当前位置: 仪器信息网 > 行业主题 > >

民用手持激光测距仪

仪器信息网民用手持激光测距仪专题为您提供2024年最新民用手持激光测距仪价格报价、厂家品牌的相关信息, 包括民用手持激光测距仪参数、型号等,不管是国产,还是进口品牌的民用手持激光测距仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合民用手持激光测距仪相关的耗材配件、试剂标物,还有民用手持激光测距仪相关的最新资讯、资料,以及民用手持激光测距仪相关的解决方案。

民用手持激光测距仪相关的资讯

  • 全球最大流动卫星激光测距仪在武汉研制成功
    记者从位于武汉的中国地震局地震研究所获悉,全球最大流动卫星激光测距仪近日研制成功。  该仪器长10米、宽2.5米、高3.9米,其望远镜口径达到1米,居世界同类仪器之首,采用半挂车运载,具有白天观测能力。  项目负责人、中国地震局地震研究所研究员郭唐永介绍,该测距仪的研制为国家重大科学工程“中国大陆构造环境监测网络”支持的项目,它可用于观测3.6万公里远的地球同步卫星,测距精度达毫米级。去年底曾在湖北咸宁进行首次流动观测(如图),并成功观测到地球同步卫星。  其观测原理为:仪器通过对卫星发射激光,并根据激光反射回来的时间,来测算卫星运行的高度和轨迹。
  • 452万!河北省特种设备监督检验研究院邯郸分院计划采购激光测距仪等仪器设备
    项目概况仪器设备采购招标项目的潜在投标人应在在河北省公共资源交易信息平台(http://www.hebpr.cn//)自主网上报名,下载招标文件及相关资料,并及时查看有无澄清和修改。获取招标文件,并于2022年05月16日09点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:HBHY(2022)-02-11项目名称:仪器设备采购预算金额:4520000最高限价(如有):A包:2563500元;B包:1956500元。采购需求:采购便携式高温腐蚀度检测仪、激光测距仪、安全阀在线校验仪等共29种仪器设备。合同履行期限:自合同签订之日起30日内;本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目专门面向小微企业采购。3.本项目的特定资格要求:无三、获取招标文件时间:2022年04月25日至2022年04月29日,每天上午9至12,下午14至17(北京时间,法定节假日除外)地点:在河北省公共资源交易信息平台(http://www.hebpr.cn//)自主网上报名,下载招标文件及相关资料,并及时查看有无澄清和修改。方式:其它售价:0四、提交投标文件截止时间、开标时间和地点2022年05月16日09点00分(北京时间)地点:河北省公共资源交易服务平台网上开标大厅五、公告期限自本公告发布之日起5个工作日。十、其他补充事宜1.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加同一合同包下的采购活动;2.凡有意参加本项目的供应商须按 “河北省公共资源交易中心关于招标代理机构及投标人(含政府采购供应商)进行登记注册的通知”及时在河北省公共资源交易中心进行注册并验证。因供应商自身的原因未能及时完成注册并验证通过的,将会导致报名不成功,其后果自行承担。3.投标文件递交办法:1)本次招标为电子招投标,投标文件采用数据电子文件,投标人可通过河北省公共资源交易服务平台在线参与开标。2)投标人应在投标截止时间前通过“河北省公共资源全流程电子交易系统”上传加密的电子投标文件。3)在线递交电子投标文件前,投标人应当使用投标客户端及CA为投标文件加密(编制投标文件需使用河北CA,未办理CA的供应商/投标人,需进行企业CA注册,具体事宜可联系0311-66635531)。4.公告发布媒体:中国河北省政府采购网、河北省公共资源交易平台十一、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:河北省特种设备监督检验研究院邯郸分院地 址:邯郸市丛台区友谊路2号联系方式:0310-31730892.采购代理机构信息(如有)名 称:河北华业招标有限公司地 址:河北省石家庄市红旗大街25号联系方式:0311-830338663.项目联系方式项目联系人:闫宏亮、叶媛电 话:0311-83033866
  • 记国家光电测距仪检测中心
    成立于1988年的国家光电测距仪检测中心(中测国检(北京)测绘仪器检测中心)是目前我国测绘行业惟一获得国家质量监督检验检疫总局专项计量授权的国家级测绘仪器检定机构和新仪器定型鉴定机构,是国家认证认可监督管理委员会直属监督管理的国家级测绘仪器检测中心。其主要业务方向和研究领域包括:  计量检定——以计量法、测绘法为依据,在全国范围内依法开展测距仪、全站仪、经纬仪、GPS接收机、水准仪等测绘仪器的计量检定 受国家质量监督检验检疫总局委托,依法开展国内外测绘仪器新产品的定型鉴定,依法严把进口和国产测绘仪器新产品的质量关   科学研究——以科技创新为主导,建立具有国际先进水平的计量标准装置 利用技术优势,致力于国家测绘计量标准体系建设和完善,引领行业发展和技术进步   技术服务——为国内计量行业提供计量标准建设、软硬件研制等技术支持 为国家重大工程的仪器选型和质量控制提供技术方案和支持。  为保证国家量值统一和测绘成果的准确可靠,检测中心依法面向行业和社会开展测绘仪器计量检定,进行量值传递工作,并为广大客户提供测绘仪器检校、维修、测试及技术咨询等服务。从成立之初至今,累计完成各种种类、型号测绘仪器检测量达5万余台,为保证测绘仪器(尤其是大地测量仪器)质量及国家测绘成果的量值统一作出了重要贡献。  作为国家质量监督检疫检验总局授权的技术机构,检测中心承担着国外进口和国内测绘仪器新产品的定型鉴定工作,自2002年以来共完成国内外各种测绘仪器新产品定型鉴定100多个系列和型号。这项代表技术水平与综合实力最高水准的工作,得到政府部门的大力支持和信任,为国内外测绘仪器新产品的市场准入起到了决定性作用。  经过20多年的不懈努力,检测中心不仅注重硬件设施的投入与建设,而且培养了一支专业技术能力强、综合素质高的检测队伍和具有创新意识的科研队伍,在为社会提供优质计量检定服务的同时,在测绘计量技术研究、计量标准建设和计量标准器具研制及应用等方面一直处于国内领先,部分项目达到国际先进水平,为保证国家测绘成果质量和全国测绘量值统一作出了贡献。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 中国科学院国家天文台长春人卫站自主研制的近红外单光子探测器成功实现卫星激光测距
    近日,中国科学院国家天文台长春人造卫星观测站自主研制的近红外单光子探测器成功实现了卫星激光测距。长春人卫站激光测距研究室的研究人员利用先进的数值仿真技术、器件工艺以及外围控制驱动技术,自主完成了近红外单光子探测器的结构设计、电路优化以及器件制备。近红外单光子探测器经中科院上海天文台测试并应用于1064nm近红外激光测距系统,成功获取地球同步轨道卫星北斗G1的观测数据,单次测距点数高达31446点,测距精度为1.42cm,与常规的532nm激光测距相比,系统回波探测率提高3-4倍;器件性能与美国PGI研制的同样采用SAGCM设计方案的近红外单光子探测器水平相当。 长春人卫站研制出国内首款近红外激光测距单光子探测器,不仅打破了国外技术封锁及市场垄断,推动我国先进光电探测仪器向小型化、高可靠、高稳定方向持续发展,更为我国自主建设空间碎片测距系统、开展激光测月等国家重大工程任务提供可靠有效的工具和手段。
  • 全球首款电池驱动式IP54防护标准的绝对激光跟踪仪推出
    Hexagon计量产业集团推出全球首款电池驱动式IP54防护标准的绝对激光跟踪仪     新型Leica绝对激光跟踪仪AT401集合多项全球首创技术特点:1. 全球首款可由电池驱动、实现无线操作的激光跟踪仪;2.全球第一款具备IP54防护标准(防尘,防水…)认证的激光跟踪仪;3.极致轻便小巧,在同类产品中重量最轻;4.高精度大量程;5.整合了能量锁 (PowerLock)和目标自动识别(ATR)等业内先进功能,使得三维激光跟踪仪的应用操作变得空前的简易。  2010年4月28日,Hexagon计量产业集团宣布了Leica绝对激光跟踪仪AT401正式面市的消息。这一全新的激光跟踪仪拥有先进的电源管理系统,含两块电池,且允许电池热切换,并可以通过以太网供电运行(PoE+) 集成的WiFi,使得AT401成为一台真正的无线移动式测量机。该系统经过IP54等级认证,不受液体、焊接飞溅物、灰尘干扰,甚至适应雨中操作。  AT401含控制系统在内总重仅为8 KG,高度仅为29 cm,极小的外形结构使得AT401可以在大多数国际航班上作为手提行李进行运输。新型Leica 绝对激光跟踪仪AT401树立了行业便携的新标准。  AT401在水平和垂直轴方向都能实现无级旋转,当快捷释放把手被移走时,AT401在垂直方向的全测量范围将达到+/- 145º ,测量范围高达320m。AT401中的绝对测距仪(ADM)在其全精度认定范围内的最大测量不确定度仅为10微米,并配备多项先进的Leica工业测量技术,如能量锁(PowerLock)光束恢复、目标自动识别(ATR)、免维护Piezo驱动和重力传感器的测量级别精度水准等。  Leica AT401绝对激光跟踪仪推动了激光跟踪仪在尺寸、重量、量程、精度和可操作性等多方面的进步,并为激光跟踪仪的精度设立了新标准。目前,激光跟踪仪已经广泛分布于航空航天、工程机械、风电、水电、船舶行业及关注大部件和远距离的科学研究中,而Leica AT401绝对激光跟踪仪的创新将会在此基础上大大拓展激光跟踪仪的应用范围。  关于Hexagon计量产业集团  Hexagon计量产业集团隶属于Hexagon AB集团,其麾下拥有全球领先的计量品牌,如Brown & Sharpe、CE Johansson、CimCore、CogniTens、DEA、Leica工业测量系统 (计量分部)、Leitz、m&h、Optiv、PC-DMIS、QUINDOS、ROMER、Sheffield、Standard Gage和TESA。Hexagon计量产业集团代表着无可匹敌的全球客户群,数以百万计的坐标测量机(CMMs)、便携式测量系统、在机测量系统、光学影像测量系统和手持式量具量仪,以及数以万计的计量软件许可。凭借精密的几何量测量技术,Hexagon计量产业集团帮助客户实现制造过程的全面控制,确保制造的产品能够精确的符合原始设计的需要。该集团为全球客户提供测量机、测量系统以及测量软件,并加之以完善的产品技术支持和售后增值服务。更多信息请登录www.hexagonmetrology.com.cn  海克斯康测量技术(青岛)有限公司  地址:青岛市株洲路188号 邮编:266101  电话:0532-8089 5188 传真:0532-80895030  网址:http://www.hexagonmetrology.com.cn  E-mail:info@chinabnsmc.com
  • 福建省计量院“全站仪测距精度校准能力计量比对”中取得满意结果
    福建省计量科学研究院始建于1960年,现隶属于福建省市场监督管理局,是福建省属社会公益型科研事业单位,是依法设置的全省最高法定计量检定机构。承担国家法定计量检测任务,同时开展计量技术研究,为促进产业创新、提升产品质量提供技术支撑。   日前,由中国计量院作为主导实验室的国家计量比对项目“全站仪测距精度校准能力计量比对”结果公布,福建省计量院5个测段的比对结果|En|值均小于1,比对结果满意。   此次比对在中国计量院昌平科研基地进行,全国共有13个省市的计量和测绘实验室参加比对。通过比对验证了福建省计量院标准长度基线场稳定可靠,人员的技术能力突出,从而可确保我省全站仪测距的准确可靠和量值统一,能够为我省桥梁、隧道、港口、码头等大型工程建设安全生产保驾护航。   全站仪,即全站型电子测距仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。   全广泛应用于测绘、勘测、建筑施工等领域,仪器距离测量准确与否直接关系到工程建设质量和施工运行安全。福建省计量院长度所每年为数百家企业、科研事业单位提供全站仪测距测角技术服务,依托该院的标准长度基线场着力为企业解决了长距离激光测距中存在的难点问题,同时为企业研发新产品、产品升级、技术提升提供技术咨询与测试服务。
  • MIT研究团队打造新型红外测距系统,只需10美元成本
