤波轮,用于GFP稳态荧光测量g)高灵敏度叶绿素荧光成像专业CCD传感器,1.4M分辨率, A/D 16比特,具备视频模式和快照模式h)测量参数:Fo、Fm、Fv、Fo' 、Fm' 、Fv' 、Ft、Fv/Fm、Fv' /Fm' 、PhiPSII、NPQ、qN、qP、Rfd、ETR等,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等i)Fv/Fm、Kautsky诱导效应、荧光淬灭分析等完备自动化测量程序(protocols)与测量参数,如Fv/Fm程序测量时间仅需10sj)叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能4. 多光谱荧光成像模块不仅可以运行PAM叶绿素荧光成像,还可以进行GFP/YFP等荧光蛋白成像、多光谱荧光成像9种LED激发光源:UV(365nm)、青色光源(440nm)、蓝色光源(470nm)、绿色光源(530nm)、琥珀色光源(590nm)、橙色光源(630nm)、深红色光源(660nm)、远红光源(730nm)及冷白光源(5700K)可成像分析多酚类(黄酮醇类、花青素等)、N素指数等分辨率1360x1024像素,binning 2x2、680x512像素5. 红外热成像单元成像传感器:焦平面阵列微测热辐射计,分辨率 640×480 像素,灵敏度30mK(0.03°C),波段7.5-13μm;可选配高分辨率红外热成像,分辨率可达1024x768像素,灵敏度20mK(0.02°C)温度范围 -20 – 120℃,分辨率0.03℃@30℃/30mK专用成像光源:冷白LED光源板,用于给测量植物提供稳定热环境,6500K,最大光强 1000 μmol(photons)/m2.s,0-100%可调具备温度动态Protocols,光照强度、持续时间、热成像分布数据同步获取,以研究分析植物温度分布动态等具备温度参考传感器(reference sensors)测量参数:植物每一点的实际温度,植物表面温度分布图专业分析软件用于数据获取、分析、存储等6. NIR成像分析单元(选配):用于成像监测分析植物水分状态分布,具备假彩调色板,可以方便对比分析,快速监测脱水植物,因而可以监测评估干旱胁迫条件下植物水分的动态变化响应及水分利用效率等可与RGB成像形态结构参数及FluorCam光合效率参数进行相关分析等;可完整记录追溯干旱过程与复水过程的动态响应等通过测量水分吸收光谱和940nm参考光谱,有效避免环境光及阴影效应InGaAs传感器,有效芯片大小9.6x7.7mm,波段范围900-1700nm,分辨率638x510像素,帧频118fps,A/D 14比特可选配顶部与侧面双镜头三维成像分析选配根系成像分析单元,以对根系进行近红外成像分析7. 可见光-近红外高光谱成像单元 成像波长范围:400-950nm(或350-900nm)成像传感器:推扫式线性扫描传感器,配备专用扫描光源像素色散:0.28nm/pixel光谱分辨率0.8nm FWHM光谱带数(波段数):1920个波段空间分辨率:1000入射狭缝宽度:25μm帧频:45fpsCMOS检测器,光圈F/2.0,GigE网络接口自动参考校准,线性扫描,高度可调测量参数:每个波段的反射光谱成像图及全光谱曲线,并可自动计算以下植被指数:归一化指数NDVI、简单比值指数SR、改进的叶绿素吸收反射指数MCARI、改进的叶绿素吸收反射指数1MCARI1、最优化土壤调整植被指数OSAVI、绿度指数G、转换类胡罗卜素指数TCARI、三角植被指数TVI、ZMI指数、简单比值色素指数SRPI、归一化脱镁作用指数NPQI、光化学植被反射指数PRI、归一化叶绿素指数NPCI、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数、花青素反射指数等等8. 短波红外高光谱成像单元成像波长范围:900-1700nm成像传感器:推扫式线性扫描传感器,配备专用扫描光源光谱分辨率:2nm(FWHM)光谱带数:510个波段空间分辨率636测量参数:每个波段的反射光谱成像图及全光谱曲线,无损测量植物整体及不同部位水分含量变化(右图中蓝色越深含水量越高)9. 3D激光扫描单元:顶部与侧面激光扫描,660nm激光,用于植物精确3D模型构建,分辨率低于1mm顶部扫描距离60cm,客户定义侧面扫描距离3D点云模型,RGB成像、叶绿素荧光成像数据等可与3D模型叠加分析植物结构、生物量、叶片数量、叶面积、叶片倾斜角度、植物高度等结构形态参数10.根系成像分析RhizoTron根窗技术,全自动成像分析,标配根窗44x29.5x5.8cm(高x宽x厚度)不仅可对根系成像分析,还可对地上苗(shoot)进行成像分析,苗高最大50cm新一代CMOS传感器,分辨率12.3MP均一LED光源3层定位(顶部、中部、底部)根系浇灌系统(选配),3个水箱独立运行测量参数包括:根深(或高度)、根冠宽度、高度与宽度比值、根冠面积、根冠紧实度、根系总长、轴对称性、根尖数、根节数等11.自动浇灌与称重单元测量参数:实际重量、浇水体积、最终重量、每个培养盆的相对重量操作指令:每个培养盆浇相同量的水(绝对克数或者实际重量的百分比);保持相对重量;自定义每个培养盆的浇灌量模拟不同干旱或者内涝胁迫;称重前自动零校准,还可通过已知重量(如砝码)物品自动进行再校准每个培养盆的浇水量、日期、时间可分别程序控制记录以创建不同干旱胁迫梯度等,并且与整个系统的表型大数据无缝结合分析称重精度:大型植物±2g,小型植物±0.2g浇灌单元:流速3L/min,浇灌口高度可自动上下前后调整,保证最佳浇灌位置12.自动化植物传送系统传送植物大小:根据客户需求,最高可达200cm传送带容纳量:50盆植物(1000株小型植物),可扩展100盆、200盆、400盆等更大容量 ;表型分析通量依不同的protocol而定,100分钟可以完成整个系统载荷植物样品的表型分析,可随机传送至成像室进行成像分析、随机浇灌培养盆:防UV聚丙烯材料,标准5L(口径24cm)培养盆,可通过适配器应用3L培养盆,可360度旋转具备手动载样环(manual loading loop)以便在系统待机模式下手动载样分析实验、小组实验分析等具备激光植物高度测量监测系统和激光定位系统环形传送通道:具变速箱的三相异步马达,功率200-1000W,最大负载500kg,速度150mm/s,传送带材料为防UV高耐用PVC移动控制系统:中央处理单元CJ2M-CPU33;数字输入/输出最大2560点;输入/输出单元最大40;温度传感器Pt1000,Pt100,PTC;PLC通讯百兆以太网;OMRON MECHATROLINK-II 最大16轴精确定位RFID标签和QR植物辨识系统,自动读取每个样品托盘上的二维编码;辨识距离2-20cm;通讯RS485;可读取1维、2维和QR码;配备LED光源便于弱光下辨识环境监测传感器:温湿度传感器、PAR光合有效辐射传感器由主控制系统分别自动调控每一个样品托盘的测量时间、测量顺序、测量参数、浇灌时间和浇灌量,从测量单元到培养室的样品运转整个过程可实现完全自动控制,在无人值守情况下根据预设程序自行完成全部实验测量工作。13.主控制表型大数据平台组成:控制调度服务器、客户端应用服务器、数据服务器、可编程序逻辑控制器及专业分析软件等,数据容量12TB自动控制与分析功能:具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示。MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中植物编码注册功能:包括植物识别码、所在托盘的识别码等存储在数据库中,测量时自动提取自动读取条形码或RFID标签触摸屏操作界面,在线显示植物托盘数量、光线强度、分析测量状态及结果等,轻松通过软件完全控制所有的机械部件和成像工作站可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB成像、叶绿素荧光成像、高光谱成像、红外热成像、3D激光扫描、称重及浇灌等叶片跟踪监测功能(leaf tracking)模块,可以持续跟踪监测叶片的生长、变化等等3D投射技术,可以通过高分辨率RGB镜头 或激光扫描构建3D模型,通过投射技术,将与其它传感器所得数据如叶绿素荧光、红外热成像温度数据、近红外数据、高光谱数据等投射在3D模型上一起进行对比分析等允许用户通过互联网远程访问,进行数据处理、下载及更改实验设计所测量的所有数据都是透明的、可以追溯的具备用户权限分级功能,防止其他人员误操作影响实验厂家远程故障诊断,软件终身免费升级执行标准:CE认证标准CSN EN 60529 防护等级标准CSN 33 01 65 导体侧识别标准CSN 33 2000-3 基础特性标准CSN 33 2000-4-41ed.2 电击保护标准CSN 33 2000-4-43 电源过载保护标准CSN 33 2000-5-51ed.2 通用规则标准CSN 33 2000-5-523 容许电流标准CSN 33 2000-5-54ed.2 接地与保护导体标准CSN EN 55011 工业、科学与医学设备测量电磁干扰的范围与方法2006/42/EG 机械指令标准73/23/EEG 低电压指令标准2004/108/EG 电磁相容性指令标准附:部分参考文献1.M. Sorrentino, G. Colla, Y. Rouphaelouphael, K. Panzarová, M. Trtílek. 2020. Lettuce reaction reaction to drought stress: automated high-throughput phenotyping of plant growth and photosynthetic performance. ISHS Acta Horticulturae 1268.2.Adhikari, P., Adhikari, T. B., Louws, F.F. J., & Panthee, D. R. 2020. Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences, 21(5), 1734.3.Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Et Al. 2020. Crop Phenomics and High-throughput Phenotyping: Past Decades, Current rent Challenges and Future Perspectives. Molecular Plant, 13(2), 187-2144.Husi?ková, A., Humplík, J. F., Hybl, M.,M., Spíchal, L., & Lazár, D. 2019. Analysis of Cold-Developed vs. Cold-Acclimated Leaves Reveals Various Strategies of Cold Acclimation of Field Pea Cultivars. Remote Sensing, 11(24), 29645.Singh, A.K., Yadav, B.S., Dhanapal, S., Berliner, M., Finkelshtein, A., Chamovitz, D.A. 2019. CSN5A Subunit of COP9 Signalosome Temporally Buffers Response to Heat in Arabidopsis. Biomolecules 2019, 9, 805.6.Jane?ková, H., Husi?ková, A., Lazár, D., Ferretti, U., Pospí?il, P., & ?pundová, M. 2019. