当前位置: 仪器信息网 > 行业主题 > >

污染源污染物采样仪

仪器信息网污染源污染物采样仪专题为您提供2024年最新污染源污染物采样仪价格报价、厂家品牌的相关信息, 包括污染源污染物采样仪参数、型号等,不管是国产,还是进口品牌的污染源污染物采样仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合污染源污染物采样仪相关的耗材配件、试剂标物,还有污染源污染物采样仪相关的最新资讯、资料,以及污染源污染物采样仪相关的解决方案。

污染源污染物采样仪相关的资讯

  • 发布污染源VOCs远程采样系统新品
    一、产品介绍:远程控制VOCs采样系统(以下简称该系统)是通过由电脑/手机远程控制对现场样品的快速采样.该系统通过接收远程的控制指令,通过PLC对真空箱压力信号进行判断,判断真空箱抽气是否满袋;抽气排气动作自动完成。三次自动清洗气袋,保证收集的气体以环境气体为本底。使采样泵实现快速采样。该系统可以通过手机客户端直接控制采样。 该系统可以用于:化工区有毒有害气体泄漏远程控制快速采样、固定污染源气体污染物远程控制快速采样。二、主要功能特点: 1.控制方式 采用无线远程控制,通过电脑/手机等对其进行远程控制,分为手动采样和定时采样;手动控制:手动控制随时采样;也可以触发采样 。定时采样:设置采样时间,进行采样。 2.无线远程终端是通过SIM卡的流量功能接收或发送指令; 3.电磁阀具有密封性好,带电时间长,防腐蚀等特点; 4.可选配气象参数,视频、噪声等传感器。 创新点:对空气和污染源上的VOC样品,自动采集污染源VOCs远程采样系统
  • 环保部投3.54亿监测国控重点污染源四项主要污染物
    环保部12月24日公布《2013年第二批中央财政主要污染物减排专项资金项目建设方案》(下称《方案》)指出,2013年国控重点污染源四项主要污染物监督性监测运行经费总额为3.54亿元。  环保部指出,上述经费中,中央财政需补助1.04亿元,地方需配套2.5亿元。东部、中部、西部地区中央财政补助比例分别为 20%、31%、41%。  环保部表示,国控重点污染源监督性监测是减排&ldquo 三大体系&rdquo 建设的重要内容之一。随着工作的不断深入,目前国控重点污染源监督性监测已经逐渐常态化。  目前国控重点污染源监督性监测运行项目支持范围涉及全国32个省级环境监测站和329个地市级环境监测站,共计361个环境监测站。  《方案》要求:对污水处理厂以及COD、氨氮重点总量减排环保工程及纳入年度减排计划的重点项目,要同时监测COD、氨氮的去除效率 对二氧化硫、氮氧化物总量减排重点环保工程设施,同时监测二氧化硫、氮氧化物等的去除效率。  国务院此前公布《&ldquo 十二五&rdquo 节能减排综合性工作方案》(国发〔2011〕26 号),环保部等四部委也联合印发了《关于印发&ldquo 十二五&rdquo 主要污染物总量减排统计、监测办法的通知》(环发〔2013〕14 号),上述文件均对国控重点污染源的监督性监测工作作出了要求。  《国民经济和社会发展第十二个五年规划纲要》提出,在&ldquo 十一五&rdquo 总量减排基础上,COD和氨氮继续减排8%,同时新增氨氮和氮氧化物两项污染物总量减排10%,作为&ldquo 十二五&rdquo 规划的约束性指标。 附录:2013 年第二批中央财政主要污染物减排专项资金项目建设方案
  • 众瑞仪器发布ZR-3730型 污染源真空箱气袋采样器新品
    详细介绍产品简介 ZR-3730型污染源真空箱气袋采样器(A款,新品)是气袋法采集污染源气体样品的专业仪器。应用于被动采样温度低于150℃的污染源废气,尤其适用于挥发性有机物(VOCs)的采样。可供环保、卫生、劳动、安检、军事、科研、教育等部门用于各种样气的采集。技术特点 真空箱密封效果好,工作负压大,适合高负压污染源采样; 气路检漏、清洗、老化、采样过程实现自动切换,无需人工插拔连接管; 气袋采样量可系统设置,并自动判断采样停止; 气路采用化学惰性材料,保障采集样品没有污染和吸附; 配套专用全程伴热烟枪,防止采样过程产生冷凝水; 双层金属壳体设计,防护性能好。创新点:1、采用真空箱抽负压、气袋被动抽气原理,样气从采样管直接进入气袋,避免样品污染;2、内置大孔径惰性材料电磁阀,采集速度快,实现了气路密闭性自动检测、管路自动清洗、气袋自动清洗、清洗次数可调功能;3、真空箱采用一体化设计,携带方便;4、气体管路全程采用惰性材料聚四氟乙烯,保证样品无吸附;5、内置进口采样泵,四档位调速以满足不同污染物采样要求;6、具有探测气袋压力,超过气袋压力设定值,自动停止采样功能;7、内置锂电池,充电时间约1.5H,满电状态可连续采样8次。ZR-3730型 污染源真空箱气袋采样器
  • 《固定污染源废气 气态污染物的测定 便携式傅立叶变换红外光谱法》国标来了
    生态环境部近日发布了《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653—2021)《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法》(HJ 1240-2021)两项 国家生态环境标准,自2022年6月1日起实施。关于发布《环境空气颗粒物(PM 10 和PM 2.5 )连续自动监测系统技术要求及检测方法》等两项国家生态环境标准的公告为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,现批准《环境空气颗粒物(PM 10 和PM 2.5 )连续自动监测系统技术要求及检测方法》等两项标准为国家生态环境标准,并予发布。标准名称、编号如下。一、《环境空气颗粒物(PM 10 和PM 2.5 )连续自动监测系统技术要求及检测方法》(HJ 653-2021)二、《固定污染源废气 气态污染物(SO 2 、NO、NO 2 、CO、CO 2 )的测定 便携式傅立叶变换红外光谱法》(HJ 1240-2021)以上标准自2022年6月1日起实施。标准内容可在生态环境部网站(http://www.mee.gov.cn)查询。生态环境部2021年12月30日生态环境部办公厅2021年12月30日印发《固定污染源废气 气态污染物的测定 便携式傅立叶变换红外光谱法》.pdf
  • 环保部印发《国控污染源排放口污染物排放量计算方法》
    关于印发《国控污染源排放口污染物排放量计算方法》的通知  各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局:  根据《国务院批转节能减排统计监测及考核实施方案和办法的通知》(国发〔2007〕36号)的要求,为了加强污染源自动监测和监督性监测数据在排污收费和总量核定等环境管理方面的应用,进一步规范污染物排放量的计算,我部制定了《国控污染源排放口污染物排放量计算方法》。现印发给你们,请遵照执行。  附件:国控污染源排放口污染物排放量计算方法  二○一一年一月二十五日
  • 即将实施!江西省《污染源水质自动采样系统技术规范》
    近日,从江西省生态环境厅获悉:江西省地方标准《污染源水质自动采样系统技术规范》(以下简称标准)将于3月1日起正式实施。这是江西省范围内污染源水质自动采样系统建设、验收、运行及水样有效判别的推荐性地方标准。据悉,该标准于2023年9月18日发布。该标准规定了污染源水质自动采样系统的组成、建设、功能、性能调试、试运行、验收、运行、技术指标抽检、水样有效性判别的要求。本文件适用于污染源水质自动采样系统的建设、验收、运行及水样有效性判别。该标准的实施将进一步规范我省污染源水质自动监测工作,便于排污单位从源头上对自动监测数据质量进行把控,对排污单位自证达标排放具有重要意义。附件: 江西省地方标准《污染源水质自动采样系统技术规范》
  • 天津市发布《铅蓄电池工业污染物排放标准》,LUMEX原子吸收助力铅镉污染物监测
    《导读》--天津市生态环境局近期会同市市场监管委发布《铅蓄电池工业污染物排放标准》(DB12/856-2019)(以下简称《标准》),明确了pH值等11项污染物排放限值。新建企业自2019年2月1日起执行《标准》,现有企业自2020年1月1日起执行。 该标准规定了铅蓄电池生产行业水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准控制项目包括11项污染物排放限值和单位产品基准排水量;其中涉及水污染物8项,包括pH值、化学需氧量、悬浮物、总磷、总氮、氨氮、总铅、总镉;大气污染物3项,包括铅及其化合物、硫酸雾和颗粒物。LUMEX高频塞曼原子吸收可以为铅、镉污染物检测提供有效、稳定、准确的解决方案。 铅蓄电池工业是重金属污染防治的重点监管行业,是我市铅排放占比最高的行业。该标准实施后,可以有效促进企业加强运营管理、提高工艺水平、减少无组织排放,有利于天津市地表水环境质量及环境空气质量的改善,通过减少铅、镉等对人体健康有危害的重金属污染物排放,有助于铅蓄电池行业的健康、可持续发展。 LUMEX公司自1991年成立以来一直致力于新产品和先进技术的开发,现已拥有100多种分析方法,为全球用户提供相应行业的解决方案,现产品和方法用户遍布全球80多个国家。LUMEX原子吸收经过二十年多年的发展,具备成熟的仪器方法和配置,独特的优势特点受到广大用户的好评。 LUMEX将其独有的高频塞曼背景校正专利技术、无极放电灯技术用于石墨炉原子吸收,并结合最优软件流程设计,研制出快速、稳定、可靠、智能的MGA1000原子吸收光谱仪。产品特点:高频塞曼背景校正技术(50KHz)塞曼全波段校正有效消除化学背景干扰和结构背景干扰,实现超低检出限,测定稳定性更好。极快的升温速率—瞬时升温高达7000℃/秒瞬时升温速度高可有效提高原子化效率,减少挥发损失,灵敏度较高,检测结果更准确。光源设计—高强度无极放电灯先进的高强无极放电灯EDL光源保证能够实现超低痕量重金属的准确检测,砷As和硒Se无需氢化物发生器即可直接检测。灯座设计—兼容性强旋转六灯座同时兼容空心阴极灯和高强度无极放电灯(EDL),无需额外EDL灯位及供电系统,操作更简单,检测结果更加稳定。独有的准双光束光路设计独特设计有效消除由于元素灯、电子元件和设备引起的仪器漂移,提高仪器的长期稳定性。STPF稳定温度石墨炉平台技术结合快速升温速率,可兼容Massman 石墨管和Lvov’s平台石墨管,纵向加热及STPF设计使石墨管寿命更长,石墨管平台与石墨管契合度好,原子化效率高,能够消除基质干扰,提高分析重复性一体化冷却循环水设计仪器集成冷却循环水系统,冷却效率高,无需单独外接冷却循环水和其他管线。开机即测—仪器无需预热即使仪器和元素灯不经预热,测量数据也能保持很好的稳定性。卓越的软件控制—实现全自动测量高智能型软件设计,全自定义元素、样品及序列等参数,实现六种元素灯自动切换,所有样品自动顺序测量,完全实现无人值守自动测量。精巧设计紧凑一体化设计,整合石墨炉电源,布局合理,安全性能高,外观紧凑小巧,节省实验室空间。前 言为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》等法律、法规,保护环境,防治污染,促进铅蓄电池工业生产工艺和污染治理技术的进步,结合天津市实际情况,制定本标准。本标准实施之日起,天津市铅蓄电池工业污染物排放控制按本标准的规定执行,环境影响评价文件或排污许可证要求严于本标准时,按照批复的环境影响评价文件或排污许可证执行。本标准由天津市生态环境局提出并归口。本标准起草单位:天津市生态环境监测中心。本标准主要起草人:刘佳泓、周晶、赵吉睿、孙猛、张骥、张莹、高翔、杨丽萍、张玉慧、张丽红、张震、何富生、陈魁。本标准由天津市人民政府于2018年12月27日批准。本标准为首次发布。铅蓄电池工业污染物排放标准1 适用范围本标准规定了铅蓄电池生产企业(含生产设施)水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准适用于天津市辖区内铅蓄电池生产企业(含生产设施)水、大气污染物的排放管理,新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证管理及其建成投产后的水、大气污染物排放管理。本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》《中华人民共和国固体废物污染环境防治法》《中华人民共和国环境影响评价法》《天津市大气污染防治条例》《天津市水污染防治条例》等法律、法规、规章的相关规定执行。2 规范性引用文件本标准引用下列文件或其中的条款。凡是不注日期的引用文件,其最新版本(包括所有修订单)适用于本标准。