当前位置: 仪器信息网 > 行业主题 > >

岩石点荷载试验仪

仪器信息网岩石点荷载试验仪专题为您提供2024年最新岩石点荷载试验仪价格报价、厂家品牌的相关信息, 包括岩石点荷载试验仪参数、型号等,不管是国产,还是进口品牌的岩石点荷载试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合岩石点荷载试验仪相关的耗材配件、试剂标物,还有岩石点荷载试验仪相关的最新资讯、资料,以及岩石点荷载试验仪相关的解决方案。

岩石点荷载试验仪相关的资讯

  • 国内首台海洋环境与动荷载耦合试验设备研制成功
    4月15日,中交四航局成功研制国内首台海洋环境与动荷载耦合试验设备,并拥有了该产品的自主知识产权。  该设备包括动载加载装置与海洋环境试验箱两部分。其中,动载加载装置为50吨疲劳试验机,可提供多种频率与加载方式的动荷载 海洋环境试验箱可提供盐水浸泡、盐水涨落及盐雾喷洒环境,模拟海洋水下区、水位变动区及浪溅区等海洋环境特点。整个设备真实模拟了海工建筑物在荷载与环境耦合作用下的工作环境,首次实现了动载与海洋环境耦合加载,填补了工程实际中环境与荷载耦合作用下混凝土耐久性研究领域的技术空白。该设备同时也为中交四航局参与的交通运输部“十一五”重大专项课题“环境与荷载耦合作用下海工混凝土结构耐久性及可靠度设计方法研究”的顺利开展提供了技术保障。
  • 第1000台MTS 370系列荷载框架完成交付使用
    MTS 370系列荷载框架为Landmark 和Bionix材料测试系统的基础。今年6月,随着第1000台MTS 370系列荷载框架成功交付给客户方DePuy Synthes(一家骨科植入物的生产商),MTS迎来了又一里程碑事件。MTS向位于美国印第安纳州的DePuy实验室交付了10台材料试验设备,用于髋关节植入物的疲劳试验。迄今为止,截止2013年5月,MTS 370系列的载荷框架销售额累计达到1亿5千万美元, 安装范围涉及从阿尔及利亚到越南等39个国家,销售客户达到616家公司,其中13家公司已经先后购买了10台或10台以上设备。近年来,MTS 370系列载荷框架产品的销售呈上升趋势。虽然前500台载荷框架的销售耗时3年多,但此后500台的销售仅用了不到2年的时间。销售的上升一部分是由于一项技术发展计划,即复合材料和金属材料结合的技术:100多台载荷框架已经用于SAFRAN集团的材料试验,它们主要是给SNECMA/GENERAL ELECTRIC公司进行新技术的开发。随着2007年开始启动高性能MTS 370系列载荷框架系列产品的研发,MTS开始了对未来事业的投资。MTS 370系列载荷框架设计旨在满足各种各样零部件和材料样品的动、静态试验要求。与以前产品相比,MTS 370系列载荷框架对零部件配件数量的要求大大降低,因此,MTS各种型号产品能够实现更加标准化及更加经济的配置及生产。 客户偏向于配置(能够满足其不同需求的)载荷框架在开始启动Landmark系列产品之前的几年,Scott Firman利用了一套&ldquo 扑克牌&rdquo 对客户进行了调研。这些牌的一面是载荷框架的照片,另一面是客户偏好的主要特色。当他询问客户对标准化MTS产品最喜欢的特色是什么,绝大多数的客户反馈他们希望根据自己的试验要求配置独一无二的载荷框架。Firman说,&ldquo 我们对此感到很惊讶,客户想要的是能够准确满足他们需求的产品&rdquo 。这就是Landmark产品模块化设计的优势。Landmark产品不仅能够使客户获得高度可配置的产品以便满足他们不同的需求,而且还能使工厂获得标准化的产品所带来的一切便益。 客户其他的偏好包括:准确满足其试验需求易于更改试验设置易于升级易于安装意外的试验中断不会损坏试件易于购置框架能够显示设备/试验状态高性能设备开关机简便设备易于操作 易于确定(试样)性能 界面友好 外形美观 价格优惠 交货期较短 试验速度快 设计上优于最低安全要求 供应商遵循自愿性标准 正常运行时间长 设备运行操作无污染
  • 四台“合肥造”大气监测荷载升天 提供国产高光谱数据保障
    9月7日11时01分,中国在太原卫星发射中心用长征四号丙遥四十运载火箭成功发射高光谱观测卫星(又名高分五号02星)。标志着我国大气环境领域的高光谱观测能力得到进一步提升,将满足我国在环境综合监测等方面的迫切需求,为全球大气环境遥感监测的业务化运行提供国产高光谱数据保障。  据介绍,该卫星共搭载了七台遥感仪器,其中四台大气监测载荷由合肥研究院研制,分别是大气主要温室气体监测仪(GMI)、大气痕量气体差分吸收光谱仪(EMI)、大气气溶胶多角度偏振探测仪(DPC)、高精度偏振扫描仪(POSP)。  GMI和EMI仪器入轨后将开展全球温室气体和污染气体监测。GMI可实现1~4ppm的二氧化碳探测和20ppb的甲烷探测,为我国“碳达峰与碳中和”战略提供技术支撑。EMI具备0.5纳米的紫外高光谱探测手段,可实现单日覆盖全球,实现二氧化氮、二氧化硫、臭氧和甲醛等污染气体监测,服务于我国“大气污染防治”及“臭氧和PM2.5协同探测”等国家战略。DPC能实现全球大气气溶胶和云的光学及微物理参数探测,为全球气候变迁研究及对地观测高精度大气辐射校正提供有效数据。POSP可与DPC协同配合,用于PM2.5、雾霾监测,助力打赢“蓝天保卫战”。  本次发射的四台载荷研制工作于2018年下半年启动,2019年初通过了正样设计评审,并先后于2020年通过了验收评审。为完成此次发射任务,该院于2021年7月7日召开了高光谱观测卫星4台大气监测载荷试验队进场动员会。两个月来,大气监测载荷研制团队全体成员,克服各种困难因素,以严慎细实的态度做好各项工作,顺利保证了这次任务的圆满完成。  今后,四台载荷将在高光谱观测卫星上同步运行,对于动态监测我国大气污染状况、贯彻落实大气污染防治攻坚任务等具有重要意义。除此之外,目前,中科院合肥物质科学研究院还承担了大气环境监测卫星等多颗卫星载荷的研制任务,将为我国大气环境的综合治理和实现碳达峰碳中和目标做出重要的技术支撑和保障。
  • WB多通道加载疲劳试验系统
    多通道加载疲劳试验系统   电液伺服多通道(协调)加载试验系统主要用于各种地面车辆、空中飞行器以及舰船等受力复杂的行驶机构的总成、部件以及整机多点(协调)加载试验。广泛应用于航天、航空、军工、原子能、舰船、高等教育以及地面车辆等领域。   关于多通道耦合加载疲劳试验多通道协调加载试验系统可以分成两大类:   一类是通道之间不耦合,只有相位协调关系。   另一类是多通道的耦合加载,这类系统不仅仅是相位的协调关系,还存在各个通道之间的解藕问题,比如WB公司的六自由度的道路模拟试验系统,在车辆的一个轮毂的三个坐标上安装三个作动器,实现六自由度的加载,模拟道路载荷谱,这样的系统就不仅仅是三个作动器进行简单的相位控制就可以实现的,而需要将道路采集回来的真实路谱进行迭代。还有一种是简单的解耦,如太空穿梭游戏机,将规定的三维轨迹进行解耦,计算出每个作动器在时域的运动谱,然后进行分别驱动即可,这种模式技术含量相对低得多。   微机控制电液伺服多通道拟动力加载系统-供应   信息编号:T8342573 (虚假举报)   该产品独具特点:   1.为了保证整机工作状态稳定可靠,控制系统采用 配备了目前 较先进的PⅣ工控机。   2.作动器全部采用了AMSLER技术.   3.该直线式伺服作动器配置 位移传感器,使位移测量误差仅 2&mu m,极大地满足了用户高精度要求。   4.负荷传感器 精度达0.03%FS的负荷传感器,保证了试验力测量精度。   5.在伺服油源系统方面,为保证多台作动器同时或部分投入工配置了由多套油泵电机组 组成的伺服油源,使用户可根据试验需要选择同时启动还是只启动一套   油泵电机组,不仅节省了能源,也降低了故障停机率。   1)由于该控制系统关键元器件大部采用了进口器件,并采用了当代先进的全数字闭环控制技术,使 整机性能达到了国外同类产品的水平   2)可进行等位移、等速率控制并可进行位移保持。   3)拟动力试验可以自动或手动方式工作。   4)控制系统具有示波器检测接口。   一.DGS-通道全数字伺服控制系统   1.全数字控制系统组成   全数字协调加载试验系统由两部分组成:   .上位机   包括计算机、计算机软件。   ?下位机包括工控机箱、主控及数据采集模板、通道伺服控制器模板、通道函数发生模板。   