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiology and Biochemistry, 136, 43–517.Marchetti, C. F., Ugena, L., Humplík, J. F., Polák, M., et al. 2019. A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling. Frontiers in Plant Science, 10, 1252.8.Rungrat T., Almonte A. A., Cheng R.,R., et al. 2019. A Genome-Wide Association Study of Non-Photochemical Quenching in response to local seasonal climates in Arabidopsis thaliana, Plant Direct, 3(5), e001389.Pavicic M, et al. 2019. High throughput invitro seed germination screen identifed new ABA responsive RING?type ubiquitin E3 ligases inArabidopsis thaliana. Plant Cell, Tissue and Organ Culture 139: 563-57510.Wen Z., et al. 2019. Chlorophyll fluorescence imaging for monitoring effects of Heterobasidion parviporum small secreted protein induced cell death and in planta defense gene expression. Fungal Genetics and Biology 126: 37-4911.Gao G., Tester M. A., Julkowska M. 2019. The use of high throughput phenotyping for assessment of heat stress-induced changes in Arabidopsis. Biorvix, 838102.12.Paul K., Sorrentino M., Lucini L., Rouphaelouphael Y. F., Cardarelli M., Bonini P., Begona M., Reyeynaud H.E., Canaguier R., Trtílek M., Panzarová K., Colla G. 2019. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-derived Protein Hydrolysate on Tomato Grown un under Limited Water Availability. Frontiers in Plant Science, 10:49313.Wang L., Poque S., Valkonen J. P. T. 2019. Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. Plant Methods, 15, 11614.Paul K, Sorrentino M, Lucini L, Rouphaelouphael Y, Cardarelli M, Bonini P, Reynaud H,H, Canaguier R, Trtílek M, Panzarová K, Colla G. 2019. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato. Frontiers in Plant Science, 10:47.15.Gonzalez-Bayon, R., Shen, Y., Groszman, M., Zhu, A., Wang, A., et al. 2019. Senescence and defense pathways contribute to heterosis. Plant Physiology, 180, 240–252.16.Julkowska, M. M., Saade, S., Agarwal Al, G., Gao, G., Pailles, Y., et al. 2019. MVApp–Multivaria analysis application for streamlined data analysis and curation. Plant Physiology, 180, 1261–1276.17.Ganguly D. R., Stone B. A B., Eichten S. E., Pogson B. J. 2019. Excess light priming in Arabidopsis thaliana genotypes with altered DNA methylomes, G3: Genes, Genomes, Genetics, 9(11), 3611-362118.Ameztoy, K., Baslam, M., Sánchez-Lópeópez, á. M., Mu?oz, F. J., et al. 2019. Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. Plant, Cell & Environment, 42(9), 2627-2644.19.Adhikari N. D., Simko I., Mou B. 2019. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors 19, 4814.20.Ugena L, Hylová A, Podle?áková K,K, Humplík J.F., Dole?al K, Diego N, Spíchal L. 2018. Characterization of Biostimulant Mode of Action Using Novel Multi-Trait High-Throughput Screening of of Arabidopsis Germination and Rosette Growth. Frontiers in Plant Science, 9:1327.21.Lyu, J. I., Kim, J. H., Chu, H., Taylor, M.M. A., Jung, S., et al. 2018. Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis. New Phytologist, 221(4), 2320-233422.Ganguly D. R., Crisp P. A., Eichten S. R., et al. 2018. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell and Environment. 41(7), 1657-1672.23.Rouphael Y., Spíchal L., Panzarová K.,K., et al. 2018. High-throughput Plant Phenotypin ping for Developing Novel Biostimulants: From Lab to Field or FroFrom Field to Lab? Front. Plant Sci., 9:1197.24.Coe R. A., Chatterjee J., Acebron K., et al. 2018. High-throughput chlorophyll fluorescence screening of Setaria viridis for mutants with altered CO2 compensation points. Functional Plant Biology. 45(10), 1017-102525.Fichman Y., Koncz Z., Reznik N., et al. 2018. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Science. 41(7), 1657-167226.Sytar O., Zivcak M., Olsovska K., Brestic M. 2018. Perspectives in High-Throughput Phenotyping of Qualitative Traits at the Whole-Plant Level. In: Sengar R., Singh A. eds Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore, 213-243.27.De Diego N., Fürst T., Humplík J. F., et al. 2017. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions. Frontiers in Plant Science. 8.28.Lobos G. A., Camargo A. V., del Pozo A., et al. 2017. Editorial: Plant Phenotyping and Phenomics for Plant Breeding. Front. Plant Sci. 8.29.Pavicic M., Mouhu K., Wang F., et al. 2017. Genomic and Phenomic Screens for Flower Related RING Type Ubiquitin E3 Ligases in Arabidopsis. Frontiers in Plant Scienc. Volume 8.30.Rungrat T., Awlia M., Brown M. et al. 2017. Monitoring Photosynthesis by In Vivo Chlorophyll Fluorescence: Application to High-Throughput Plant Phenotyping. The Arabidopsis Book 14: e0185. 201631.Simko I., Hayes R. J. and Furbank R. T. 2017. Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors. Frontiers in Plant Science. 2016 7:1985.32.Sytar O., Brestic M., Zivcak M., et al. 2017. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. In Science of The Total Environment, 578, 90-99.33.Sytar O., Brücková K., Kovár M., et al. 2017. Nondestructive detection and biochemical quantification of buckwheat leaves using visible VIS and near-infrared NIR hyperspectral reflectanceimaging. Journal of Central European Agriculture. 