GB 3097海水水质标准GB 3838地表水环境质量标准GB 6920水质 pH值的测定 玻璃电极法GB 7475水质 铜、锌、铅、镉的测定 原子吸收分光光度法GB 11893水质 总磷的测定 钼酸铵分光光度法GB 11901水质 悬浮物的测定 重量法GB 30484电池工业污染物排放标准GB/T 14295空气过滤器GB/T 15432环境空气 总悬浮颗粒物的测定 重量法GB/T 16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 55大气污染物无组织排放监测技术导则HJ/T 397固定源废气监测技术规范HJ/T 399水质 化学需氧量的测定 快速消解分光光度法HJ 75固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范HJ 535水质 氨氮的测定 纳氏试剂分光光度法HJ 536水质 氨氮的测定 水杨酸分光光度法HJ 537水质 氨氮的测定 蒸馏-中和滴定法HJ 539环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 544固定污染源废气 硫酸雾的测定 离子色谱法HJ 636水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法DB12/ 856—2019水质 氨氮的测定 连续流动-水杨酸分光光度法HJ 667水质 总氮的测定 连续流动-盐酸萘乙二胺分光光度法HJ 670水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法HJ 685固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 700水质 65种元素的测定 电感耦合等离子体质谱法HJ 776水质 32种元素的测定 电感耦合等离子体发射光谱法HJ 828水质 化学需氧量的测定 重铬酸盐法HJ 836固定污染源废气 低浓度颗粒物的测定 重量法3 术语和定义下列术语和定义适用于本标准。3.1 铅蓄电池 lead-acid battery又称铅酸蓄电池。含以稀硫酸为主的电解质、二氧化铅正极和铅负极的蓄电池。3.2 铅蓄电池生产企业 lead-acid battery manufacturing plants指从事铅蓄电池生产、极板加工、电池组装的生产企业。3.3 现有企业 existing facility指本标准发布之日前已建成投产或环境影响评价文件已通过审批的铅蓄电池生产企业。3.4 新建企业 new facility指本标准发布之日起环境影响评价文件通过审批的新建、改建、扩建的铅蓄电池生产企业。3.5 排水量 amount of drainage指生产设施或企业向企业法定边界以外排放的废水的量,包括与生产有直接或间接关系的各种外排废水(含厂区生活污水、厂区锅炉和电站排水等)。3.6 单位产品基准排水量 benchmark effluent volume per unit product指用于核定水污染物排放浓度而规定的单位铅蓄电池产品的废水排放量上限值。3.7 排气筒高度 stack height指排气筒(或其主体建筑构造)所在的地平面至排气筒出口的高度。3.8 企业边界 enterprise boundary指铅蓄电池生产企业的法定边界;若无法定边界,则指实际边界。3.9 标准状态 standard condition指温度为273K,压力为101325Pa时的状态。本标准规定的有组织大气污染物标准值以标准状态下的干空气为基准;企业边界无组织排放的铅及其化合物、硫酸雾、颗粒物浓度为监测时大气温度和压力下的浓度。3.10 公共污水处理系统 public wastewater treatment system指通过纳污管道(渠)等方式收集废水,为两家以上排污单位提供废水处理服务并且排水能够达到相关排放标准要求的企业或机构,包括各种规模和类型的城镇污水处理厂、区域(包括各类工业园区、开发区、工业集聚区等)废水处理厂等,其废水处理程度应达到二级或二级以上。3.11 直接排放 direct disge指排污单位直接向环境水体排放水污染物的行为。3.12 间接排放 indirect disge指排污单位向公共污水处理系统排放水污染物的行为。4 技术及管理要求4.1 实施时间新建企业自本标准发布之日起执行;现有企业自2020年2月1日起执行本标准。4.2 水污染物排放限值及要求4.2.1 水污染物排放限值执行表1的规定,单位产品基准排水量执行表2的规定。4.2.2 排放限值按污水不同的排放去向和不同的功能区分为三级,其中一级、二级为直接排放标准,三级为间接排放标准。4.2.3 排入GB 3838中IV类(含)以上水体及其汇水范围内水体的污水,以及排入GB 3097中二类、三类海域的污水执行一级标准。4.2.4 排入GB 3838中V类或排污控制区水体及其汇水范围内水体的污水,以及排入GB 3097中四类海域的污水执行二级标准。4.2.5 排入公共污水处理系统的污水执行三级标准。4.2.6 本标准规定的水污染物排放限值适用于单位产品实际排水量不高于单位产品基准排水量的情况。若单位产品实际排水量超过单位产品基准排水量,则按照GB 30484的相关规定换算为水污染物基准排水量排放浓度,并据此判定排放是否达标。4.3 大气污染物排放限值及要求4.3.1 大气污染物排放限值执行表3的规定。4.3.2 企业边界无组织排放小时浓度限值执行表4的规定。4.3.3 产生大气污染物的生产工艺和装置必须设置局部或整体气体收集系统,并安装集中净化处理装置。排气筒高度应不低于15m,具体高度按批复的环境影响评价及排污许可文件从严确定。4.3.4 生产设施应采取合理的通风措施,不得故意稀释排放。在国家未规定生产设施单位产品基准排气量之前暂以实测浓度作为判定是否达标的依据。5 污染物监测要求5.1 一般要求5.1.1 企业应按照有关法律、法规、规章、规范性文件及相关标准等规定,建立企业监测制度,制定监测方案,对污染物排放状况及其对周边环境质量的影响开展自行监测,保存原始监测记录,并公布监测结果。5.1.2 新建企业和现有企业安装污染物排放自动监控设备的要求,按有关法律、法规、规章、规范性文件及相关标准等规定执行。5.1.3 企业应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性采样口、采样测试平台和排污口标志。5.1.4 对企业排放废水和废气的采样,根据监测污染物的种类,在规定的污染物排放监控位置进行,有废水和废气处理设施的,应在处理设施后监测。5.1.5 企业产品产量的核定,以法定报表为依据。5.1.6 对企业污染物排放情况进行监测的采样点位置、采样时间和监测频次等要求,按国家有关污染源监测技术规范的规定和生态环境主管部门的要求执行。5.1.7 本标准发布实施后,新发布的国家环境监测分析方法标准中,其方法适用范围相同的,也适用于本标准排放对应污染物的测定。5.2 水污染物监测要求水污染物浓度的测定采用表5所列的方法标准。5.3 大气污染物监测要求5.3.1 排气筒中大气污染物的监测采样按GB/T 16157、HJ/T 397或HJ 75的规定执行。5.3.2 无组织排放监测按HJ/T 55进行监测。5.3.3 大气污染物浓度的测定采用表6所列的方法标准。6 其它污染控制要求6.1 有组织废气污染控制要求。各生产工序产生的废气必须收集、处理达标后方可排放;熔铅、板栅、制粉、和膏、分片、称片叠片、组装等工序产生的含铅废气,应采用符合GB/T 14295要求的高效空气过滤器或其他更先进的除尘设施。6.2 无组织废气污染控制要求。所有涉铅生产工序应集中布置在独立、封闭的车间内。厂房设置机械排风,维持负压运行,排风需经过废气处理装置处理。6.3 污染治理设施运行与管理要求。企业应加强对污染治理设施的运行管理和定期维护,并做好记录,保留台账备查。7 实施与监督7.1 本标准由各级生态环境部门负责监督实施。7.2 在任何情况下,企业均应遵守本标准规定的污染物排放控制要求,采取必要措施保证污染治理设施正常运行。在发现企业耗水或排水量有异常变化的情况下,应核定企业的实际产品产量和排水量,按照GB 30484要求换算水污染物基准排水量下的排放浓度。7.3 各级生态环境部门在对排污单位进行监督检查时,可以现场即时采样,监测结果可以作为判定污染物排放是否超标的证据。来源:LUMEX分析仪器
  • 青岛众瑞-固定污染源超低排放解决方案
    政策背景为了控制燃煤火电污染,国内针对火电污染物的排放标准提出了更加严格的要求。2014年9月,国家发改委、环境保护部、国家能源局联合发布《煤电节能减排升级与改造行动计划(2014-2020年)》,提出到2020年,东部地区现役的机组通过改造基本达到燃气轮机组排放限值的要求,烟尘、SO2、NOx排放浓度分别不高于10mg/m3、35mg/m3、50mg/m3,完成超低排放改造。与此同时,多个省份陆续发布了燃煤电厂大气污染物地方标准,无一例外的将“超低排放”写入了排放限值。据统计,目前公布大气污染地方标准的省份有5个,分别是河南、河北、上海、山东、浙江。这些地方标准除了规定烟尘、SO2、NOx排放浓度外,也将汞及其化合物的排放限值 30μg/m3写入到了标准中。监测难点解决方案烟尘采样→采样头组装《固定污染源废气低浓度颗粒物测定重量法》征求意见稿中要求颗粒物采样前后对一体化采样头整体称量,采样头组装要求整体密封效果良好。众瑞ZR-L03型自动滤膜压紧器,操作简便,装配过程一键完成。烟尘采样装置ZR-3260D型低浓度自动烟尘烟气综合测试仪配备高负载、低噪声大流量抽气泵,可有效克服颗粒物滤膜法采样相对于滤筒采样存在阻力大的问题,配合ZR-D09ET型高湿低浓度烟尘采样管(钛合金材质),可实现超低浓度颗粒物的采样功能。烟气分析ZR-3211型便携式紫外烟气综合分析仪,采用紫外光谱差分吸收技术(DOAS)测量固定污染源排放中的SO2、NO、NO2等气体浓度,测量精度高,不受烟气中水蒸气影响,特别适合高湿低硫工况,配合ZR-D05BT型烟气预处理器使用,可实现超低工况烟气的采样和分析功能。烟气汞采样部分省份将汞及其化合物的排放限值也写入到了地方标准中,众瑞研发生产的ZR-3700A型烟气汞综合采样器和ZR-3701型烟气总汞采样器,配合相应的采样管可实现分价态汞、气态总汞及颗粒态汞的监测。颗粒态汞和气态汞:ZR-3701烟气总汞采样系统从烟气中等速取样,取样管线的温度维持在120℃以上,以防止烟气中的汞(尤其是气态二价汞)在取样管线上凝结。烟气样品依次经过采样管、过滤器和冰浴吸收瓶箱(三个氯化钾吸收瓶、一个双氧水/硝酸吸收瓶、三个高锰酸钾/硫酸吸收瓶)。烟气样品中的颗粒态汞被过滤器(玻璃纤维滤筒)捕集,气态二价汞被前三个吸收瓶捕集,气态零价汞被后四个吸收瓶捕集。颗粒物上的汞在热解或消解之后采用冷原子吸收分光光度法进行测定,吸收液中的汞被还原后使用冷原子吸收分光光度法进行测定。气态汞:ZR-3700A烟气汞综合采样器兼配湿法HJ543-2009和干法EPA 30B两种采样要求1. 废气中的汞被酸性高锰酸钾溶液吸收并氧化形成汞离子,汞离子被氯化亚锡还原为原子态汞,用载气将汞蒸气从溶液中吹出带入测汞仪,用冷原子吸收分光光度法测定。2. 通过ZR-3700A烟气汞综合采样器,从固定污染源以低流量、恒速抽取定量体积废气,使废气中气态汞有效富集在吸附管中经过碘或其它卤素及其化合物处理的活性炭材料上。采用直接热裂解原子吸收法或者其它分析方法测定吸附管中二段分隔活性炭材料中汞的含量和采样体积,计算出气态汞浓度。质控方案ZR-5410A便携式气体、粉尘、烟尘采样仪综合校准装置,内置罗茨流量计,流量直读,一套设备即可满足对空气采样器、颗粒物采样器、烟尘测试仪的流量、压力标定。
  • 污染源监测应进一步统筹安排
    p  污染源监测是a style="color: rgb(255, 0, 0) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/application/industry-S02.html"span style="color: rgb(255, 0, 0) "strong环境监测/strong/span/a的重要组成部分。针对污染源的监测,包括监督性监测、在线及比对监测、总量减排监测、污染治理设施处理效果评价监测等,每类污染源监测都有其特定目标和工作要求。总体来看,环保系统内的不同部门会从各自角度对污染源监测提出数据要求,以满足管理需要。随着环保业务稳定化运行,这些需求逐步固定下来,具有了例行监测的特性。这就要求各级环境监测站加强对污染源监测工作的统筹,以最低的人力和资金成本获得最完整最全面的监测信息。/pp  首先,针对某个污染源的监测业务进行整合。每次到一个排放污染物的企事业单位都需要一定成本,因此,每次必须完成全套的监测任务。所有资料整理完毕后,分送不同管理部门,以利于其主动掌握污染源的相关信息。抵达污染源监测现场后,有关技术人员应优先开展与工况紧密相关的监测,如盯紧各种类型的污染物排口和在线检测设备等,再安排资料查阅性质的检查。目前,急需夯实的基础性工作是归类针对污染源的监测,设计好相应的记录表格或文书,将监测成果以固定的形式表达出来。通过污染源监测工作的标准化、规范化建设,去现场执行任务时,要求分类填写表格或文书后分送相应管理部门,从而达到一次出动但取得多项成果的效果。/pp  其次,各管理部门应系统提出对污染源监测的要求,以利于监测站归类整理。如果管理部门间的工作缺少协调,零散的监测任务不断,企事业单位应接不暇,既会招来怨言,也降低了监测工作的权威性,并导致监测人员疲于应付,效率不高。为此,监测团队也要提高自身素质,配备质控专家,具备评价企事业单位自测开展情况的能力。要配备现场监测专家,迅速锁定排污节点。要配备操作能手,培养其精湛的采样技术。/p