    p style="line-height: 1.75em " 由Li-Shiuan Peh带领的麻省理工计算机科学与人工智能实验室(CSAIL)研究人员团队,已经开发出一套有趣的新型红外深度感知系统。这套系统能够在户外使用,只需10美元的成本,就能够为智能机添加新技能。基于它,传统的个人代步工具——比如轮椅车和高尔夫球车——都可以轻松升级为自动驾驶车辆。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/e2ae0fd0-c714-40ca-a6f8-ca145065910c.jpg" title="d53f846893f96d1.jpg" width="600" height="400" border="0" hspace="0" vspace="0" style="width: 600px height: 400px "//pp style="line-height: 1.75em "  上面这套原型,用到了普通手机中的摄像头组件,以及拆自仅10美元的测距仪上的商用激光发射器。/pp style="line-height: 1.75em "  实际上,类似微软Kinect之类的实惠型测距设备,已经在客厅娱乐之外的很多领域(比如机器人工程),发挥出了远胜于以往的潜力。/pp style="line-height: 1.75em "  在拥有现成廉价配件的同时,研究人员们还希望做出一个快速原型,甚至基于此打造出一个能够感知环境和导航的机器人,而无需不断改造必要的技术。/pp style="line-height: 1.75em "  遗憾的是,以Kinect为代表的红外系统,对光线条件的要求略有点高。阳光、火焰、热源,都可以轻松让它们抓瞎。/pp style="line-height: 1.75em "  相比之下,能够发射高能红外脉冲的商业户外测距仪,已经在过去30年里变得相当普及,其损伤眼睛的风险也被降到了最低。然而这样的系统非常昂贵,动辄上万的花费不是谁都承担得起。/pp style="line-height: 1.75em "  MIT的解决方案是测量定时发射的低能脉冲(捕捉4帧视频、2× 测量反射光、2× 只记录周围的红外线),然后用后者减去前者来算出距离。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/7787b238-849f-4e82-9ac9-b75f9a4ee326.jpg" title="0d87e0dee312826.jpg"//pp style="line-height: 1.75em "  在当前原型中,MIT研究人员用到了30fps的智能机摄像头(延迟约1/8秒--但也限制了这套系统的精度--240fps的摄像头可实现1/60的延时),虽称之为“主动式三测角”(active triangulation),但仍通过相机的2D传感器来测量。/pp style="line-height: 1.75em "  CSAIL研究人员表示,在3-4米的范围内(10-12英尺),设备的精度可以达到毫米级。在5米(16英尺)的时候,则减到了6厘米(2.3英寸)。/pp style="line-height: 1.75em "  不过,团队已经在一辆由新加坡-麻省理工研究与技术联盟开发的高尔夫球车上安装试验过,在15km/h(9pmh)的速度下都能够实现合适的深度测量。/pp style="line-height: 1.75em "  在技术成熟之后,就可以通过“插件式”的方法,轻松打造出一辆自动驾驶的高尔夫球车、电动轮椅、无人送货飞行器、甚至机器人。/pp style="line-height: 1.75em "  该团队将在斯德哥尔摩召开的“2016机器人与自动化国际会议”上披露更多细节。/ppbr//p
  • 手持三维激光扫描仪在航空航天应用解决方案
    手持三维激光扫描仪采用非接触式测量方式,可以实现对飞机的无损检测。手持三维激光扫描仪具有检测速度快、数据全面、灵活性高等特点,可以应对复杂曲面、涡轮叶片、死角等难以检测部位的测量需求。  采用手持三维激光扫描仪对飞机零部件进行检测时,可以短时间内获取准确可靠的三维数据,并在三维软件中生成三维模型,与数模比对,从而获得偏差色谱图,得出完善的修正方案,大大提高检测效率,减少时间和人力成本。  三维计量解决方案保障飞行安全  面向工程的设计和逆向工程  手持三维激光扫描仪可以用于获取飞机或航天器的几何形状和尺寸。这对于工程设计、维护和改进非常重要。此外,该技术还可以应用于逆向工程,即根据现有物体的扫描数据进行数字化建模和重新设计。  空间测量和安全  在航空航天领域,精确的空间测量对飞行器的安全至关重要。手持三维激光扫描仪可以进行高精度的空间测量,用于检测构件之间的间隙、测量零部件的尺寸和形状,并评估飞行器的结构完整性。  飞机机翼检测  飞行中机翼的变形会严重影响飞机的空气动力性能,对其的定期检修至关重要。三维扫描仪可高效获取机翼的三维数据,细致捕捉机翼表面缺陷宽度、长度和深度,数据全面。  以上就是关于“手持三维激光扫描仪在航空航天应用解决方案”的具体介绍,如需了解更多关于手持3D扫描仪的信息,可联系赢洲科技。
  • 法如Faro推出全球最精确的大空间激光跟踪仪
    佛罗里达州玛丽湖 2009年9月 22日电 /美通社亚洲/ -- 世界领先的便携式计算机辅助测量设备与成像解决方案制造商供应商法如科技 (纳斯达克: FARO),今天宣布推出其最新款三维激光测量系统设备法如激光跟踪仪 ION:FARO Laser Tracker ION(TM)。 (图片: http://www.newscom.com/cgi-bin/prnh/20090922/FL76690 ) FARO Laser Tracker ION 是目前市场上最先进技术水平的激光跟踪仪,也是迄今最精确的激光跟踪仪,基于最常见测量应用开发而成。这款重量更轻的产品,提供了更大测量范围,并含有最快捷、最精密的测距系统集中式绝对测距仪 (aADM)。 FARO 首席执行官 Jay Freeland 表示:&ldquo FARO 的目标是不断提供能支持我们客户的先进解决方案。这不仅事关提供新产品,还要专注于长期合作关系,使他们拥有全球最好的产品和工艺。在当前的经济环境中,拥有测量结果令人信服的测量工具,同时减少高代价的重复工作并精简流程极为重要。ION 将帮助我们的客户促进他们保持竞争力所需的创新。&rdquo ION 具备的独家专利是 Agile ADM。FARO 跟踪仪产品部产品管理总监 Ken Steffey 表示:&ldquo 集中式Agile ADM 代表着绝对测距仪 (ADM) 技术的最新进展。ION的ADM系统为当今唯一无需使用干涉仪(IFM)而可以迅速进行高密度扫描的系统。这个系统比其它激光跟踪仪中使用的技术更为简化。 FARO 激光跟踪仪取代了卷尺、钢琴丝、铅锤和经纬仪等传统工具,客户已日益了解 FARO激光跟踪仪在校准、机器安装、部件检测、工具组装和设置以及逆向工程中的应用。各种规模的企业很快亲眼见识了使用它后的益处,并获得了全面的投资回报。 这款激光跟踪仪 ION 已于2009年9月22-24日在伊利诺伊州 Rosemont(毗邻芝加哥)的Donald E. Stephens Convention 展览中心举行的&ldquo Quality Expo&rdquo 展览会上进行了首度展示。在9月22日下午1:00(展台号:5125)召开了新闻发布会,以演示这款产品并解答所有问题。欲知本产品更多信息:点击进入 法如科技 FARO Technologies,Inc.地址:上海市桂林路396号3号楼1楼 邮编:200233Tel: 86-21-61917600 Fax:86-21-64948670网址:www.faroasia.com/chinae-mail: chinainfo@faro.com
  • 我国成功研发出民用半导体激光器件
    “民用半导体激光器件我们已摆脱长期依赖进口的局面。现在,我们已经发明成功,工艺性能稳定,产品投入规模生产阶段。”1月10日,记者在山东浪潮华光公司采访,听着技术专家高兴地介绍着,看到那长长的流水线正“收获成熟的芯片”。如今,我们的企业真正拥有了世界顶尖的核心技术,产品价格大幅度下降,让“等面值人民币”买到“等面值美元”的产品不再是梦想。  民用激光显示技术能够完美地再现自然色彩,是继黑白显示、彩色显示、数字显示之后的第四代显示技术。目前,国际上激光显示技术已发展到产业化前期阶段,未来3至5年,将是全球激光显示技术产业化发展的关键时期。为加快推进光电技术研究,打破关键技术的“封锁”,我国把“新一代激光显示技术工程化开发”列为863计划重点项目,其中的“高可靠性、低成本半导体激光器材料与器件工程化开发”课题让山东浪潮华光光电子有限公司所承担。  浪潮华光是国内唯一一家拥有从激光器材料生长到器件制作的完整生产线的高新技术企业,自1999年建厂以来,其半导体激光二极管及大功率激光器的产销量持续稳居国内第一。为推进课题进展,浪潮华光组建精英团队,加速科研攻关。公司成立了由总经理、国务院特殊津贴专家郑铁民研究员担任组长的项目小组,调动公司所有资源,完善了科研团队建设,从半导体激光器的材料生长、管芯工艺制作、器件封装等整个制造工艺链均配备了专业人才。组建了以长江学者徐现刚教授为学术带头人的研发团队,有研究员、高级工程师和博士、硕士等80余人。强大的科研团队借助公司已有的省级半导体激光器技术实验室、山东省半导体发光材料与器件工程实验室等科研平台,开展了技术攻关。  期间,在徐现刚教授的引领下,技术总监夏伟博士组织浪潮华光的精英团队成员,集思广益,刻苦钻研,成功实现了三大关键技术突破:一是TM偏振808nm半导体激光器外延材料与芯片研制。围绕实现项目要求的特定偏振激光输出,项目组从理论设计激光器的材料结构开始,进行了系统的研究,有效采用了MOCVD技术制备这种特殊材料,加快了科研步伐。目前,该技术世界上只有为数不多的几个大公司掌握。通过5个月的努力,浪潮华光成功掌握了自主生长技术,满足了项目需求。二是635nm激光器外延材料与芯片研制。为了增加红光分量的亮度,激光显示项目在红光波段选择了波长最短的635nm半导体激光器。浪潮华光在650nm半导体激光器方面积累了丰富经验,形成了稳定的650nm半导体激光器产品,占据市场70%的份额。虽然635nm激光器相比650nm红光激光器只有十五纳米的波长差异,但是其带来的技术难题却成几何级数增长。目前,只有日本的几家公司掌握了635nm激光器的制作技术。浪潮华光研发团队经过上千次的试验,最终突破了635nm红光激光器材料的生长技术难点,实现了红光激光器的大功率输出和长期可靠工作。三是模组封装及集成技术。浪潮华光的封装技术人员克服时间紧任务重的困难,与863项目的用户积极配合,实现了高精度多管芯封装技术、新型热沉制作技术、微透镜整形技术等多项自主创新技术,完成了项目要求的模组封装和整形。  目前,针对所承担的“863”项目,浪潮华光已成功研制出满足激光显示工程化要求的808nm、635nm高可靠性、低成本半导体激光器件,并已经初步实现了规模化的生产。从目前的科研和生产进度上看,浪潮华光有望提前全面完成项目预定任务,并能实现批量提供民用激光显示用激光光源的目标,将会大大降低激光器的价格,并带动国内激光器应用市场的发展和更加广泛的应用,实现了“替代进口产品、提高我国半导体激光器的地位、实现激光器显示用核心元器件国产化”的梦想,让该公司产品在国际激光显示产业中独占鳌头。
  • 浙江省计量院圆满完成全站仪测距精度校准能力全国计量比对
    近日,浙江省计量院圆满完成由中国计量科学研究院组织的国家计量比对项目“全站仪测距精度校准能力计量比对”,省计量院5个测段的比对结果|En|值均小于0.5,比对结果满意。全站仪,即全站型电子测距仪,是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。广泛应用于地上大型建筑和地下隧道施工等精密工程测量、变形监测领域,因此全站仪测距量值的准确可靠至关重要。此次比对在中国计量院昌平基地进行。比对期间,浙江省计量院克服沙尘暴恶劣天气,积极采取比对措施,确保比对工作井然有序、圆满完成。此次计量比对反映了省计量院计量工作水平稳定可靠、人员技术能力扎实,可确保我省全站仪测距数据准确可靠,能够为我省大型建筑、地下隧道施工以及变形监测等领域安全生产保驾护航。浙江省计量院每年为数百家企业、科研院所提供全站仪测距测角技术服务,并依托高精度测绘地理信息装备测量能力为企业解决设计、研发、生产过程中遇到的测量难题,发挥计量引领作用。
  • 聚光科技推出手持式激光气体分析仪
    仪器信息网讯 在CIOAE 2013(第六届中国在线分析仪器应用及发展国际论坛暨展览会)期间,仪器信息网(www.instrument.com.cn)编辑来到聚光科技公司展台,现场采访了聚光科技工业事业部解决方案经理李鹰。  据介绍,2003年聚光科技在国内首先推出了激光在线气体分析仪,经过近10年的发展,聚光科技激光气体分析仪已拥有五代产品,成功实现了氧气、二氧化碳、一氧化碳、硫化氢、氯化氢、甲烷等数十种无机气体及少量的有机气体的分析检测,产品种类齐全、功能丰富、测量范围宽。就在今年聚光科技又推出了手持式的激光气体分析仪。  由于激光气体分析仪具有光源寿命长、测量速度快、维护简单等优点,近年来,国内外众多厂商开始从事该类产品的研发生产。在2008年,国际电工委员会(IEC)同意由聚光科技负责起草《可调谐激光气体分析仪》标准,聚光科技在这一领域的技术优势获得了同行的认可。李鹰介绍说:&ldquo 当时所有参加会议的13个国家包括西门子对我们的草案全部投了赞成票。现在标准的制定已经通过了前5个阶段的审核,目前只剩最后一步。&rdquo