184, 864-87834.Tschiersch H., Junker A., Meyer R. C., & Altmann, T. 2017. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods, 13, 54.35.Weber J., Kunz, C., Peteinatos, G., et al. 2017. Utilization of Chlorophyll Fluorescence Imaging Technology to Detect Plant Injury by Herbicides in Sugar Beet and Soybean. Weed Technology, 1-13.36.Awlia M., Nigro A., Fajkus J., Schm?ckel S.M., Negr?o S., Santelia D., Trtílek M., Tester M., Julkowska M.M. and Panzarová K. 2016: High-throughput non-destructive phenotyping of traits contributing to salinity tolerance in Arabidopsis thaliana. Submitted Frontiers in Plant Sciences.37.Bell J. and Dee M. H. 2016. The subset-matched Jaccard index for evaluation of Segmentation for Plant Images. Front Plant Sci. 2016 7: 1985.38.Bell J. and Dee M. H. 2016. Watching plants grow – a position paper on computer vision and Arabidopsis thaliana. IET Computer Vision. Volume 11, Issue 2, March 2017, p. 113 – 121.39.Bush M.S., Pierrat O, Nibau C, et al.2016. eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and is Modulated by Phosphorylation. Plant Physiol. 2016 Jul 7,40.Cruz J. A., Savage L. J., Zegarac R., et al. 2016. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes. Cell Systems, Volume 2, Issue 6, 2016, Pages 365-377.41.Sytar O., Brestic M., Zivcak M . 2016. Noninvasive Methods to Support Metabolomic Studies Targeted at Plant Phenolics for Food and Medicinal Use. Plant Omics: Trends and Applications.42.Humplik J.F., Lazar D., Husickova A. and Spichal L. 2015: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11:29.43.Humplik J.F., Lazar D., Fürst, T., Husickova A., Hybl, M. and Spichal L. 2015: Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea Pisum sativum L.. Plant Methods 19 11:20.44.Brown T.B., Cheng R., Sirault R.R., Rungrat T., Murray K.D., Trtilek M., Furbank R.T., Badger M., Pogson B.J., and Borevitz J.O. 2014: TraitCapture: genomic and environment modelling of plant phenomic data. Current Opinion in Plant Biology 18: pp. 73-79.45.Mariam Awlia, et.al, 2016, High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana, Frontiers in Plant Science, DOI: 10.3389/fpls.2016.0141446.Ivan Simko, et.al, 2016, Phenomic approaches and tools for phytopathologists, Phytopathology, DOI: 10.1094/PHYTO-02-16-0082-RVW47.Tepsuda Rungrat, et.al, 2016, Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery, The Arabidopsis Book 14: e0185, The American Society of Plant Biologists, DOI: http://dx.doi.org/10.1199/tab.018548.Jorge Marques da Silva, 2016, Monitoring Photosynthesis by In Vivo Chlorophyll Fluorescence: Application to High-Throughput Plant Phenotyping, Applied Photosynthesis - New Progress, Edition 1, Chapter 1, pp:3-22, DOI: http://dx.doi.org/10.5772/6239149.Maxwell S. Bush, et.al, 2016, eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and is Modulated by Phosphorylation. Plant Physiol., DOI: 10.1104/pp.16.0043550.ángela María Sánchez-López, et.al, 2016, Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action, Plant, Cell and Environment, DOI: 10.1111/pce.1275951.Jan Humplík, et.al, 2015, Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review, Plant Methods, 11: 2952.Jan Humplík, et.al, 2015, Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea Pisum sativum L., Plant Methods, 11: 2053.Pip Wilson, et.al, 2015, Genomic Diversity and Climate Adaptation in Brachypodium, Chapter Genetics and Genomics of Brachypodium, Volume 18 of the series Plant Genetics and Genomics: Crops and Models, pp:107-12754.Tim Brown, et.al, 2014, TraitCapture: genomic and environment modelling of plant phenomic data, Current Opinion in Plant Biology, 18: 73-7955. Jan Humplík, et.al, 2014, High-throughput plant phenntyping facility in Palacky University in Olomouc, International Symposium on Auxins and Cytokinins in Plant Development附:其它表型分析平台:1、FKM多光谱荧光动态显微成像系统右图引自《Nature Plants》2016, Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency by Heather M. Whitney等2、PlantScreen-R移动式表型分析平台(下左图):用于大田植物叶绿素荧光成像分析、RGB成像分析、红外热成像分析、3D激光扫描测量分析等3、PlantScreen台式及移动式植物表型分析平台(参见上右图)1)3D RGB彩色成像分析2)FluorCam叶绿素荧光成像分析3)FluorCam多光谱荧光成像分析4)高光谱成像分析5)红外热成像分析6)PAR吸收/NDVI成像分析7)近红外3D成像分析4、PlantScreen样带式表型分析平台5、PlantScreen 植物表型三维自动扫描成像分析平台
    留言咨询
  • 用途:用于检测植物发出荧光的动态变化和空间分布,Kautsky效应过程、荧光淬灭及其它瞬时荧光过程(瞬变)都可被摄取,从而提供2维荧光图像,测量计算常规的50多个荧光参数如F0, FM, FV, F0', FM', FV', NPQ, ΦPSII, FV/FM, FV'/FM', RFd, qN, qP等,这些荧光参数图像可用于研究植物的光合生理、优良品种筛选及果实的成熟过程等等,还可研究因病变、衰老、环境胁迫或突变造成的荧光变化。 应用:筛选用于光合作用效能;单个植物或叶片非均匀性研究,比如感染;不同生物体的研究,例如海藻或蓝藻群落,小型植物冠层;生长和产量。 实验和测量参数:猝灭分析Kautsky效应QA再氧化(需要选购附件)标准参数:Fo、FM、FV、Fo’、FM’、FV’、QY(II)50多种计算的参数:NPQ、FV/FM、FV’/FM’、Rfd、qN、qP、光合作用电子传递速率(ETR)和其他 附件:叶夹 标准成像规格:512×512像素A/D:12位(4096灰阶)8.2µ m×8.4µ m像素尺寸每秒50幅画面便于测量快速过程 可选成像格式:分别可选640×480像素和1392×1040像素A/D:12位(4096灰阶)6.45µ m×6.45µ m像素尺寸分别为每秒30和15幅画面主要用于测量相对较慢的过程和应用于一些要求高空间分辨率的重要实验 小麦成像叶片 光源:四块超亮LED光板;光板尺寸:40×40mm,每块光板包含25个LED;标准配置:白光(光化光和超脉冲),617nm红橙光(测量闪光),735nm红光;测量闪光持续时间:10 µ s~250 µ s;在持续时间和电源适合的前提下,连续光化光调节最大可达到2,000 µ mol(photons)/m² .s 新FluorCam 6.0软件功能:自动实验方案设置向导,软件包中设置了常规实验模块,熟练的专业人员可使用提供的编程语言设计各种测量时间和测量序列的程序多重(自动重复)实验对视野内的单个植物或样品进行动态分析对单独植物或样品,视野内的,可自动标记,用于区分从视野内的所有样品进行动态分析获取数据批量画面操作工具支持读取条形码可输出为Excel操作系统支持Windows 2000, XP, Vista FluorCam软件界面 附件:三脚架 附件:电池组 产地:捷克 参考文献:Mascalchi M., Osticioli I., Riminesi C., et al. (2015). Preliminary investigation of combined laser and microwave treatment for stone biodeterioration. Studies in Conservation. Volume 60, Pages 19-27.DOI: 10.1179/0039363015Z.000000000203下载地址:点击下载更多期刊论文:便携式植物荧光成像系统参考文献-英文版.pdf