  • 关于固定污染源低浓度颗粒物测定方法标准,你应该知道的几件事
    p  span style="color: rgb(0, 112, 192) "为什么要针对低浓度颗粒物测定制定一个新标准?/span/pp  目前,许多地方已根据政府工作报告中提出的“推进燃煤电厂低浓度排放改造”要求,确定了相关规定,明确颗粒物排放不得高于 10 mg/m3,某些省份规定不得高于 5 mg/m3。/pp  我国现阶段颗粒物监测方法采用GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,在颗粒物浓度较低、烟气湿度较大的情况下,此方法易造成监测结果不准确,主要原因是:(1)沉积在采样嘴及采样管前段的颗粒物无法回收,导致结果偏低 (2)在湿烟气情况下长时间采样容易造成滤筒纤维损失或破损,产生的误差降低颗粒物采样准确度。/pp  为解决这些问题,满足现行污染源排放的监测需求,总站制定了《固定污染源废气 低浓度颗粒物测定 重量法》标准。/pp  span style="color: rgb(0, 112, 192) "低浓度颗粒物方法标准的技术路线是什么?/span/pp  标准的技术路线为“烟道内过滤-恒温恒湿平衡-整体称重”。/pp  烟道内过滤,就是在烟道或烟囱内对颗粒物进行等速采样,并将颗粒物截留在位于烟道或烟囱内的过滤介质上的方法。目前国际上主要有烟道内过滤和烟道外过滤两种方式,和烟道内过滤比,烟道外过滤存在仪器结构复杂,方法检出限高,现场工作量较大的缺点。/pp  恒温恒湿平衡,就是样品在采样前后要在温度20± 1℃、湿度50± 5% RH的状况下稳定后称量,和以往的冷却干燥称量方式相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性。/pp  整体称重,就是将滤膜封装在金属采样头内采样,并将采样头整体在采样前后进行称量的方式。这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样品得到回收。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/c5fe7ff7-4aee-43fc-9f79-1fb023f4b0ec.jpg" title="微信图片_20170706105924.png"//pp style="text-align: center "整体式采样头结构图/pp  span style="color: rgb(0, 112, 192) "这个标准的方法检出限是多少?/span/pp  当采样体积为 1 m3(标准状态下的干废气)时,本标准方法检出限为 1.0 mg/m3。/pp  span style="color: rgb(0, 112, 192) "什么是测量系列?/span/pp  本标准提出了测量系列的概念,测量系列指在工况基本相同、污染处理设施保持稳定运行的条件下,在同一采样平面内进行的一系列测量。也即是说,测量系列内的样品,采集时的锅炉和污染处理设施运行是基本相同的。/pp  span style="color: rgb(0, 112, 192) "什么是全程序空白?它有什么意义?/span/pp  本标准提出了全程序空白的概念,全程序空白指除采样过程中采样嘴背对气流不采集废气外,其它操作与实际样品操作完全相同获得的样品。/pp  采样全程序空白时,采样嘴应背对废气气流方向,采样管在烟道中放置时间和移动方式与实际采样相同。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。为防止在采集全程序空白过程中空气或废气进入采样系统,必须断开采样管与采样器主机的连接,密封采样管末端接口。/pp  全程序空白是一种质控措施,是衡量样品在测定过程中是否受到污染的一种手段。任何低于全程序空白增重的样品均无效。全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。另外,颗粒物浓度低于方法检出限时,对应的全程序空白增重应不高于 0.5 mg,失重应不多于 0.5 mg。/pp  span style="color: rgb(0, 112, 192) "什么是同步双样?同步双样的意义是什么?/span/pp  本标准提出了同步双样的概念,可作为衡量测定是否准确的一种质控措施。同步双样是指固定污染源颗粒物测量过程中,使用同一测量系列(使用同一采样孔采样时)或在同一时间使用两个对称的测量系列(使用不同的采样孔时)得到的两个样品。/pp  也就是说,同步双样的两个样品在采集过程中的任何时刻均处于大致相同的位置(同一采样孔)或烟气状态基本相同、对于烟道采样平面基本对称的位置(不同采样孔)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/632eeb9a-5c45-4487-9709-3c4efa06f35d.jpg" title="微信图片_20170706105930.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201707/insimg/3746759c-aebf-4554-acf4-fc2c9109524d.jpg" title="微信图片_20170706105934.jpg"//pp style="text-align: center "strong采样头现场安装/strong/p
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法—— HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 【安捷伦】“拎包入住”式应用解决方案 | 轻松解决固定污染源中的苯系物检测/升级改造您的气相色谱仪
    “拎包入住”式应用解决方案轻松解决固定污染源中的苯系物检测/升级改造您的安捷伦气相色谱仪苯系物包括全部芳香族化合物,狭义上的特指包括BTEX在内的在人类生产生活环境中有一定分布并对人体造成危害的含苯环化合物。由于生产及生活污染,苯系物可在人类居住和生存环境中广泛检出,并对人体的血液、神经、生殖系统具有较强危害。因此很多国家把大气中苯系物的浓度作为大气环境常规监测的内容之一,并规定了严格的室内外空气质量标准和污染源排放标准。2022年7月14日我国首次发布了《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),并即将于2023年1月15日全面实施。标准采用直接进样结合毛细管色谱柱,用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB16297-1996)等13项污染物排放标准实施。安捷伦自成立以来一直致力于可持续发展和环境保护,为环境检测提供了大气、水污染、土壤等众多应用解决方案,为环境监测单位和环境检测企业提供硬件设备、技术培训、应用支持和一站式应用解决方案服务。针对《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),安捷伦结合用户实际需求,定制专属的固定污染源废气中苯系物的测定应用解决方案,不论您是购买全新安捷伦8890/60系列气相色谱仪,还是基于原有安捷伦气相色谱仪进行升级改造+工厂级别的深度维护或翻新(原有仪器焕然一新),亦或单独进行升级改造,均能实现最快速的达到标准方法的检测要求。无论您原有的气相色谱是6890、7890、7820、8890、8860系列均可升级改造,并完全适用HJ1261-2022标准方法检测要求。(图二)标准色谱图安捷伦阀气体进样技术,拥有极好的准确性和重复性,并支持多种进样方式,无论是气体采样袋手动进样,还是气体自动进样器进样和在线监测连续进样,均能轻松实现。结合安捷伦专利技术聚乙二醇毛细管色谱柱,提供良好的乙苯、间对二甲苯分离效果和较好的保留时间重复性。工程师现场对方法调试、验证,并针对方法进行系统的操作培训,让您轻松应对全新标准。(图三)用户气体进样装置改造实例联系我们即可定制您的专属应用解决方案我们也提供专属GC升级改造方案进行PAMS和VOCs、温室气体、非甲烷总烃、CO2还原气分析、N2检测等各种应用升级改造检测方案关注安捷伦微信公众号,获取更多市场资讯
  • 8家污染源企业弄虚作假做“环保“ 遭环保部通报
    据环境保护部官网消息,2016年上半年,杭州市环境保护局等单位查办了8起典型污染源自动监控设施及数据弄虚作假案件并依法予以处罚,公安机关对2起污染源自动监控设施第三方运维单位的共5名违法行为人、6起排污单位的共9名违法行为人依法行政拘留。  环保部通报的2016年上半年污染源自动监控设施及数据弄虚作假案例  一、责任方为社会化运行维护单位的案件(2件)  1.杭州旭东升科技有限公司篡改数据采集仪程序,致使污染物处理设施不正常运行案  基本案情:2016年3月1日,杭州市环境监察支队对杭州云会印染整理有限公司进行现场检查发现,COD水质在线监测仪历史数据中 400mg/L以上的监测数据与同时段数据采集仪显示上传数据不一致。例如:2016年1月29日,COD水质在线监测仪数据为482.8mg/L,数据采集仪数据为167.43mg/L 2016年3月1日,COD水质在线监测仪数据为552.4mg/L,数据采集仪数据为147.51mg/L。另外,自动监控设备的运行维护单位杭州旭东升科技有限公司员工,在执法人员检查期间擅自远程登录企业数据采集仪并对程序进行修改,删除操作日志。杭州市环境保护局于2016年3月8日立案调查。  经调查,杭州旭东升科技有限公司作为杭州云会印染整理有限公司污染物自动监控系统的运行维护管理单位,擅自将数据采集仪软件设定为:超过 400mg/L浓度的监测数据自动用以前不超过400mg/L的监测数据代替,致使COD水质在线监测仪测量值与污染物自动监控系统上传至环保部门的监测值不一致。  查处情况:杭州市环境保护局根据《水污染防治法》第七十三条、《浙江省水污染防治条例》五十七条的规定,对杭州云会印染整理有限公司不正常使用水污染物处理设施的违法行为罚款人民币56550元。杭州市公安局根据《环境保护法》第六十三条第三款、《治安管理处罚法》第十七条第一款的规定,对杭州旭东升科技有限公司的张艳斐、岑驾科2人通过远程登录企业数据采集仪对仪器中软件进行修改,同时删除操作日志,试图逃避监管的违法行为给予行政拘留五日的行政处罚。  2.杭州安控环保科技有限公司未按技术规范进行日常运维操作,伪造运行维护记录案  基本案情:2016年3月3日,杭州市环境保护局执法人员对格林生物科技股份有限公司进行现场检查,发现COD水质在线监测仪无法正常启动运行,且2016年2月8日至22日期间无历史数据。杭州市环境保护局于2016年3月8日立案调查。  经查明,杭州安控环保科技有限公司为格林生物科技股份有限公司的自动监控设备运行维护单位。格林生物科技股份有限公司COD水质在线监测仪自 2016年2月8日至22日期间处于死机状态,无法运行。杭州安控环保科技有限公司的运维人员2016年1月29日至2月26日期间未按相关要求到企业进行日常运维操作,致使水污染物自动监控系统不正常运行使用 并在2016年2月26日当天伪造了2016年2月5日、2016年2月19日的运行维护记录与质控样比对监测记录。  查处情况:杭州市环境保护局根据《水污染防治法》第七十三条、《浙江省水污染防治条例》五十七条的规定,对格林生物科技股份有限公司不正常使用水污染物处理设施的违法行为罚款人民币2134元。杭州市公安局根据《环境保护法》第六十三条第三款、《公安机关办理行政案件程序规定》第一百三十七条第二款的规定,对杭州安控环保科技有限公司的贾丰、周传雷、徐楠3人违反技术规范操作、未按频次到现场运行维护以及伪造虚假的运维记录、质控样比对记录的违法行为给予行政拘留五日的行政处罚。  二、责任方为污染源企业的案件(6件)  1.浙江龙达纺织品有限公司污染源自动监控数据弄虚作假案  基本案情:2016年3月,浙江省绍兴市上虞区环境保护局发现浙江龙达纺织品有限公司外排废水在线监控数据异常,通过一个月的数据分析,2016年4月5日14时40分,上虞区环境保护局执法人员对该公司污水处理设施现场检查,发现排放池中间建有挡墙,自动监控设备采样口外套贮水桶,该贮水桶内有管道直接通往排放池附近5米处的自来水管,执法人员立即现场拍照取证,制作现场勘查笔录。  经调查,该公司污水站班长魏登云,为躲避自动监控系统监管,擅自对自动监控系统取样口进行改造,加装取样桶,并直接用一根黄色软管注入自来水,致使自动监控设备采集到的样品经过稀释,监测数据严重失实。  查处情况:该企业行为违反了《环境保护法》第六十三条规定。上虞区环境保护局责令该单位立即改正上述违法行为,并处罚款人民币10万元。