  • 中科院长春光机所:激光技术的“前世今生”
    p  自1960年美国研制成功世界上第一台红宝石激光器,我国也于1961年研制成功国产首台红宝石激光器(诞生于中国科学院长春光学精密机械研究所)以来,激光技术被认为是20世纪继量子物理学、无线电技术、原子能技术、半导体技术、电子计算机技术之后的又一重大科学技术新成就。br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/fa6ca572-ac36-49a3-8c53-3b3f8b976589.jpg" title="1.jpg"//pp  如今,我们家中用的CD和DVD播放器,办公室的激光打印机和商场的条码扫描器都有激光。人们用激光治疗近视视力,通过光纤网络发送邮件浏览视频。无论我们是否意识到,我们每个人每天都使用激光,但是有多少人真正了解激光是什么,如何工作?/pp  激光,是一种自然界原本不存在的,因受激而发出的,具有方向性好、亮度高、单色性好和相干性好等特性的光。/pp  激光的产生机理可以溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程。众所周知,任何一种光源的发光都与其物质内部粒子的运动状态有关。当处于低能级上的粒子(原子、分子或离子)吸收了适当频率外来能量(光)被激发而跃迁到相应的高能级上(受激吸收)后,总是力图跃迁到较低的能级去,同时将多余的能量以光子形式释放出来。/pp  如果光是在没有外来光子作用下自发地释放出来的(自发辐射),此时被释放的光即为普通的光(如电灯、霓虹灯等),其特点是光的频率大小、方向和步调都很不一致。/pp  但如果是在外来光子直接作用下由高能级向低能级跃迁时将多余的能量以光子形式释放出来(受激辐射),被释放的光子则与外来的入射光子在频率、位相、传播方向等方面完全一致,这就意味着外来光得到了加强,我们称之为光放大。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/ab5eeaa4-0704-4844-ae33-97c5ada732a7.jpg" title="2.jpg"//ppbr//pp style="text-align: center "strong图:激光产生机理:(左)受激吸收,(中)自发辐射,(右)受激发射/strong/ppbr//pp  而激光的产生需要满足三个条件:粒子数反转、谐振腔反馈和满足阈值条件。通过受激吸收,使处于高能级的粒子数比处于低能级的越多(粒子数反转),还需要在有源区两端制作出能够反射光子的平行反射面,形成谐振腔,并使增益大于损耗,即相同时间新产生的光子数大于散射吸收掉的光子数。只有满足了这三个条件,才有可能产生激光。/ppbr//ppstrong激光的特性/strong/ppbr//pp激光之所以被誉为神奇的光,是因为它有普通光完全不具备的四大特性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/cf4f1592-b99a-4837-8b8b-afb9947bff5f.jpg" title="3.jpg"//pp1.方向性好 ——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。激光每200千米扩散直径小于1米,若射到距地球3.8× 105km的月球,光束扩散不到2千米,而普通探照灯几千米外就扩散到几十米。/pp  激光准直、导向和测距就是利用方向性好这一特性。/pp2.亮度高 ——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。太阳光亮度大约是1.865× 109cd/m2,而一台大功率激光器的输出光亮度可以高出太阳光的亮度7~14个数量级。/pp  尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度的高温。激光打孔、切割、焊接和激光外科手术等实际应用就是利用了这一特性。/pp3.单色性好 ——光是一种电磁波。光的颜色取决于它的波长。普通光源发出的光通常包含着各种波长,是各种颜色光的混合。太阳光包含红、登、黄、绿、青、蓝、紫七种颜色的可见光以及红外光、紫外光等不可见光。/pp  而某种激光的波长只集中在十分窄的光谱波段或频率范围内。如氦氖激光的波长为632.8纳米,其波长变化范围不到万分之一纳米。激光良好的单色性为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。/pp4.相干性好 ——干涉是波动现象的一种属性。基于激光具有高方向性和高单色性的特性,它必然会是相干性极好的光。激光的这一特性使全息照相成为现实。 br//ppstrong激光器的类型/strong/pp  在光源中,实现能级粒子数反转是实现光放大的前提,也就是产生激光的先决条件。要实现粒子数反转,需借助外来光的力量,使大量原来处于低能级的粒子跃迁到高能级上去,这个过程我们称之为“激励”。/pp  我们通常所说的激光器,就是使光源中的粒子受到激励而产生受激辐射跃迁,实现粒子数反转,然后通过受激辐射而产生光的放大的装置。激光器虽然多种多样,但使命都是通过激励和受激辐射而获得激光。因此激光器通常均由激活介质(即被激励后能产生粒子数反转的工作物质)、激励装置(即能使激活介质发生粒子数反转的能源,泵浦源)和光谐振腔(即能使光束在其中反复振荡和被多次放大的两块平面反射镜)三个部分组成。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/34e5f14c-4b66-43c1-8be3-c64c88a23970.jpg" title="4.jpg" style="width: 590px height: 320px " width="590" vspace="0" hspace="0" height="320" border="0"//ppbr//pp style="text-align: center "strong图:激光器的工作原理/strong/pp  由于我们可以以许多不同的方式激发许多不同种类的原子,我们可以(理论上)制造许多不同种类的激光。/pp  激光器有多种分类方式,其中最著名的是固体,气体,液体染料,半导体和光纤激光器。固态激光器介质是类似红宝石棒或其他固体结晶材料,并且缠绕在其上的闪光管泵送其充满能量的原子。为了有效地工作,固体必须掺杂,这是一种用杂质离子代替一些原子的过程,使其具有恰当的能级以产生一定精确频率的激光。固态激光器产生高功率光束,通常是非常短的脉冲。相比之下,气体激光器使用惰性气体(即所谓的准分子激光器)或二氧化碳(CO2)作为介质的化合物产生连续的亮光。 CO2激光器功能强大,效率高,常用于工业切割和焊接。液体染料激光器使用有机染料分子的溶液作为介质,主要优点是可用于产生比固态和气体激光器更宽的光频带,甚至可“调谐”以产生不同的频率。/pp  按波长来分,覆盖的波长范围包括远红外、红外、可见光、紫外直到远紫外,最近还研制出X射线激光器和正在开发的γ射线光器;/pp  按激励方式不同,有光激励(光源或紫外光激励)、气体放电激励、化学反应激励、核反应激励等;/pp  按输出方式不同,有连续的、单脉冲的、连续脉冲的和超短脉冲等;/pp  从功率输出的大小来看,其中连续的输出功率小至微瓦级,最大可达兆瓦级。脉冲输出的能量可从微焦耳至10万以上焦耳,脉冲宽度由毫秒级到皮秒级乃至飞秒级(1000万亿分之一)。/pp  各式各样激光器满足不同的应用要求。如激光加工和某些军用激光都要求高功率激光或高能量激光(即所谓强激光)。有的希望脉冲时间尽量缩短,以从事某些特快过程的研究。有的还对提高光的单色性、改善输出光的模式、改善光斑的光强分布以及要求波长可调等提出了很高的要求。这些要求促使着激光器的研究者不断探索,从而使激光器的探索深度和应用广度得到前所未有的发展。/ppstrong蓬勃发展的激光应用 br//strong/pp  所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。/pp  50多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。/pp1、激光在信息领域的应用/pp  半导体激光器和光纤放大器是光纤通信的两项关键技术。/pp  半导体激光器发出的激光不仅单色性和相干性好,而且光波频率比微波频率又高万倍,故以激光为传递信息的载体,用光纤做信息传递线路的光纤通信,不仅通信质量好、抗干扰能力强、保密性好,而且通信容量比微波通信要提高上万倍。/pp  利用激光技术进行光存储,使信息的存储发生了革命性的飞跃。一张CD声频光盘的记录密度相当于1000万bit/cm2,可记录78分钟的音乐节目,比密纹唱片要大好几个数量级。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/dedc2b11-657b-46c7-b7c6-323f02c9b1b4.jpg" title="5.jpg"//pp style="text-align: center "strong图: CD或DVD播放机中的光盘的激光和镜头。右下方的小圆是半导体激光二极管,而较大的蓝色圆圈是从激光器从光盘的光滑表面反射后读取光的透镜。/strong/pp  此外,激光打印机、激光传真机、激光照排、激光大屏幕彩色电视、光纤有线电视以及大气激光通讯等均已得到广泛应用。/pp2、激光在全息术领域的应用/pp  光作为一种波动现象,表征它的物理量有波长(同颜色有关)、振幅(同光的强弱有关)和位相(表示波动起点同基准时间的关系)。/pp  人们利用感光的照相方法,只能记录下波长和振幅,所以无论照得多么逼真,看照片和看真的景物总是不一样。/pp  而激光具有高相干性,能获取干涉波空间包括相位在内的全部信息。因此,采用激光进行全息摄影,被拍物体的全部信息都被记录在底片上,通过光的衍射,就能复现被摄取物体栩栩如生的立体形象。/pp  全息照相具有三维成像的特点,可重复记录,而且每一小块全息底片都能再现物体的完整立体形象,可广泛用于精密干涉计量、无损探伤、全息光弹性、微应变分析和振动分析等科学研究。/pp  其中,利用全息干涉术研究燃气燃烧过程、机械件的振动模式、蜂窝板结构的粘结质量和汽车轮胎皮下缺陷检查等已得到广泛应用。并且,全息照相用作商品和信用卡的防伪标记已形成产业,用全息照相拍摄珍贵艺术品,不仅欣赏起来令人如临其境,而且为艺术品的修复提供了可靠而逼真的依据。正在发展的全息电视还将为人们增添一种新的生活享受。/pp3、激光在医疗领域的应用/pp  激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。/pp  在激光诊断方面,激光可穿透到组织较深的地方进行诊断,直接反映组织病况,给医生诊断提供了充分依据。/pp  在激光治疗方面,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,例如激光手术治疗切口小,对组织基本没有损害或损害极小,毒副作用反应少。目前,激光临床应用领域包括近视矫正、视网膜修补、蛀牙修复、分子级微创手术等,当前激光医学的出色应用研究主要表现在以下方面:光动力疗法治癌;激光治疗心血管疾病;准分子激光角膜成形术;激光美容术;激光纤维内窥镜手术;激光腹腔镜手术;激光胸腔镜手术;激光关节镜手术;激光碎石术;激光外科手术;激光在吻合术上的应用;激光在口腔、颌面外科及牙科方面的应用;弱激光疗法等。目前,激光治疗在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/c865b4af-a3a7-46dd-8f4d-a512edd3bcc7.jpg" title="6.jpg"//pp style="text-align: center "strong图:激光在口腔医学领域的应用/strong/pp4.激光加工/pp  利用激光的高强度(亮度)聚焦激光束在1 ms内能发射100J的光能量,聚焦起来足以使材料在短时间内融化或汽化,从而对不同特性难以加工的材料进行加工处理,如:焊接、打孔、切割、热处理、光刻等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/9c933388-bd17-4722-8ba2-990a5003e9de.jpg" title="7.jpg" style="width: 600px height: 188px " width="600" vspace="0" hspace="0" height="188" border="0"//pp  激光加工具有精度高、畸变小、无接触、能量省等优点,其应用领域几乎可以覆盖整个机械制造业,包括矿山机械、石油化工、电力、铁路、汽车、船舶、冶金、医疗器械、航空、机床、发电、印刷、包装、模具、制药等行业。其中关键零部件和精密设备的磨损和腐蚀都能很好地利用激光熔覆技术进行修复和优化,成为化腐朽为神奇的利器。/pp5.精密测量/pp  精密测量是利用了激光单色性好、相干性强、方向性好的特点。相比于其他测距仪,激光测距具有探测距离远,精度高,抗干扰,保密性好,体积小重量轻的优点。测距仪发出光脉冲,经被测目标反射后,光脉冲回到接收系统,测量发射与接收时间间隔。/pp  激光同时具有高亮度和高相干性,这使得光的多普勒效应能够在测速方面得到应用。激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,激光雷达与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别,它在军事领域发挥着重要的作用,也成为环境监测的有力武器。/pp  此外,引力波的探测也是利用激光干涉测量方法,进行中低频波段引力波的直接探测,观测双黑洞并合和极大质量比天体并合时产生的引力波辐射,以及其他的宇宙引力波辐射过程。/pp  激光是20世纪人类最重大的发明之一,激光技术的应用已广泛深入到工业、农业、军事、医学乃至社会的各个方面,对人类社会的进步正在起着越来越重要的作用,正奇迹般地改变着我们的世界。/p