    留言咨询
  • 来因科技多功能植物活体成像系统 植物活体成像检测仪 植物多光谱荧光成像系统PLIS-95PLIS系列多功能植物活体成像系统搭载了超高灵敏度深冷背照式相机大光圈镜、RGB激光光源、IR激光光源、温控平台、全自动滤光轮,用于生物发光检测;植物活体荧光素酶检测;荧光检测;化学发光检测等满足客户多种实验需求的一套高性能植物活体成像分析系统。激光光源:相对LED 和卤素光而言,激光有更稳定的光谱以及更小的光衰,光源更纯净,无边缘效益, 在光斑处光都处于均匀的能量,使其成为最佳的荧光成像光源。背照式高灵敏度深冷相机:PLIS植物活体成像仪采用了660万高分辨深冷背照式相机其QE在峰值最高高达95%,制冷温度 达到-95℃, 配合F0.95大光圈镜头,同时具备的了出色的信噪比和灵敏度。专用滤镜:深度定制激光专用滤镜,双层镀膜,截止深度更是高达OD6, 杂散光通过率非常低,背景干净。植物活体成像应用:相对普通LED 的可见荧光,激光尤其红外激光因穿透力较强,背景低,激发效率高的特性,可以更好的拍摄活物体内的细胞活动和基因表达,有效地研究观测感染性疾病发生发展过程、植物转基因鉴定,植物突变体筛选,病毒侵染等。产品参数型号PLIS-68PLIS-95分辨率1200万像素(背照式相机)660万像素(背照式相机)制冷温度-68℃-95℃像素尺寸4.63um×4.63um11um×11um感光效率HighQE:95%像数密度16bit(0-65535)曝光时间1ms-60min像素合并1×1、2×2、4×4…8×8动态范围≥4.8个数量级电动镜头F=0.95/35MM自动聚焦镜头,可选配F0.8镜头RGB光源标配650nm、532nm、473nm(红绿蓝)激光器IR光源标配红外680nm、780nm激光器紫外反射254nm白光光源LED冷光滤光镜轮7位滤光轮滤光镜片标配535nm,570nm、605nm、699nm、720nm、820nm拍摄面积最大拍摄面积32×26cm×10cm(L×W×H),侧位相机选配光照模块选配旋转样品台选配输入气孔预留定时关闭1~60分钟
    留言咨询
  • Omni - 箱内明场/荧光多孔板活细胞工作站 - 类器官分析模块作为激动人心的疾病研究和开发新思路,类器官补齐了传统的2D培养细胞和动物模型之间的缺口。我们为Omni系统开发的类器官分析模块,能对培养在各种规格容器中的大量类器官样本开展识别、追踪及分析。这些强大的功能并不意味着其分析过程一定会很复杂而难以驾驭。利用高级机器学习算法及活细胞成像的最新技术,该软件将为您提供更快更精准的实验结果,来推动您的科研进展。主要优点如下: 精准:支持非标记细胞监测或者是标记后实验,提供动态视觉实验结果 快速:更高阶的图像分析技术,在最大程度上消除用户个体间差异 强大:在更高的数据质量上实现对类器官在数量、大小、偏心率和分布等方面的综合评估用机器学习算法来淘汰人工估算很多实验室仍然在手动地进行类器官计数,但是这种方法很耗时且重复性差。有了CytoSMART类器官分析模块,您就能实现快速识别、分组比较、建立群体分布及样本发育长期记录等之前无法完成的任务。 供分析的参数包括: 数量 直径 面积 宽高比 偏心率/圆度 对各种形状和大小的类器官样本开展定量计算有多种因素会影响到类器官的形状和大小,它们包括细胞类型、疾病表型甚至还有培养条件。类器官分析模块能够检测并量化绝大多数的样本表型。 FAQOmni 是如何工作的? LED光源位于样本上方,数据采集由样本台下方的可移动镜头完成。在明场通道下,您可以设定让镜头对整个台面依次开展连续成像,最终将生成约7850张快照图片。随后,通过软件的自动拼接,您就能得到一张尺寸为86 mm × 124 mm 的“全景”照片了。当在做荧光实验时,用户则可以精确定义系统对单个孔内某一位置拍照的次数。不管是哪种情况,照片都将被上传到CytoSMART云端服务器。在那里,数据分析将通过我们的图像算法或者是第三方软件去完成。我可以使用什么类型的图像分析模块? 您可以选择购买如下的算法模块:明场/荧光细胞汇合分析算法、划痕实验(比如研究细胞的群体迁移)分析算法、克隆形成分析算法和荧光计数。当然,您也可以随时下载原始数据然后在第三方软件上做一些特殊的分析。Omni 平台可以在细胞培养箱内使用吗? 可以。它的设计就是依照箱内使用的要求来开展的。所有的硬件和电子器件都能在5-40°C及 20-95% 的湿度环境下运行。该系统可以兼容哪些细胞培养容器? 任何高度小于 55 mm(样本台到光源下沿的距离)的透明培养容器均可兼容。比如说 6-384孔多孔培养板、培养皿、T25 -T225培养瓶等等。重要的是,您要记得Omni的扫描区域尺寸是86 mm × 124 mm哦,这才是真正有效的成像范围。 PART III 相关应用肿瘤球 复杂实体瘤的体外建模及相应新型治疗方案的效力评估。 细胞增殖 追踪细胞生长,洞悉细胞的健康状况及行为变化。克隆形成实验全板克隆计数及生长追踪。细胞毒性定量细胞死亡程度并实时描绘药物的细胞毒特性。肿瘤免疫测定CAR-T细胞和其他免疫疗法的效力。 划痕及细胞迁移实验用于转移潜力或伤口愈合能力评估。细胞转染与转导了解细胞的转染或转导效率并追踪相关蛋白的表达。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • FluorTron植物光合表型成像分析技术基于高分辨率、高灵敏度叶绿素荧光动态成像技术、多通道调制智能LED光源技术及机器视觉技术,对植物表型特别是光合生理表型进行非接触、非损伤、数字化、可视化成像分析(可客户定制高通量表型分析),用于植物表型分析、植物光合生理研究检测、胁迫与抗性检测与筛选等。主要技术特点:1) 高分辨率,高灵敏度视频叶绿素荧光动态成像2) 可自动运行如下Protocols:a) 荧光淬灭分析b) 光响应曲线c) Kautsky诱导效应及叶绿素荧光快速动力学曲线3) 可同时进行植物形态分析,如长度、宽度、投影面积(相对生物量)、凸包面积、圆度等4) 可选配基于智能LED光源技术的多光谱成像,或多功能高光谱成像5) 可选配视频光谱成像功能,包括叶绿素荧光光谱成像、Red-Edge反射光光谱成像等 技术指标:1) 荧光淬灭分析叶绿素荧光成像测量参数:Fo、Fm、Fp、Ft、Fs、Fm’、Fv/Fm(QYmax)、∆ F/Fm’(YPSII)、Fv/Fo、NPQ、Rfd、qP、Y(NPQ)、Y(NO)、EXC、1-qP、ETR等2) 叶绿素荧光快速动力学测量参数:Fo、Fi、Fm、Vi、Mo、Sm、QY、能量散失光量子产量、平均光量子产量等3) 光响应曲线成像分析4) 成像面积:≥50cm x 50cm5) 叶绿素荧光成像分辨率:2448x2048像素6) 形态参数:投影面积(相对生物量)、长度、宽度、长宽比、凸包面积、ROI面积、圆度等常见形态参数7) 传感器:500万像素2/3”CMOS8) 像元大小:3.45µ m x 3.45µ m9) 最大帧频:≥70fps10) 曝光时间:15µ s-10s11) Binning:支持1x1和2x212) 激发光:蓝色LED激发光源,可选配多激发光13) 模块式具备可扩展性,可扩展选配Thermo-RGB成像,或多光谱成像等14) Thermo-RGB成像:具备红外热成像与RGB成像融合分析功能,对不同ROI进行温度、颜色及形态分析,包括最低温度、最高温度、平均温度、温度频率直方图、图像分割分析(如光照叶片温度、阴影叶片温度——反映不同光照条件下的光合状态和气孔行为)15) 可选配侧面多功能高光谱成像功能a) 包括高光谱成像、多光谱成像、Red-Edge光谱成像、近红外成像、RGB成像等,可进行高分辨率颜色分析(可区分100多种颜色),测量参数包括结构指数、色素指数、叶黄素循环色素指数、生理与衰老指数(包括健康指数)、光合物候指数、N指数、水含量指数等50多个参数b) 侧面形态分析功能:高度、冠层宽度、冠层侧面面积、冠层侧面凸包面积等c) 具备截面参数分析功能d) 叶绿素荧光高光谱成像(选配),稳态叶绿素荧光高光谱成像分析e) UV-MCF成像分析功能(可根据预算和需求选配)f) 可选配360度旋转平台,由操作系统自动调控旋转角度等,已进行三维成像分析16) 视频光谱成像:可运行叶绿素荧光光谱成像、Red-Edge光谱成像,高灵敏度每秒可达120个数据立方 其它相关产品:1. FluorTron多功能高光谱成像系统,高光谱成像、叶绿素荧光成像、UV-MCF生物荧光成像2. PhenoTron-PTS植物表型成像分析系统,叶绿素荧光成像、多光谱荧光成像、高光谱成像、Thermo-RGB成像3. 模块式植物表型成像分析系统,叶绿素荧光成像、多光谱荧光成像、Thermo-RGB成像4. 移动式叶绿素荧光成像系统,叶绿素荧光成像,多光谱荧光成像、高光谱成像、Thermo-RGB成像
    留言咨询
  • Entoscan X、Y、Z三轴自动定位 植物表型成像分析平台Entoscan植物表型成像系统(X Y Z 三轴自动定位)是由台湾海博特公司研发制造,整合了Hipoint智能环控系统(包含温湿度、CO2、水份、EC、PH、气象)高光谱LED光谱模拟系统,叶绿素萤光成像测量分析,植物热成像分析,植物近红外线成像分析,植物高光谱分析,RGB色彩成像及射频,条码管理系统等多项先进技术结合;以最(分割线)优化的方式实现在精(分割线)准环控条件进行高通量数据集成。提供阿拉伯芥(拟南芥)、玉米、甜椒、大豆、小麦、到各种其他植物的全面性形态构型、光谱资讯、叶绿素荧光等表型分析研究最(分割线)佳解决方案,透过高通量植物表形分析量测,协助研究人员快速、完整、全方位进行植物性状识别、植物生理、植物病理学、植物育种、目标成份、植物生态分析等尖(分割线)端研究。同时搭载Hipoint首(分割线)创发明案例结合环境分析探头自动化设备结合,成功利用精(分割线)准环控条件并模拟24节气各纬度光谱模拟条件,达到进行植物活体全方位律动及环境反馈研究。Entoscan X、Y、Z三轴自动定位 植物表型成像分析平台
    留言咨询