上虞区公安局针对该单位涉嫌伪造监测数据逃避监管,依据《环境保护法》第六十三条、《行政主管部门移送适用行政拘留环境违法案件暂行办法》中第六条第三项、《行政处罚法》等相关规定,依法行政拘留1人。  2.浙江征天印染有限公司人为故意逃避自动监控设备监管,超标排放污水案  基本案情:2016年3月,诸暨市环境保护局发现浙江征天印染有限公司排放口排水情况异常。3月22日上午,执法人员突击现场检查发现:浙江征天印染有限公司利用废水自动监控设备采样监测规律,通过控制水泵调节二级水解池到好氧池的进水量,在自动监控设备采样监测时减少排水量且排放水质较好,待采样结束后加大排水量且排放水质较差,属人为故意逃避监管,且存在超标排放水污染物的情况。  查处情况:诸暨市环境保护局责令该企业立即改正违法行为,并罚款人民币24.5万元。诸暨市公安局依据《环境保护法》《行政主管部门移送适用行政拘留环境违法案件暂行办法》《行政处罚法》等相关规定,依法行政拘留1人。  3.长业水务有限公司员工人为干扰污染源自动监控系统案  基本案情:2016年3月1日,福建省龙岩市环境信息监控中心接到第三方运维公司(聚光科技(26.490, -0.12, -0.45%)(杭州)股份有限公司龙岩分公司)举报:在龙岩市长业水务有限公司日常巡查时,氨氮自动监控设备内发现带有液体的矿泉水瓶,且自动监控设备的取样管被拔插至矿泉水瓶中(该员工随之在现场进行拍照取证)。龙岩市环境信息监控中心即将该情况通报给龙岩市环境监察支队,并按程序交由新罗区环境保护局立案查处。  龙岩市新罗区环境监察人员会同龙岩市环境保护局环境监控中心调阅站房监控视频发现龙岩市长业水务有限公司员工于2月29日13时40分将带有液体的矿泉水瓶带入该公司在线监测站房内,放入氨氮自动监控设备内。3月3日11时08分发现该企业员工再次进入在线监测站房,将带有液体的矿泉水瓶放入自动监控设备内。  3月8日,龙岩市新罗区环境保护局监察执法人员至龙岩市长业水务有限公司现场进行调查,并制作新罗区环境保护局现场检查(勘察)记录。龙岩市长业水务有限公司员工谢浩及张露露对人为干扰污染源自动监控系统的违法行为供认不讳。  查处情况:5月27日,龙岩市公安局新罗分局根据《行政主管部门移送适用行政拘留环境违法案件暂行办法》《环境保护法》第六十三条规定,对龙岩市长业水务有限公司员工谢浩、张露露2人的违法行为给予行政拘留五日的行政处罚。  4.秦皇岛索坤玻璃容器有限公司人为故意损毁大气污染物排放自动监控设备案  基本案情:2016年1月16日、2月17日、3月16日,河北省昌黎县环境保护局与秦皇岛市环境监察支队执法人员对秦皇岛索坤玻璃容器有限公司进行现场检查时发现:该厂三套自动监控设备烟气采样头均焊接有一个管路接头,并与一根PVC管连接。2016年3月22日,昌黎县环境保护局执法人员现场制作了《调查问询笔录》。该企业存在人为故意损毁大气污染物排放自动监控设备的违法行为。  查处情况:昌黎县环境保护局依据《大气污染防治法》《环境保护法》的规定,责令该单位立即改正上述违法行为,处罚款人民币20万元,并将该案件有关材料移交移送至昌黎县公安局,昌黎县公安局依据《行政主管部门移送适用行政拘留环境违法案件暂行办法》的规定对该企业3名主要责任人依法实施行政拘留。  5.巨野县三达水务有限公司私接暗管,人为干扰污染源自动监控系统案  基本案情:2016年5月,菏泽于楼断面氨氮超标,山东省环境信息与监控中心将该断面与周边重点污染源关联分析,发现该断面主要排污企业为巨野县三达水务有限公司。5月16日,省监控中心对该企业进行现场检查,检查人员对采样系统进行详细排查,发现采样管路被擅自引入封闭的生物指示池内,采集指示池内的稀释水样进入在线分析仪器。经查明,该企业人员承认私接暗管,干扰采样,对监测数据弄虚作假。  查处情况:巨野县公安局依法行政拘留1人,巨野县环境保护局责令该单位立即改正上述违法行为,处罚款人民币10万元。  6.日照市城市排水有限公司擅自修改自动监控设备参数案  基本案情:2016年5月24日,山东省环境信息与监控中心通过重点污染源动态管控系统,发现日照市城市排水有限责任公司氨氮自动监测设备斜率由1修改为0.5,超出正常范围,触发动态管控系统报警,斜率的修改导致企业排水氨氮自动监测数据降低。5月25日,省监控中心对该企业开展调查,查封自动监测设备、固定参数修改证据。经查明,该企业人员承认擅自修改了自动监测设备参数,对弄虚作假行为供认不讳。  查处情况:日照市公安局依法行政拘留1人,日照市环境保护局责令该单位立即改正上述违法行为,处罚款人民币10万元。
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • “2+26”城市执行大气污染物特别排放限值总览
    政策导读日前,环保部印发《关于京津冀大气污染传输通道城市执行大气污染物特别排放限值的公告》,决定在京津冀大气污染传输通道城市,共“2+26”个,将执行大气污染物特别排放限值。其中,新建项目执行时间自2018年3月1日起实施;现有企业执行时间自2018年10月1日起实施;炼焦化学现有企业自2019年10月1日起实施。结合公告内容,众瑞特将不同行业中不同大气污染物排放标准中规定的特别排放限值情况进行了整合,方便大家了解新政策规定。同时也将众瑞的相关配套检测仪器进行了梳理展示。1. 颗粒物、二氧化硫、氮氧化物排放限值上表中统计了各行业污染物排放标准中的颗粒物、二氧化硫、氮氧化物的特别排放限值,根据标准中规定的特别排放限值和现行的环境标准及监测标准,众瑞提供以下满足条件的检测设备:2. 汞及其化合物排放限值由于部分烟气中含有汞及其化合物,上表是标准中规定的汞及其化合物的特别排放限值。众瑞ZR-3700A型烟气汞综合采样器,满足干、湿法采样标准,测量烟气流速,烟气温度和含氧量。3. 二噁英排放限值众瑞二噁英采样(污染源监测)系统:4. 盐酸雾、硫酸雾、氟化物排放限值盐酸雾、硫酸雾、氟化物是工业排气中常测的组分,上表中整理了标准中所规定的这三种物质的特别排放限值。现阶段采集这三种物质的主要方法是溶液法,众瑞针对这三种组分的采集配备了不同的采样装置:5. 挥发性有机物(VOCs)排放限值废气中的有机物监测也是环境监测的重要部分,上表中列出了不同的有机物成分的特别排放限值。ZR-3730型污染源真空箱气袋采样器,用气袋法采集固定污染源废气及环境空气中的挥发性有机物(VOCs)。助力人民的蓝天幸福感持续关注国家的环保大招,积极推进技术进步
  • 沪攻关在线来源解析技术 有望几小时找出污染源
    上海市近年来系统开展大气颗粒物来源解析工作,取得阶段性成果。  常态源解析初步揭示PM2.5来源,得出空气中PM2.5本地人为污染排放贡献占八成,交通和工业是重头。在此基础上,《上海市清洁空气行动计划(2013~2017)》针对能源、产业、交通、建设、农业、社会六大领域,分别提出了180余项具体而有针对性的综合治理措施。  据上海市环保局有关负责人介绍,从2015年开始,PM2.5来源解析工作将由科研工作转型为上海市环境监测中心的日常业务工作,为2017年PM2.5浓度下降20%目标的实现,乃至PM2.5的最终达标,提供重要的决策依据。同时,也为上海市实施各项大气污染防治措施提供长期的跟踪评估。  污染源清单更新什么?  氨和挥发性有机物  &ldquo 作为环境监测机构,监测数据的真实性是生命。&rdquo 上海市环境监测中心总工程师伏晴艳日前在长三角区域空气质量预测预报中心说。在保证数据真实性的基础上,监测中心的另一个主要工作就是解析PM2.5的来源。  据介绍,动态更新的高分辨率排放清单是来源解析的必备条件之一。据上海市环境监测中心大气监测室副主任段玉森介绍,从2003年开始,监测中心就启动了上海市大气污染源的排放清单研究工作,目前正和相关研究机构一起构建并逐步完善上海市完整的大气污染排放清单与本地源谱。  上海市自2004年开始建立以PM2.5为对象的一次大气污染物排放清单。2006年,对市级重点污染源排放规律和&ldquo 一厂一档&rdquo 进行了重点梳理与研究,并耗时3年对重点石化企业开展了VOCs定量核查。  2008年,依托全国污染源普查,上海对全市1万余家VOCs排放企业进行了申报调查。2010年,借助世博会契机,对大气污染物排放清单进行了系统的更新与修正,启动了船舶大气污染物排放清单研究,并借机建立了上海市排放清单定期更新机制。  2013年,上海市继续对2012年大气污染源清单进行了更新,特别是通过设立专项科研课题,重点对氨和挥发性有机物等特征污染因子的源清单进行了更新。  据悉,本地化的源谱对于来源解析结果的准确性具有重要意义。上海市在污染源普查和污染源清单动态更新的基础上,利用自主研发或引进的采样器材,对各类颗粒物来源进行了测试分析。包括电厂锅炉、工业炉窑和工业锅炉等固定工业源,道路和建筑工地等扬尘源,农作物秸秆等生物质燃烧源,柴油卡车、汽油车、助动车、内河船舶等流动源,本帮菜、川菜和西餐馆等餐饮源,初步构建了本地颗粒物典型来源源谱。  上海来源解析有什么法宝?  建立百万分之一天平实验室  大气污染排放清单与本地源谱的逐步建立,为来源解析工作提供了对照表。针对常态污染,上海市同时采用受体模型法、数值模型法和排放源清单法等技术方法进行了大气颗粒物来源解析。上海市环境监测中心建立的重点实验室为来源解析提供技术支撑。  在上海市环境监测中心重点实验室。据工作人员介绍,1005实验室主要用来监测空气中的挥发性有机物。  一走进实验室,就可以看到一个浑身&ldquo 长满&rdquo 大小罐子的仪器。工作人员称,仪器上的大罐子是采集空气的,容量近6升,小罐子是采集污染源管道的,因为浓度较高,采气量就比较小。  仪器的工作原理是将里面先抽成真空,带到现场后,根据风向找到合适的采样点位,打开阀门就可以直接采样,很方便。分析完之后,用氮气反复吹扫、清洗,再抽成真空,就可以反复使用。  据了解,目前这个仪器的样品量非常大,一次性能定量分析近两百种挥发性气体,应用范围很广。例如居民投诉有异味产生的环境信访问题、环境应急事故中发生的气体泄漏、对化工区等大型污染企业气体排放的监控都需要用到。  1002实验室的&ldquo 主力&rdquo 是一台液相色谱双质谱联用仪,由一个液相色谱部分和两个串联在一起的质谱组成。  据实验室工作人员介绍,这台仪器最大的特点是能对有机物进行定性,就是知道这个有机物是什么,目前在环境污染应急事故中能起到关键作用,根据其分析结果,采取更有效的应对措施。  建立的谱库相当于警察抓罪犯的指纹库,在正常状态下先拍一张指纹照片,当指纹照片发生变化时,不仅可以及时预警,还可通过比对,准确地抓住污染环境的罪魁祸首。  据伏晴艳介绍,为精准解析上海PM2.5来源,监测中心还在国内率先建立了百万分之一天平实验室,对PM2.5滤膜的称量精度可达到百万分之一克,保障了监测数据的真实性。而国内大部分监测站系统只具备十万分之一的天平称量精度。  不仅如此,上海市环境监测中心已启动在线来源解析技术储备和科技攻关。目前,在实验室做污染物来源解析至少需要3个月时间,伏晴艳说,在线来源解析技术成熟后,有望在几小时内找出污染物的来源。  据段玉森介绍,在线来源解析技术方法快捷,无需将样品送到实验室进行复杂的前处理,能满足应急需求,初步辨明污染来源。  区域合作有何进展?  明年建成区域空气质量预测预报中心  目前,上海已建成覆盖全市的400多套大气污染源在线监控系统,并形成对空气颗粒物来源解析的初步结果。  2012年~2013年细颗粒物的来源解析结果显示,上海市PM2.5化学特征和来源中,工业及交通尾气排放生成超过50%。  伏晴艳说:&ldquo 为了定性或定量识别大气颗粒物来源,上海逐步构建大气污染源排放清单与源谱,探索颗粒物来源解析技术方法,在常态源解析和重污染快速源识别两个方面均取得进展。&rdquo   伏晴艳表示,年底前上海将公布最新的PM2.5来源解析结果。与此同时,监测中心已启动PM2.5在线来源解析技术研究,这一技术最快可在1小时内半定量分析出PM2.5的来源。  大气污染的特性,决定了空气污染防治需要跨地域联防联控。正是依托上海在空气监测方面的优势,2013年,环境保护部明确将长三角区域空气质量预测预报中心设立在上海。这一中心包括可视化会商、监测数据共享、综合观测应用、排放清单管理、预报预警等系统。  伏晴艳表示,长三角区域空气质量预测预报中心于2013年初启动运营,已发挥了积极作用。南京青奥会期间,这一中心提供了区域污染分布态势图。2014年春节、两会期间,中心为保障空气质量提供了技术支撑。  据悉,2014年1月27日以来,在中国环境监测总站的组织和协助下,区域空气质量预测预报中心已开展近50次区域可视化预报会商,成功实现了跨部门、跨地区在空气污染防治上的合作。  区域空气质量预测预报中心已进入实质性建设阶段,到2015年年底有望全面建成。据悉,全面建成后,区域空气质量预报中心可实时分析或预测未来48小时、东部沿海城市大气复合污染的变化趋势和初步成因,可为区域空气质量预测预报提供更加精细化的服务。
  • 我国污染物解析或将拉动监测仪器市场