上位机、下位机通过高速数据传输线传输数据。   2.系统性能指标(略)   3.全数字伺服控制器系统软件   软件功能   ⑴.设定系统控制参数(P、I、D、F)   ⑵.传感器自动调零,   ⑶.传感器多点线性拟合标定   ⑷.系统安全保护软件   ⑸.静态试验、疲劳试验波形设定软件   ⑹.波形类型:正弦波、三角波、梯形波、方波、随机波、组合波、斜波、锯齿波、外输入采集频谱   ⑺.系统控制方式:负荷控制或位移控制,且两种控制方式可以平滑无扰动切换   ⑻.通道分配:可随意设定试验所占用的通道   ⑼.试验波形方式设定:即设定试验的加载方式(载荷或位移),加载的各种波形、频率、相位、终值及重复次数等试验参数。   试验波形方式设定非常灵活,几乎可以模拟出任意形状的曲线。   ⑽.试验参数的设置:设置试验的控制方式及相关参数、卸载时间、试验的开始点等   ⑾.试验选择:将所设定的试验挂接在试验站上,可以只挂接一个试验,也可以挂接多个试验,且每个试验可以同时控制多个通道,   多个试验可以同时运行,也可以分别运行。   ⑿.在试验的过程中,用户可以随时干预试验,如调整PIDF参数,阀控参数、保持、加速、增幅、减幅、卸载等,   以保证试验的精确性;   在此处加了管理员密码,有安全保护功能,防止设置参数被随意改动。   ⒀.控制方法:静态伺服控制,动态高频伺服控制,多通道解耦控制,动、静踏步法,幅值修正法,   相位修正法,幅相修正法。   4.控制系统的主要特点:   我公司的控制系统为多通道全数字式控制系统,   负荷控制系统的P、I、D、K 参数及位移控制系统的P、I、D 、K参数均为独立的两套参数储存于下位机及上位机的系统文件中。   二. 多通道协调加载系统技术特点   1.伺服控制系统   1)本公司生产的多通道协调加载控制系统的电器设计采用了多CPU系统,每通道自带CPU,实现各通道自管理。   测量系统大都采用美国AD公司先进的器件,采用调制载波及调制解调技术,即可实现快速连续长时间稳定测量,   又可以低速高精度、宽范围测量。   2)本系统可外接变形测量通道,可以提高系统对试件变形控制的精度。   3)软件采用Windows环境下虚拟仪器技术,界面风格人性化,操作方便。   软件的运行环境可以是WindowsXp、Windows2000,软件界面友好,   操作方便灵活。   2.伺服系统   1)本公司生产的伺服关键元器件均为进口。   2) 油箱结构采用整体油箱,这样对油温的控制,液位的控制大有好处。   其他相关信息   (万能试验机、电液伺服试验机、压力试验机、卧式拉力试验机、岩石三轴试验机、钢绞线试验机、松弛试验机、引伸计、耐久试验机、拟动力控制系统、电子万能试验机、顶锻试验机、板材弯曲试验机、疲劳试验机 参考资料: 1.WWW.RUMUL.NET.CN 2.WWW.WALTERBAI.COM 3.loxofo@yahoo.com.cn 4.13709181703 5.13581584194 开放分类: 多通道协调加载试验机系统/欧洲进口 疲劳试验机功能和技术要求 1. 基本功能:可适用于对各种大型混凝土、钢筋混凝土结构件、桥梁、各种桁架等进行静态压缩试验和单向动态脉动疲劳试验; 可适用预应力混凝土用钢绞线、预应力筋用锚具等疲劳荷载性能试验检测; 2. 主要组成:疲劳试验系统由液压式脉动器、电气控制系统、液压作动器、加载龙门框架、液压管路、计算机数据采集及处理系统等组成,系统控制通道数不少于10个。 3. 主要技术要求 1) 最大静态测试力:(kN):2000 2) 最大动态测试力:(kN):2000 4. 液压作动器数量和主要技术参数: 加载能力(静态/动态) 行程(mm) 振幅(mm) 频率范围(Hz) 数量(个) 1000 kN 120 0~5 2~8无级可调 2 500 kN 120 0~5 2~8无级可调 2 250 kN 120 0~5 2~8无级可调 2 100 kN 120 0~5 2~8无级可调 2 50 kN 120 0~5 2~8无级可调 2 6. 液压脉动器 1) 总系统通道数&ge 10个。 2) 液压脉动器排量(ml/次):0~800 3) 液压泵压力(MPa):21~28 4) 有温度超温报警、液位超限报警、油路堵塞报警及自动停机功能。 5) 管路。 7. 控制系统:实现对试验系统的电气控制和手动调节。 1) 可数字显示静态试验力,动态试验力的上下峰值,试验次数; 2) 应具有试验力标定、清零、动静态测量转换等功能,并具有试验力设定值过载保护功能。 3) 应具有润滑故障、试样断裂振动等报警显示装置。 4) 可显示试验频率、主电机工作电流。 5) 应配置试验力增减,振幅增减,工作频率增减等调节装置。 6) 应配置压力传感受器及进回油阀装置。 7) 可用劝卸除试验力。 8. 数据采集及处理系统 1) 可根据对试验的不同要求,设置不同的试验方案。试验条件等均可以事先在试验方案中设置完成。 2) 配置应用软件、波形发生软件及其他实时处理软件。 3) 信号处理、数采模板应既能采集和处理系统的试验数据。 4) 配置可转换不间断电源;具有停电保护功能。 多通道加载疲劳试验系统   电液伺服多通道(协调)加载试验系统主要用于各种地面车辆、空中飞行器以及舰船等受力复杂的行驶机构的总成、部件以及整机多点(协调)加载试验。广泛应用于航天、航空、军工、原子能、舰船、高等教育以及地面车辆等领域。   关于多通道耦合加载疲劳试验多通道协调加载试验系统可以分成两大类:   一类是通道之间不耦合,只有相位协调关系。   另一类是多通道的耦合加载,这类系统不仅仅是相位的协调关系,还存在各个通道之间的解藕问题,比如WB公司的六自由度的道路模拟试验系统,在车辆的一个轮毂的三个坐标上安装三个作动器,实现六自由度的加载,模拟道路载荷谱,这样的系统就不仅仅是三个作动器进行简单的相位控制就可以实现的,而需要将道路采集回来的真实路谱进行迭代。还有一种是简单的解耦,如太空穿梭游戏机,将规定的三维轨迹进行解耦,计算出每个作动器在时域的运动谱,然后进行分别驱动即可,这种模式技术含量相对低得多。   微机控制电液伺服多通道拟动力加载系统-供应   信息编号:T8342573 (虚假举报)   该产品独具特点:   1.为了保证整机工作状态稳定可靠,控制系统采用 配备了目前 较先进的PⅣ工控机。   2.作动器全部采用了AMSLER技术.   3.该直线式伺服作动器配置 位移传感器,使位移测量误差仅 2&mu m,极大地满足了用户高精度要求。   4.负荷传感器 精度达0.03%FS的负荷传感器,保证了试验力测量精度。   5.在伺服油源系统方面,为保证多台作动器同时或部分投入工配置了由多套油泵电机组 组成的伺服油源,使用户可根据试验需要选择同时启动还是只启动一套   油泵电机组,不仅节省了能源,也降低了故障停机率。   1)由于该控制系统关键元器件大部采用了进口器件,并采用了当代先进的全数字闭环控制技术,使 整机性能达到了国外同类产品的水平   2)可进行等位移、等速率控制并可进行位移保持。   3)拟动力试验可以自动或手动方式工作。   4)控制系统具有示波器检测接口。   一.DGS-通道全数字伺服控制系统   1.全数字控制系统组成   全数字协调加载试验系统由两部分组成:   .上位机   包括计算机、计算机软件。   ?下位机包括工控机箱、主控及数据采集模板、通道伺服控制器模板、通道函数发生模板。   上位机、下位机通过高速数据传输线传输数据。   2.系统性能指标(略)   3.全数字伺服控制器系统软件   软件功能   ⑴.设定系统控制参数(P、I、D、F)   ⑵.传感器自动调零,   ⑶.传感器多点线性拟合标定   ⑷.系统安全保护软件   ⑸.静态试验、疲劳试验波形设定软件   ⑹.波形类型:正弦波、三角波、梯形波、方波、随机波、组合波、斜波、锯齿波、外输入采集频谱   ⑺.系统控制方式:负荷控制或位移控制,且两种控制方式可以平滑无扰动切换   ⑻.通道分配:可随意设定试验所占用的通道   ⑼.试验波形方式设定:即设定试验的加载方式(载荷或位移),加载的各种波形、频率、相位、终值及重复次数等试验参数。   试验波形方式设定非常灵活,几乎可以模拟出任意形状的曲线。   ⑽.试验参数的设置:设置试验的控制方式及相关参数、卸载时间、试验的开始点等   ⑾.