  • 房屋雨水泄漏寻根难?FLIR热像仪让检测结果有理有据
    每年的七八月全国各地纷纷迎来雨季突来的降雨不仅带来了夏日的气息也给房屋建筑带来了不小的影响暴雨过后房屋中残存的水分肉眼难以发觉这样就很难有针对性的维修房屋通常情况下屋顶、墙体以及窗框和门框的漏水问题难以发现是因为人肉眼无法看见水分即使专业建筑维修人员发现了泄漏问题也可能无法确定其来源无法验证维修是否完成今天,小菲就来带大家看看日本的SHIMURA KENSO建筑维修公司是如何克服并完美解决这个难题的~初试FLIR红外热像仪SHIMURA KENSO是日本的一个家族企业,最初向客户提供涂装服务,随着其在当地社区不断获得认可和信任,其业务逐渐扩展到了屋顶维修和防水领域。现在,作为防水建筑的专家,SHIMURA社长深知这项工作的艰巨性。他说:“传统检测房屋潮湿部位一般是凭借检测者的感官和经验,但感官无法为问题得到解决拿出凭证,也不能让客户安心。因此之前,我们一直在寻找能够合理查找、修复和解释雨水泄漏问题的完美工具。”SHIMURA社长大约在八年前开始对热像仪产生兴趣,他知道红外热成像技术能够可视化温差,有可能解决他面临的问题。如果热像仪能清楚地显示雨水泄漏问题和维修结果,这将成为公司的一笔宝贵财富。为此,他登门拜访了东京的FLIR公司,试用了几款热像仪。了解精度和可操作性之后,他决定选用手持式FLIR E50bx热像仪,当墙体和天花板变湿时,FLIR E50bx能迅速检测到温度的变化,从而缩短测试时间,同时即使很少的漏水量它也能够轻松可视化泄漏。随着菲力尔技术的革新,这款产品的升级款FLIR E98也已经上市啦~★升级款:——FLIR E98★FLIR E98是具有640×480红外分辨率的手持式热像仪,它可提供优异的灵敏度和性能,能检测到细微的温差,较宽的视场角能瞄准宽广的区域,因此,用户可快速地定位并解决问题。配备可互换的AutoCal™ 镜头,提供对不同距离目标的全面覆盖,而激光测距仪有助于快速地自动对焦,获得精确的温度测量值。FLIR E98标准配备FLIR巡检选项(FLIR Inspection Route)功能,另外还有以年度订阅方式单独销售的带 Route Creator 插件的 FLIR Thermal Studio Pro 软件,完整的巡检包使专业人员可以简化检查并加快后处理和报告速度。同时内置用于添加语音注释的麦克风和报告生成功能,有助于简化您的日常工作。四年前,SHIMURA购进了一台FLIR T620,用于检查外墙。其公司目前有三台FLIR热像仪,凭借它们赢得了很多大型建筑物检查和维修大单。SHIMURA社长说:“我们的大部分工作都要用到热像仪,热像仪是我们公司最重要的资产。”FLIR热像仪协助建筑检修工作目前,SHIMURA仍在使用FLIR E50bx识别建筑内部雨水泄漏和侵入路径,检查维修情况等。公司会在维修前后进行水分侵入测试,在此过程中有可能拍摄100多张红外图像。这些图像不仅可以用于确定雨水泄漏的原因和需要修复的区域,还可以有效地向客户解释问题所在和维修原因。最重要的是,借助红外图像和水分计提供的可视图像,客户可以亲眼看到漏水问题已得到解决。FLIR T620通常用于发现建筑物的外部故障,例如瓷砖翘起、砂浆冷接缝和壁板漏水等。它不仅可以有效地以非接触方式检测外墙缺陷,还能以可视化方式帮助客户了解这些故障的风险。公司出具的书面报告会采用红外图像,这种做法可以帮助他们在屋顶维修和大型建筑物全面防水领域屡获大单。为此,他登门拜访了东京的FLIR公司,试用了几款热像仪。了解精度和可操作性之后,他决定选用手持式FLIR E50bx热像仪,当墙体和天花板变湿时,FLIR E50bx能迅速检测到温度的变化,从而缩短测试时间,同时即使很少的漏水量它也能够轻松可视化泄漏。随着菲力尔技术的革新,这款产品的升级款FLIR E98也已经上市啦~★升级款:——FLIR E98★FLIR E98是具有640×480红外分辨率的手持式热像仪,它可提供优异的灵敏度和性能,能检测到细微的温差,较宽的视场角能瞄准宽广的区域,因此,用户可快速地定位并解决问题。配备可互换的AutoCal™ 镜头,提供对不同距离目标的全面覆盖,而激光测距仪有助于快速地自动对焦,获得精确的温度测量值。FLIR E98标准配备FLIR巡检选项(FLIR Inspection Route)功能,另外还有以年度订阅方式单独销售的带 Route Creator 插件的 FLIR Thermal Studio Pro 软件,完整的巡检包使专业人员可以简化检查并加快后处理和报告速度。同时内置用于添加语音注释的麦克风和报告生成功能,有助于简化您的日常工作。四年前,SHIMURA购进了一台FLIR T620,用于检查外墙。其公司目前有三台FLIR热像仪,凭借它们赢得了很多大型建筑物检查和维修大单。SHIMURA社长说:“我们的大部分工作都要用到热像仪,热像仪是我们公司最重要的资产。”FLIR热像仪协助建筑检修工作目前,SHIMURA仍在使用FLIR E50bx识别建筑内部雨水泄漏和侵入路径,检查维修情况等。公司会在维修前后进行水分侵入测试,在此过程中有可能拍摄100多张红外图像。这些图像不仅可以用于确定雨水泄漏的原因和需要修复的区域,还可以有效地向客户解释问题所在和维修原因。最重要的是,借助红外图像和水分计提供的可视图像,客户可以亲眼看到漏水问题已得到解决。FLIR T620通常用于发现建筑物的外部故障,例如瓷砖翘起、砂浆冷接缝和壁板漏水等。它不仅可以有效地以非接触方式检测外墙缺陷,还能以可视化方式帮助客户了解这些故障的风险。公司出具的书面报告会采用红外图像,这种做法可以帮助他们在屋顶维修和大型建筑物全面防水领域屡获大单。“FLIR让我们得到更多客户的认可”开始工作前,SHIMURA KENSO公司携手客户,基于预算和建筑情况制定施工计划,并通过红外图像为计划提供支撑信息。借助FLIR热像仪,公司能准确识别问题,满怀信心地进行维修,提供其他公司无能为力的长期保证。SHIMURA社长称,公司的优势是能为防水工程提供10年质保,使客户安心。红外成像技术还有一个优势——即使几年后建筑物的其他部分发生雨水泄漏问题,客户也会知道问题与以前的维修施工无关。SHIMURA社长说,他们很少收到投诉,因为客户能自己查看红外图像,确认之前的维修工作非常到位。公司向客户提供维修前后的红外图像以证明其维修工作的质量之后,客户的反馈发生了显著变化。特别是重复订单和口碑订单的数量增加了,表明客户对公司的工作非常满意。在外墙施工行业,竞标很常见,但SHIMURA KENSO凭借高灵敏度的FLIR红外热像仪,获得了其他公司不具备的巨大优势。SHIMURA社长说:“我们在为当地社区施工时,始终看重可靠性和持久性放,当然需要好的工具。FLIR高性能红外热像仪为我们锁定了更多的商机。”随着公司良好声誉的广泛传播,以及当地防水需求的逐年增加,SHIMURA计划扩大公司规模、增加员工人数。红外热成像技术在建筑行业的应用早已广泛菲力尔专为建筑工程师们也设计了多款产品
  • 激光精密测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    德国“工业4.0”与”中国制造2025“发展战略,对高端装备中的超精密测量精度要求越来越高。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器。激光束通过分光镜后,分成两束激光(参考光束和测量),分别经两个角锥反射镜反射后平行于出射光返回,通过分光镜后进行叠加(两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件),产生相长或相消。反射镜每移动半个激光波长,将产生一次完整的明暗干涉现象,通过接收到的明暗条纹变化及电子细分,即可求得距离变化(距离=干涉条纹数*激光半波长)。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作。激光干涉仪原理构造激光测距仪是利用激光对目标的距离进行准确测定的仪器,根据测量原理分为脉冲法和相位法。脉冲激光测距法由于激光发散角小,激光脉冲持续时间极短,瞬时功率极大可达兆瓦以上,可以达到极远的测程,广泛应用在地形地貌测量、地质勘探、工程施工测量、飞行器高度测量、人造地球卫星相关测距、天体之间距离测量等方面。第二届精密测量技术与先进制造网络会议期间,清华大学与哈尔滨工业大学两位专家将分享激光精密测量技术、仪器及应用。部分报告预告如下,点击报名  》》》清华大学精密仪器系系副主任/副教授 谈宜东《激光干涉精密测量技术、仪器及应用》(点击报名)谈宜东,清华大学精密仪器系长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等多个项目。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表SCI论文100余篇,授权发明专利37项,在国际会议Keynote/Plenary/Invited报告60余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。【报告摘要】 以传统激光干涉为引,介绍清华大学激光精密测量及应用团队在双频激光器、干涉仪及在光刻机中的精密测量应用,并拓展到空间引力波测量。针对传统干涉测量需要配合靶镜的局限性,提出激光回馈测量原理,实现了无靶镜纳米测量,攻克了航空航天、先进制造和国防安全领域的无靶镜测量难题,并开展了多种应用研究,包括:位移测量、激光侦听、高精度激光测距及雷达技术等。哈尔滨工业大学副研究员 杨睿韬《短脉冲光频梳激光测距技术》(点击报名)杨睿韬,哈尔滨工业大学副研究员,博士生导师。研究方向为超精密激光干涉测量,重点攻关短脉冲/光频梳生成与稳频、光梳激光测距等关键技术,承担国家重点研发计划课题/子课题、国自然面上等项目,参与国家科技重大专项、欧盟计量联合研究计划等项目。获中国计量测试学会科技进步一等奖(序4/6)、全国优秀博士学位论文提名等奖项。担任国际SCI期刊Photonics客座编辑。发表学术论文20余篇,申请发明专利10余项,出版专著1部。指导哈工大优秀本科/硕士毕业论文共5人,指导大学生光电设计竞赛国赛一等奖等2项。【报告摘要】 激光测距技术是大范围、高精度空间几何量测量的核心技术基础。短脉冲光频梳的诞生极大的推动了该技术领域的发展,其独特的时域短脉冲序列、频域等间隔梳状多光谱特征,不仅大幅提高了经典的飞行时间、调制波测相、多波长干涉等测距方法的性能,更引领了一系列新型激光测距方法的发展。本报告分析了短脉冲光频梳激光测距方法及趋势,介绍了项目组在短脉冲光频梳激光测距领域的最新进展。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 精密测量仪器研发商迈测科技新三板挂牌上市
    挖贝网讯 3月10日消息,全国中小企业股份转让系统公告显示,迈测科技的挂牌申请获得批准,并于今日公开转让,证券代码为:835937。  公告显示,迈测科技2013年度、2014年度、2015年1-6月营业收入分别为1049.60万元、2112.59万元、1961.82万元 净利润分别为-23.41万元、-276.62万元、205.17万元。  迈测科技(深圳市迈测科技股份有限公司)成立于2009年7月8日,主营业务为激光测量技术的精密测量仪器和设备的研发、设计、制造及销售。  迈测科技目前的仪器设备产品分为手持式激光测距仪、测距望远镜、工业激光传感器,产品主要应用于工程与专业测绘、建筑与工程测量、装饰装修及工业测量领域。同时为客户提供定制化远程监测、智能自动化控制等测量解决方案。其仪器设备产品包括了手持式激光测距仪、测距望远镜、工业激光传感器以及为客户提供个性化定制测量设备等。迈测科技报告期内的主要产品为手持式激光测距仪。  挖贝新三板研究院资料显示,迈测科技本次挂牌上市的主办券商为申万宏源证券,法律顾问为北京市大成(深圳)律师事务所,财务审计为信永中和会计师事务所(特殊普通合伙)。