    3月25日,环保部发布《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》。    《报告》首次对我国自2013年实施环境空气质量新标准的74个城市进行评价。结果表明,2013年74个城市中,只有海口、舟山、拉萨3个城市各项污染指标年均浓度均达到二级标准,其他71个城市存在不同程度超标现象。    重污染区域的首要污染物为PM2.5。对此,环保部官员表示,2014年要大规模、规范化启动污染物来源解析研究工作,北京等重点城市要在今年上半年提交初步成果。    《报告》明确了14年大气环境质量监测任务:1、推动第三阶段空气质量新标准检测能力建设;2、各直辖市、省会城市和计划单列市要启动污染物来源解析工作。    大气污染只是环境污染问题的一个缩影,人无远虑必有近忧。以牺牲环境换取经济增长的时代已经过去,面对经济健康增长的需求,环境友好型的健康可持续发展是大势所趋。加快发展环保产业,利当前、惠长远,不仅有利于治理环境污染、改善生态环境,而且有利于拉动有效投资,带动新兴产业成长,有利于转方式、调结构,对促进经济社会可持续发展具有巨大推动作用。    重视环境保护问题将有力带动环保产业提速。未来,只有将经济发展与绿色GDP相挂钩,经济增长数据才不会以自然资本损失和生态赤字为代价,未来的经济和社会发展才能够持续和健康。    根据13年环保部颁布的《大气颗粒物来源解析技术指南》,源解析的技术方法有四类,其中三类涉及监测,在监测数据的基础上通过建立模型得出解析数据,《报告》的落实对空气在线监测仪器及相关实验室仪器存在需求拉动。    《污染源监测质量保证技术规范》里规定了固定污染源废水排放、废气排放监督监测和比对监测采样及测定过程中质量保证和质量控制的一般原则,这将推动这几类仪器的需求。    VOCs在线检测和治理可能成为2014年环保领域亮点VOCs(挥发性有机物)指以气态分子形态排放到空气中的56种非甲烷碳氢化合物,是PM2.5最主要来源,污染源解析的推出正是为了剖析成因并为大气污染治理作准备,据媒体报道,政府未来将专门针对VOCs排放征收排污费,我们认为VOCs监测和治理有望成为环保领域新的增长点。    我们依然维持年初以来的观点,认为今年环保板块投资的关键词并非政策,而是监管,相关部门将完善法律法规,以保障现有环保政策的落实和环保设施的运行。    杭州、深圳地区先后出台被称为史上最严格的环境监管执法;地区性的大气污染防治立法也在不断完善,成为环境监管工作的坚实后盾。环保部长周生贤表示,打好大气、水、土壤污染防治三大战役,要用好环境执法和信息公开两个手段,强化环境执法监管,保持执法检查高压态势,全面推进环境信息公开,及时公开环境质量监测、建设项目环境影响评价、环境违法案件及查处等方面的环境信息。通过采取稳、准、狠的举措,逐步改善环境质量,让人民群众看到政府的决心,看到环境问题解决的希望。
  • 广东首次公布污染源普查数据 污染源总数全国居首
    广东省污染源普查领导小组办公室4日通报广东省第一次全国污染源普查情况。广东全省共调查污染源总数60.2万个,占全国总数(592.6万个)的10.1%,居全国首位。  在当天的新闻发布会上,广东省环保厅控制总量处处长林文说:“经过三年的努力,广东全面掌握了全省污染源排放的基本情况,初步建立了全省污染源信息数据库。而普查也凸显当前存在一系列环境问题,要有针对性地采取有效措施切实加以解决。”  普查结果显示,广东全省污染源总数60.2万个,包括工业源26.9万个、农业源19.0万个、生活源14.3万个、集中式污染治理设施418个。全省各类源废水排放总量215.98亿吨,废气排放总量38617.97亿立方米。  普查结果显示,广东工业污染物排放主要集中在少数行业和局部地区,污染排放结构性特征明显。由于珠江三角洲经济发达,工业污染排放也主要集中在这一地区,佛山、深圳、东莞、广州和中山市普查对象数量居前5位,分别占全省工业源总数的15.8%、15.8%、14.7%、10.4%和8.5%。  在行业方面,纺织、造纸、农副食品加工等8个行业的化学需氧量排放量占工业排放总量的79.1%,电力热力、非金属矿物制品、造纸及纸制品、黑色金属冶炼及压延加工、纺织5个行业氮氧化物的排放量占工业排放总量的93.0%。  林文说:“普查显示,加快珠三角产业结构调整,推进经济发展方式转变任务十分迫切。”  在当天的新闻发布会上,广东省环保厅有关负责人指出,针对普查暴露出的问题,广东未来将以保障饮用水源地环境安全为突破口,加强水污染防治 同时以电厂、锅炉废气和机动车尾气污染防治为重点,加强大气污染防治。
  • 【MH3300】固定污染源超净排放综合解决方案从未如此简单
    导读:“MH3300型 烟气烟尘颗粒物浓度测试仪”集烟尘直读、烟尘采样、烟气直读、烟气采样四大功能于一体。一台主机,多重功能,助您高效完成固定污染源废气监测任务! 攀爬烟囱的过程中,您还在为携带笨重的设备而烦恼吗?执行监测任务的过程中,您还在为繁杂的管路连接而烦恼吗?站在采样断面上,您有没有想过用一台主机完成多项监测任务?您的烦恼,我们来解决!“MH3300型 烟气烟尘颗粒物浓度测试仪”集烟尘直读、烟尘采样、烟气直读、烟气采样四大功能于一体。一台主机即可完成多项监测任务! 作为新一代固定污染源超净排放综合解决方案,明华MH3300采用高度集成化设计思想,烟尘烟气可同步采样或测量,可选配多种采样管,实现一机多用的目的。针对污染源烟尘颗粒物,本设备可实现重量法采样及β射线吸收法颗粒物浓度直读两种功能。针对污染源烟气污染物,本设备可完成基于电化学测量法、溶液吸收法的多种污染物的浓度测量。一、烟尘直读(β射线法):1、选配: MH3091型 烟尘采样测试探头2、执行标准: 山东省地方标准《固定污染源废气 颗粒物的测定 β射线法》征求意见稿3、产品特点: 1)采用β射线吸收法质量测量原理,测量结果不受颗粒物形状、颜色、燃料性质等特性影响; 2)适用于颗粒物浓度低于5mg/m3超低排放检测标准;满足颗粒物浓度低于1mg/m3的超净排放检测要求; 3)钛合金采样管全程加热,重量轻,耐腐蚀,可拆卸设计,携带方便; 4)具有自主知识产权的滤带传动检测技术,一卷滤膜可满足几十次测量; 5)采用安全、稳定的C14放射源,满足*豁免标准。二、烟尘采样(重量法):1、选配: MH3090T型 低浓度烟尘采样管2、执行标准: HJ 836-2017《固定污染源废气 低浓度颗粒物的测定 重量法》 GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》3、产品特点: 1)采用高负载、大流量烟尘采样泵,流量范围(10~100)L/min; 2)可以满足颗粒物浓度低于5mg/m3的超低排放检测要求; 3)钛合金智能采样管,重量轻、耐腐蚀、自损耗低、性能稳定,加热温度可自动调节。三、烟气直读(电化学法)1、执行标准: HJ 57-2017 《固定污染源废气 二氧化硫的测定 定电位电解法》 HJ 973-2018《固定污染源废气 CO的测定 定电位电解法》2、产品特点: 1)气体交叉干扰修正算法,具有CO对SO2的自动修正功能; 2)配置抗H2干扰的CO传感器,数据更精确。四、烟气采样(溶液吸收法)1、选配: 3011型 烟气采样管2、执行标准: HJ 75-2017《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》 GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》3、产品特点: 1)皮托管平行法,可自动测量、跟踪烟气流速,流量范围(0.1~2.0)L/min; 2)采样管具有加热、除尘、过滤等功能。 目前,“MH3300型 烟气烟尘颗粒物浓度测试仪”已在国内多个典型固定污染源废气监测现场完成现场验证,因其携带方便,一机多用,性能稳定,测量结果准确等特点得到客户一致好评。如果您还想了解更多,请点击查看明华“MH3300型 烟气烟尘颗粒物浓度测试仪”产品详情。
  • VOCs气态污染物监测:罐采样-GC/MS结合技术概述与进展
    p  气态挥发性有机物(VOCs)的污染严重威胁人们的健康,因而对它的监测技术的研究也越来越多。其中罐采样与气相色谱/质谱联用的检测技术在VOCs气态污染物测定中的应用逐步受到关注。对罐采样技术进行了综述,重点介绍了罐采样与气相色谱/质谱联用技术在环境空气、室内空气、废气中VOCs检测的应用。/pp  “挥发性有机化合物是大气环境中的重点污染物之一,其主要成分为烃类、含氧烃类、含卤烃类、氮烃及硫烃类、低沸点的多环芳烃类等,种类繁多且成分复杂。/pp  环境空气中挥发性有机化合物主要来源于工业废气、汽车尾气、光化学污染物等。此类化合物大多有毒性及一定的刺激性气味,易被皮肤、黏膜等吸收,具有致突变、致畸、致癌性,对人体的健康产生有不可估量的损害,已日益受到人们的关注,成为国内外研究的焦点。/pp  一般的VOCs采样分析方法如吸附解析法、热脱附法等,由于灵敏度较差、采样时间长、通用性较差等缺陷使其使用有一定的局限性。而Summa罐采样法可以克服上述不足,是目前空气采样中比较好的方法。本文详细介绍了罐采样方法及其与气相色谱/质谱联用技术在VOCs检测中的应用。/pp  span style="color: rgb(0, 112, 192) font-size: 20px "strong1 罐采样技术/strong/span/pp  “罐采样主要是通过罐内负压自动采集现场空气,能够完全还原现场空气状态。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201611/noimg/a65a4f85-f954-4d4f-9ac8-bd2a7d2b8fdc.jpg" title="2.jpg"//pp  气体样品采集后,在Summa罐中保存稳定,尤其是样品放在经过硅烷化处理过的Summa罐中可以保存几个月。李振国发现在某些情况下,气罐中的气体混合物组分将发生改变以至于不能代表被采集的样品。气罐表面面积有限,所有的气体都争可提供的活性点,因此不能确定绝对存储稳定期限,幸运的是在正常采集环境空气的使用条件下,即使储存30天罐中的大多数VOCs都接近它们原始的浓度。另外罐采样还可用泵加压技术增大采样体积使得样品压力达到10~20倍大气压,用于分析的样品量大大增加 。Bottenheim 等 使用加不锈钢泵的2.6L电抛光罐采集样品,使罐压最终达到 2.58 atm。 Grosjean 等使用电抛光罐采样GC-FID和GC-MS联用法对巴西某市空气进行分析,采样时利用泵将罐加压到30磅,研究检测出空气中所含的150种VOCs。因此,加压增大采样体积能减少采样过程中污染和吸附损失造成的影响。/pp  “Summa罐的罐体主要有抛光处理和硅烷化两种。其中经典抛光处理的Summa不锈钢罐取样技术,是美国EPA采用的标准方法(TO-14、TO-15)。/pp  采样时用泵将罐中空气采集成正压,多用于非极性物质的分析。其优点是可避免吸附剂采样时的穿透分解和解析,但采样设备价格昂贵、标样的制备和罐的清洗费时费力,且不能对样品进行预浓缩。不锈钢的采样罐技术在国内外的挥发性有机物的测定中应用较多。Batterman等使用抛光处理的Summa罐在分析储存挥发性有机物时发现,醛类和萜类在湿空气填充罐中的半衰期是18天,湿氮气中24天,干空气中最短为6天,研究表明Summa罐在储存有机物时需要一定的湿度。采样时可以根据样品的种类和需要连接流量阀控制气体的流速。Kwangsam等利用安装了流量控制阀的6L苏码罐采集空气2小时。王伯光等采用内壁经抛光电钝化的不锈钢采样罐采样分析了室内空气中挥发性有毒有机物,此外他还将限流阀、不锈钢过滤头和采样管连接到采样罐进口对交通道路的空气进行样品采集,采样流量为30ml/min,每次采样时间为3h。/pp  内壁硅烷化的Summa罐在气体污染物的测定中使用较多。甲醛等极性组分和轻羰基化合物C2~C3组分一直被排斥在罐采样法之外,原因在于要么它们在采样罐中不稳定,要么在预浓缩或者色谱分离当中存在困难,而采用Summa罐的内壁硅烷化技术可以解决这一难题。尹彦欣利用硅烷化Summa罐对不同场所如居室、汽车、超市的室内空气进行采样,利用预浓缩器将气体样品冷聚焦,并去除水和二氧化碳,然后自动将样品导入气相色谱质谱,分析其中的主要有机污染物。结果表明该方法采样快速简单,分析操作中不需使用任何有机试剂,实验背景干扰少,定性分析准确。/pp  “虽然罐采样法可以同时采集多种所需样品,使用快速方便。但是该方法成本高,对低浓度往往因缺少相应的稳定标准物质而无法准确定值,同时仪器的检测限也限制该方法的推广应用。/pp strongspan style="color: rgb(0, 112, 192) " span style="color: rgb(0, 112, 192) font-size: 20px "2 罐采样-气相色谱/质谱联用技术/span/span/strong/pp  由于罐采样只是一种空气样品的采样手段,在气态VOCs测定过程中样品采集后,通常会与气相色谱或气相色谱/质谱联用的检测技术对气态VOCs中的组分进行定性或定量的分析。