试验选择:将所设定的试验挂接在试验站上,可以只挂接一个试验,也可以挂接多个试验,且每个试验可以同时控制多个通道,   多个试验可以同时运行,也可以分别运行。   ⑿.在试验的过程中,用户可以随时干预试验,如调整PIDF参数,阀控参数、保持、加速、增幅、减幅、卸载等,   以保证试验的精确性;   在此处加了管理员密码,有安全保护功能,防止设置参数被随意改动。   ⒀.控制方法:静态伺服控制,动态高频伺服控制,多通道解耦控制,动、静踏步法,幅值修正法,   相位修正法,幅相修正法。   4.控制系统的主要特点:   我公司的控制系统为多通道全数字式控制系统,   负荷控制系统的P、I、D、K 参数及位移控制系统的P、I、D 、K参数均为独立的两套参数储存于下位机及上位机的系统文件中。   二. 多通道协调加载系统技术特点   1.伺服控制系统   1)本公司生产的多通道协调加载控制系统的电器设计采用了多CPU系统,每通道自带CPU,实现各通道自管理。   测量系统大都采用美国AD公司先进的器件,采用调制载波及调制解调技术,即可实现快速连续长时间稳定测量,   又可以低速高精度、宽范围测量。   2)本系统可外接变形测量通道,可以提高系统对试件变形控制的精度。   3)软件采用Windows环境下虚拟仪器技术,界面风格人性化,操作方便。   软件的运行环境可以是WindowsXp、Windows2000,软件界面友好,   操作方便灵活。   2.伺服系统   1)本公司生产的伺服关键元器件均为进口。   2) 油箱结构采用整体油箱,这样对油温的控制,液位的控制大有好处。   其他相关信息   (万能试验机、电液伺服试验机、压力试验机、卧式拉力试验机、岩石三轴试验机、钢绞线试验机、松弛试验机、引伸计、耐久试验机、拟动力控制系统、电子万能试验机、顶锻试验机、板材弯曲试验机、疲劳试验机 参考资料: 1.WWW.RUMUL.NET.CN 2.WWW.WALTERBAI.COM 3.loxofo@yahoo.com.cn 4.13709181703 5.13581584194 开放分类: 多通道协调加载试验机系统/欧洲进口 疲劳试验机功能和技术要求 1. 基本功能:可适用于对各种大型混凝土、钢筋混凝土结构件、桥梁、各种桁架等进行静态压缩试验和单向动态脉动疲劳试验; 可适用预应力混凝土用钢绞线、预应力筋用锚具等疲劳荷载性能试验检测; 2. 主要组成:疲劳试验系统由液压式脉动器、电气控制系统、液压作动器、加载龙门框架、液压管路、计算机数据采集及处理系统等组成,系统控制通道数不少于10个。 3. 主要技术要求 1) 最大静态测试力:(kN):2000 2) 最大动态测试力:(kN):2000 4. 液压作动器数量和主要技术参数: 加载能力(静态/动态) 行程(mm) 振幅(mm) 频率范围(Hz) 数量(个) 1000 kN 120 0~5 2~8无级可调 2 500 kN 120 0~5 2~8无级可调 2 250 kN 120 0~5 2~8无级可调 2 100 kN 120 0~5 2~8无级可调 2 50 kN 120 0~5 2~8无级可调 2 6. 液压脉动器 1) 总系统通道数&ge 10个。 2) 液压脉动器排量(ml/次):0~800 3) 液压泵压力(MPa):21~28 4) 有温度超温报警、液位超限报警、油路堵塞报警及自动停机功能。 5) 管路。 7. 控制系统:实现对试验系统的电气控制和手动调节。 1) 可数字显示静态试验力,动态试验力的上下峰值,试验次数; 2) 应具有试验力标定、清零、动静态测量转换等功能,并具有试验力设定值过载保护功能。 3) 应具有润滑故障、试样断裂振动等报警显示装置。 4) 可显示试验频率、主电机工作电流。 5) 应配置试验力增减,振幅增减,工作频率增减等调节装置。 6) 应配置压力传感受器及进回油阀装置。 7) 可用劝卸除试验力。 8. 数据采集及处理系统 1) 可根据对试验的不同要求,设置不同的试验方案。试验条件等均可以事先在试验方案中设置完成。 2) 配置应用软件、波形发生软件及其他实时处理软件。 3) 信号处理、数采模板应既能采集和处理系统的试验数据。 4) 配置可转换不间断电源;具有停电保护功能。 多通道加载疲劳试验系统   电液伺服多通道(协调)加载试验系统主要用于各种地面车辆、空中飞行器以及舰船等受力复杂的行驶机构的总成、部件以及整机多点(协调)加载试验。广泛应用于航天、航空、军工、原子能、舰船、高等教育以及地面车辆等领域。   关于多通道耦合加载疲劳试验多通道协调加载试验系统可以分成两大类:   一类是通道之间不耦合,只有相位协调关系。   另一类是多通道的耦合加载,这类系统不仅仅是相位的协调关系,还存在各个通道之间的解藕问题,比如WB公司的六自由度的道路模拟试验系统,在车辆的一个轮毂的三个坐标上安装三个作动器,实现六自由度的加载,模拟道路载荷谱,这样的系统就不仅仅是三个作动器进行简单的相位控制就可以实现的,而需要将道路采集回来的真实路谱进行迭代。还有一种是简单的解耦,如太空穿梭游戏机,将规定的三维轨迹进行解耦,计算出每个作动器在时域的运动谱,然后进行分别驱动即可,这种模式技术含量相对低得多。   微机控制电液伺服多通道拟动力加载系统-供应   信息编号:T8342573 (虚假举报)   该产品独具特点:   1.为了保证整机工作状态稳定可靠,控制系统采用 配备了目前 较先进的PⅣ工控机。   2.作动器全部采用了AMSLER技术.   3.该直线式伺服作动器配置 位移传感器,使位移测量误差仅 2&mu m,极大地满足了用户高精度要求。   4.负荷传感器 精度达0.03%FS的负荷传感器,保证了试验力测量精度。   5.在伺服油源系统方面,为保证多台作动器同时或部分投入工配置了由多套油泵电机组 组成的伺服油源,使用户可根据试验需要选择同时启动还是只启动一套   油泵电机组,不仅节省了能源,也降低了故障停机率。   1)由于该控制系统关键元器件大部采用了进口器件,并采用了当代先进的全数字闭环控制技术,使 整机性能达到了国外同类产品的水平   2)可进行等位移、等速率控制并可进行位移保持。   3)拟动力试验可以自动或手动方式工作。   4)控制系统具有示波器检测接口。   一.DGS-通道全数字伺服控制系统   1.全数字控制系统组成   全数字协调加载试验系统由两部分组成:   .上位机   包括计算机、计算机软件。   ?下位机包括工控机箱、主控及数据采集模板、通道伺服控制器模板、通道函数发生模板。   上位机、下位机通过高速数据传输线传输数据。   2.系统性能指标(略)   3.全数字伺服控制器系统软件   软件功能   ⑴.设定系统控制参数(P、I、D、F)   ⑵.传感器自动调零,   ⑶.传感器多点线性拟合标定   ⑷.系统安全保护软件   ⑸.静态试验、疲劳试验波形设定软件   ⑹.波形类型:正弦波、三角波、梯形波、方波、随机波、组合波、斜波、锯齿波、外输入采集频谱   ⑺.系统控制方式:负荷控制或位移控制,且两种控制方式可以平滑无扰动切换   ⑻.通道分配:可随意设定试验所占用的通道   ⑼.试验波形方式设定:即设定试验的加载方式(载荷或位移),加载的各种波形、频率、相位、终值及重复次数等试验参数。   试验波形方式设定非常灵活,几乎可以模拟出任意形状的曲线。   ⑽.试验参数的设置:设置试验的控制方式及相关参数、卸载时间、试验的开始点等   ⑾.试验选择:将所设定的试验挂接在试验站上,可以只挂接一个试验,也可以挂接多个试验,且每个试验可以同时控制多个通道,   多个试验可以同时运行,也可以分别运行。   ⑿.在试验的过程中,用户可以随时干预试验,如调整PIDF参数,阀控参数、保持、加速、增幅、减幅、卸载等,   以保证试验的精确性;   在此处加了管理员密码,有安全保护功能,防止设置参数被随意改动。   ⒀.控制方法:静态伺服控制,动态高频伺服控制,多通道解耦控制,动、静踏步法,幅值修正法,   相位修正法,幅相修正法。   4.控制系统的主要特点:   我公司的控制系统为多通道全数字式控制系统,   负荷控制系统的P、I、D、K 参数及位移控制系统的P、I、D 、K参数均为独立的两套参数储存于下位机及上位机的系统文件中。   二. 多通道协调加载系统技术特点   1.伺服控制系统   1)本公司生产的多通道协调加载控制系统的电器设计采用了多CPU系统,每通道自带CPU,实现各通道自管理。   