  • 世界七大顶级光学巨头
    全球顶级的光学巨头有蔡司、莱卡、尼康、奥林巴斯,这四家是显微镜4大厂商,提供最顶级显微镜产品,同时也不局限于显微镜,它们还生产或曾经生产照相机、望远镜等光学产品。一、卡尔蔡司(德国)卡尔蔡司从1846年创立,至今已有170多年历史,在全球形成了半导体制造技术、工业质量与研究、医疗技术和光学消费品市场四大业务部门,卡尔蔡司是世界领先的光学与光电行业科技集团。蔡司已成为全球领先的光刻光学元件的代名词,尤其在芯片领域,其元件被用于制造半导体组件。在镜片及相机镜头和双筒望远镜等领域,一直引领世界潮流。200年前,一个名为卡尔蔡司的德国人创办了一家精密机械及光学仪器车间,后来公司在先进的光学系统设计和制造领域获得全球认可,迅速成长为全球光学领域的引领者。事实上,卡尔蔡司一百多年的发展历程中经历了很多挫折。值得一提的是,二战后公司被迫一分为二,一半在西德,一半在东德。虽然如此,卡尔蔡司在五十年代仍然恢复了传统产品的生产,同时大力研发新产品,快速恢复了基础。有趣的是,这两家公司不仅成为各自地域的光学带头人,而且成为在全球光学市场上的竞争对手。因为它们都致力于研究光学、精密机械和电子学原理的结合,给全球带来了全新性能的高科技产品。到了九十年代,两家公司再次合并,而合并后卡尔蔡司比以往任何时期都要强大。德国蔡司镜头是镜头领域公认的“贵族”。摄影爱好者的都知道,莱卡相机和蔡司镜头是真正的“烧钱”玩具。比如闻名遐迩的哈勃望远镜中直径2.4米的镜头、韦伯望远镜直径2.6米的镜头都是由德国蔡司制作的。甚至于地球上所谓“最强大脑”——大物理学家爱因斯坦的眼镜也都是蔡司的产品。爱因斯坦曾经不止一次夸赞蔡司质量。再比如二战德军潜艇2的潜望镜、俾斯麦战列舰的炮镜等都是德国蔡司的东西。可以说,蔡司是现代光学的祖师爷。德国光学领先世界。德国光学镜头在全球各种领域发挥十分重要作用,比如著名的光刻机镜头领域,德国蔡司独占鳌头。即使在民用相机领域,日本相机的机身与德国光学的结合十分普遍,比如日本美能达与徕卡、日本雅西卡京瓷与蔡司、日本索尼与蔡司、日本松下与徕卡。日本人对于德国镜头的崇拜情怀由来已久。甚至连COSINA公司都收购了德国老牌的福伦达品牌。在德国,除了蔡司,徕卡,德国的施耐德,罗敦司得也是享誉世界的著名光学厂家。尤其是其为中大画幅系统提供的镜头十分著名。德国著名的施耐德能够制造大画幅非球面镜头,水平及实力世界一流水平。德国镜头创造了传奇,德国镜头在世界上是出类拔萃的存在。尽管德国镜头出类拔萃,但并非意味着价格就很贵,比如曾经的东德镜头物美价廉,即使是东德的蔡司依然是白菜价。大部分德国镜头的价格几乎都是良心价,仅有少部分精工细作的产品比较昂贵,但是相比于同等级别的日本镜头,德国镜头的性价比显然要更高很多。尽管如此,在民用的相机镜头领域,日本光学技术已经迎头赶上。20世纪上半叶,德国相机光学就已经确立了世界霸主地位,尽管同时代还有英国,法国,美国等光学厂家,但德国人在设计上的不断改进,材料的不断升级,使得德国在全球逐渐垄断及掌控了光学设计的话语权。值得一提的是,德国在大画幅、120和135的领域,德国光学几乎是力霸全球,而当时,全球只有德国能制造出复杂的,功能多样的高性能镜头。虽然法国,英国,美国在这段时间里能够制造一些高水平镜头,但整体上世界镜头市场几乎是德国的天下。这种情况一直持续到战后。值得一提的是,20世纪上半叶,日本人投身到相机制造产业及光学产业,但当时日本人主要以模仿德国产品为主,无论是机械还是光学都采用模仿手段。日积月累,日本在机械上开始有了突破和创新,特别是在电子技术领域成就十分突出,但日本在光学领域长期以来依然是以模仿德国设计,并且大量采用德国材料及其替代品。德国镜头在全球仍然保持着相当高的设计水准,德国蔡司的OTUS镜头、徕卡的微单镜头、M口上的50 2.0AA,仍然代表着民用光学的世界最高水平。值得一提的是,德国拥有全欧洲最大的光子学产业,曾占欧洲大陆产值的41%以上。在许多光子学应用领域中,德国是公认的全球第一。德国的光子学已经发展成为德国最重要的未来产业之一,并成为创新和增长的发动机。自2005年以来,德国光电子产业的增长速度曾经是其国内和全球GDP的两倍(每年6%到7%),尤其在全球光子学市场上占有约6%的份额。 据VDMA(欧洲最大的工业协会——德国机械设备制造业联合会)预测,到2020年这一数字将上升到390亿欧元左右。德国公司在包括激光技术、照明、显微镜和成像在内的许多光子学领域始终处于世界领先地位。比如重要的图像处理和测量技术(占22%的全球该行业的市场份额)、医疗技术和生命科学(19%)、光学元件和系统(18%)、生产技术(15%)代表了德国主要的光电子产业。从德国的出口率来看,70%左右的出口配额证明了德国自主创新的光电产品的国际竞争力。生产技术部门的出口率特别高,达到80%,医疗技术和生命科学部门的出口率也在70%以上。德国光子学公司的出口配额远远高于传统制造业公司(在2015年达到48%)。值得一提的是,德国公司在研发上的平均支出占总收入的9%,促使光子学成为德国研究最密集的领域之一。全世界大约有28%的产品是在欧洲生产的。对内窥镜、显微镜、成像系统和激光治疗系统的巨大需求,大大加强了德国在该领域的突出表现。据VDMA统计,德国的年平均增长率为6.6%,人口老龄化和对微创手术、现场诊断以及眼科激光治疗的需求增加是重要驱动因素。由于德国在显微镜、内窥镜和医学成像系统技术方面的实力,德国曾占欧洲总产值份额的50%以上。二、徕卡(德国)徕卡(Leica),是由一家同名的德国公司生产的照相机的品牌,由徕茨(Leitz)和照相机(camera)的前音节组成。公司的原名为恩斯特徕茨公司。目前拆分为三家公司:徕卡相机股份公司、徕卡地理系统股份公司和徕卡微系统有限公司,分别生产照相机、地质勘测设备和显微镜。"徕卡"品牌由徕卡微系统股份公司持有,并授权另两家公司使用。徕卡相机最初问世于1913年,是世界上最早35mm的照相机。值得一提的是,昂贵的价格是徕卡的品牌标志,并且代表一种精湛的制作,一种深厚底蕴的文化。享誉世界的徕卡相机是由德国徕茨公司生产的。它以结构合理,加工精良,质量可靠而闻名全球。值得一提的是,在20-50年代,德国一直雄踞世界照相机王国的宝座。徕卡相机成为当时世界各国竞相仿制生产的名牌相机,在世界上享有极高的声誉。在二十世纪五十年代到六十年代期间,徕卡相机已相继研制出了2型、3型相机。其中2G相机仅出了15台,而这15台相机还没有在市场上销售过,同时也没有独立编号。因此徕卡2G相机成了收藏爱好者追捧的精品。1954年M系列开始生产,它是G系列的改良品,到目前为止,徕卡M系列仍在出新产品。徕卡相机的突出特点:坚固、耐用、性能好,因此它成了军用相机的不二首选。特别是在第二次世界大战中,徕卡相机成了当时随军记者的重要工具。与民用徕卡相机不同的是,军用徕卡相机一般在编号的后边再带一个K字母。徕卡军用相机一般是白色、黑色、深灰色和草绿色。直到今天徕卡相机仍然是相机收藏中的佼佼者。徕卡市场突出定位:精密,坚固,品质卓越是徕卡的重要利器,尤其在其所擅长的领域里,可以说所向披靡,无可比拟。徕卡M6曾经被不少徕卡迷认为是仅次于M3的经典机型。不仅是因为它是徕卡M系列中唯一一款全钛机身的的相机,同时还被誉为:"相机史上最强大的连动测距相机",也是徕卡相机销售史上销量最高的一款机型。徕卡也是全球领先的测量产品供应商,徕卡测量系统拥有悠久的创新传统,并继续致力于打造未来的测量技术。其获得举世瞩目的成就:比如1921 T2,全球第一台光学经纬仪(Wild)1923 A1,全球第一台模拟摄影测量立体绘图仪(Wild)1925 C2,全球第一部航空摄影相机(Wild1969 DI10,全球第一台红外测距仪(Wild)1977 TC1,全球首款具有机载数据处理功能的全站仪(Wild)1984 ERDAS推出全球第一个基于PC的遥感软件WM101,全球第一台测量型GPS接收机(Wild-Magnavox)1986 DIOR3000,全球第一台无反射镜测距仪(Wild)1990 NA2000,全球第一台数字水准仪(Wild-Leitz)1991 SMART 310,全球第一台工业激光跟踪仪(徕卡)1991 System 200,全球第一台采用快速静态测量技术的GPS产品1993 DISTO™ 全球第一台手持激光测距仪1998 TPS300 / 1100系列产品,全球第一台具有同轴无反射棱镜测距功能的全站仪1999 Cyrax2500 全球首台可在1秒钟内采集1000个点的三维激光扫描仪2000 Cyclone 独特的三维激光扫描数据处理和可视化软件3D高精度TPS和GPS机械引导系统ADS40,全球第一台航空数字传感器2001 SurveyEngine可直接生成ESRI兼容的数据Spider GPS参考站软件2002 CloudWorx三维CAD插件,可在CAD系统中处理HDS三维点云数据2003 HDS™ ,实现高分辨率的快速测量和三维可视化GS20,亚米级专业GIS数据采集系统2004 T-probe和T-scan,All-In-One(全合一)工业测量解决方案DISTO™ -Plus,全球第一台使用蓝牙技术,并提供制图和电子数据处理两个免费软件包的手持激光测距仪System1200 全球第一个GPS/TPS全面兼容的测量系统GRX1200 GPS参考站接收机2005 SmartStation,全球第一台真正集成GPS的全站仪,取名超站仪SpiderNET GPS参考站网软件徕卡公司拥有6大业务系统:工程测量系统 是徕卡测量系统最大的业务部门。地学空间影像测量系统:为用户提供基于影像的测量解决方案,业务范围从遥感和航空测量到GIS(地理信息系统)。工业测量系统:能够帮助工业用户(如汽车和航空航天业)精确地测量大型部件,精度可达到微级(1um)精度,并能直接在CAD系统中处理数据。大众测量系统:发明了具有革命性的Leica DISTO,"徕卡迪士通"手持式激光测距仪。HDS高清晰测量系统: 使徕卡测量系统迅速进入新兴的三维数据市场。特种仪器系统:包括Polymeca AG。三、尼康(日本)尼康(Nikon),是日本的一家著名相机制造商,成立于1917年,当时名为日本光学工业株式会社。1988年该公司依托其照相机品牌,更名为尼康株式会社。"尼康(Nikon)"的名称,从1946年开始使用,是"日本光学"日文读音(Nippon Kogaku)的罗马字母缩写,并且融合了德文中蔡司照相机ZeissIkon中kon的写法。尼康最主要产品有:尼克尔(Nikkor)相机镜头、尼康水下照相机(Nikonos)、尼康F系列的135胶卷单反相机、还有尼康D系列的数码单反相机,消费性数码相机Coolpix系列。尼康也是世界一流的分步重复半导体生产设备(分档器)的制造商。公司同时还生产护目镜,眼科检查设备,双筒望远镜,显微镜,勘测器材。尼康是全球著名的光学产品设计和制造商,具有当今世界尖端的光学科技水平。其光学产品以优异的性能著称于世。尼康光学科技在影像、光纤、半导体、视光、科考等人类生产、生活的各个领域发挥着重要作用。尼康品牌具有高品质,高科技,高精密度的形象。尼康镜片具有先进光学技术、高清晰,高透光率,先进镀膜技术等特点。尼康在镜片的高折射率材料、非球面技术、个性化光学设计、光学镀膜等方面处于世界领先地位。尼康SEE系列镜片和镀膜是尼康尖端光学技术的代表。日本NIKON公司是世界专业运动光学产品生产者,拥有几十年专业镜片制造经验和世界领先的镀膜技术NIKON不断追求创新。将最新的现代科技应用于运动光学领域,结实的橡胶外壳,内部氮压系统,防雨,防雾镜片,防水压,精确涂施的镜片涂层技术。尼康是世界上仅有的三家能够制造商用光刻机的公司,在这个领域,许多人只知道尼康的相机做得好,却不知道尼康光刻机同样享誉全球。光刻机作为整个集成电路制造最关键的设备,其设备的性能直接影响到整个微电子产业的发展。全球目前最先进的沉浸式光刻机也只有ASML、尼康和佳能三家能够生产,并且单台价格高达几千万美元。尼康的G-line、I-line步进式光刻机(stepper)、投影式光刻机在全球晶圆厂大量使用。Arete Research LLC公司的分析师Jagadish Iyer曾经在一份报告中指出:Intel之前最终决定22nm光刻工艺设备的供应商,最终入围的是荷兰ASML Holding NV和日本尼康两家。其实在更早的45nm世代,ASML和尼康也曾双双成为Intel的光刻设备供应商,但在32nm节点上Intel首次应用了沉浸式光刻技术,只有尼康一家提供相关设备。