  • FluorCam大型植物多光谱荧光成像平台 FluorCam大型植物多光谱荧光成像平台是FluorCam叶绿素荧光成像技术的高级扩展产品,LED激发光源、CCD荧光成像镜头及滤波轮等集成于一个高度可上下自由移动的成像平台上,既可用于叶绿素荧光动态成像分析,又可用于UV紫外光对植物叶片激发产生的多光谱荧光成像测量分析,还可选配绿色荧光蛋白GFP等稳态荧光的成像测量,成像面积35×35cm,是世界上单幅成像面积最 大的植物荧光成像系统。可对整株植物或植物群落进行高通量成像分析。 应用领域:实验室或温室植物光合生理生态植物逆境胁迫生理与易感性植物初级代谢与次级代谢气孔功能研究植物环境如土壤重金属污染响应与生物检测植物表型组学成像分析(Phenotyping)植物遗传育种与抗性筛选种子萌发与活力监测植物生态毒理学研究 功能特点:ü 多激发光-多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应滤波器,对不同波长荧光(多光谱荧光)进行成像分析。如选配红光和蓝光及相应滤波器,可以对GFP和叶绿素荧光成像分析,还可选配绿色光源及相应滤波器,以对YFP进行荧光成像分析等;ü UV紫外光激发多光谱荧光成像: UV紫外光对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱,4个波峰的波长为蓝光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,由表皮及叶肉细胞壁和叶脉发出,F690和F740为叶绿素荧光Chl-F。紫外光激发多光谱荧光可以用来灵敏、特异性地评估植物生理状态包括受胁迫状态,包括干旱、病虫害、环境污染、氮胁迫等ü 世界上单幅成像面积最 大的植物荧光成像系统,成像面积达35×35cm,可对整株植物及多株植物同时进行非损伤性多光谱荧光成像分析ü 可进行自动重复成像测量和无人值守监测,可设置实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳)ü 带有Kautsky诱导效应、荧光淬灭分析、GFP稳态荧光成像及紫外光激发多光谱荧光成像分析等各种通用实验程序(protocols),测量分析参数达60多个ü 成像平台高度可调,以适应于不同高度的植物成像分析ü 可选配PAR吸收/NDVI成像分析模块,对植物PAR吸收及光谱反射指数NDVI进行成像分析ü 测量样品包括叶片、花卉、果实、植物其它组织及整株植物、藻类等 技术指标: 1) 大型叶绿素荧光成像平台,成像面积达35×35cm2) 高分辨率CCD相机l 图像分辨率:1360×1024像素l 时间分辨率:在最 高图像分辨率下可达每秒20帧l A/D 转换分辨率:16位(65536灰度色阶)l 像元尺寸:6.45μm×6.45μm l 运行模式:1)动态视频模式,用于叶绿素荧光参数测量;2)快照模式,用于GFP等荧光蛋白和荧光染料测量l 通讯模式:千兆以太网3) 标配620nm红色测量光源、620nm与冷白光双色光化学光源(可选配蓝色或其它波长的LED光源),具备735nm红外光源,LED光源板面积750×750mm4) PAR吸收/NDVI成像模块:680nm红色光源、735nm红外光源板及相应滤波器和功能程序模块(选配)5) 多光谱荧光成像模块:UV紫外光源及相应滤波器和功能程序模块(选配)6) 具备7位滤波轮及多光谱荧光相应滤波器7) 成像平台高度可调,调整高度范围350-1350mm8) 测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv' / Fm' ,Fv/ Fm ,Fv' ,Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qP,qL,QY, QY_Ln, Rfd等50多个叶绿素荧光参数;R_NIR、R_RED、PAR吸收和NDVI等植物光谱反射指数(选配);包括F440、F520、F690、F740等UV激发多光谱荧光参数(选配);荧光强度Ft等GFP绿色荧光蛋白成像参数(选配)。每个参数均可在软件中直接显示二维彩色图像9) 自动测量分析功能:可预设1个protocols,设置好重复次数及间隔,系统可自动测量储存,数据文件自动按时间命名10) 配置有完备的protocols,包括 多光谱成像Protocol、Fv/Fm Protocol、Kautsky诱导效应 Protocol、荧光淬灭分析Protocol、光响应曲线Protocols等,可对Protocols进行编辑,实时在线数据分析和二维显示11) 客户定制实验程序协议(protocols),可设定时间(如测量光持续时间、光化学光持续时间、测量时间等)、光强(如不同光质光化学光强度、饱和光闪强度、调制测量光等),专用实验程序语言和脚本,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序12) FluorCam叶绿素荧光成像分析软件,具 Live(实况测试)、Protocols(实验程序选择)、Pre–processing(成像预处理)、 Result(成像分析结果)等菜单 ?13) Live实况测试或称在线功能可对仪器和样品进行在线测试调试、快照、显示实验进度、在线显示荧光瞬变动态视频等14) 成像预处理可以自动选区或手动选择不同形状、不同数量、不同位置的区域(Region of interest,ROI),,成像分析结果包括高时间解析度荧光动态图、直方图、不同参数成像图、不同ROI的荧光参数列表等15) 功能强大的成像预处理功能还可浏览整个测量视频及任何点、任何区域的荧光动态变化曲线,可进行“选区操作”(参见上条)或“分级操作”(图像阈值分割功能);选区操作不仅可对成像进行自动或手动选区(ROI),还可使用“模具”包括多孔板模具、培养皿模具、桌面模具进行模具选区;分级操作具备荧光强度刻度标尺和四个“游标”,通过移动4个游标可以将成像按不同强度划分成不同的荧光范围组进行分析处理,可设置不同的阈值进行图像阈值分割16) 结果展示报告功能:可展示所有选区(ROI)的叶绿素荧光参数值及其图像、每个参数的频率直方图及每个ROI的荧光动态图及荧光参数列表等,可对原数据(kinetic)、叶绿素荧光参数等导出到excel表,还可对每个参数成像图存储成位图17) 可自动测量多个样品(无限制)荧光动力学曲线及相应参数,程序软件可自动识别多个植物样品(数量不受限制)或多个区域(数量不受限制),也可手动选区(数量不受限制)18) 数据分析具备“信号计算再平均”模式(算数平均值)和“信号平均再计算模式”, 在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信 号平均再计算”模式以过滤掉噪音带来的误差 19) 可选配红外热成像分析单元a) 波段7.5-13.5μm,分辨率640x512,1-14x数码变焦b) 温度成像测量范围-25 °C to +150 °C,灵敏度30mK(0.03°C),传感器已经校准并附校准证书c) 镜头可更换,标配9mm光学镜头、69°视野, 可选配13mm、45°光学镜头d) SBus Protocol:一根电缆支持18通道;视频、图片可通过PWM、SBus或TTL开启和停止e) 有19种调色板供使用,在线测量显示温度范围、中心温度、热点温度、冷点温度、最 大峰值与最小峰值温度等f) 32GB内存,可存储80000张图片或200分钟视频,图片存储格式为JPEG或TIFF模式g) 可同时在线采集红外热成像视频和彩色视频或图片,图片采集间隔1-60s可调,带GPS信息h) 可用于植物干旱胁迫、气孔动态、病虫害检测分析等 产地:欧洲
    留言咨询
  • 用途:凭借数十年植物科学研究的经验而设计出的PlantScreen植物表型成像分析系统,可用于高通量植物表型监测、植物构架量化以及在自然环境、温室和野外条件下高精度控制测量。 PlantScreen植物表型成像分析系统整合了叶绿素荧光动力学成像、植物形态学和RGB真彩3D成像、植物热成像、植物高光谱成像、植物近红外成像、自动条形码识别管理、植物图像控制软件和植物表型数据分析等系统,通过外接传感器和软件系统可测量光合有效辐射、空气温湿度、CO2、风速等环境因子,用于植物高通量表型成像分析测量、植物胁迫响应分析测量、植物生长分析测量、植物生态毒理学研究、性状识别及植物生理生态分析研究等。 特点:专业定制,根据用户实验需求量身定制;测量参数多样,有热成像、RGB成像、叶绿素荧光成像、高光谱成像、近红外成像等全方位测量参数;适用于多种类型的研究对象,拟南芥、水稻、小麦、玉米等;成像面积大,单幅成像达40cm x40cm;成像分析平台尺寸大,宽10m,高度可调至2.5m,样带轨迹长度100m;可外接环境气象因子传感器,综合分析环境因素的影响;用户可编辑测量程序(protocols),满足特殊实验需求。 技术规格:系统主体成像分析平台宽10m,高度可调,最大2.5m,可沿10m宽样带移动成像,样带轨迹长度100m外接传感器外接传感器和软件可采集PAR、CO2、空气温湿度、风速GPS带GPS精准定位系统实验程序预设常用实验程序(Protocols),用户可自定义、编辑实验程序叶绿素荧光成像系统测量和计算的参数Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数成像面积40cm x 40cm测量光橙色620nm光化学橙色和白色双色光饱和光白色或蓝色,最大光强3600μmol.m-2 .s-1镜头分辨率1024 x 768像素,7位滤波轮RGB成像测量参数叶面积、植物紧实度、叶片周长、偏心率、叶圆度、叶宽指数、叶片细长度SOL、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量、其他用于植物适合度估算的颜色定量分级、绿度指数成像位置顶部及侧面全方位成像分辨率500万像素高光谱成像测量参数归一化指数、简单比值指数、改进的叶绿素吸收反射指数、最优化土壤调整植被指数、绿度指数、改进的叶绿素吸收反射指数、转换类胡萝卜素指数、三角植被指数、ZMI指数、简单比值色素指数、归一化脱镁作用指数、光化学植被反射指数、归一化叶绿素指数、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数光谱范围380-1000nm光源LED,光强50-1000μmol/m2s热成像分辨率640x480nm温度范围20-120°C灵敏度NETD0.05°C@30°C/50mK成像面积35x35cm近红外成像波长范围1450-1600nm RGB成像 叶绿素荧光成像 高光谱成像 近红外成像 热成像 控制软件 产地:捷克
    留言咨询
  • MS-190原位植物根系分析仪采用经典的微根窗技术,可定点原位观察和研究根和菌根,甚至根瘤的生长、死亡及分布(根系构型)规律,该系统可在不干扰根生长过程的前提下,可连续监测单个细根从出生到死亡的变化过程,也能记录细根、根毛乃至根瘤的生长、发育和物候等特征,结合专业根系分析软件,能够将根系相关指标定量化,包括根的长度、面积、根尖数量、直径、分布格局、活根及死亡根的数量等。“系出名门”的新一代植物根系分析仪2018年4月,以经典的BTC-100微根窗观测系统闻名全球的美国Bartz公司宣布与奥地利VSI公司展开深度合作,对BTC-100微根窗观测系统进行全面的升级,而保留并更新了广大根系研究者熟悉的I-CAP软件操作界面,从而诞生了性能和质量全面提升的MS-190原位植物根系分析仪。2018年12月,美国Bartz公司全面停产原有的BTC-100微根窗观测系统,而作为VSI公司的北美合作商全力推进MS-190原位植物根系分析仪的推广和应用;该仪器以其新颖的设计和杰出的性能迅速得到国际上许多从事植物根系研究的人员的信赖。MS-190针对BTC-100微根窗观测系统的升级主要为:1.控制单元更加紧凑便携。2.摄像模块由光学拍照升级为数字高清摄像。3.定位模块设计的精巧且坚固。主要特点l 360度无死角成像;分辨率可达2500dpi;l 具备非线性校准功能,可消除微根管的曲面效应;l 成像速度小于1秒,无需白平衡,可高效获取图像;l 图像捕捉和命名遵循ICAP方案,以便兼容各种根系分析软件;l 配备经典的“Smucker”模块,实现精确定位;l 系统可选择配置专业的根系图片分析软件; 技术参数 1.成像面积(基于微根管外径): 31mm×24mm(外径为7厘米的微根管,软件可自动裁剪成标准面积20mm×20mm,同时可消除微根管曲面效应), 30mm×21mm(外径为6厘米的微根管,软件可自动裁剪成标准面积20mm×20mm,同时可消除微根管曲面效应) ; 2.图像分辨率及格式:800万像素(3280×2464像素;2500dpi);jpg格式;3.成像速度:<1秒/张图像;4.图像命名:遵循ICAP命名规则; 5.照明光源:两排3W的穗轴LED管,每排强度可达160-230流明,强度软件可调;6.操作系统:标准Windows操作系统,LCD屏,含键盘的微型计算机7.控制:原厂配置的预装VSI-ICAP控制软件的ThinkPad笔记本电脑 ,符合欧盟和中国的产品认 证;Windows 10操作系统 内存8GB;存储(256GB SSD);软件控制进行操作,实验和图 像获取程序化(包括日期和位置),ICAP命名方案,批量或单张图像尺寸可调;8.图像输出:USB接口;9.连接线缆:HDMI高清线,标配1.8米,可延长至7米;10.供电模块:12V(3A)供电及通用充电器,配内置可充电锂电池套装;可在野外连续10小时 以上工作;11.成像模块:铝质外壳,阳极电镀,长170mm,直径52mm或62mm(基于微根管内径),重 420g;12.定位标尺:铝质,25mm×25mm×1000mm,重670g,可续接5个定位标尺,定位孔标准距离 为20mm;基本配置 主机控制单元;控制电脑(预装VSI I-CAP控制软件);带HDMI接口的高清成像模块;1.8米的HDMI高清线缆;1.2米和0.8米长的定位标尺;定位手柄;外部供电模块;进口材质微根管10根;rhizoTrak或者Rootfly根系图片分析软件。 可选:WinRHIZO Tron专业根系软件 产地与厂家:奥地利 VSI