/pp  气相色谱法是近二十年来迅速发展起来的一种新的分离分析方法,它具有高效能、高选择性、高灵敏度、分析速度快、应用范围广和样品用量小等特点,尤其对异构体和多组分混合物的定性、定量分析更能发挥其作用,因而在VOCs检测方面得到了广泛应用。/pp  “一般用于罐采样气相色谱分析的检测器有:火焰离子化检测器(FID)、电子捕获检测器(ECD)、质谱检测器(MS)、火焰电离检测器(FPD)等,其中FID与MS常用于气态VOCs的分析测定。/pp  span style="color: rgb(0, 112, 192) "strong2.1 罐采样-GC/MS/strong/span/pp  1957年Holmes等首先实现了气相色谱与质谱联用,主要是利用气相色谱法对混合物的高效分离能力和质谱法对纯化合物的准确鉴定能力而开发的分析方法。采用罐采样对真实的气态物质进行采集,再与气相色谱/质谱联用可对环境样品中所含的挥发性和半挥发性有机化合物进行准确地定性、定量分析和检测,且与其他技术相比有无可比拟的优越性。孙焱婧等将Summa罐采样气相色谱/质谱法与VOCs在线监测法进行定性对比,结果表明,实验的VOCs的Summa罐采样气相GC-MS法的偏差在可接受范围内,具有一定的环境适用性。Goldthorp等研究比较了罐采样-GC/MS和便携式IR两种方法对空气中轻碳氢组分排放的监测,结果表明,便携式IR不能满足研究的需要,而罐采样-GC/MS可以获得较为完整的排放模型。/pp  鉴于罐采样-GC/MS联合技术较高的定性定量分析能力,因此在气态VOCs的检测中发挥了重要的作用。Chiang等使用不锈钢罐每天采集台湾南部臭氧不合格地区VOCs样品,并用GC-MS对C3~C11的碳氢化合物进行分析研究,取得了理想的结果。肖珊美等和李振国都采用苏码罐采样技术,预浓缩系统与GC-MS联用,建立了测定环境空气中41种挥发性物的检测方法,研究表明该方法采样方便,灵敏度高,准确度高,且样品保存时间长,而且绝大部分有机物该法检出限达0.2ppbv,回收率在86%~105%的范围。/pp  机动车尾气等污染也是城市大气VOCs的主要来源,并成为影响城市环境空气质量的重要因素。Mei-Yin等使用罐采样GC-MS联用法分析检测了台北某隧道中的56种VOCs,检出限为0.1~0.7ppbv。鲁君和吴迓名等分别利用罐采样-气相色谱/质谱法测定上海市主要交通干道和某越江隧道空气中的挥发性有机物,结果共检测出78中VOCs,分析了上海市和隧道废气样品中挥发性有机物的污染水平并查明了隧道空气中挥发性有机物的种类和组成。/pp  在室内污染的测定中,罐采样-GC/MS联用技术也是常用的检测技术之一。谭和平等采用罐采样GC/MS分析方法测定室内空气中的甲醛,考察了凝结水对样品分析浓度的影响、样品在罐中稳定储存的时间,结果表明在样品采集及储存过程中应避免出现冷凝水,正常情况下样品能在罐中稳定存储1个月以上 研究了该分析方法的特性如检出下限、回收率、线性响应范围、精密度、稳定性及方法扩展不确定度,证实该方法比现行国家标准方法稳定、准确、检出限低。李月娥采用预冷浓缩系统和气相色谱—质谱联用,建立了测定室内空气中39种挥发性有机物的分析方法,该方法采用苏码罐采样,经液氮预冷冻浓缩后,用GC-MSD检测。研究表明苏码罐采样预冷浓缩和气—质联用技术测定室内空气中痕量挥发性有机物的分析方法,重现性好,可以多次进样分析,有满意的准确度和灵敏度。/pp  此外在生产燃烧的有组织排放中,罐采样与气相色谱/质谱系统分析联用在VOCs的测定中多组分的定性和定量也发挥了作用。/pp  strongspan style="color: rgb(0, 112, 192) "2.2 罐采样-GC/FID/span/strong/pp  罐采样与气相色谱联用,以FID作为检测器也是测定VOCs的常用的技术。FID是一种利用氢气/空气火焰的热能和化学能作电离源,使有机物电离,产生微电流而响应的检测器。它是破坏性的质量型检测器,其响应值取决于单位时间进入检测器的组分量,峰高随着载气流速的增加而增大,峰面积基本不变。FID对气体流速、压力和温度变化不敏感。它对H2O、O2、N2、CO和CO2等无响应,但对几乎所有的有机化合物均有响应,特别是对烃类灵敏度高,且响应与碳原子数成正比,检测限达10~12g/s。Yoshiko等使用不锈钢罐采集草原植被中的空气,用GC/FID法测出约40种非甲烷挥发性有机物。/pp  谭和平等采用Summa罐采集样品,自动进样器进样,三级冷阱预浓缩样品,气相色谱(GC)柱分离,氢火焰离子化检测器(FID)检测,并采用自主研制的混合标准气体定性定量分析,从而得到各室内挥发性有害有机物及总挥发性有机物(TVOC)浓度。研究表明全采样GC/FID检测室内挥发性有害有机物方法样品储存时间长,加标回收率、线性范围、准确度、精密度等方法特性较国家标准方法有明显改善。FID检测器替代MS检测器不仅满足方法学对方法特性的要求,更明显降低了分析成本。Olso等利用Summa罐瞬时采样法采集85个样品,并用GC/FID对样品中53种VOCs进行检测。/pp  氢火焰离子化检测器(FID)对有机污染物进行定性和定量测定是比较成熟的方法之一,常用于非甲烷总烃的测定。Seila等对空气中的VOC进行检测,使用罐采样GC/FID对空气中C2~C10+的碳氢有机物进行研究。Mugica等研究食物烹制时候释放的非甲烷有机物时用6L的Summa在不同餐饮行业采集样品并由FID分析。/pp strongspan style="color: rgb(0, 112, 192) " 2.3 其他联用方法/span/strong/pp  除了上述联用方法,罐采样还可以与GC/ECD、GC/FPD等联用。戴秋萍等研究讨论了空气罐采样、三级冷阱预浓缩对气体样品进行前处理,气相色谱-火焰光度检测器等对空气中七种恶臭污染物进行分析,结果表明该分析方法准确可靠,可用于空气中恶臭污染物的检测。/pp  strongspan style="color: rgb(0, 112, 192) "3 小 结/span/strong/pp  利用罐采样能采集并再现真实气体这一特点,加上与气相色谱或气相色谱/质谱联用的检测技术,罐采样法在气态VOCs污染监测中的应用越来越广泛。但由于容器特点致其获得的样品浓度低,这就要求分析和监测仪器的精密度相应增高,检出限降低,成本也相应提高。为此,减少罐中样品的残留量,增加可测样品的体积,提高预浓缩系统的有效性至关重要。/pp  作者:李丹 戴玄吏等,单位常州大学和常州市环境监测中心/pp  文章刊登于环境工程2013年第四期。/p
  • 乐氏科技中标国控重点污染源监督性监测能力建设仪器采购项目
    2017年4月1日,由北京乐氏科技总代理的德国福德士MCA14-m便携式高温红外烟气分析仪在中国环境监测总站国控重点污染源监督性监测抽测能力建设项目仪器设备采购项目中中标。  中国环境监测总站国控重点污染源监督性监测抽测能力建设项目此次采购便携式高温红外烟气分析仪主要用于污染源废气中多组分气态污染物的现场直读测试分析,要求每种污染物至少配置高低2段量程且可自动切换,要求仪器应采用全程高温采样和红外测试的方法原理。德国福德士MCA14-m便携式高温红外烟气分析仪完全满足该要求!  中国环境监测总站是国家环境保护部直属的事业单位,为国家环境保护部实施环境监测管理提供技术支持、技术监督和技术服务,作为全国环境监测的网络中心、技术中心、信息中心和培训中心,对全国环境监测系统进行业务管理和指导。  德国福德士MCA14-m便携式高温红外烟气分析仪可应用于排放监测、污染源烟气的监测、过程监测等众多场合。它可为不同类型燃料燃烧、垃圾焚烧、燃烧过程优化以及过程管理控制等场合提供相应尾气浓度监测。可同时测量10个红外气体组分。所有浓度所需的计算均在仪表内部完成,仪器配置双段量程可自动切换,可视化仪表操作、数据记录可通过随机软件完成。MCA14-M的独特之处是:采用红外测量原理,全程高温气体分析,其运行时无需仪表气供应,开机自动校准零点,零点校准仅需环境空气来实现。
  • 室内空气污染源解析:当前挑战与未来方向
    第一作者/通讯作者:Dikaia Ε. Saraga通讯单位:Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece论文DOI:10.1016/J.SCITOTENV.2023.165744成果简介由于室内污染来源的多样性和高度可变性,室内空气污染的源解析(SA)具有挑战。近日,环境领域国际期刊Science of the Total Environment发表的题为“Source apportionment for indoor air pollution: Current challenges and future directions”的综述文章,回顾了目前使用的SA技术的相关信息,以及该领域的研究空白和局限性。引言过去二十年里,越来越多的科学证据表明,室内空气污染可能比室外严重得多。直接或间接来源都可能导致室内环境污染。考虑到人们大部分时间都在住宅、办公室或其他公共建筑中度过,人类的空气污染暴露主要发生在室内。然而,空气质量标准和指南主要是针对室外空气制定的。考虑到在不同室内微环境中的暴露时间较长,室内和室外空气污染对健康的影响非常相关,特别是在弱势群体中。因此,了解室内污染物的行为和来源,并将其与室外污染物区分开,对于健康风险评估、制定室内空气质量监管准则以及设计和实施旨在减少人类暴露于污染空气中的缓解战略都至关重要。源解析包括用于获取有关一个或多个源在特定时间内对特定区域的影响的信息的各种技术。室内污染物浓度水平,受室内和室外源以及影响其物理化学特性的物理参数(如:通风、光照、温度、相对湿度、室外条件等)的控制,在空间和时间尺度上与室外有显著不同。虽然主要的室内来源已经被确认,但仍需要了解室外产生的污染物穿透室内对室内污染物浓度的贡献,以及上述参数对SA的作用。本文对2009年1月至2022年12月期间有关室内空气SA研究的科学文献进行综述,以便对未来室内空气SA研究提供指导。图文导读1、统计概述Fig. 1. a–c. Distribution of source apportionment studies (January 2009–December 2022) for indoor air by a) number of studies per country b) targeted pollutants c) SA method used.根据地理位置,有47%的研究在亚洲进行,34%在欧洲,15%在美国、加拿大和南美洲,2%在非洲,2%在澳大利亚和新西兰。在室内环境方面,48%的研究在住宅建筑中进行,29%在学校和大学建筑中进行,11%在办公楼中进行。此外,2%的研究集中在养老院,2%的研究集中在餐馆和酒吧,1%的研究集中在医院。7%的研究考察了具有特殊特征的室内环境(酒店、游戏中心、工业设施、教堂和购物中心)。36%的研究包括在两个或两个以上的季节取样。48%的研究包括室内和室外测量,52%的研究只包括室内测量。2、室内源解析方法PMF、PCA和CMB用于64%的室内SA研究。CMB模型的优点是,不需要输入大量数据,例如,不需要在采样位置重复测量。此外,CMB输出不需要额外识别贡献源/影响因素。该模型求解了源贡献,同时明确地考虑了每个物质同时存在的室内和室外源。但缺乏特定来源的化学特征的变化限制了该模型的应用。利用PMF和PCA方法对室内SA的研究较为丰富。它们已被应用于PM和VOCs的来源分配。主要优点是不需要来源的特定化学特征,通过对受体处获得的化学数据集的多变量分析来识别相关来源。所有的观测结果都可以放入一个大模型中。缺乏非负性约束是PCA和CMB的重要限制。3、目标污染物室内SA研究中最常用的PM组分是细颗粒物PM2.5,其次是PM10、PM1和超细颗粒物(UFP)。很少有研究关注总悬浮颗粒(TSP)、室内表面沉降尘埃和可吸入的PM或PM4。超过20%的研究对VOC、羰基和醛类进行了室内SA。确定这些有机化合物的室内来源具有挑战性,因为其中许多物质在室内和室外环境中有多种来源,其强度可能因温度、相对湿度和其他因素而有所差异。4、已知来源和贡献在每个室内SA研究中确定的源数量在2到13之间。绝大多数研究强调了室外源的作用。鉴定来源的数量和类型在很大程度上取决于SA方法中用作示踪剂的化学物质的选择。SA文献中考虑的室内污染源可分为以下几种:建材和家具、室内燃烧、烹饪、再悬浮、清洁和消费品、室内产生的二次污染物以及其他产品和活动。大约三分之一的研究中,两个或两个以上的来源作为组合或混合来源呈现。总结与展望各项研究中室外环境对室内空气污染物浓度的影响差异很大。典型的室外源对室内水平有不同程度的影响,其贡献大小可能因当地条件以及所选的 SA 技术而有所不同。由于室内发生的物理化学过程,室外污染物的化学特征在进入室内环境时会发生变化。相反,室内 VOC 排放的影响越来越被认为是室外 VOC 浓度的重要影响因素。这项工作强调了室内空气污染SA的一些研究空白,包括室内空气质量监测和数据选择的优化,以及将室内空气物理化学过程纳入已经制定的SA方法中。
  • 生态环境新标准!事关固定污染源废气测定!