尼康获得的主要荣誉:2009数码单镜反光相机D3荣获「亚洲最具影响力设计2009」铜奖 2009尼康D5000数码单镜反光相机荣获DIWA金奖 2009尼康D3X数码单镜反光相机荣获欧洲EISA大奖 2009 尼康D700荣获"CAMERA GRAND PRIX 2009读者评选大奖"。2010 尼康D3100及COOLPIX S1100pj荣获德国iF产品设计奖 2010 尼康COOLPIX S8000轻便数码相机荣获2010年「亚洲最具影响力设计」优异设计奖 2010 尼康AF-S尼克尔35mm f/1.4G镜头荣获photokina STAR 2010大奖 2010 尼康D3S数码单镜反光相机、AF-S尼克尔300mm f/2.8G ED VR II镜头荣获欧洲EISA大奖 2010 COOLPIX S1000pj及尼康D5000荣获"red dot award: product design 2010"大奖 2010 尼康D300S及尼康D5000获颁"5th Annual CNET Asia Readers' Choice 2009/10 Awards"。2011 五款尼康产品荣获"iF设计奖2012" 2011 尼康D7000数码单镜反光相机荣获EISA大奖 2011 尼康D7000荣获"CameraGP2011读者评选大奖" 2011 尼康获颁两项TIPA Awards 2011 (尼康D7000 & COOLPIX P300) 2011 尼康D7000, COOLPIX P7000, COOLPIX S1100pj, EDG 8x42荣获"red dot award: product design 2011"大奖 2011 尼康D5000、尼康D3100、COOLPIX S8100及COOLPIX L110获颁CNET Asia Readers' Choice 2010/11 Awards 2011 尼康D3100数码单镜反光相机继荣获德国iF产品设计奖后,再赢得iF创意设计奖2012 两款尼康数码单镜反光相机D4及D800荣获欧洲EISA大奖 2012 尼康数码单镜反光相机D800荣获"Camera GP2012 Camera of the Year及Readers Awards 2012 三款尼康产品荣获"TIPA Awards 2012"大奖 2012 四款尼康产品荣获"red dot award: product design 2012"大奖。四、奥林巴斯(日本)奥林巴斯(Olympus Corporation),创立于1919 年。1920年在日本成功地将显微镜商品化,尤其在癌症防治领域发挥着极其重要作用的内窥镜,1950 年由奥林巴斯在世界上首次开发。奥林巴斯株式会社已成为日本乃至世界精密、光学技术的代表企业之一,其事业领域包括医疗、影像、生命科学产业三大业务领域。奥林巴斯是世界相机领域的巨头,特别是在2001年实现了μ系列相机全球销量超过2000万台的辉煌业绩。在中国,奥林巴斯曾经连续八年牢牢地站在"民用相机全国销量第一"的位置上。奥林巴斯集团在显微镜、医疗仪器、传统相机、数码相机、打印机等图像解决方案产品以及高科技生命工程学等领域同样取得了辉煌的成绩。比如内窥镜从开发初期的胃窥镜发展至纤维内镜、电子内镜,迄今不仅在检查、诊断方面、而且在诊断和治疗方面也已成为不可缺少的设备。奥林巴斯的内窥镜深得医学界的信赖,在全世界拥有百分之八十的市场份额。1950年,奥林巴斯在世界上首次实现胃镜实用化。之后,始终以"安心与安全"为宗旨,不断追求减轻患者负担的新产品,为实现最佳医疗做出贡献。在生命科学领域,奥林巴斯以生物科学研究为目标。以先进技术,支持中国生物科学事业发展。以优质服务,提供给用户贴心的全方位支持。奥林巴斯品牌创立始于1919年,1921年自主研发了日本第一台光学显微镜"旭"。九十年来,奥林巴斯凭借"光学-数字技术"的核心竞争力,始终走在行业的最前沿,向生命科学领域提供了精密、专业的显微镜产品,曾经连续30年雄居中国和日本显微镜市场销售额第一。奥林巴斯FSX100以"卓越的图像""超简单的操作"和"良好人机工程"为核心理念,化繁为简,使任何人都可以轻易得获得稳定精准的显微图像。比如全球首台全内置式激光扫描共聚焦显微镜FV 10i通过全内置一体化的设计获得了紧凑的结构和具有高度稳定性的系统,更使昔日激光共聚焦显微镜复杂的操作和维护成为了历史,体现了人性化的设计理念。比如拥有多光子激光扫描技术的FV1000-MPE能深入地观察到厚标本或者在体标本的内部核心,对神经科学和人造器官组织工程的研究产生了极其深远的影响,开启了显微镜深度观察的新时代。奥林巴斯显微镜产品始终代表着行业的先进水平,广泛地应用于生命科学以及工业领域的研究,深受广大用户和科研机构的好评。值得一提的是,2013年度R&D100大奖(R&D 100 Awards)的获奖名单中,奥林巴斯IX3系列倒置显微镜凭借其易操作性、更高的成像精度和灵活的功能拓展性,赢得了美国专家评审委员会的认可,成功跻身2013年度全球最具代表性的100项先进科技成果之林,获得成像类产品大奖。 2013年9月,奥林巴斯成功推出了新时代FVMPE-RS全新多光子扫描显微镜,高速高灵敏度双光子成像技术、空间精确红外光刺激和可见光光刺激及更深的成像深度,更长波长光校准及透过率系统,FVMPE-RS堪称迄今为止最先进的多色多光子显微镜系统,将会成为生命科学研究的有力支持。五、富士胶片(日本)富士胶片株式会社,1934年创建,已发展成为世界上规模最大的综合性影像、信息、文件处理类产品及服务的制造和供应商之一。 总部位于日本东京。富士集团包括富士胶片株式会社、224家子公司和40家从事研发、制造、软件开发、市场和采购及相关经营活动的关联公司, 分布于世界200多个国家和地区, 海外销售额已接近合并报表净销售总额的50%。富士胶片有三大事业领域:1.包含传统和数码两大产品群(胶片、照相机、相纸、化学药品、冲扩设备等)的影像事业领域 2. 包含印刷系统、医疗系统、液晶材料、记录媒体等系列产品的信息事业领域 3. 由富士胶片的子公司富士施乐公司生产和销售的文件处理设备(复印机、打印机、多功能数码文印中心、耗材等)构成的文件事业领域。世界胶卷市场的70%曾经被美国的柯达公司占领。但在日本国内,富士胶卷的市场占有率曾达到约70%,超过了柯达公司,占绝对优势。值得一提的是,1976年9月,该公司生产的高感光彩色胶卷F-Ⅱ400先于柯达公司在市场出售,轰动了世界。从技术水平来看,富士胶卷的一部分技术已超过了柯达公司。世界上的照相行业历来以保守技术秘密。尤其是日本的胶卷世界,在战后想引进外国技术,最终都没有获得成功。日本是完全依靠自己的力量来发展技术,并达到当今世界先进水平,十分值得引人注目。尤其是富士胶卷,在胶卷、照相纸印刷、办公用机械设备、ME等领域内,开发了世界水平的先进技术,称为"技术的富士胶卷"。世界上在冲洗彩色胶卷系统方面,柯达方式占绝对优势。但在技术不公开的情况下,富士胶卷能在国内维持70%的市场占有率,无疑这是十分惊人的。其秘密是该公司除了有较强的技术外,还有较强的市场推销能力。特别是在国际市场方面,逐步巩固其地位,加紧追赶柯达公司。富士胶卷的技术水平已有一部分超过了柯达公司。早在1976年9月,该公司发表了高感光度彩色胶卷F-Ⅱ400新产品,而柯达公司于1977年5月才发表同性能的产品,这比日本另一家小西六照相工业的产品还晚2个月。日本的照相工业,特别是富士胶卷的技术力量之强,快速闻名于全世界。该公司在生产技术方面,也超过了柯达公司,其质量高、信誉好,在照相业界受到高度评价。富士胶卷对研究开发技术十分重视,每年的研究开发费占销售额的比率为5~6%。在全球化学工业中是首屈一指的。富士胶卷从事开发研究的人员曾经达2500人左右。特别是在全体职工中,4个人就有1个人从事研究开发工作。富士胶卷公司的研究开发体制是总公司的机构,有专利部、技术情况室、设备技术部、开发部,实际工作部门有生产技术部、机器开发部、磁性记录研究所、富士言研究所,朝霞研究所、NS研究所、足柄研究所等。富士胶卷的技术,是以照相化学、照相光学、彩色画像评价技术等影像情报或彩色情报等的处理技术的基础上发展起来的。胶卷、洗相纸、"感压纸"、录像带(YTR)等是传达情报的媒体,而薄膜涂料技术发挥了重要的作用。六、佳能(日本)佳能(Canon ),是日本的一家全球领先的生产影像与信息产品的综合集团。佳能的产品系列共分布于三大领域:个人产品、办公设备和工业设备,主要产品包括照相机及镜头、数码相机、打印机、复印机、传真机、扫描仪、广播设备、医疗器材及半导体生产设备等。佳能总部位于日本东京,并在美洲、欧洲、亚洲及日本设有4大区域性销售总部,在世界各地拥有子公司200家,雇员超过10万人。2018年9月5日,佳能正式发布EOS R系统、EOS R全画幅专微和RF镜头 。1937年,凭借光学技术起家、并以制造世界一流相机作为目标的佳能公司成立。此后,佳能不断研发新技术,并在20世纪70年代初研制出日本第一台普通纸复印机。80年代,佳能首次开发成功气泡喷墨打印技术,并且将其产品推向全世界。对技术研发的重视和投入,使佳能能够数十年不断发展壮大,并且成为同行业的领导者。佳能在美国专利商标局公布的2012年在美国专利注册数量排名中名列第三。佳能公司的创始人是位日本医学博士,取此名的灵感出自他抬头眺望天空而来。佳能公司原来的名字叫"精机光学研究所",是一个精密光学仪器研究所。其初衷只是为了研究高品质相机的发展。佳能原有一个十分英语化的名字KWANON,公司以此命名其第一架35毫米测距式相机。迄今为止,世界上只有唯一一架KWANON相机幸存。在1936年,公司用汉莎佳能(HANSA CANON)为品牌的相机正式上市了,其CANON一词含有"盛典、规范、标准"的意味。从此,佳能成为举世闻名的相机品牌和公司的象征。2019年8月,美国知识产权所有者协会(IPO)公布了2018年美国实用新型专利授予机构的300强名单,佳能名列第3。2020年6月18日,获评艾媒金榜(iiMedia Ranking)发布的《2020"618"中国电商消费十大3C数码品牌排行榜单》前10名。2020年8月10日,佳能(CANON)名列2020年《财富》世界500强排行榜第380位。七、罗顿斯得(德国)德国一个高端眼镜品牌“Rodenstock”,中文翻译叫“罗敦司得”居多。其名字来源于其创始人——约瑟夫.罗敦司得。1877年,创始人约瑟夫.罗敦司得在德国维尔茨堡创建了“G.罗敦司得光学研究所”。经140多年的传承与创新,罗敦司得始终专注于光学领域的研究,现已成为专门从事眼镜研究的光学巨人,也被德国人称为“世纪眼镜”罗敦司得属于德国殿堂级眼镜品牌和相机镜头品牌,如果说蔡司是光学界的权威,依视路是销售量的冠军,那么罗敦司德则是专业界的泰斗。1877年,旅行商人约瑟夫罗敦司得来到德国维尔茨堡,创建了“G罗敦司得光学所”,开始气压计、精密天平和测量仪器的制造和销售。 1878年起,公司进一步开始镜片和镜架的研究生产。1880年,推出全球首副“镀膜镜片”,就此成名。早在1882年,罗敦司得产品就已经出口奥地利、瑞士、荷兰、丹麦、意大利和俄罗斯。1883年公司迁址到德国光学之都慕尼黑。1899年,推出具有矫正功能的太阳镜以及双焦眼镜。1968年,在欧洲推出变色镜片以及通过隐形尼龙线固定镜片的眼镜。2000年,推出个性化渐进镜片。同年与保时捷设计品牌联袂推出高端镜架系列,之后又与登喜路、梅赛德斯奔驰联合推出“整套式”眼镜系统。2011年,专利“镜眼系统技术”再次突破渐进镜片局限,提升佩戴者中近视觉高达25%。2014年,全球独创磁盘式铰链获得德国设计大奖,Mercedes Benz Style 凭借一体式双铰链获得红点奖。每一副罗敦司得也同样刻上了独创的可见品牌标记“R”,使人可以第一眼就辨认出它是100%德国技术。罗敦司得镜片只在有资质的眼镜店出售。至今日,罗敦司得已经成为德国市场首屈一指的品牌,并且是世界上最大的眼镜框及镜片生产商之一,全球雇员超过6000人,在二十多国设有分部。
  • 聚光科技发布CALIBUS系列手持式LIBS激光诱导击穿光谱仪新品