测量系统大都采用美国AD公司先进的器件,采用调制载波及调制解调技术,即可实现快速连续长时间稳定测量,   又可以低速高精度、宽范围测量。   2)本系统可外接变形测量通道,可以提高系统对试件变形控制的精度。   3)软件采用Windows环境下虚拟仪器技术,界面风格人性化,操作方便。   软件的运行环境可以是WindowsXp、Windows2000,软件界面友好,   操作方便灵活。   2.伺服系统   1)本公司生产的伺服关键元器件均为进口。   2) 油箱结构采用整体油箱,这样对油温的控制,液位的控制大有好处。   其他相关信息   (万能试验机、电液伺服试验机、压力试验机、卧式拉力试验机、岩石三轴试验机、钢绞线试验机、松弛试验机、引伸计、耐久试验机、拟动力控制系统、电子万能试验机、顶锻试验机、板材弯曲试验机、疲劳试验机 参考资料: 1.WWW.RUMUL.NET.CN 2.WWW.WALTERBAI.COM 3.loxofo@yahoo.com.cn 4.13709181703 5.13581584194 开放分类: 多通道协调加载试验机系统/欧洲进口 疲劳试验机功能和技术要求 1. 基本功能:可适用于对各种大型混凝土、钢筋混凝土结构件、桥梁、各种桁架等进行静态压缩试验和单向动态脉动疲劳试验; 可适用预应力混凝土用钢绞线、预应力筋用锚具等疲劳荷载性能试验检测; 2. 主要组成:疲劳试验系统由液压式脉动器、电气控制系统、液压作动器、加载龙门框架、液压管路、计算机数据采集及处理系统等组成,系统控制通道数不少于10个。 3. 主要技术要求 1) 最大静态测试力:(kN):2000 2) 最大动态测试力:(kN):2000 4. 液压作动器数量和主要技术参数: 加载能力(静态/动态) 行程(mm) 振幅(mm) 频率范围(Hz) 数量(个) 1000 kN 120 0~5 2~8无级可调 2 500 kN 120 0~5 2~8无级可调 2 250 kN 120 0~5 2~8无级可调 2 100 kN 120 0~5 2~8无级可调 2 50 kN 120 0~5 2~8无级可调 2 6. 液压脉动器 1) 总系统通道数&ge 10个。 2) 液压脉动器排量(ml/次):0~800 3) 液压泵压力(MPa):21~28 4) 有温度超温报警、液位超限报警、油路堵塞报警及自动停机功能。 5) 管路。 7. 控制系统:实现对试验系统的电气控制和手动调节。 1) 可数字显示静态试验力,动态试验力的上下峰值,试验次数; 2) 应具有试验力标定、清零、动静态测量转换等功能,并具有试验力设定值过载保护功能。 3) 应具有润滑故障、试样断裂振动等报警显示装置。 4) 可显示试验频率、主电机工作电流。 5) 应配置试验力增减,振幅增减,工作频率增减等调节装置。 6) 应配置压力传感受器及进回油阀装置。 7) 可用劝卸除试验力。 8. 数据采集及处理系统 1) 可根据对试验的不同要求,设置不同的试验方案。试验条件等均可以事先在试验方案中设置完成。 2) 配置应用软件、波形发生软件及其他实时处理软件。 3) 信号处理、数采模板应既能采集和处理系统的试验数据。 4) 配置可转换不间断电源;具有停电保护功能。 多通道加载疲劳试验系统   电液伺服多通道(协调)加载试验系统主要用于各种地面车辆、空中飞行器以及舰船等受力复杂的行驶机构的总成、部件以及整机多点(协调)加载试验。广泛应用于航天、航空、军工、原子能、舰船、高等教育以及地面车辆等领域。   关于多通道耦合加载疲劳试验多通道协调加载试验系统可以分成两大类:   一类是通道之间不耦合,只有相位协调关系。   另一类是多通道的耦合加载,这类系统不仅仅是相位的协调关系,还存在各个通道之间的解藕问题,比如WB公司的六自由度的道路模拟试验系统,在车辆的一个轮毂的三个坐标上安装三个作动器,实现六自由度的加载,模拟道路载荷谱,这样的系统就不仅仅是三个作动器进行简单的相位控制就可以实现的,而需要将道路采集回来的真实路谱进行迭代。还有一种是简单的解耦,如太空穿梭游戏机,将规定的三维轨迹进行解耦,计算出每个作动器在时域的运动谱,然后进行分别驱动即可,这种模式技术含量相对低得多。   微机控制电液伺服多通道拟动力加载系统-供应   信息编号:T8342573 (虚假举报)   该产品独具特点:   1.为了保证整机工作状态稳定可靠,控制系统采用 配备了目前 较先进的PⅣ工控机。   2.作动器全部采用了AMSLER技术.   3.该直线式伺服作动器配置 位移传感器,使位移测量误差仅 2&mu m,极大地满足了用户高精度要求。   4.负荷传感器 精度达0.03%FS的负荷传感器,保证了试验力测量精度。   5.在伺服油源系统方面,为保证多台作动器同时或部分投入工配置了由多套油泵电机组 组成的伺服油源,使用户可根据试验需要选择同时启动还是只启动一套   油泵电机组,不仅节省了能源,也降低了故障停机率。   1)由于该控制系统关键元器件大部采用了进口器件,并采用了当代先进的全数字闭环控制技术,使 整机性能达到了国外同类产品的水平   2)可进行等位移、等速率控制并可进行位移保持。   3)拟动力试验可以自动或手动方式工作。   4)控制系统具有示波器检测接口。   一.DGS-通道全数字伺服控制系统   1.全数字控制系统组成   全数字协调加载试验系统由两部分组成:   .上位机   包括计算机、计算机软件。   ?下位机包括工控机箱、主控及数据采集模板、通道伺服控制器模板、通道函数发生模板。   上位机、下位机通过高速数据传输线传输数据。   2.系统性能指标(略)   3.全数字伺服控制器系统软件   软件功能   ⑴.设定系统控制参数(P、I、D、F)   ⑵.传感器自动调零,   ⑶.传感器多点线性拟合标定   ⑷.系统安全保护软件   ⑸.静态试验、疲劳试验波形设定软件   ⑹.波形类型:正弦波、三角波、梯形波、方波、随机波、组合波、斜波、锯齿波、外输入采集频谱   ⑺.系统控制方式:负荷控制或位移控制,且两种控制方式可以平滑无扰动切换   ⑻.通道分配:可随意设定试验所占用的通道   ⑼.试验波形方式设定:即设定试验的加载方式(载荷或位移),加载的各种波形、频率、相位、终值及重复次数等试验参数。   试验波形方式设定非常灵活,几乎可以模拟出任意形状的曲线。   ⑽.试验参数的设置:设置试验的控制方式及相关参数、卸载时间、试验的开始点等   ⑾.试验选择:将所设定的试验挂接在试验站上,可以只挂接一个试验,也可以挂接多个试验,且每个试验可以同时控制多个通道,   多个试验可以同时运行,也可以分别运行。   ⑿.在试验的过程中,用户可以随时干预试验,如调整PIDF参数,阀控参数、保持、加速、增幅、减幅、卸载等,   以保证试验的精确性;   在此处加了管理员密码,有安全保护功能,防止设置参数被随意改动。   ⒀.控制方法:静态伺服控制,动态高频伺服控制,多通道解耦控制,动、静踏步法,幅值修正法,   相位修正法,幅相修正法。   4.控制系统的主要特点:   我公司的控制系统为多通道全数字式控制系统,   负荷控制系统的P、I、D、K 参数及位移控制系统的P、I、D 、K参数均为独立的两套参数储存于下位机及上位机的系统文件中。   二. 多通道协调加载系统技术特点   1.伺服控制系统   1)本公司生产的多通道协调加载控制系统的电器设计采用了多CPU系统,每通道自带CPU,实现各通道自管理。   测量系统大都采用美国AD公司先进的器件,采用调制载波及调制解调技术,即可实现快速连续长时间稳定测量,   又可以低速高精度、宽范围测量。   2)本系统可外接变形测量通道,可以提高系统对试件变形控制的精度。   3)软件采用Windows环境下虚拟仪器技术,界面风格人性化,操作方便。   软件的运行环境可以是WindowsXp、Windows2000,软件界面友好,   操作方便灵活。   2.伺服系统   1)本公司生产的伺服关键元器件均为进口。   2) 油箱结构采用整体油箱,这样对油温的控制,液位的控制大有好处。   其他相关信息   (万能试验机、电液伺服试验机、压力试验机、卧式拉力试验机、岩石三轴试验机、钢绞线试验机、松弛试验机、引伸计、耐久试验机、拟动力控制系统、电子万能试验机、顶锻试验机、板材弯曲试验机、疲劳试验机 参考资料: 1.WWW.RUMUL.NET.CN 2.WWW.WALTERBAI.COM 3.loxofo@yahoo.com.cn 4.13709181703 5.13581584194 开放分类: 多通道协调加载试验机系统/欧洲进口 疲劳试验机功能和技术要求 1. 