    近日,生态环境部发布2021年第80号公告,推出两项生态环境标准,并准予发布。其中《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法》(HJ1240-2021)将于2022年6月1日起实施。谱育科技研制的EXPEC 1680便携式傅立叶红外分析仪参与了上海市环境监测中心组织的标准方法验证工作。EXPEC 1680便携式傅立叶红外分析仪+产品介绍EXPEC 1680是基于不同气体在红外光谱范围内不同特征吸收的特性,采用傅立叶红外分光原理和多元分辨校正方法,实现气体的定性、定量测量。仪器可用于燃煤/燃气电厂、垃圾焚烧厂以及钢铁厂等固定污染源烟气监测,也可用于环境空气中无机气体、部分有机气体的现场快速应急监测。高性能具有仪器便携性的同时,拥有高分辨率,波长范围宽的特点,其结构紧凑、可靠,适用于现场监测。高可靠性充分考虑实际使用工况,拥有更宽的温度、湿度的适用范围,保证户外现场的正常使用。高集成度仪器内置采样系统,实现自动温控,实现远程控制、连锁保护。自带北斗+GPS双定位系统,自动记录数据采集点信息,可溯源。高交互性仪器拥有8.4寸可视化触摸系统,仪器状态一目了然。内部集成了WIFI模块,极大地增强了仪器的通讯功能,实现了较远距离的通讯能力。全程伴热系统样品从采样系统至仪器内部气体室,全程均匀保温,温度可测、可控。防止冷凝水的产生,避免了气体成分在监测过程中的损失。多组分分析快速扫描得到全谱吸收光谱,可同时获取无机气体,有机气体的吸收峰,进行定性定量。EXPEC 1630在线式傅立叶红外分析仪+产品介绍EXPEC 1630是傅立叶红外分析仪的在线型仪器,采用高温伴热工作模式和长光程耐腐蚀气体池,用于超低排放、温室气体监测、危废/垃圾焚烧等固定污染源废气排放CEMS系统。具有数据高保真、设备低维护的特点。应用场景(1)危废/垃圾焚烧烟气排放监测,可测HCl、HF等多个因子;(2)污染源温室气体(CO2、CH4、N2O、SF6等)监测;(3)电厂、钢铁、水泥等多个行业超低排放监测,可同时监测SO2、NO、NO2、CO、CO2等多个因子;(4)SCR和SNCR系统氨逃逸监测,可监测处理工艺点前后NH3浓度。✦✦配套D-1000模拟烟气发生器谱育科技推出了一款集产生单标气、定量水气、模拟烟气(高浓度水气+高浓度CO2+高浓度N2+高浓度O2+其他气体组分)于一体的D-1000产品用于固定污染源监测仪器的检验与校准。D-1000 多路气体校准仪具有输出气体流量稳定、稀释浓度准确、操作简单等优点。尤其适合FTIR烟气分析仪的检验校准。
  • 固定污染源单组分挥发性有机物(VOCs)分析方案(下)-北京博赛德
    在固定污染源单组分挥发性有机物(VOCs)分析方案(中)-中我们讨论了 固定污染源单组分挥发性有机物(VOCs)分析难点及常见问题以及造成的原因。今天我们继续分享一些解决办法和方案,希望给到广大环境监测机构和企业一些思路。4 方法依据和解决方案为了满足固定污染源的监测需求,结合多个已经颁布的相关标准,北京博赛德科技有限公司针对该方法面临的难点,提供了多方面的解决思路,使方法更稳定,适用性更强。《固定污染源废气VOC的采样 气袋法》 HJ732-2014《固定源废气监测技术规范》 HJ/T 397-2007《固定污染源废气 VOCs 的测定气相色谱-质谱法》DB 50/T 679—20164.1 采样真实性方法用玻璃真空瓶采样,废气中所有组分都被采集,样品更真实,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。4.2 高沸点物质进样时的残留尽管玻璃材质本身惰性无吸附,但高沸点组分在常温下会产生凝结现象,因此本方法可选自动加热进样功能,提高高沸点物质的进样效率,大大降低了吸附。4.3 高沸点物质在整体系统内的残留4.3.1小体积定量环进样满足污染源的定量范围,又避免了污染物过量对系统造成的污染。4.3.2空阱聚焦空阱聚焦,可保证高沸点物质快速释放。4.4 自动添加内标方法可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。4.5 内标添加方式 方法采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致。4.6 扩展功能方法可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。5 结果展示 由谱图可见,高沸点物质灵敏度高。经方法验证数据可知,所有可测组分精密度高、准确度合格。烷烃、烯烃、芳香烃、卤代烃类组分响应稳定,检出限低;醛、酮、酯类物质检出限虽高于烃类物质,但响应稳定,可准确检测中低浓度以上的该类化合物。6 结论空气中挥发性有机物检测。本方法用玻璃真空瓶采样,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。可自动加热进样,大大降低了高沸点物质的吸附。小体积定量环进样,空阱聚焦,可保证高沸点物质快速释放,提高灵敏度。可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致,内标可准确反映样品在系统内的状态,增加检测的准确性。可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。 希望这篇纷享方案为全国的环境监测机构、各企业自查自检提供一些的支持,早日实现低碳环保的生态环境。
  • 在线有机碳元素碳分析仪用于重要大气污染源研究
    日前,我公司的气溶胶在线有机碳/元素碳分析仪完成在中科院山西煤化所的安装和培训。此产品将用于模拟各种煤燃烧污染源的气溶胶颗粒中有机碳,二次气溶胶碳,黑碳的排放特性研究,此仪器可为研究过程提供连续的相关重要数据,为大气污染源的监测工作提供科学保障。 已有的科学研究表明,我国的煤燃烧排放污染是空气污染中的一个非常重要的因素,我国正处在清洁能源替代高污染能源的转型期。 相关知识介绍: 大气气溶胶中2.5微米以下粒子中有机碳元素碳一般在空气总粒子占比达到30-70%,是严重危害人体健康的有效危害成份,研究证明:其危害程度甚至超过吸烟 的危害. 大气污染物中元素碳/有机碳的直接连续含量测量,可以轻易剔除很容易造成数据失真的空气中水份等无伤害数值,直接评价大气中有机物和碳类无机物污染真实状态和对生物伤害程度. 大气气溶胶有机物含量的 连续原位监测是在环境科学领域清晰,有效定量区分雾和霾的有效化学原理的仪器分析方法.可以获得以小时或分钟计的实时原始数据(不可再生),并可有效消除离线分析前采样中,运输中的样品误差(很多情况下这种误差不小于10%)。 大气气溶胶粒子中元素碳/有机碳含量的监测已成为国际上关注的热点,我公司在线大气气溶胶有机碳/元素碳分析仪产品符合NIOSH-5040和ASTM -D6877-03标准,并获得EPA-ETV认证,我公司的产品现已在长三角,株三角,北京等重点地区初步建成多点网络连续监测,使我国的大气气溶胶有机碳/元素碳的监测水平同发达国家同步. 这些大量连续累积灰霾监测宝贵数据的获得,使我们国家拥有了大气气溶胶空气环境质量评价更多的话语权。 我公司提供的元素碳/有机碳分析仪同时具备监测黑碳成份的能力,对太阳辐射水平,灰霾,沙尘传输等气象研究也提供了有力的工具. 热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准- NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量.使用此仪器还可以估算出重要的二次气溶胶碳(SOA or SOC)数据。 中国科学院山西煤炭化学研究所:前身是中国科学院煤炭研究室,于1954年在大连中国科学院石油研究所(即现在的中国科学院大连化学物理研究所)挂牌成立。1961年,煤炭研究室扩建为中国科学院煤炭化学研究所并开始向太原搬迁。1978年9月改名为中国科学院山西煤炭化学研究所并沿用至今。 建所以来,山西煤化所以满足国家能源战略安全、社会经济可持续发展以及国防安全的战略性重大科技需求为使命,以协调解决煤炭利用效率与生态环境问题和重点突破制约国家战略性新兴产业发展的材料瓶颈为目标,围绕煤炭清洁高效利用和新型炭材料制备与应用开展定向基础研究、关键核心技术和重大系统集成创新,逐渐由一个只有64人的实验室,发展壮大为从基础研究到工艺过程开发直至产业化的体系较为完备且在国内外相关领域具有重要影响力的现代化研究所。截至2013年底,全所在职职工580人,其中科技人员452人,中科院院士1人,“千人计划” 2 人,“百人计划”10人,研究员及正高级工程技术人员58人,副研究员及高级工程技术人员125人。
  • “捕捉”PM2.5污染源 一小时即可
    p style="text-align: center "img width="600" height="397" title="hx.jpg" style="width: 600px height: 397px " src="http://img1.17img.cn/17img/images/201707/insimg/deebce0e-6551-46d2-a871-3ff53707f64f.jpg" border="0" vspace="0" hspace="0"//pp  近年来,“灰霾”影响了市民日常生活,也让越来越多市民关注一个专业术语“PM2.5”。/pp  国家“千人计划”专家、暨南大学教授周振创办的中国第一家专业质谱公司——广州禾信仪器股份有限公司(以下简称“禾信仪器”),花大力气转化科研成果,研发制造的空气PM2.5监测“神器”已在全国100多座城市应用。/pp  近日,记者实地探访了位于广州科学城的禾信仪器,利用空气PM2.5监测“神器”在线单颗粒气溶胶质谱仪,可在一小时内精确地“捕捉”到污染源,破解了空气污染治理的世界性难题。/pp  ●南方日报记者 吴少敏 杜玮淦/pp  实习生 屠乐天/ppstrong  1 创办中国第一家专业质谱公司/strong/pp  如果一项工作做到极致,满分是1分的话,那么研发质谱仪的每一项成果都要达到0.9分以上,且最终要数十个甚至上百个0.9分的叠加,才能做出一台质谱仪——周振形象地说明了质谱仪研发的难度。/pp  “咚”……至今,想起那声清脆钟声,周振依然心潮澎湃。今年4月,周振带着15人团队在北京敲钟,见证禾信仪器挂牌新三板这一里程碑时刻。/pp  从零开始,到缔造一家高科技上市企业,周振用了13年时间 但“做中国人的质谱仪器”的梦想,却早已在他心中燃烧了26年。/pp  1991年,在厦门大学读仪器工程专业的周振,开始接触到质谱仪。据介绍,质谱仪用于观测“看不见的世界”,直接测量物质的原子量和分子量,是现代科学研究最重要的基础工具之一,也代表着一个国家在高精尖科学技术的水平。据统计,在国民经济发展中,环境、药物、食品和国家安全等60%以上的领域,都涉及使用质谱仪进行监测检测。但国内使用的质谱仪,几乎全部依赖进口,每年进口额达到上百亿元。/pp  “为什么不研发中国人自己的质谱仪?”周振心中一直有这样的疑问。而随着研究的深入,周振发现:质谱仪的研发是一项系统工程,涉及数理化、机械、电子、计算机、真空、材料等各个科学领域。“如果一项工作做到极致,满分是1分的话,那么研发质谱仪的每一项成果都要达到0.9分以上,且最终要数十个甚至上百个0.9分的叠加,才能做出一台质谱仪。”周振形象地说明了质谱仪研发的难度。/pp  在厦门大学获得化学博士学位后,1998年周振赴德国攻读物理学博士,继续向高精尖的质谱仪器研发前进。周振说,在德国他得到无网反射飞行时间检测器和垂直引入式飞行时间检测器专家的指导,并在2000年成功研制了垂直引入式飞行时间质谱仪,技术指标为当时国际同类仪器的最高水平。/pp  从2000年起,周振开始往返于欧美与中国,希望把这一技术在中国实现产业化。在2002年的中国广州留学人员科技交流会上,周振做了一个报告,提出“做中国人自己的质谱仪器”的目标。周振说,中国科学院院士傅家谟院士在听完周振的研发思路之后,很快便决定支持他们研发国产质谱仪,并个人资助20万元作为启动经费。”/pp  2004年,周振从美国携带家眷,拎着一箱资料和一箱价值10万元的零件,带上10万元存款,来到广州创办中国第一家专业质谱公司——禾信仪器。/ppstrong  2 破解追溯PM2.5污染源难题/strong/pp  没有质谱仪之前,要找到PM2.5的污染源,要离线采样、实验室分析、模型计算等,需要耗费数百万元和半年时间。但现在通过在线单颗粒气溶胶质谱仪,一小时内就能精确地“捕捉”到PM2.5的污染源。/pp  走进禾信仪器的办公楼,墙上的红字映入眼帘——做中国人的质谱仪器。/pp  在质谱仪研发实验室内,安静却紧张忙碌。技术人员正在使用一台在线单颗粒气溶胶质谱仪,测试空气中的PM2.5成分。空气一穿过,仪器屏幕上快速地显示出多种有机物、重金属等污染物质的变化信息。/pp  “没有质谱仪之前,要找到PM2.5的污染源,不仅需要耗费数百万元,而且花费半年时间。”周振说,“现在通过在线单颗粒气溶胶质谱仪,一小时内就能精确地“捕捉”到PM2.5的污染源。”/pp  在成功研发出在线单颗粒气溶胶质谱仪前,周振走过了一段艰辛的创业路。像很多创业公司一样,很快遇到了资金、人才瓶颈。公司里只是一个4人团队,账户上有百万元研发资金,但两年后遭遇资金寒流,公司账户上只剩下2万元。“一边勒紧裤腰带过日子,一边没日没夜搞研发。”周振用这句话说明创业期迈过的“坎”。/pp  拐点出现在2009年。这一年,周振入选了国家“千人计划” 差不多同期,广州科技风险投资给了第一笔股权资金500万元,公司的资金压力慢慢缓和。/pp  2010年,周振团队推出国内尖端商品化质谱仪器——在线单颗粒气溶胶质谱仪,应用于环境监测,解决灰霾污染源在线解析这一世界性难题。2014年,环保部下发了《关于开展第一阶段大气颗粒物来源解析研究工作的通知》,寻找污染物源头的工作拉开序幕,大部分省会城市要在2015年底,地级以上城市要在2016底摸清PM2.5的主要来源,利用在线单颗粒气溶胶质谱仪进行PM2.5在线源解析,成了关键突破点。/pp  “没有质谱仪之前,我们检测空气的PM2.5污染源,要离线采样、实验室分析、模型计算等,需要耗费数百万元和半年时间。现在通过在线单颗粒气溶胶质谱仪,一个小时内就能精确地‘捕捉’到空气中PM2.5的污染源。”周振说。/pp  如今,在线单颗粒气溶胶质谱仪已在100座城市应用,监测空气中的PM2.5污染源,为国家治理环境节约上百亿元,并且在多个盛会中,在监测空气质量方面发挥了不可替代的作用。/ppstrong  3 打造质谱仪研发世界级“军团”/strong/pp  近两年来,广东出台多项激励科技创新的政策,给高校科研人员“松绑”,引导高水平大学、高水平理工科大学建设单位和科研人员,主动对接服务企业转型升级和区域经济发展,为创新驱动发展提供人才、智力和技术支撑。/pp  在实验室里,周振指着另外一台大型质谱仪说,“历时6年时间研发,这台国家重大科学仪器设备即将‘出生’。”/pp  2011年,禾信仪器牵头启动国家重大科学仪器设备开发专项,吸引了14家知名大学和研究所参与,研发国内首台广泛用于制药、临床试验等领域的新型高分辨率杂化质谱仪。/pp  像这样,由一家民营企业牵头国家重大科学仪器设备开发专项,联合高校和科研院所研发新型高分辨率杂化质谱仪,并不多见。近两年来,广东出台多项激励科技创新的政策,给高校科研人员“松绑”,引导高水平大学、高水平理工科大学建设单位和科研人员,主动对接服务企业转型升级和区域经济发展,为创新驱动发展提供人才、智力和技术支撑。/pp  “现在大学教授有成果就可以大胆地转化。”周振笑着说,公司迅速发展、快速上市,得益于暨南大学高水平大学建设的大刀阔斧改革:学校下大决心、花大力气鼓励科研成果转化,彻底破解产学研的“两张皮”问题。其中,周振发挥了双重“身份”优势——既是大学教授又是企业老板的他,打通了科研成果转化的“最后一公里”,实现了政府引导、高校科研成果、市场前沿、用户应用及社会贡献的无缝对接,服务于地方经济社会、创新驱动发展。/pp  禾信仪器研发投入占营业额的36%,坚持以技术为发展驱动力。如今,团队成员从当初4人增加到今天的240人,其中博士14人、硕士78人、国外兼职教授3人、院士顾问5人,形成了国内最大的质谱仪研发、生产和销售“军团”。/pp  禾信仪器发挥灵活机制,多方合力研发新一代质谱仪。至今,禾信仪器承担了3项国家“63”计划、2项国家重大科学仪器设备开发专项、4项省部级重大科技项目,并与多所顶尖高校和科研院所合作,完成中国新一代质谱仪自主创新研发。/pp  “用一颗火热中国心,做中国人的质谱仪器。”周振表示,未来几年内还将推出两三款商品化质谱仪器,整体技术水平都属于国内首台或国际首创。/pp /p