    英国阿朗科技公司至今已服务于金属元素成分分析行业近40年。40年间ARUN公司共推出10多款产品,覆盖现场及实验室金属材料检测领域。CALIBUS系列手持式LIBS激光诱导击穿光谱仪是ARUN最新推出的手持产品,有着绝佳的元素分析性能,尤其是C元素检测分析性能优异,是目前分析检测碳元素最稳定的手持光谱仪。 检测范围宽 全谱元素检测,可精准稳定检测C及合金材料中的Li、B、Be元素,填补了XRF的检测盲区;分析能力强 全新高分辨率的光学系统设计,搭配CMOS传感器,使得检测精度更高;无辐射 采用激光诱导击穿技术,没有辐射危险,产品通过《设备使用安全认证》;分析速度快 1s完成分辨牌号,快速分析检测;样品适应性广 无需样品前处理,样品适应性广:不要求导电,不要求消解,不要求大量;易用性高 智能触摸屏,人性化交互界面,操作简单便捷,大大提高工作效率。 应用领域: 冶金制造:CALIBUS手持式LIBS光谱仪优异的定量定性检测能力,能解决客户在冶金制造全过程中的质量控制、材料分类、安全防范、事故调查等检测要求,无论是黑色金属还是有色金属,CALIBUS都可以快速、准确给出准确可靠的测试数据,获得接近实验室级别的分析结果。轻金属材料分析:CALIBUS是一款超高分辨率、宽波段范围的手持激光光谱仪,有着强大的分析能力,能够准确分析以往X射线荧光分析仪不能识别的轻元素,即可对C,Si,Mg,B,Be,Li,Na等原子序数小于13的元素的现场快检,满足一切金属材料检测应用场景。材料可行性鉴定:材料检验是确保金属制品使用合格材质的关键。CALIBUS的出现,使工业生产过程中对金属材料的100%全检替代抽样检验成为现实,只需扣动扳机,元素含量及牌号1秒即可准确清晰显示在彩色触摸屏上,并可适应各种现场检测条件。金属交易:在金属废料交易市场中,进行快速可靠的现场分析检测是非常必要的,CALIBUS能够快速准确的对大量的废旧金属(碳素钢、不锈钢、铸铁、铝合金、铜合金等)进行现场检测和分拣,为购销双方在交易时做出迅速可靠的判断。创新点:阿朗CALIBUS系列手持激光诱导击穿光谱仪是英国阿朗科技公司的最新光谱产品。创新点一 CALIBUS的谱线范围190nm-800nm,可对C,Si,Al,Mg,B,Be,Li,Na等原子序数小于13的元素进行现场快检。尤其是其优异的C元素检测能力,解决了广大黑色金属应用领域客户的痛点,弥补了XRF技术检测的不足与空白;创新点二 CALIBUS采用三光室光学系统设计,CMOS探测器,分辨率低于0.1nm。另外它的氩气吹扫功能够消噪增强谱线信号强度,保证检测的准确性,搭配标样可实现金属材料的定量分析; 创新点三 CALIBUS内置高频纳秒级激光器,可在极短时间内完成多次分析,并迅速稳定下来,且无辐射危险,即CALIBUS激光光谱仪1s即可对金属材料完成准确安全的检测分析;CALIBUS系列手持式LIBS激光诱导击穿光谱仪
  • 激光雷达 lidar
    激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 万深发布万深LA-H型便携式植株自动测高仪新品
    万深LA-H型便携式植株自动测高仪一、用途:通过智能手机扫描条码+激光测距来高精度快速自动测量农作物植株高度。农作物植株高度是其遗传形状的重要表征,有的植株要求测量高度达到5米以上。本便携式植株自动测高仪用于高精度快速自动测量农作物的植株高度。二、技术指标:1. 通过手机扫描农作物条码自动获得植株编号,并通过激光测距仪来一键测量获得农作物植株高度。2. 通过无线传输自动将激光测距的植株高度数据发送至手机,并对应到植株编号,同个编号可有多个测量数据,以便测量数据更稳定。3. 植株高度测量范围:1.0米~5.8米(单株测量时间≤5秒,测量误差≤±0.20cm)。4. 测量结果可保存和输出至EXCEL表,并可通过云平台保存数据,多设备随时随地查看。5. 手持部分总重≤750g。三、供货清单:激光测距仪1台、测距仪固定夹1付、碳纤维4米伸缩杆1付、横向标示杆及螺钉各1个、反射垫1张、黑筒1个。赠送5m卷尺1把。手机扫描提供的测高仪二维码下载APP登入后使用。注:需自备能拍照的安卓智能手机,可选配更高规格的伸缩杆应用万深分析仪器 发表的部分学术论文已逾705篇,详见万深检测 官网。创新点:通过智能手机扫描条码+激光测距来高精度快速自动测量农作物植株高度。本便携式植株自动测高仪用于高精度快速自动测量农作物的植株高度。仪器轻便、测量快捷、精准度高。万深LA-H型便携式植株自动测高仪
  • 上海仪迈免费试用手持式折光仪新品
    为了感谢广大用户的厚爱,上海仪迈公司特推出手持式折光仪免费试用活动,诚邀用户免费试用IR200 糖度计和IR240折光仪。试用期间,用户可以直接体验仪迈最新上市的手持式折光仪的优越性能。  上海仪迈公司的手持式折光仪是一款革命性的新产品,该产品开创了多个“第一”,具体表现如下:  ●市场上第一台带宽大LCD彩色显示屏的手持式折光仪  ●市场上第一台无需校准的手持式折光仪  ●精度达到国际最高水平  ●拥有独特的无线射频传输功能  ●提供糖业专用的观测锤度测量功能  ●还有超长电池寿命,超大数据库等更多功能…  活动参加对象:仅限中国大陆的最终用户  报名期限:2012年4月5日至2012年5月31日   报名申请提交后,本公司会根据您填写的联系方式尽快跟您联系进行确认和审核。   审核通过后签订试用协议,然后根据您所留的地址将仪器快递给您。  试用期限:自本公司发货日起3个月。  试用名额:本次活动仅提供30台IR200和20台IR240。名额有限,报名从速!  本次活动最终解释权归上海仪迈仪器科技有限公司所有。  详情请点击:手持式折光仪免费试用活动细则  http://www.insmark.com.cn/articleinfo/detail_5_11_159.aspx
  • 正确的使用手持式电导率计可以提高测量的精准度
    手持式电导率计适用于精密测量各种液体介质的电导率仪、TDS和盐度值的仪器,配置CON1型铂金电导电极,有一点按键自动校准、自动量程转换、自动信息提示等优点。仪器广泛适用于各领域的科研和生产。 手持式电导率计是如何使用的: 1.使用前观察表针是否指零。 2.将校正测量开关扳在“校正”位置。 3.插接电源线,打开电源开关,并预热数分钟调节“调正”调节器使电表指示满度。 4.当使用(1)-(8)量程来测量电导率低于300μS.cm-1的液体时,选用“低周”,这时将高/低周开关扳向低周即可。当使用(9)-(10)量程来测量电导率在300μS.cm-1至105μS.cm-1范围里的液体时,则将扳向“高周”。 5.将量程选择开关扳到所需要的测量范围,如预先不知被测溶液电导率大小,应先把其扳到zui大电导率测量档,然后逐渐下降,以防表针打弯。 6.电极的使用:使用时用电极夹夹紧电极的胶木帽,并把电极夹固定在电极杆上。 7.将电极插头插入电极插口内,旋紧插口上的紧固螺丝,再将电极綅入待测溶液中。 8.接着校正当用(1)-(8)量程测量时,校正时扳到低周,当用(9)-(12)量程测量时,则校正扳到高周,扳到“校正”,调节校正调节器,使指示在满度。 9.当用(0-0.1)或(0-0.3)μS.cm-1这两档测量高纯水时,先把电极引线插入电极插孔,在电极未綅入溶液前,调节电容补偿调节器使电表指示为zui小值。 手持式电导率计的产品特点: 1.仪器配置:CON1型铂金电导电极1支,温度探棒1支,9V电池1节,BEC-530/531/540 型配置CON10型电导电极1支。 2.可设定TDS系数:根据电导分析法,测量水质溶解性总固体时应准确估算,设定TDS系数,530/540可在0.01至1.00之间设定以保障测量值的精确可靠。 3.可设定温度系数:含有不同离子的溶液往往具有不同的温度系数,准确设定温度系数对精确测量至关重要,BEC便携型可在0至3.9%每摄氏度的范围内进行设置。 4.一点按键自动校准:仪器配合标准电导液可以进行每个量程1点自动校准,校准时,仪器自动识别校准液,如果您使用错误的或与设定值偏差较大的电导液进行校准,仪器将自动报警。 5.可设定电极常数:测量高或低电导溶液时,您需要选配不同常数的电导电极,BEC便携型具有三个电极常数可选,您可以根据选用的电极自行设定,仪器将自动转换终点测量值。 6.自动量程转换:测量电导率或溶解性总固体(TDS)时,仪器具有自动量程转换功能。当电极传感器浸入溶液后,BEC便携型将自动扫描当前测量值并转换量程,仪器将以精确的分辨率显示终点测量值。 7.手持式电导率计带有自动信息提示:BEC便携型具有操作信息提示功能,当您进入某一项设置或测量信息栏将帮助您了解仪器在当前状态下可执行什么操作及如何操作,它等同于使用手册的操作步骤说明。通过信息栏的引导,您能轻松完成某项设置或测量任务。
  • 法如推出新的 6DoF 激光跟踪仪平台
    p  2018 年10月2日 – FARO® (NASDAQ:FARO) ——工厂计量、产品设计、建筑 BIM和公共安全取证的三维测量和成像解决方案供应商, 宣布推出新一代 FARO 激光跟踪仪,配备 6Probe 的 6DoF Vantage 产品系列。/pp  2015 年,FARO 通过集成 FARO Vantage 跟踪仪和 FaroArm® 的强大的超级 6DoF TrackArm 解决方案颠覆了大型 CMM 市场。这种获得专利的综合解决方案能够测量或扫描数十米,而不会损失精度,无视线问题,并且可由多名操作员同时进行测量。/pp  今天,FARO 推出了 6Probe。这是一款完全集成的手持式探头,可以在难以到达的位置轻松探测隐藏的、难以触及的特征。TrackArm 超级 6DoF 和 6Probe 共同提供最完整的解决方案组合,以很好的价格满足无论的各种大小测量需求。在制造业为重点的行业,这一新功能可满足各种各种大规模计量应用,包括汽车、航空、建筑、重型设备和造船业等行业。/pp  “获得专利的 FARO 超级 6DoF 和 6Probe 整体解决方案是制造商所需的最完整、最具适应性的计量学平台。我们敢于应对业内任何人对此陈述的质疑。无论您是组装或制造、是大型还是小型、易于或难以触及、复杂或简单,这一平台都可以通过性能和价格的最佳价值组合满足您的需求,” 首席执行官 Simon Raab 博士说道,他也是便携式、适应性强的三维测量的早期创新者。/pp  6DoF FARO Vantage 产品系列包括两款高性能激光跟踪仪:测距为 35 米的 VantageE6 和测距为 80 米的 VantageS6。两者均经过严格的国际电工委员会(IEC)的冲击、振动和极端高温条件标准测试,防尘防水等级达到 IP52。/pp  基于 FARO 在提供高价值计量学级解决方案方面 30 多年的经验,详尽的内部测试和来自享有终身职位的计量学专业人员的反馈,6Probe 提供的准确性和动态测量能力可靠地满足绝大多数大型三维测量挑战。结合可以实现更高精度的超级 6DoF,Vantage 平台现在可以满足各种需求。采用超级 6DOF 和 6Probe 的新型 Vantage 6DoF 平台的高性能价值定位将有助于更广泛地采用激光跟踪仪,从而为所有行业提供集成的全面质量保证。/pp  两种 Vantage 型号均包含具有广角查看功能的 ActiveSeek™ 功能,使用户可以放心地从一个位置移动到另一个位置而无需担心。通过允许用户更快地启动实际测量过程并使所有人都可以进行复杂的三维测量,这提高了总体生产力。/pp  “作为大规模测量的高价值解决方案提供商,我们有着悠久的历史,”工厂计量学副总裁 Pete Edmonds 表示。“鉴于业界对性能可疑或额外溢价价格点感到沮丧,FARO 已经有意识地决定为迄今为止未能享受足够服务水平的、更广泛的用户和应用提供适应大规模工业市场、具有成本效益的解决方案。6DoF、超级 6DoF 和 ActiveSeek™ 的强大组合为整个用户行业提供了新的易用性标准。”/ppbr//p
  • 航天科工203所研发激光甲烷监测系列产品
    日前,航天科工203所研发了激光甲烷监测系列产品,广泛应用于城市燃气安全隐患排查治理,为燃气巡检和泄漏检测提供最有力保障。  近年来,国内燃气事故多发频发,引起广泛关注。现代城市地下管线密布,使城市面临着诸多挑战。地下燃气管线作为保障城市运行的生命线,因被破坏外损而导致燃气管线泄露、火灾等事故时有发生,严重影响了城市正常运行秩序和人民群众生命财产安全。  城市燃气管道关系千家万户生活和生产,燃气泄漏致使相邻地下空间爆炸,是城市无法回避的痛点。如何实现城市燃气管网的实时安全监控,也成为摆在人们面前的一个难题。 航天科工203所研发的手持激光甲烷检测仪,可实现甲烷气体的远程遥测,它适用于各类甲烷可能泄露的场所,尤其适合架空管线、狭窄空间、居民厨房等存在燃气泄漏风险,但因距离、障碍物等原因导致巡检人员无法接近的场合。过去都是近距离泵吸式抽样检测,在地下管道封闭空间,抽取采样后通过催化燃烧式探头分析检测。激光甲烷检测仪是无接触的,采用物理性光学检测,检测距离可达150米,检测距离远、速度快、精度高。  激光甲烷遥测云台,可对燃气场站的各种设施进行24小时不间断扫描检测,加大场站的安全监控力度,提高安全管理高度,系统具备高稳定性、高可靠性、高使用寿命,能够实现场站的无人值守。激光甲烷遥测云台装设在立杆和墙面上,可对场站实现360度无死角监控和检测。配备的视频摄像头具有智能分析功能,当视频摄像头检测到火焰、烟雾时会提前报警。  激光甲烷遥测云台可用于调压站场区、化工园区、 锅炉房、矿井中等区域,检测气体只针对于甲烷,不会产生误报和中毒现象。此外,还具有星光级红外夜视系统和定位实时校准等功能。智能激光甲烷遥测云台采取激光束的面式扫描,灵敏度高,由被动监测变为主动式实时在线监测,是原有天然气泄漏监测的重要补充,提高了天然气泄漏隐患自动化防控能力。 目前,203所研发的系列燃气监控设备等系列化产品,在北京、珠海、济南等多个区域,在燃气、石油等行业广泛应用,保障了人们的生命和财产安全。
  • 532、785还是1064nm?手持拉曼激发光选择有讲究!