基本功能:可适用于对各种大型混凝土、钢筋混凝土结构件、桥梁、各种桁架等进行静态压缩试验和单向动态脉动疲劳试验; 可适用预应力混凝土用钢绞线、预应力筋用锚具等疲劳荷载性能试验检测; 2. 主要组成:疲劳试验系统由液压式脉动器、电气控制系统、液压作动器、加载龙门框架、液压管路、计算机数据采集及处理系统等组成,系统控制通道数不少于10个。 3. 主要技术要求 1) 最大静态测试力:(kN):2000 2) 最大动态测试力:(kN):2000 4. 液压作动器数量和主要技术参数: 加载能力(静态/动态) 行程(mm) 振幅(mm) 频率范围(Hz) 数量(个) 1000 kN 120 0~5 2~8无级可调 2 500 kN 120 0~5 2~8无级可调 2 250 kN 120 0~5 2~8无级可调 2 100 kN 120 0~5 2~8无级可调 2 50 kN 120 0~5 2~8无级可调 2 6. 液压脉动器 1) 总系统通道数&ge 10个。 2) 液压脉动器排量(ml/次):0~800 3) 液压泵压力(MPa):21~28 4) 有温度超温报警、液位超限报警、油路堵塞报警及自动停机功能。 5) 管路。 7. 控制系统:实现对试验系统的电气控制和手动调节。 1) 可数字显示静态试验力,动态试验力的上下峰值,试验次数; 2) 应具有试验力标定、清零、动静态测量转换等功能,并具有试验力设定值过载保护功能。 3) 应具有润滑故障、试样断裂振动等报警显示装置。 4) 可显示试验频率、主电机工作电流。 5) 应配置试验力增减,振幅增减,工作频率增减等调节装置。 6) 应配置压力传感受器及进回油阀装置。 7) 可用劝卸除试验力。 8. 数据采集及处理系统 1) 可根据对试验的不同要求,设置不同的试验方案。试验条件等均可以事先在试验方案中设置完成。 2) 配置应用软件、波形发生软件及其他实时处理软件。 3) 信号处理、数采模板应既能采集和处理系统的试验数据。 4) 配置可转换不间断电源;具有停电保护功能。
  • C919通过试验机极限载荷试验
    p style="text-indent: 2em "昨天下午,C919大型客机项目双喜临门——C919-102架机顺利完成首次空中远距离转场飞行,静力试验机通过2.5g机动平衡工况极限载荷静力试验。/pp style="text-indent: 2em "14时57分,C919大型客机102架机从上海浦东机场起飞,历经1小时46分的飞行,于16时43分平稳降落在山东东营胜利机场,顺利完成首次空中远距离转场飞行。/pp style="text-indent: 2em "随着 C919-102架机的顺利转场,中国商飞公司正式开启C919大型客机多机场、多区域协同试飞模式,未来将接受各种复杂气象条件的严酷考验和系列高风险试飞科目的挑战。/pp style="text-indent: 2em "几乎同时,在位于上海浦东祝桥的航空工业强度所上海分部,C919大型客机全机2.5g机动平衡工况极限载荷静力试验也取得圆满成功。/pp style="text-indent: 2em "在此次试验过程中,C919大型客机10001架静力试验机单侧机翼受到向上的载荷将近100吨。随着极限载荷(150%)的加载并保载3秒,静力试验机翼尖变形接近3米,变形和应变符合分析预期,机体结构满足承载要求,为C919大型客机后续试飞取证工作奠定了坚实基础。/pp style="text-indent: 2em "根据计划,C919大型客机10001架机未来还将开展一系列静力试验。中国商飞公司表示,在中国民航上海审定中心监督和审查下,由中国商飞上飞院和航空工业强度所组成的大飞机强度试验团队将以高度的专注、细致的准备和过硬的能力,紧密配合,共同推进各项试验工作。/p
  • (纽迈分析-中油测井)创新联合出成果:移动式全直径二维核磁共振测量仪助力车载岩石物理实验室建设
    12月1日,主题为“智能驱动、数字决策”的中油测井新产品发布会在西安召开。 中国工程院院士邱爱慈、王双明、李宁,陕西省科学技术厅、中国石油总部部门、油气和新能源板块、工程技术板块、同行企业、石油高校等41家单位160余人出席会议。 此次发布会,中油测井发布了MLab车载岩石物理实验室、IDS智能导向系统、hiDAS光纤传感系统、FITS过钻具测井系列、LogUDB中国石油统一测井数据库等5项新产品。 纽迈与MLab车载岩石物理实验室 纽迈公司在核磁共振技术方面拥有多年的研发经验和技术积累,而中油测井公司在测井行业具有广泛的应用场景和实际经验。基于双方在技术研发和行业经验方面的优势互补,为推动核磁共振技术在测井行业的应用和发展,服务好国家重大战略需求,为我国测井行业作出新的更大贡献,纽迈与中油测井共建了核磁共振技术创新联合体。 MLab车载岩石物理实验室的核心设备移动式全直径二维核磁共振测量仪便是联合体双方联合开发的重要成果。 车载岩石物理实验室 车载岩石物理实验室由移动式全直径二维核磁共振测量仪、全直径岩心光学扫描仪、全直径岩心自然伽马能谱测量仪、漫反射红外光谱测量仪、岩石高温热解分析仪组成,有效集成了传统施工现场测试的及时性,以及实验室测试的精细化等优点,具有绿色、安全、快速、无损、机动性强的等特点。 可用于井场新鲜全直径岩心的快速连续测量,提供岩性、物性、含油性和孔隙结构及烃源岩特性参数、为测井解释、储层评价、甜点优选提供数据支撑,尤其适用于致密油、页岩油等非常规储层的快速精确评价,助力石油天然气勘探开发。 移动式全直径二维核磁共振测量仪 基于移动式全直径二维核磁共振测量仪等设备的车载岩石物理实验室充分发挥钻井取心的价值,最大程度的保持原位地层信息,为数字岩心建设提供解决方案。 当岩心出井后,去除岩心表面的泥浆或者密闭液,立刻将岩心用保鲜膜包裹,减少岩心中流体的逸散,首先连续采集以一维核磁T2谱,获取岩心孔隙度、孔隙结构信息。然后采集二维核磁T1-T2谱,计算含油饱和度,核磁共振仪器的最小回波间隔0.2毫秒,纵向分辨率1cm、2cm、4cm、10cm可选。每次扫描1米岩心,2cm分辨率下的一维核磁采集时间12分钟,二维核磁单点采集时间3分钟。 移动式全直径岩心核磁扫描技术能够检测大尺寸岩心,全面描述强非均质性储集层的真实孔隙结构,代表性强;可以在岩心出井的第一时间进行无损、快速测量;能够设定测量速度,模拟不同测井速度下的测量效果;同时具有更高的纵向分辨率。
  • 文献速递│荷载溶瘤病毒干细胞在急性髓系白血病中的应用研究
    急性髓系白血病(Acute Myeloid Leukemia, AML)是一组具有髓系特征的多发性异质性恶性肿瘤。通过化疗、放疗、造血干细胞移植、支持性治疗和靶向治疗等方式,可以提高患者五年总存活率;但是,与其他血液肿瘤相比,AML的治疗效果较差,最常见的表现是缓解后复发。因此,对于复发和化疗耐药的患者来说,迫切需要寻找新的具有有效和可控副作用的治疗药物和技术。溶瘤病毒(Oncolytic Virus, OVS)是一类具有复制能力的肿瘤杀伤型病毒,通过直接溶解感染的肿瘤细胞和间接增强宿主的抗肿瘤免疫力来介导肿瘤细胞的破坏。其种类有:新城疫病毒(Newcastle disease virus, NDV)、单纯疱疹病毒-1(Herpes simplex virus-1, HSV-1)、呼肠孤病毒(Reovirus)和溶瘤腺病毒(Oncolytic adenovirus)等。由于OVS优先破坏肿瘤细胞,而对正常细胞无害,同时越来越多的研究证据表明,AML细胞感染溶瘤病毒会显著增加肿瘤细胞的死亡率,这为AML的治疗提供了新的方法和思路,已经在多个临床试验中进行了安全性和可行性的探索。然而,B淋巴细胞会对血液循环中的OVS产生中和抗体(Neutralizing Bntibodies、NAbs),从而阻止病毒的传播,最终会降低病毒的治疗效果。▲ OVS的双重作用模式,优先靶向并杀死癌细胞,而对正常细胞几乎没有有害的影响间充质干细胞(Mesenchymal stem cells, MSCs)是一类存在于多种组织(如骨髓、脐带血和脐带组织、胎盘组织、脂肪组织等),具有多向分化潜力的多能干细胞。