    留言咨询
  • 产品信息产品描述PlantView100植物活体成像系统具有对活体植物内基因发光标记物和荧光染料标记物进行成像、筛查、优选功能,主要应用于植物活体基因表达分析、植物活体克隆筛选、植物生物节律研究、植物光周期相关研究、植物抗逆性研究、植物病菌害研究、植物生长的连续观察以及基因育种的筛选等。PlantView100植物活体成像系统是新型的植物学研究平台,其将植物学研究从分子水平提升到整体水平,能够反映细胞或基因表达的空间和时间分布,从而了解活体植物体内的相关生物学过程、特异性基因功能和相互作用;其次,在转基因植物研究过程中,可以更早期、更快速、高通量精确筛选目标植株,缩短育种周期;对植物的性状进行跟踪检测、对表型进行直接观测和(定量)分析,具有廉价、灵敏、定量和可重复性的检测特性,节约时间成本,提高实验效率。 产品优势 超大视野,双位相机成像面积可达到280mm×280mm, 满足常见植物全株成像的同时, 可实现幼苗、 种子、 果实, 培养皿等样品的批量成像。 特有的双相机模式, 除顶部主相机外还可搭配一台侧位相机, 可实现植物从种子萌发到幼苗自然垂直生长的长时间连续观察。 超灵敏,高品质采用超高量子效率、 深度制冷科研级CCD相机, 制冷温度低至绝对-100℃, 具备针对微弱荧光或发光的强大捕获能力; 配备全密闭抗干扰暗箱, 避免外界光源及宇宙射线对成像的影响; 搭配OD6高品质滤光片, 结合背景干扰扣除功能, 在快速成像的同时保证超高的灵敏度与成像质量。 多功能配备植物光照模拟模块,可用于植物生长节律及光周期等实验。 同时具备通用接口,连接多种装置,便于模拟多种特殊实验环境。 还可连接X-Ray成像模块, 紫外或蓝光透射台等, 满足更多实验研究需求。 多光源荧光光路系统全部采用高功率窄带宽LED,强度更高、光衰更小,环形全局排列具有更均匀的光线输出。且系统可配备20种激发光源,10种发射滤光片,满足更多荧光成像需求。 智能软件,专业可靠人性化的全中文软件可自动控制样品台升降及各种光源强度大小, 预设多种成像模式、 一键快速成像、 多种伪彩及定量单位自由切换、 量化分析功能、 具备国际公认标准单位(p/s/cm2/sr)、 符合GLP原始数据、 操作记录规定、 可直接输出实验报告。 中文软件, 操作简化, 快速上手, 软件终身免费升级。 功能模块 荧光激发模块可配备多达20种不同波长的激发光源, 10个发射滤光片,可进行全局荧光激发, 辅以高品质窄带滤光片, 大大减少背景荧光干扰和样品产生的自发荧光, 成像效果更好。 光照模拟模块PlantView100 配备了2 个LED 光照板,包含蓝、白、红和近红外四种光源。每一种波谱LED灯光照强度和持续时间都可通过软件编辑控制,从而模拟不同光谱及强度下植物的生长状况。配备冷水循环模块,避免箱体内温度过高。 侧位成像模块(选配)由侧位科研级制冷CCD相机、全自动旋转平台和100×100mm培养皿的高通量样品适配器组成,从而实现在转盘上通过侧位CCD相机进行高通量样本的图像采集,研究幼苗及根部生长情况。 X-ray成像模块(选配)X-Ray具有很强的穿透性,能够对植物样本进行定位成像,从而更好地分辨内部结构和含水率,大幅扩展研究的范围。可适用于育种、病虫害、生态学等相关研究。 细胞标记鉴定模块(选配)细胞标记鉴定模块分为单管型和96孔板型,可以精准定量,输出标准曲线,鉴定和筛选发光标记的菌种,从而使植物样品的实验数据更精准。 软件系统 全自动智能仪器控制,轻松上手,快速成像 可预设多种实验方案,模块化设计,流程式操作 一键式多批次数据输出,量化分析功能,国际单位自动换算,以电子表格形式输出(包含图像文件等) 形象的色彩图像重叠功能,成像效果更自然 包含荧光光谱分离技术等多种算法功能,自动扣除自发光或荧光背景,提高信噪比 自带强大的图像处理功能与几何学图像分析功能 符合GLP优良实验室规范,将原始数据与处理后数据分开存档 以样品体表单位时间、单位面积、单位弧度角所辐射的光子数(p/s/cm2/sr)作为定量单位,保证不同参数条件下的数据能够进行比较 应用案例菌种筛选(GFP) 植物全株基因表达(Luc) 蛋白互作(Luc) 病毒侵染(Luc) 植物防御机制(Luc) 叶绿素荧光
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。高通量植物表型成像系统WIWAM conveyor产品介绍WIWAM conveyor是一款集成机器人解决方案,用于高通量可重复表型平台,用于大型植物如玉米。该机器人可进行自动灌溉,允许定期对多种植物生长参数测量。WIWAM Conveyor代替了很多手工操作,省时省钱,精度高。该WIWAM机器人传送带网络组成,可将植物传送到1或多台称重浇水站以及成像柜,成像柜中安装有一系列的非损害性照相系统。全套系统可以安装在现有温室,由高品质工业部件构成。典型应用是植物种植在不同各自花盆内。这些花盆在传送带系统上以小车运输。花盆和小车均有少有识别码(分别QR和RFID码),从其固定生长区域传送到称重和灌溉站以及成像柜,都可对每植株进行个性处理。成像平台是封闭区域,配有适合照像的光照条件,配有旋转平台提升装置,可从观察角度稳定获得图像,聚焦远处感兴趣部分。成像柜可以容纳一系列照相系统,用于非损害性图像获取。称重和灌溉站位置,植物在浇水时旋转,以在花盆获得较佳水分布。灌溉精度较高可达+/-1mL。浇水后,可应用指定容器中准备好的不同溶液。另外,灌溉可以基于对目标重量计算或固定量。这方法可以保证在整个实验中的有效土壤湿度水平。通过集成光、温度和湿度传感器监控环境,详细记录实验生长条件。 该系统的精明之处在于包括1个处理区,系统可以提取和检索所需号码的属于特定基因组或处理的植株。系统用户可进入操作区,可视觉观察植物或手工操作植物,如测量特定植物性扎状,或提取部分植物做分子或化学分析。系统另外一精明特征是可将外部植物装载到系统中,例如生长在另外一间温室或生长箱中的植物,可将其在称重和灌溉站成像和/或处理。高通量植物表型成像系统WIWAM conveyor特点称重和灌溉站位置,植物在浇水时旋转,以在花盆获得较佳水分布。灌溉精度较高可达+/-1mL。浇水后,可应用指定容器中准备好的不同溶液。另外,灌溉可以基于对目标重量计算或固定量。这方法可以保证在整个实验中的有效土壤湿度水平。通过集成光、温度和湿度传感器监控环境,详细记录实验生长条件。该系统的精明之处在于包括1个处理区,系统可以提取和检索所需号码的属于特定基因组或处理的植株。系统用户可进入操作区,可视觉观察植物或手工操作植物,如测量特定植物性扎状,或提取部分植物做分子或化学分析。系统另外一精明特征是可将外部植物装载到系统中,例如生长在另外一间温室或生长箱中的植物,可将其在称重和灌溉站成像和或处理。成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • &ldquo 温室自动化 + 高通量成像&rdquo 技术机器人技术、图像分析和大规模计算能力的完美结合全自动、高通量对大量植株进行3D成像,从幼苗到成株皆可特别适合植物功能基因组学和植物表型组学植物表型和生理研究的强大助手遗传育种、突变株筛选、表型筛选的强大工具全自动高通量植物3D成像系统&mdash &mdash Scanalyzer 3D是一套可以全自动、高通量对大量植株(从幼苗到成熟植株即可)进行成像的系统,可以选择配置可见光(VIS)成像、近红外(NIR)成像、红外(IR)成像、荧光成像或根系近红外成像中的一种或多种,每个成像模块包括顶部和侧面两个摄像头,结合样品旋转装置,就可以对植株进行3D形态学分析。如果做小植株(15 cm以下),也可选配激光扫描3D成像。每一种成像模块都有单独的成像区域(&ldquo 暗房&rdquo ),依次进行成像分析。(下载演示视频) 小型版只能自动传送10盆植物,需手动更换花盆大型定制版(温室版)可自动传送1200盆植物的系统该系统通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等参数;通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等;通过根系近红外成像分析植物根系和土柱中的水分分布情况;通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等;通过荧光成像可以分析植物的生理状态。由于所有植物都通过条形码或射频标记,其整个生活史的的不同阶段所有的表型数据都可定期进行测量。整套系统包括传送带、成像模块、&ldquo 暗房&rdquo 、运输车、浇水和称重装置、控制系统等。其中传送带、运输车和植物在温室中运转,所有的植物可以由软件控制在传送带上进行动态分布,以避免由于温室中的光、温、湿分布不均匀造成的影响;成像模块、&ldquo 暗房&rdquo 、浇水和称重装置安装在独立的空调房中,并通过传送带与温室相连。分析模式有两种:一种是软件控制温室中的植物定期传送到&ldquo 暗房&rdquo 进行成像分析;另一种是人工携带生长在其他温室中的植物放到&ldquo 暗房&rdquo 前的传送带上,进行成像分析。软件通过成像分析的结果,根据表型数据可以对植株进行高通量筛选。通过对成像结果的分析,可以进行表型组学研究。目前我国对于作物的研究主要是利用传统的遗传育种方法以及基因组学的方法进行研究, 然而仅停留在基因组学研究水平上显然是不够的,并不能全面、彻底地阐明作物的生理功能,特别是作物表型与其产量、生理状态之间的相互关系,以及不同的环境条件对作物生长状况、产量、种质质量等的影响。这就需要对作物进行表型组学的研究,通过研究不同的表型性状来确定作物的遗传性状,并且寻找不同环境因子对作物各种指标影响的阈值,从而能够更加科学地阐明作物生长机理,指导作物生产。 ◆ 3D成像可选VIS、NIR、IR、根系NIR成像、荧光成像中的一种或多种,每种成像有独立的摄像区域(&ldquo 暗房&rdquo ),每个&ldquo 暗房&rdquo 的顶部和侧面各安装一个摄像头(拍摄顶部和侧面成像)。花盆底座有旋转装置,可以360度旋转,这样可以获得植株4个侧面的成像信息。结合顶部成像,可以获得完整的植株3D成像信息。