    p  拉曼光谱可以高灵敏度分析化学物质的结构和组成,具有非接触、非侵入性和无损性,无需样品制备(或者只需简单样品制备)等特点。随着仪器开发和分析方法等方面的突破,如荧光校正技术等,拉曼光谱得到越来越广泛的应用,包括医疗诊断、药物分析、假冒药品鉴定、爆炸物探测、文物检测等多个领域。/pp  近年来,发展高效和易于使用的小型便携式或手持式拉曼系统是拉曼光谱一个很重要的发展方向。大多数这样的手持系统能够直接分析容器和包装袋中的样品,不需要任何样品制备,同时也避免了对化学物质的接触。/pp  目前,市场上已经有来自于10多个生产厂家的20多款商品化的手持式拉曼分析仪。/ppstrong  研究目的/strong/pp  那么,选择一款适合的手持拉曼光谱仪需要考虑哪些关键因素?本文的一个重要目的就是给出半理论、半经验的注意事项,帮助用户选择一款最适合其应用的手持式拉曼光谱仪,表1和图1对性能比较进行了汇总:/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/58d2f13c-6ae5-4360-aa2c-ebdd18a9d344.jpg"//pp style="text-align: center "img title="02.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/8a04e27c-774c-4267-9ec9-40513f8fc7e7.jpg"//pp style="text-align: center "图1: 532nm、785 nm、1064 nm手持式拉曼仪性能对比(单位激光功率):(a)光学透过率(b)纯分析物 (c)分析物在水中 (d)分析物在乙醇中。/pp  手持拉曼的激发波长很大程度上决定了拉曼信号的强度(分析速度和精度)。此外,还会影响到光学元件的效率和相关检测器的量子效率 (CCD、InGaAs)以及光谱分辨率等。目前,大多数商品化的手持拉曼光谱仪采用785nm或1064 nm的激发。只有少数最近生产的手持式拉曼系统使用其他激发波长,包括532nm。/pp  此外,本文还通过实验特别介绍了使用532 nm激光的手持式拉曼分析仪在假药检测以及爆炸物检测方面的性能表现(与785、1064 nm进行对比)。/ppstrong  532nm,785nm,1064nm,哪个更适合手持拉曼?/strong/pp  虽然多个商业化激光在技术上可以满足给定的应用,但对于一个特定的应用来说,通常只有一个可以提供最好的解决方案。所以选择最佳激发波长时要考虑多方面的因素:每个激发波长对应的分析速度和准确度、样品的荧光背景、样本基质的透明度(容器壁、溶剂、被测物)等等。/pp  在分析速度和准确度方面,532nm激光得到的拉曼信号强度(单位激光强度)是785nm或者1064nm的5-16倍,这是因为拉曼强度与激发波长的四次方成反比:IRaman≈(1/λEx)sup4/sup。此外,在532nm处,先进的光探测器和光学器件具有更高的量子效率(与785和1064 nm相比),可以进一步提高拉曼信噪比。/pp  相比之下,在降低荧光背景方面,1064nm是首选。然而,1064nm在分析速度方面比532nm、785 nm系统(单位激光功率)分别慢16倍和3倍。因此,1064nm激光适合具有非常强烈荧光的样品,其他情况下,785nm,特别是532 nm的激光可以提供更快的分析。/pp  为了考察样品基质对拉曼信号的影响。图1a给出了几个典型样本的透射情况:透明玻璃 (实验室小瓶或一般瓶子)、琥珀玻璃(小瓶或一般瓶子)、透明塑料(培养皿、塑料瓶、证据袋或罩板包装)、仿琥珀塑料 (医疗处方瓶)、水和乙醇等。/pp  根据图1a的数据,图1b-d给出了几种典型分析得到的相对拉曼强度 (归一化到532nm):纯被分析物,以及处于一系列不同容器中的被分析物(图1b) 分析物在水溶液中,以及处于不同容器中的情况(图1c) 分析物在乙醇溶液中,以及处于不同容器中的情况(图1d)。图1表明532nm的拉曼信号强度比其他情况要高出25-1600%。/pp  表1对图1中的数据进行了进一步的总结,通过比较发现,在9类不同条件的样品中,有7类使用532nm激发时的效果明显优于785和1064 nm,这其中包括不发荧光和弱荧光样品、一部分中等荧光样品 通过最常见的玻璃和塑料容器(包括琥珀)进行测量的样品 以及水溶液和大多数有机溶剂中分析物的检测和定量分析。/ppstrong  实验/strong/pp  所有样品分析均使用RamTest手持式拉曼 (BioTools,Inc .) 激光:532 nm 光谱范围120-4000cm-1 光谱分辨率~4 cm-1。/pp  所有测试都是在自动模式下运行,所有测量参数自动调整以优化信噪比,减少荧光,剩余的荧光背景(如果存在)自动扣除。/pp strong (1)手持式拉曼用于假冒生物制剂检测(532nm激光)/strong/pp  532 nm手持式拉曼最有前途的一个新应用就是对假冒生物制剂的检测。532 nm手持系统的优越性能包括:更强的拉曼信号,水对532nm激光更低的吸收 (图1)。这两个因素的结合使532nm手持式拉曼光谱在水溶液中各种肽或蛋白质的定量分析方面具有无与伦比的能力。/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/58ccff40-3691-4d59-beed-4c7f9d828c15.jpg"//pp style="text-align: center "图2:手持式拉曼(532 nm)对两种畅销生物制剂的检测:(a)生物制剂1 (b)生物制剂2。绿色:原药 红色:假药 黑色:缓冲或安慰剂。/pp  所有案例都使用自动取样的方法,不需要很多的拉曼知识。结果显示,532nm手持式拉曼可以快速、简单、明确的鉴别原药和假冒药。同时结果也证明,532nm手持式拉曼可以为制药公司、药房等提供强大的、低成本的解决方案。/pp  strong(2)手持拉曼用于爆炸物的检测(/strongstrong532nm激光)/strong/pp  全球恐怖主义数据库的数据表明, 过去十年使用爆炸装置进行恐怖袭击的数量大大增加,包括便携式拉曼等很多分析方法都被开发用来进行爆炸物以及前体和分解产物的检测。/pp style="text-align: left "  图3显示:532nm手持式拉曼可以对炸药进行快速、可靠和安全的检测、鉴定和定量分析。值得注意的是,实验中的一些炸药或前体曾被认为具有“强烈荧光”(如二硝基萘)或使用手持式拉曼“很难检测” (如环三亚甲基三硝胺(RDX)、氨和硝酸铵)。/pp style="text-align: center "img title="04.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/798cad8d-8547-4406-8e46-2548317506a1.jpg"//pp style="text-align: center "图3: 利用532nm手持式拉曼得到的爆炸物的光谱:(a)粉末状爆炸物 (b)液体爆炸物前体 (c)过氧化氢水溶液 (d)过氧化氢自动定量分析(3200-3400 cmsup-1/sup OH-s water) (c)中放大的插图为~874 cmsup –1/sup OO-s Hsub2/subOsub2/sub。/pp  应该注意的是,532nm激发可以在1-5s内可靠的识别和检测上述所有物质,而且与785和1064nm相比,532nm得到的拉曼信号更强。/pp  相比785nm和1064nm ,532 nm的激光具有更强的散射,同时手持式拉曼系统具有更宽的光谱范围的100-4000cm-1, 更好的光谱分辨率:4-6cm-1。如此宽的光谱范围也为手持式拉曼拓展了一些新的应用,包括水溶液中分析物的自动定量。图3d直接显示了水溶液中过氧化氢的自动定量,低至 0.1%。/ppstrong  结论/strong/pp  分析结果表明,作为手持拉曼的一个极具吸引力的选择,532 nm激发应该被重新审视,其优势包括:仪器成本降低两倍,很多实际应用分析速度提高5-16倍, 激光功率降低 (实现炸药的安全检测,减少激光安全问题和激光诱导的样本退化,延长电池连续操作时间),进行水和大多数有机溶剂中被分析物检测时性能优越,能够通过各种各样的玻璃和塑料容器(包括琥珀)进行分析, 光谱范围和光谱分辨率得到改善,同时也改善了光谱检测限,提高了分析精度。/pp  因此,532 nm手持式拉曼光谱可以显著改善很大一部分实际应用,并扩展新的应用领域。适合的应用包括但不限于假冒生物制剂、炸药的快速检测、复杂混合物单个成分的识别、水溶液中分析物的自动定量、在水或有机溶剂中稀释的被分析物检测,以及之前一些使用手持式拉曼认为“很难检测”的多个化合物等。/pp style="text-align: right "  (作者:Aleksandr V. Mikhonin, Susan Hodi, Laurence A. Nafie, Rina K. Dukor)br//p
  • 海克斯康旗下中观连发两款手持式激光3D扫描仪新品
    12月12日,海克斯康旗下品牌中观连续发布2款手持式激光3D扫描仪新品——全新升级的AtlaScan多模式多功能量测3D扫描仪和RigelScan智能手持式激光3D扫描仪。它们在秉承上代机型优异基因的基础上,通过创新升级软硬件,实现了扫描速率的突破性提升,为“快速三维建模”树立了新标杆。随着新一轮科技革命和产业变革的加速演进,产业转型、提质增效的发展需求越来越迫切。激光3D扫描技术作为物理世界数字化的重要手段,也迫切需要以自身的迭代创新,为推动智能制造和数字经济的快速发展提供强劲有力的数字动能。 中观深耕机器视觉和3D数字化测量领域多年,曾多次为市场带来从0到1的革新突破,中观产品在精度、速率、便捷性、智能化等方面始终占据着行业领先的高地,而此次发布的升级新品不但再次创下了3D扫描仪“速度新记录”,还带来了更加优质的数据呈现和更加丰富、智慧的工作模式。全面提速 效率跃升 全新发布的产品以“全系加速”为最大亮点,AtlaScan和RigelScan全系列扫描速率均提升50%以上,力求为用户带来更加高效流畅的扫描体验。其中,AtlaScan最高速率更是突破了400万次测量/秒,使得激光3D扫描跃上了速率新台阶。AtlaScan系列速率提升88%~300%扫描速率的提升不仅体现在标准和精细扫描模式中,AtlaScan系列的孔位闪测效率相对上一代也提升了1倍,可以说是全方位的提速。AtlaScan系列测孔效率提升1倍计量精度 细腻升级新品在速率升级提升的同时,仍然保持了稳定的计量级精度,最高精度达0.01mm。此外,还对扫描仪的激光器元器件作了全新升级,软件算法也相应优化,可以更好地减少激光杂线的干扰,扫描黑色、高亮件更加轻松自如。针对黑白混合的样件也能从容应对AtlaScan和RigelScan原产品系列具有智能网格优化和局部分辨率功能,不但扫描过程中可实时生成三角网格,所见即所得,细节清晰,而且同一次扫描中可设置多个分辨率,保留细节的同时大大缩减了数据文件体积。而此次新品升级又进一步增强了网格优化功能,提升了数据的细腻表现,尤其是R角、拐角等位置过渡更加真实自然,这对于逆向和建模行业而言尤为重要,可以获得更为卓越的数据质量。R角/拐角等位置过渡更自然并行加速 性能开挂此次新品从各个层面进行了升级突破,GPU的并行处理能力也大大加强,因此不但新品的扫描帧率较上一代产品提升了一倍左右,扫描数据的后处理速度也有较大提升,并行处理的速度与竞品相比拉开了明显的差距。扫描不同样件数据量和处理时间对比AtlaScan和RigelScan全系列还新增了多系统协同工作的功能,只需简单配置即可实现多台设备同时扫描同一样件,而数据可以实时汇总传输在同一台电脑上。例如用2台扫描仪从正反两面同时扫描一件车门钣金,对其进行全尺寸的检测分析,相比用单台扫描仪可节约40%~50%的扫描时间,工作效率更上层楼。此功能针对大尺寸样件、自动化检测应用等,可以大幅缩减生产节拍。双系统协同工作模式快速流畅的扫描体验,精确可靠的数据品质,智能简便的多功能模式以及超强的场景适应性,AtlaScan和RigelScan系列产品多年来在汽车制造、航空航天、模具制造、机械重工等工业领域,以及教育科研、生物医学、文博艺术、VR/AR等非工业领域均积累了大量的用户和丰富的应用经验。此次全新升级,旨在紧扣时代脉搏,把握“智能制造”新一轮工业革命核心技术发展的关键期,紧密围绕客户应用场景,以走在创新前沿的3D数字化解决方案,为百行百业的数字化变革提供更强的数智利器,推动数字化新技术在制造领域的深度应用和全场景数智底座的构建。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制