在过去的十年中,MSCs被认为是OVS的理想载体,其原因有:(1)、MSCs为病毒提供了一个复制场所;(2)、MSCs能避免被免疫系统清除;(3)、MSCs确保病毒能到达肿瘤部位;(4)、MSCs会分泌细胞因子,增强抗肿瘤免疫反应。然而,携带溶瘤病毒的人脐带来源的间充质干细胞(Human umbilical cord-derived MSCs, Huc-MSCs)的抗肿瘤效果及其分子机制尚不清楚。▲ 间充质干细胞的分化潜力近日,贵州医科大学成体干细胞转化研究重点实验室赵星和何志旭教授课题组首次报道Huc-MSCs作为呼肠孤病毒的细胞载体,并使用博鹭腾AniView100多模式动物活体成像系统检测携带呼肠孤病毒的Huc-MSCs和MSCs在活体内对AML的治疗效果和抗肿瘤效果。该工作有助于提升研究人员对MSCs携带OVS的抗肿瘤机制的理解,并可能为临床治疗AML提供新的策略。相关成果已在国际著名期刊《International Immunopharmacology》发表。评价携带呼肠孤病毒的Huc-MSCs在体内的治疗效果。根据荧光素酶报告基因可用于体内移植的Huc-MSCs的定量,将呼肠孤病毒(Luc-MSCs-Reo)负载于Huc-MSCs,并静脉注射注射到AML小鼠模型内。通过博鹭腾AniView100多模式动物活体成像系统进行成像,结果显示Huc-MSCs位置同肿瘤THP-1细胞定位相同。小鼠的Kaplan-Meier生存曲线结果表明,接受呼肠孤病毒感染的Huc-MSCs的小鼠的中位存活时间比接受裸鼠呼肠孤病毒的小鼠显著增加。这些数据证实了Huc-MSCs作为呼肠孤病毒载体具有良好的治疗效果。▲ 携带呼肠孤病毒的Huc-MSCs对AML小鼠模型的治疗作用评价携带呼肠孤病毒的MSCs的体内抗肿瘤效果。建立具有免疫活性的小鼠AML模型,通过博鹭腾AniView100多模式动物活体成像系统进行成像,结果显示标记DIR的MSCs和呼肠孤病毒感染的MSCs对C1498肿瘤具有肿瘤归巢能力,提示携带呼肠孤病毒的MSCs维持其固有的向肿瘤细胞迁移的能力。根据各组的肿瘤体积和重量、肿瘤中的病毒RNA定量显示、治疗后小鼠血清干扰素-γ和肿瘤坏死因子-α水平及免疫组织化学法观察到肿瘤中CD8的表达结果,可得MSCs有效地将呼肠孤病毒运送到肿瘤部位,并触发小鼠的免疫反应,对肿瘤生长有明显的抑制作用。这些结果证实了MSCs载体能够增强呼肠孤病毒的抗肿瘤效果。▲ 携带呼肠孤病毒的MSCs对C57BL/6小鼠C1498肿瘤的治疗作用
  • 天水红山试验机公司4款试验机新品通过鉴定
    2010年12月11日,天水红山试验机有限公司在兰州饭店召开了2010年省级科技成果暨新产品鉴定会。甘肃省科技厅、甘肃省工信委、天水市科技局、天水市工信委相关领导共十六人出席了会议。鉴定会现场  本次会议由甘肃省科技厅组织、天水市科技局主持,邀请中国科学院院士、兰州大学副校长、博士生导师郑晓静担任鉴定委员会主任,甘肃省科学院副院长、研究员刘国汉,甘肃省机械科学院院长、研究员韩少平担任副主任,兰州理工大学流体学院副院长冀宏教授,甘肃省机电产品监督检验站站长、高级工程师张惠泽,天水锻压机床有限公司总工程师、高级工程师蒋文凯,天水星火机床有限公司总设计师、高级工程师许铭生为专家组成鉴定委员会,对天水红山试验机有限公司研制的“复杂荷载动静试验机”、“微机电液伺服控制膨胀管试验机”、“微机控制30000kN卧式多功能拉力试验机”、“1000kN花岗岩裂隙水渗透试验机”四个项目进行了科技成果暨新产品鉴定。  甘肃省科技厅成果处处长张怡静、甘肃省工信委技术创新处处长李开明代表省科技厅和省工信委讲话,对红山公司在科技创新中取得的高水平成果表示祝贺,对企业近年来在企业科技创新工作中所做的突出成绩给予高度评价,希望也相信红山公司在今后的工作中做出更大成绩,省上将一如既往的给予大力支持。  鉴定委员会认真听取了课题组所作的项目工作汇报,审阅了 相关材料,经质询讨论后,一致认为提交鉴定的项目执行了现行国家标准和企业标准,达到了预期的设计要求,提交会议的相关材料齐全、完整、统一。四个项目经甘肃省机电产品质量监督检验站现场检测,各项技术性能指标均达到标准要求,安全指标符合有关法规的规定。  “复杂荷载动静试验机” 产品主要针对海洋输油管道工程中高强度输油管道力学性能检测的需求,模拟海底输油钢管承受复杂荷载下的力学性能测试方法。可对钢管在轴向压力(或拉力)、内压、弯矩等多种载荷联合作用条件下的变形、承载能力和疲劳寿命进行静动态测试。该试验机采用独特的试件直立安装结构,可防止细长试样倾覆,试样钢管固定可靠。该产品设计合理,结构新颖,创新性突出,使用维护方便,各项指标达到预期设计要求,总体技术达到国际领先水平。  “1000kN花岗岩裂隙水渗透试验机” 产品针对地下裂隙岩石中的渗流特性测试的需求,可进行不同应力条件下的渗透试验,更好地获取花岗岩裂隙渗透测试数据,可对大尺度裂隙岩石的渗透水流进行全方位的温度、压力流量检测和控制。该试验机采用了一个竖向油缸和水平X-X、Y-Y向各两个油缸的五油缸加载系统,既可做三轴试验,也可做水平向剪切试验。总体技术达到国际领先水平。  “微机电液伺服控制膨胀管试验机”主要针对钢管在单向和多向受力情况下的静动态力学特性。该试验机主要用于高强度钢管在机械拉伸、内压膨胀、复合拉伸膨胀时单向和多向静动态力学特性的测试。具备机械牵引膨胀锥、高压水推动膨胀锥和机械牵引-高压水推动复合的三种膨胀方式,可对φ80mm—φ340mm各种钢管进行试验。也可对钢管膨胀进行径向变化量的实时动态测量,钢管内充压最高可达70MPa,总体技术达到国际先进水平。  “微机控制30000kN卧式多功能拉力试验机”主要用于钢丝绳、索具、锚链、钢缆、桥索、化纤缆绳、电缆等特长试件的抗拉强度或耐受试验,也适用于对金属结构件、系泊锚泊设备、吊梁及非金属材料的强度拉伸试验。该产品采用大小双油缸轴向叠加串联式加载系统,拼接式承载框架,扩展了试验范围,具有试件拉直功能,降低了成本。最大拉伸静载荷达30000kN,是目前国内最大的卧式拉力试验机。总体技术达到国内领先水平。  红山公司总经理李小宁代表企业讲话,对各位专家认真严谨、一丝不苟的工作精神表示钦佩,对各位领导在百忙之中莅临会议表示感谢,对省科技厅和省工信委近年来对企业的大力支持表示感谢。他指出,红山公司在省市有关部门的正确领导关怀下,在星火集团公司的大力支持帮助下,认真贯彻落实“和谐立本、创新为先”的企业理念,大力组织实施产学研工程,不断加大科技投入,走出了出一条以企业为主体、市场为导向、品牌为目标的创新发展之路,企业科技创新能力显著增强,研制开发了一批拥有自主知识产权的高新技术产品,取得了一批较高水平的科技创新成果,也得到了国家、省市有关部门资金上的大力支持,为企业发展注入了活力、增添了后劲。我们将以这次鉴定会会为契机,在省市有关部门的正确领导,在星火集团公司的关心支持下,紧紧抓住国家实施“十二五规划”的重大战略机遇,团结带领企业广大科技人员,不遗余力的推进企业技术创新,不断提高自主创新能力,不断创新完善以企业为主体、市场为导向、产学研相结合的技术创新体系,充分利用公司研发能力强,科技成果数量多、水平高的优势,把企业的产品制造、市场开拓、品牌打造的能力有效整合起来,与科研院所实现强强联合、优势互补,争取在关键技术领域取得重大突破,加速科技成果转化,不断培育新的经济增长点,为地方经济和社会发展作出更大的贡献,再创新的辉煌。
  • 扫描电镜样品荷电现象成因新解——安徽大学林中清33载经验谈(12)