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)-北京博赛德
    在 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)我们介绍了气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的前期准备:配件和预制校准曲线工作事项。今天我们继续介绍样品的采集与稀释、空白测试以及样品分析工作过程。2.样品采集和稀释2.1样品采集使用气袋法采样系统进行样品采集,参考HJ732。图1 气袋采样系统 2.2样品稀释样品稀释步骤如下:(1)使用气袋采样系统进行样品采集;(2)使用玻璃注射器取体积为 Vn的氮气,注入干净的气袋中;(3)使用玻璃注射器取体积为 Vs 的样品气,注入同一气袋中;(4)使样品气与氮气充分混合均匀,并尽快分析。稀释倍数按公式(1)计算: f=Vs+Vn/Vs 公式(1)式中:f ——稀释倍数;Vs——样品气体积,ml;Vn ——氮气或洁净空气体积,ml。注:若条件允许,使用气体稀释装置进行稀释。3.空白测试将高纯氮气冲入气袋并连接BCT仪器,做空白测试。4.样品分析4.1预调查和预检测预调查:在测试前,应事先调查污染源情况,如行业排放标准所列的常见挥发性有机污染物等。预检测:开启SURVEY速查方法,运行20~30s空白作基线;将装有样品的气袋连接BCT仪器,响应值上升,并稳定下来(约持续10~20s即可)后,移走样品;再运行10~20s使响应值回归到基线。通过TIC响应值来预估样品浓度,并衡量稀释倍数。 图2 Survey实时谱图 4.2样品测试根据预调查和预检测,按照2中的方法进行样品采集和稀释后选合适的方法进行测试。按以下两种情况进行:速查结果谱图的TIC_MAX≥500万,选择高浓度系列方法;TIC_MAX<500万,选择低浓度系列方法。 未完待续
  • 山东省发布《山东省固定污染源废气 低浓度颗粒物的测定 重量法》
    我们通常所说的固定污染源废气,也就是工业废气在排放时是需要经过处理的,必须要达到国家废气对外排放标准。 废气对人体的危害是极大的,世界卫生组织称,2012年空气污染造成约700万人死亡(部分人死亡原因与室内/外空气污染均有关),也就是全球每八位死者中就有一位。大气污染物对人体的危害是多方面的,主要表现是呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病。 为了控制工业废气排放浓度,各级政府分别出台相关奖励措施给予限排企业一定的补贴。山东省在全国率先制定《山东省固定污染源废气 低浓度颗粒物的测定 重量法》以弥补对低浓度颗粒物检测的空白。 我公司生产的“崂应3012H-D型 便携式大流量低浓度烟尘自动测试仪”正是针对此类烟尘检测的仪器,自上市来深受广大用户好评,此次标准的修订我公司应邀前往参与意见审核,经多次会谈与现场测试终于促成“标准”的出台。 采样中的滤膜是什么材质的? 我们通常采用的滤膜有石英滤膜和玻璃纤维滤膜等等。 石英滤膜由超纯的石英纤维素制成,不含玻璃纤维或黏合剂树脂。纯石英合成物可防止滤膜与酸性气体发生反应,这使得石英滤膜非常适用于重金属浓缩物及少量颗粒的检测。石英膜同时具有良好的重量和结构稳定性。像我们的产品“废气智能重金属采样仪”、“废气智能二噁英采样仪”等采用的就是石英滤膜。 玻璃纤维(glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。玻璃纤维滤膜中含有少量的易燃烧或易解灰化物质,在烟尘的高温采样过程中会产生滤筒失重现象,因此,必须对滤筒进行高温处理。由于纤维滤膜成本较低深受广大用户的青睐。像我们的产品“自动烟尘(气)测试仪”、“空气/智能TSP综合采样器”采用的就是玻璃纤维滤膜。
  • 污染物源解析有望拉动空气监测仪器需求
    环保部报告要求直辖市、省会和计划单列市启动污染物来源解析工作  3月26日发布的《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》明确了14年大气环境质量监测任务:1、推动第三阶段空气质量新标准检测能力建设;2、各直辖市、省会城市和计划单列市要启动污染物来源解析工作。根据13年环保部颁布的《大气颗粒物来源解析技术指南》,源解析的技术方法有四类,其中三类涉及监测,在监测数据的基础上通过建立模型得出解析数据,我们认为这对空气在线监测仪器及相关实验室仪器存在需求拉动。  VOCs在线检测和治理可能成为14年环保领域亮点  VOCs(挥发性有机物)指以气态分子形态排放到空气中的56种非甲烷碳氢化合物,是PM2.5最主要来源,污染源解析的推出正是为了剖析成因并为大气污染治理作准备,据媒体报道,政府未来将专门针对VOCs排放征收排污费,我们认为VOCs监测和治理有望成为环保领域新的增长点。  业内公司正进行该领域的技术和产品储备  聚光科技已经拥有VOCs和重金属在线监测产品,且旗下子公司清本环保正是从事VOCs治理工程业务;行业内其他公司包括先河环保和雪迪龙。  中国监测行业市场空间有望进一步打开且国内公司的市场份额有望提升  首先我们认为中国监测行业增速将加快:1、除1326个国控点外地方也在增加空气站点,点数有望倍增;2、空气污染源的监测需求正从火电厂拓展至其他重污染行业;3、水质监测方面,政府不断出台针对流域、地下水和行业排放的新政。其次,我们认为中国公司研发实力快速提升,产品性价比高,有望提升市场份额。
  • 媒体三问广西龙江镉污染源
    约20吨镉泄漏,波及河段将达300公里,镉污染高峰值从80倍降到25倍……龙年伊始,广西龙江河镉污染事件引发舆论持续关注。最新信息显示,经过对涉重金属企业排查,目前已对涉嫌违法排污的2家相关企业的8名责任人依法刑事拘留。谁是肇事污染源?“中国有色金属之乡”缘何频发重金属污染?监管部门职责何在?  疑问一:镉泄漏量20吨之巨 “元凶”是否两家企业?  广西龙江河突发环境事件应急指挥部最新通报称,“龙江镉污染事件中涉嫌违法排污的金城江鸿泉立德粉材料厂等相关企业,目前有7名相关责任人已被依法刑事拘留”。金城江鸿泉立德粉材料厂首次浮出水面。加上之前公布的涉嫌企业广西金河矿业股份有限公司,共有2家企业涉嫌。  2012年1月15日,广西河池市境内的龙江河宜州拉浪水电站内网箱养鱼出现死鱼现象,当地环保部门采样检测发现,龙江河宜州拉浪码头前200米处重金属镉含量严重超标。据参与事故处置的专家初步估算,此次镉污染事件镉泄漏量约20吨,泄漏量之大在国内历次重金属环境污染事件中实属罕见,波及河段将达到约300公里。  1月31日上午,在河池市金城江区环保部门工作人员的带领下,记者来到金城江鸿泉立德粉材料厂,这是一家小型工厂,三面环山,一路之隔就是龙江河,此时已人去楼空,只有几名公安人员在值守。工厂的排污口是一口深近10米、直径1米有余的暗井,直通地下暗河。  河池市金城江区环保局纪检组长蓝群峰介绍,根据调查,这家企业主要进行重金属铟的提炼,镉是提炼铟的伴生物。  这样一家小型企业年产镉的规模多大?是否有能力造成此次环境污染事件?对此,河池市环保局局长吴海悫说,目前可以确定的是金城江鸿泉立德粉材料厂违法生产、违法排污,但是这家企业产品规模有多大,其中镉的产量有多大,能否造成此次镉污染重大环境事件,还有待专家组的调查、评估。  当日,记者又到广西金河矿业股份有限公司进行调查。1月25日,河池市有关方面发布消息称“污染源已初步查明,来自广西金河矿业股份有限公司”。但是到了28日,这一部门又发布消息称,这家公司废渣堆放场所未达到国家标准,成为污染源嫌疑企业之一。  记者在这家公司看到,其渣场三面环山,如同一个中型广场大小,全部被巨大的塑料布所遮盖,一旁是半个篮球场大小的巨坑。公司副总经理李孟凡称,公司是一家集有色金属矿探、采、冶等于一体的综合型企业,其中回收镉的能力为每年350至400吨,公司有1994年相关设计院的环评报告。然而,记者了解到,这一渣场并不符合如今的环保标准,金河矿业的渣场于2009年就被要求整改,然而在此次排查中仍未完成。  2月1日,河池市环保局局长吴海悫表示,广西金河矿业股份有限公司的废渣堆放量是5万吨左右,根据调查,废渣堆放存在不规范的地方。  另据了解,金城江区目前有7家较大的重金属冶炼企业,其中涉及镉提炼的较大企业有3家,金城江成源冶炼厂是另外一家。工厂主管生产的副总经理彭庆奎告诉记者,成源冶炼厂主要生产铅和锌,镉属于在提炼过程中伴生的一种重金属,工厂一年的产量大概6.4吨,而且从去年7月以来就停止提炼镉,“就算我们的镉全部提炼,并且直接排放到龙江河中去,也不足以酿成这么大的事故。”彭庆奎说。  虽然离事件发生已经半月有余,虽有两家企业涉嫌,但谁是广西龙江镉污染重大环境事件的“祸首”?河池市委副书记秦斌2月1日在接受记者采访时说,目前还要根据产量、产能还有未处理的废水的镉含量,才能最终确定造成这次事件的排污企业,所以污染源的调查还未结束。  疑问二:立德粉企业无治污设备,监管部门有多大漏洞?  有关部门调查发现,金城江鸿泉立德粉材料厂2007年建厂,最早注册时生产立德粉,后来偷偷进行重金属铟的冶炼,并且没有任何治污设备。这样一家典型的“挂羊头卖狗肉”的企业缘何能隐身多年?相关部门监督职责何在?  蓝群峰告诉记者:“这家企业最早准备生产立德粉,但是由于种种原因,实验没有成功,就停产了。平常监管部门来的时候都是大门紧闭,里面也没有太大动静,所以也没有引起注意。”  记者发现,只要通过山路爬上工厂后面的山坡,这家工厂大院内的情况几乎一览无余,“平时大门紧闭,监管部门不易进入”的说法显然很难解释监管的漏洞。  冶炼重金属属于高耗能产业,对于记者“一家表面停工的企业,它的用电异常情况是否应该引起相关部门的注意”的提问,吴海悫表示,这涉及多个部门,他也不能解释。  当记者问及广西金河矿业股份有限公司的渣场2009年就被要求整改,但至今仍未完成的问题时,公司副总经理李孟凡说:“完全处理这个渣场,我们便会亏损,所以才拖到现在。”  吴海悫也向记者坦承,相关部门对企业的监管也有一定责任。“不规范的渣场,我们都下有文叫整改,但是他不整改。像渣场那么大,做起来也不容易,能拖就拖。”  “发生这些污染事故,说明目前我们部门在职责上有待进一步明确。”河池市副市长李文纲说,在此次事故发生后,河池市组织多人对企业进行排查,检查出部分无证照的小矿冶厂和闲置矿堆,这种情况包括环保、土地等多部门都可管理,职责并不明确,河池将成立综合执法部门解决这一问题。  李文纲告诉记者,基层监管力量、技术力量薄弱也是监管不力的重要原因之一。宜州市一名基层环保人员告诉记者,现在宜州市有规模以上的企业40多家,但监察大队只有数名执法人员。  处置龙江河突发环境事件专家组专家、国家环境保护部华南环境科学研究所副所长许振成表示,环保部门应对这类企业对整个污染物的处理过程进行全程监控。“对于冶炼企业使用的原料,相关元素成分,提取了多少,剩余的部分又到了哪里,这些监管部门都应掌握。”  疑问三:“有色金属之乡”污染频发,环保治理弱到何时?  有“有色金属之乡”之称的龙江,境内锡、锑、锌等矿产储量丰富,其中锡金属储量占全国的三分之一。多年来,河池已发生多起重大重金属污染事件。  2001年6月,河池遭遇暴雨,30多家选矿企业的尾矿库被冲垮,大量酸性物质和重金属将两岸万亩良田尽毁 2008年10月,河池市金城江区东江镇一家冶炼企业含砷废水外溢污染,共发现450多人尿砷超标 2011年8月,河池市南丹县31名儿童发现高铅血症。  对于重金属污染事件频发的原因,当地一些官员称“河池属于喀斯特地貌,地下溶洞非常发达”。记者调查发现,事实并非如此简单。有色金属产业作为河池市的支柱产业,布局分散、混乱,当地一些冶炼企业大多分布在河池城区龙江河附近,相当一部分设施落后 由于难以一次性处理,当地要求企业逐步整改,但企业整改却长时间不能到位。  “必须将所有冶炼企业统一搬迁至工业园区内,切断污染源,才是解决河池污染事件频发的最终途径。”当地一名官员说。在河池市金城江区五圩镇,一个15.8平方公里的工业园区已经建立。“这个工业园区下面没有溶洞,没有地下河,如果所有冶炼企业搬来,将能在很大程度上切断企业污染源。”河池市金城江工业集中区管委会主任韦艺芳说。  然而,目前搬迁状况不容乐观。在工业园区已投产的冶炼企业只有3家。韦艺芳说,大多数企业仍持观望态度。“他们在河池城区有地,多数企业还在掂量地方政府会给予什么样的优惠政策。”韦艺芳说。  经历龙江镉污染这次污染事件之后,人们期待当地的产业结构调整和环保治理能够动真格。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制