针对15 cm以下的小植株,可以选择配置激光扫描3D成像,获得详细的三维形态学信息。◆ 自动传送系统带自动传送装置,所有花盆上都有电子标签,所有拍摄数据根据电子标签归档。可选传送50、100、150、250、375、500、800、1400盆或更多盆的传送装置,花盆和植株的重量可以为1、4、10或25 kg,更重需要定制。◆ 自动浇水和称重装置在温室系统中,可增加自动浇水和称重装置,软件控制对不同编号的花盆采用不同的浇水量,并每日对花盆进行称重。◆ 自动加营养盐装置在温室系统中,与自动浇水装置结合,可以在浇水的同时补充营养盐。◆ 自动喷淋装置在温室系统中,根据电子标签由软件控制是否喷洒农药,可用于检测农作物对农药的抗性或敏感性。◆ 自动分选在温室系统中,只要在传送装置上增加多级T-Junction(丁字路口),就可根据成像结果对大批量的植株进行分选,分选用的阈值参数可以由用户设定,分选级数取决于T-Junction的数目。◆ 服务器存储由于数据量非常大,本系统必须用服务器存储数据。◆ 软件分析软件分析功能非常强大,可以通过植株的编号(电子标签)调出整个生活史的数据,进行时间动力学分析,对拍摄的照片进行动画演示,对同一植株的时间动力学数据进行图表统计分析,对不同植株的数据进行复杂的统计学分析和图表分析。◆ 远程管理通过专用远程服务器管理软件,可以在异地对本系统的运转状况进行监测、改变测量程序或分析测量数据。◆ 系统大小最简单的只能传送10盆植物的系统可以安装在室内,高度(Y轴)是4 m,宽度(Z轴)是2 m。如果只配置一个成像模块,则系统长度(X轴)是4.5 m,每增加一个成像模块,系统长度(X轴)增加1.5 m。传送上百甚至上千盆植物的系统,多安装在温室内。实际大小可根据现场情况进行定制。主要功能◆ 全自动、高通量对植物等小型样品进行可见光成像、近红外成像、红外成像、荧光成像(包括整株GFP成像)和/或激光扫描3D成像(每套系统可选择一种或多种)◆ 通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等等50多个参数◆ 通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等◆ 通过根系近红外成像分析植物根系和土柱中的水分分布情况◆ 通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等◆ 通过荧光成像可以分析植物的生理状态测量参数* 植株高度、宽度和密度* 植株结构分析、骨架分析、紧密性分析、对称性分析* 叶片长度、宽度、叶角度、叶面积* 植株紧凑性(叶角度和紧密性)* 植株体积* 植株和叶片的颜色分析,包含发育状态、病理学等信息* 植株鲜重* 植株和叶片含水量、玉米水分利用效率* 植株生长速率* 种子颜色、种子数目* 开花时间、花穗颜色、大小、性状等应用领域植物功能基因组学、植物表型组学、遗传育种、突变株筛选、植物生理学、农业科学、植物病理学、植物形态建模、植物生物信息学、种子生理学、种子病理学、植物胁迫生理学、植物水力学等研究领域。技术优势和先进性请联系我们获取电子版资料。 可以自动传送10盆植物的小型系统T-Junction分选自动灌溉装置侧面、侧面旋转90度和顶部成像应用实例◆ 植物颜色分类植物的颜色是反映植物健康状态的关键指标之一,而人肉眼对颜色的敏感度较低,存在较大的视觉误差。利用Scanalyzer系统可以在拍摄植物可见光照片的基础上,通过软件对获得的颜色信息进行锐化处理,从而使原本肉眼不易区分的颜色差别,显著的区分开来。 可见光成像 软件锐化处理后的图像◆ 植物骨架/结构分析植物骨架和架构信息,是非常典型的植物表观信息,是农业信息学的重要研究内容。对于杂交育种而言,Scanalyzer系统有助于快速进行表型筛选,也可用于了解整个生活史以及受到胁迫后的骨架/结构变化。 植物骨架分析植物结构分析◆ 植物形态学分析成像后,通过Lemna Tec公司专业的软件工程师团队开发的软件,可以对植物进行详细的三维形态学分析。对于所拍摄的每一张图片,都可获得50多个形态学参数。 对于本图而言,可以获得单个叶的长度、单个叶的面积、平均叶宽、茎长、茎宽、茎体积、弯曲度(Bent index)、叶卷曲指数(Leaf curling index)、叶朝向(Leaf orientation)、单个叶的颜色分类等等指标。本图用于详细的植物朝向、角度分析。 通过顶部成像和多个侧面成像,可以获得植物X、Y、Z三个轴的信息,根据各个方向的叶面积、茎长、茎宽、叶长、颜色等来估算植物的生物量。实验证明这种估算的生物量与实际生物量有非常好的线性关系。 X轴为实际鲜重,Y轴为通过成像参数估算的鲜重二者有非常好的线性关系由于转基因植物有很高的形态变异性,因此对叶片和茎杆进行定量非常重要◆ 利用近红外(NIR)成像分析植株和土壤的水分利用情况近红外成像可以直观的反映植物不同部位的含水量,通过软件处理加上代表不同含水量的颜色后,可以非常直观的看出不同处理下植株不同部位的含水量变化。如果植物是生长在专用土柱中,还可以对植物根系和土壤的含水量变化进行定量分析。 玉米停止浇水8 h后(轻度干旱处理),植株含水量的变化可以通过近红外成像明显从看出来,特别是老叶片失水严重。不同叶片的失水情况还可以通过软件获得数据,并可做图表分析。 土柱和玉米整株的近红外成像(原始图像)干旱过程中土柱的含水量变化干旱0 h和8 h时土柱中不同层的含水量分布注:LemnaTec公司设计的土柱筒,是透明聚丙烯塑料材质,内装自然土壤,高50 cm,直径5、8或10 cm,装土1.5 3.0 5.0 kg,底部有排水孔。培养时土柱外部套上不透明PVC管遮荫,放置苔藓和土壤藻类滋生,测量时将遮光管取下即可。◆ 利用近红外(NIR)成像分析NIR成像分析小麦干燥过程中含水量的变化本例是小麦在高温处理下,植株含水量的时间动力学变化可以通过NIR成像直观的反映处来,并进行定量分析。 高温处理16 h,小麦的NIR成像变化小麦植株含水量变化的定量分析,可以看出,随着高温处理时间的延长,小麦含水量逐渐降低◆ 利用红外(IR)成像检测植物温度差异红外成像,也叫热成像,用于检测植株的温度变化。由于植株温度与植物的蒸腾作用和含水量密切相关,因此红外成像常用于干旱胁迫研究、群体蒸腾等领域。 通过肉眼很难区分哪株玉米受到干旱胁迫 通过红外成像,明显看出右边的玉米温度更高,说明含水量低,受到干旱胁迫◆ 利用红外成像反映小麦气孔的关闭照光时气孔开放,叶片进行蒸腾作用。关光4 min后就检测到叶片温度的显著上升,说明气孔开始关闭。Scanalyzer 3D系统可以非常灵敏的检测气孔状态。 随着时间的延长,气温与叶片温度的差异越来越小,说明气孔逐渐关闭◆ 静态根密度分析析Scanalyzer 3D系统可以拍摄生长在土柱中的植物根系可见光照片,软件自动分析土柱表层的根系。由于土柱的运输车下自带程序控制的旋转台,就可以通过软件控制自动顺序旋转90度角来完成4个不同侧面的成像,获得更完善的根系信息。 不同植物根系的静态分析同一株植物4个侧面的根系成像◆ 根系动态生长分析析Scanalyzer 3D系统可以全自动、高通量的拍摄植物根系照片,结合电子标签,就可以对特定编号的植物根系数据进行时间动力学分析。从下图中的结果可以看出,从第35-100天,根生长最快,从表层有大量的根往下生长,从第35-60天,浇水过量,导致底部很多根死亡。 左图示出了一株植物根系随时间的生长发育过程,右图示出的是不同时间点的根系覆盖面积随深度分层的变化◆ 鉴定非转基因植物喷洒农药后,没有转入抗农药基因的植物,可以通过颜色鉴定出来。 ◆ 植物个体和群体的形态学应用举例Scanalyzer 3D成像系统可以获得大量的形态学参数,并且针对不同的材料,可以获得有针对性的参数。下面是几个例子: 水稻植株成像的部分参数:* 叶片长度(即使交叉也可测量)* 叶片面积* 叶片颜色* 植物高度* 植物宽度* 叶片密度* 叶片朝向 稻穗成像的部分参数:* 稻穗面积* 稻穗颜色* 稻穗长度* 稻穗最大长度* 稻穗结构* 稻穗骨架(skeleton) 群体表型成像的部分参数:* Criteria of plant growth* 高度* 紧密性(Compactness)* 叶朝向&ndash 弯曲指数* 密度* 对称性* 单位高度的平均植物宽度基于复杂的形态学指标的表型分析:* 结构朝向* momentum of inertia* 高度* 宽度* 圆度(roundness)* 紧密性◆ 植物开花过程的动态监测由于绝大多数植物的花的颜色与茎叶不同,利用Scanalyzer 3D成像系统的高通量、全自动、带电子标签的特性,就可以自动监测植物是否开花、开花时间、花朵数目、花朵发育阶段、花败时间等信息。 开花过程监测的部分参数:* 叶面积* 白化(Chlorosis)* 黑斑(Necrosis)* 衰老(Senecence)* 角果数目* 角果长度* Start flowering* End flowering* Stay green* Morphology* 生长速率Scanalyzer 3D系统与PL和HTS系统的比较 Scanalyzer PLScanalyzer HTSScanalyzer 3D高通量否是是小植株成像是是是96孔板成像是是否大植株成像否否是根系研究否否是可见光成像可以可以可以,3D荧光成像可以可以可以,3D红外成像可以可以可以,3D近红外成像可以可以可以,3D根系近红外成像否否可以,3D激光扫描3D成像否可以可以,只限高度15 cm以下的小植株部分用户* 澳大利亚植物功能基因组中心(Australian Centre for Plant Functional Genomics)位于阿德雷德(Adelaide)大学,建有澳大利亚植物表型组设施(Australia Plant Phenomics Facility)&mdash &mdash 植物加速器(Plant Accelarator)和高精度植物表型组中心(The High Resolution Plant Phenomics Centre)。2010年1月28日,造价超过3000万美金的&ldquo 植物加速器&rdquo (The Plant Accelerator)正式运行,并对全球科学家开放。&ldquo 植物加速器&rdquo 是一套国际上到目前为止进行植物表型组研究的最复杂、造价最昂贵的设备。它的核心由4个140平米的温室以及两套&ldquo 全自动高通量植物3D成像系统Scanalyzer 3D&rdquo 组成,所有进行植物表型研究的成像设备,包括传送带、成像模块、&ldquo 暗房&rdquo 、运输车、控制系统等都由德国LemnaTec公司提供。每套Scanalyzer 3D系统占有两个140平米的温室,带可见光成像、近红外成像、根系近红外成像、红外(热)成像和荧光成像模块,以及自动浇水和称重的设备,并配有可自动传送2400盆植物的传送带和运输车。两套Scanalyzer 3D系统的传送带长度加起来达1.2公里。如果两套系统24 h连续运转,每天可以获得4000-6000盆植物的表型成像数据,一年可以获得30-60T的数据量。根据实际实验情况,预计&ldquo 植物加速器&rdquo 一年可以进行16万盆植物的实验。高精度植物表型组中心有一套不带温室传送的基础型Scanalyzer 3D系统,已运转多年。* 法国农业科学研究院(I&rsquo institut National de la Recherche Agronomique,INRA,French National Institute for Agricultural Research)是世界上最有科研实力和竞争力的农业研究机构之一。INRA Montpelier(蒙彼利埃)正在建设一套传送1400盆植物的系统,2010年中完工;INRA Dijon(第戎)正在建设一套传送1482盆植物的系统,2010年底完工。