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "扫描电镜测试过程中,样品的荷电现象被公认为是最大且棘手的问题。对于样品荷电现象的成因,目前的解释大都语焉不详,存在许多的疑问。其中最经典的解释似乎是基于如下这张电子产额与加速电压的关系图所展开。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/7b4e9c9a-cc0b-4387-9dbc-319ec0829c11.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "零电位:无荷电;负电位:异常亮;正电位:异常暗/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "但这个解释存在以下几个步进式的问题:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "A)无论是样品的表面形貌像,还是表面的荷电表象都基于溢出样品表面的电子信号。样品中产生再多的二次电子和背散射电子,没有溢出样品表面,没有被探头接收到,对形成表面形貌像是毫无影响的,更遑论荷电表象。故样品荷电现象,对应的应该是电子信息溢出量出现的异常。这张图对产额是啥?交代不清,故是否适合做为参照?/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "B)二次电子和背散射电子产额多是否就一定溢出的多?二次电子和背散射电子产额的多少和样品中形成怎样的荷电场是否能画上等号?/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "一个电中性的样品。当注入样品的电荷总量与溢出样品的电荷总量存在差异,才可能在样品中形成电场。如果溢出样品表面的电荷总量低于注入样品的电荷总量,且多余的电荷聚集在样品中,就会在样品的局部或全体部位形成负电场。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品中二次电子和背散射电子产额多不代表其溢出量大。溢出样品表面的二次电子和背散射电子占其产额的总量往往都很低。产生所谓正电场必须是溢出样品的电子比注入样品的电子还要多,使样品局部或全部有大量的正电荷聚集。这种情况在扫描电镜的测试过程中几乎是不可能发生的。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "C)样品如果真的存在正电位,将会出现怎样结果?/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "经典观点认为,当样品电子的产额大于入射电子总量,且这些电子都溢出样品表面,才在样品中形成正电位。如果这种情况确实发生了,那形貌像应该如何变化呢?/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "首先图像将由于有大量二次电子和背散射电子的溢出而变得异常明亮;随后出现正电场使得这些电子溢出急遽减少,图像变暗;随着电子束将大量电子注入样品,这些正电荷将被中和,正电位减弱,样品的电子信息又将逐渐显现,图像也渐渐变亮,直至下一次信息爆发。故样品中出现正电位现象,图像将产生亮暗相间的闪烁,而不是稳定的异常变暗。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "现实中这种图像亮暗相间的闪烁几乎看不到,也就是正电位应该不存在。那么是否图像异常暗的现象也不存在?/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "实际情况是样品的荷电现象,存在三种表现形式/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/83c7e731-b1a0-4ca5-b85c-8177b17e0cfa.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品中只可能存在负电位,那么以上三种现象的形成机理是什么?形成样品荷电的真正原因是什么?/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-family: 宋体, SimSun "strongspan style="color: rgb(0, 176, 240) font-family: 宋体, SimSun font-size: 18px "一、荷电现象的形成/span/strong/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "扫描电镜所面对的样品相对于信号激发源“高能电子束”来说,可看成无穷厚。因此在电子束轰击样品时,电子束中的高能电子因无法穿透样品而驻留在样品中。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "高能电子束轰击样品时,会在样品中形成散射电子并激发出样品的二次电子等信息。其中一小部分的二次电子及背散射电子(与入射电子方向相反的散射电子)将溢出样品表面,被探头接收,形成样品表面形貌像的信号源。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "当注入样品的电子数与从样品表面溢出的电子数不相等时,就有可能在样品中形成静电场。从而影响电场部位的二次电子和背散射电子的正常溢出,样品表面形貌像将出现异常亮、异常暗及磨平这三种现象。这就是样品的荷电现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "对样品荷电现象的探讨,将牵扯到一个电子迁移的问题,因此将引入一个漏电能力的概念。“漏电能力”是指样品的漏电子能力,即样品上自由电子的迁移能力。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "物体的体积、密度以及结构都会影响样品中自由电子的迁移能力。体积越小、密度越大、晶体结构越紧密,自由电子在这些物体上的迁移能力即漏电能力就强。体积较大且密度低、晶态较差的物体以及颗粒物的松散堆积体。自由电子的迁移能力一般较差,漏电能力也较差,容易形成电荷堆积。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "1.1 荷电现象的形成过程/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "高能电子束轰击样品时,大量的电子被注入样品,由于扫描电镜所应对的样品足够厚,故在样品中会驻留大量电子。虽然有不少二次电子和背散射电子溢出样品表面,但和驻留电子的数量相比,将形成一个不对等的关系。其结果是大量多余的自由电子存在于样品中。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "如果样品的漏电能力很强,且接地良好。这些多余的自由电子就会通过样品迁移掉,样品中不存在电荷堆积的现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "如果样品的漏电能力较弱,那么自由电子就会在样品的全部或局部形成堆积,并在堆积处形成强弱不等的静电场(负电场),影响该部位二次电子甚至背散射电子的正常溢出。样品表面形貌像的局部或全部将叠加出现异常亮、异常暗、磨平这三种异常现象,对表面形貌像造成程度不等的干扰,形成所谓的样品“荷电现象”。该静电场也称“荷电场”。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "如果样品中各部位的漏电能力强、弱不均匀,自由电子将会从漏电能力强的部位集中迁移到漏电能力弱的部位,并在漏电能力较弱部位堆积形成荷电场。此时样品的荷电现象就只在表面形貌像的某些部位出现。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/f8e09c03-be02-4633-a468-2ef64aede90f.jpg" title="3.png" alt="3.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "1.1 样品的漏电能力和导电性/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "传统理论将样品是否会产生荷电现象归因于样品的导电性。认为只有导电性好的样品不容易产生荷电现象。而样品导电性的判断又以材料名称来决定,金属材料归类于导电性好,非金属材料归类于导电性差。以此观点来解释样品荷电现象常常会产生许多疑惑。充分的实例表明,大量所谓导电性差的非金属样品并不存在荷电现象,如:许多晶体材料、纳米粉体虽然是非金属材质,都不必然会形成所谓的荷电现象。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/1eb2676b-6d05-43df-a1d4-4f314f487d0f.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "许多被公认为导电性好的金属材料,若密度较小、形态松散或形成堆积体也会产生极强的荷电现象。