* 德国莱布尼茨植物遗传和作物研究所(Leibniz-Institut fü r Pflanzengenetik und Kulturpflanzenforschung,IPK,Leibniz Institute of Plant Genetics and Crop Plant Research)IPK是德国的著名公立研究所,在大麦杂交育种方面很有名。到2010年底有三套Scanalyzer系统运转:1) 目前正在运转一套能600盆植物的系统,专门做大麦研究2) 一套做拟南芥的S惨案了原则让 3D系统,能传送600盆拟南芥,2010年春天投入运转3) 目前正在建设一套大的能传送600盆玉米的系统,预计2010年底投入运转* 意大利麦塔庞特市植物生物技术研究所(Metapontum Agrobios Research Centre for Plant Biotechnology)归政府所有,但以企业化运作,特点在于小麦、西红柿等的基因改良。有一套能传送500盆植物的系统,2009年开始运转* 先锋(Pioneer)/杜邦(Dupont)先锋良种国际有限公司是杜邦集团的子公司,是国际玉米育种巨头!先锋从2005年开始运转一套能传送1500盆植物的系统。* 荷兰Keygene公司在瓦赫宁根,是几家农业公司合资建的一个做研究的公司,有一套小的系统在运转,正在建设一套能传送1100盆植物的系统。LemnaTec公司与Keygene公司合作,承担了一个EuroStar的PhenoCrop项目:Innovation in vegetable plant breeding by large scale deep phenotyping。项目目的:&ldquo The overall objective is to develop new deep phenotyping applications for the LemnaTec Scanalyzer for vegetable crops. Correlation of genotypic data and phenotyping results will lead to new molecular markers or gene clones that positively contribute to complex commercial traits in vegetable plants&rdquo 。项目总经费达142万欧元,预计2011年结题。* 巴斯夫(BASF)国际化工巨头,从1998年开始介入植物科学研究,兼并了比利时CropDesign公司,并与孟山都有密切合作,在玉米、土豆、甜菜、苜蓿等的遗传育种方面取得了丰硕成果。2006年,BASF USA和BASF Germany分别建立了一套能传送800盆和300盆植物的Scanalyzer 3D系统。* 英国草地与环境研究所(Institute of Grassland and Environmental Research,IGER)正在建设一套可以传送800盆植物的系统,预计2010年底或2011年初运转* 拜耳作物科学公司(Bayer CropScience)是拜耳集团三大业务子集团之一、全球领先的创新型作物科学公司。拜耳作物科学公司的销售额(2009年)为65.10亿欧元,约占拜耳集团销售额的20.8%。拜耳作物科学公司在水稻、油菜以及蔬菜育种方面占有很大市场份额。到2010年中,Bayer CropScience Belgium将建成一套可传输600盆植物的系统;到2010年底,Bayer CropScience Germany将建成可传输1200盆植物的系统。更多详细介绍,请点击链接:
    留言咨询
  • PlantScan全自动植物多广谱三维成像观测室PlantScan全自动植物多广谱三维成像观测室整合了植物智能培养、自动识别管理、自动化控制、叶绿素荧光测量、RGB真彩3D成像、热成像、近红外成像、超谱分析等多项先进技术,被专门设计来满足用户的特殊需求。它可以最优化的方式实现大量植物样品&mdash &mdash 从拟南芥到各种植物&mdash &mdash 的形态与结构分析研究。传送系统可以被设置成单株或多株形式,从而提供对大量不同物种的测量,或者对同一物种在其生命周期内的长期监测。应用领域植物光合特性和代谢紊乱筛选生物和非生物胁迫的检测植物抗胁迫能力或者易感性研究气孔非均一性研究代谢混乱研究长势与产量评估植物&mdash &mdash 微生物交互作用研究植物&mdash &mdash 原生动物交互作用研究尤其适用于植物胁迫筛选,植物氮素营养与需水状态研究,植物疾病与病原体感染研究,生态毒理学研究等工作原理FC 900-PS 整合了植物智能培养、自动识别管理、自动化控制、叶绿素荧光测量、RGB真彩3D成像、热成像、近红外成像、超谱分析等多项先进技术。可以理想化地控制植物的生长条件,包括光、温、水、气、土;最大限度地节省人力和管理成本;监测培养植物的一举一动、方方面面,极其灵敏地将植物对环境条件的反应真实再现。植物荧光成像站用于检测植物发出荧光的动态变化和空间分布,Kautsky效应过程、荧光淬灭及其它瞬时荧光过程(瞬变)都可被摄取,从而提供2维荧光图像。测量与计算参数多达50多个:F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR吸收率, 光合电子传递率ETR等。这些荧光参数图像可用于研究植物的光合生理、优良品种筛选及果实的成熟过程等等,还可研究因病变、衰老、环境胁迫或基因突变造成的荧光变化。RGB真彩成像、热成像室、NIR近红外成像结合超谱分析,可以实现对植物形态与结构的综合研究,使得研究结果不在停留在孤立的某一方面。系统组成与功能特点:FC 900-PS系统由机械传送装置、自动植物称重与灌溉系统、自动条形码或RFID射频标签识别、叶绿素荧光和RGB真彩成像、热成像室、NIR近红外成像室、超谱分析模块等组成。传送装置自动装载与卸载样品通过条形码或RFID跟踪感兴趣的样品自动灌溉与称重整合叶绿素荧光,RGB真彩与热成像系统自动植物灌溉 成像工作站叶绿素荧光,RGB真彩或者其它成像工作站,包含了部分机械传输系统,确保待测植物的暗适应和光照平衡。植物上方的机械臂携带成像设备垂直或水平运动。成像区域可选择,以适应不同样品大小和配置,单幅图片成像范围13 x 13 cm或者35 x 40 cm。LED光源板可以精确控制特定波长的照明、低或高的光照强度而不产生热效应,也可以执行复杂的照明方案。远红光LED光源板可以在热成像室内提供所需的热效应系统内部环境条件可完全控制,如温度、相对湿度、灌溉设置,以及氧气、二氧化碳分压。 成像工作站 操作软件功能用户友好的图形界面自动读取条形码或RFID标签软件完全控制所有的机械部件和成像工作站可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程可根据实验需求自动控制植物样品的移动和单一成像站的激活成像区域可选择以适应不同样品大小和配置,单幅图片成像范围13 x 13 cm或者35 x 40 cm可提供3个相机视角的RGB数字生长分析,包含阈值分析和颜色分析对于叶绿素荧光成像图片,软件可批量进行淬灭参数分析,包含了在背景去除图像上用户感兴趣区域和像素值的平均。分析数据以原始图像和分析数据的形式存储在数据库中。对FIR热成像图,16位图可直接导出到MATLAB或通过软件生成温度分布的假彩图像。产地:欧洲
    留言咨询
  • 高清便携原位植物根系分析仪 MS-190产品介绍:高清便携原位植物根系分析仪 MS-190由控制单元、高清成像模块、高清线缆、定位标尺、定位手柄和供电模块组成,该系统能够获取不同季节的根系和根际微生物高清图像,分辨率可达2500dpi。仪器结实耐用、轻便易携带,配备有“Smucker"定位手柄用于精准定位,系统适用于水平、垂直或倾斜安装的微根管。配套专业图像采集软件能够快速进行设置、图像采集以及ICAP命名,系统可根据微根管直径调整成像面积,软件具有非线性校准功能,可消除微根管的曲面效应。产品特点:360度成像;超高分辨率,可达2500dpi;成像快速,小于1秒,无需白平衡,可高效获取图像;实时活根成像,满足定性筛选及定量研究目的;具备非线性校准功能,可消除微根管的曲面效应;配备精确定位、结实耐用的定位系统:经典的“Smucker"定位手柄,可实现准确、快速的环形定位;12V(3A)供电系统,适用于田间或温室。配内置可充电锂电池套装;适用于各种安装角度的微根管(水平、垂直或倾斜),外径为6或7厘米,最长达5米;图像命名遵循ICAP方案,以便兼容各种根系分析软件;
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,我们提供的Conveyor版本、Line 版本、XY版本、Box版本仅仅是我们WIWAM植物表型成像系统的基础版本,如果您有较多需求,请与我们联系,为您量身打造个性化表型成像系统。WIWAM植物表型成像定制系统背景介绍SMO是欧洲先进的机械设备制造与设计工程公司,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲先进客户提供机械解决方案,SMO公司将机械领域的先进理念带入了植物表型研究领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的好多自动化配件,均由SMO公司自主设计,例如WIWAM系统的高精度称重浇水工作站,专有的高精度相机定位系统等等,鉴于工业领域的丰富经验,可针对不同客户需求,提供真正快速定制化的解决方案。因公司拥有较为强大的工程师团队,一般数周左右就可以提供较复杂表型成像系统的解决方案。由于采用开放式框架结构,目前WIWAM可以集成目前市面上所有的相机传感器模块,如RGB相机、叶绿素荧光成像模块、高光谱相机模块、近红外相机模块、3D激光扫描模块、多光谱模块、CT成像模块等,是目前上表型成像领域整合能力先进的公司,这也顺应了植物表型组织提出的标准化的潮流,提供设备涉及到室内表型、田间表型、根系表型、种子表型等领域。在该领域较突出的一点,SMO公司是目前所有表型设备提供商里不多见的进行自主机械、控制系统设计和生产的公司,因自有长期的机械工程人员和自己的生产场地,能应对表型领域客户的较为多样化的需求。VIB所:比利时VIB生物研究所是较先进的植物科学研究所之一,大名鼎鼎的蒙塔古教授(CropDesign公司创始人)、 Dirk Inzé,均来自该所,主要科研人员和创始人来自比利时VIB所的CropDesign首先成功研制出自用的称为TraitMill的技术平台。VIB所作为WIWAM系统开发者,在率先使用高通量植物表型识别系统WIWAM鉴定出农作物产量性状的关键基因,目前相关文章发表在Nature Biotechnology等先进期刊上。SMO公司与VIB合作,将工业自动化、机械视觉、人工智能以及生物学技术等相结合,设备开发人员包括自动化工 程师、机械视觉专家、植物遗传学家,生态生理学家,发育生物学家,农艺学家,气候研究员,土壤学家,生物信息学家和生物学家,植物发育、生理过程和气候情景建模相关的其他相关领域的科学家,传感技术开发者等,目前先进客户有根特大学、拜耳公司等等。定制案例1.水果蔬菜分析系统定制的WIWAM平台是为番茄、黄瓜和辣椒等水果的表型研究而建立的。通过扫描代码和选择水果类型来初始化新一批水果。之后,操作员可以在运行的传送带上逐个放置水果,首先,水果被运送到一个带有专用照明的成像舱,在这个成像舱里,俯视和侧视RGB相机会自动触发。然后,在运输过程中记录单个水果的重量。在传送带的末端,水果被收集起来,或者可以倾倒在一个集装箱里。这个系统可以在不到一个小时的时间内对数百种水果进行准确的分型。PIPPA软件管理表型数据,并集成颜色、形状和大小特征的分析。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制