如下图实例所示:/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/ee1ad80d-a703-435a-883d-78acc0f1eaba.jpg" title="AA.png" alt="AA.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "为什么会出现以上这种与传统观念完全不一致的现象?以样品导电性来解释荷电现象存在怎样的问题?/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "荷电现象是静电现象,是由大量自由电子在样品的全部或局部区域形成堆积,产生荷电场,所引发的信息异常溢出。自由电子只要失去通道就会形成堆积,与材料本身导不导电的关系并不那么紧密。也就是说样品导电,仅仅是一个有利于减少荷电影响的因素,但并不充分也不能说是必要。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "形成电子通道的因素众多,除前面所说与物质性质有关的因素如:体积、密度、结构等等,还包括外界因素如:加速电压、样品的堆积程度等。以样品是否导电来做为形成荷电场的唯一成因,那是以偏概全、以孔窥天。存在这种理念对正确应对样品荷电的影响,充分获取样品信息极为不利。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun "strong二、拆解样品荷电现象的三种形态/strong/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "前面介绍了样品的荷电现象表现为三种形态:异常亮、异常暗、表面磨平。并分析了扫描电镜荷电现象的成因是:样品中存在大量自由电子堆积形成的荷电场,造成表面电子信息溢出异常,而这个荷电场只可能是负电场。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "那是什么原因酿成了荷电现象出现这三种表现形式呢? /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "背散射电子能量较高,溢出量仅在荷电场极强时才受影响。故以易受荷电影响的二次电子信息为例来加以探讨。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品中自由电子的聚集点就是形成荷电场的位置。荷电场的强度及深度与加速电压和束流的大小、样品结构和体积以及颗粒物的堆积状态等因素有关联。测试时虽很难直接给出荷电场强度及位置的具体数值,但它存在一定的变化趋势。同等条件下,增大加速电压将使荷电场在样品中所处的位置下沉,达一定量,会引起荷电现象的形态发生改变。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "以荷电场在样品中的位置分布对二次电子溢出量的影响为线索,就比较容易去拆解荷电现象的三种形态:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(A)异常亮:如果入射电子在二次电子溢出区(浅表层)产生较多的二次电子,同时形成的荷电场位于浅表层下方。荷电场会将位于其上方原本无法溢出的二次电子推出样品表面,使得溢出样品表面的二次电子异常增多,图像异常变亮。荷电场足够强大会将周边的二次电子信息都大量推出,图像的形态也就受到影响。现实中,荷电现象出现“异常亮”的几率相对较高,较高的加速电压出现该现象的几率也较大。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun " /span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/737aaa0a-926b-4f28-9975-19c055e45e95.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(B)异常暗:较低的加速电压在一定条件下,会使得荷电场形成于样品二次电子溢出区域的上部。此时荷电场将抑制二次电子的正常溢出,出现异常暗的现象。加速电压越低在样品中累积的自由电子越靠近浅表层上部,荷电场的形成位置将越高,也越容易形成异常暗的现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "极低的加速电压(100V),在样品表面产生的二次电子少,形成荷电场的位置靠近最表层,易形成强烈的异常暗现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "在凹坑上边缘有电荷累积,也易酿成异常暗这种荷电现象。因形成条件较为苛刻,故产生该现象的几率相对较低。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/f760bb93-896d-4854-a6d9-638a23a465d6.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun " br//span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "随着加速电压的提升,表面二次电子产额增加,最关键的是荷电场位置下沉,有些异常暗的现象也会转移成异常亮。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/7d4f23ef-e0a1-45d2-adec-38f881638503.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(C)表面磨平:当样品中形成的荷电场位置较高,与二次电子的溢出区混杂。荷电场会对溢出样品表面的二次电子产生部分的遏制作用,表面细节由于溢出信息的不足而被抑制,出现磨平现象。松软的样品容易出现该现象。出现这一现象时,往往会在样品颗粒的边缘或较大斜面处,由于极表层的二次电子增多,而伴随出现异常亮的现象。 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品出现细节磨平这种荷电现象的几率较异常暗高。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/aba027e0-4f45-48b2-ab47-e4359f611a15.jpg" title="8.png" alt="8.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "当荷电现象出现后,提升加速电压,荷电场位置将下沉,荷电现象的形态会发生变化。趋势:异常暗 磨平 异常亮 正常。这个变化趋势会有跳跃式的变动,但不会逆转。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/59912e7c-5595-4a6a-b844-c7f0ee6140a7.jpg" title="9.png" alt="9.png"//ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun "strong三、小 结/strong/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "当自由电子累积在样品中的某一个部位就会形成静电场,从而影响电场及周边电子信息的正常溢出,使得样品表面形貌像上形成异常亮、异常暗或细节磨平的现象,这个异常现象称为:样品的荷电现象。该静电场也称为“荷电场”。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "二次电子能量较弱,极容易受到荷电场的影响。在探头接收到的样品电子信息中,其含量的占比越多,表面形貌像中出现荷电现象的几率也就越大。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "高能电子束入射样品,形成的电子信息中,只有很少的一部分溢出样品表面,溢出量和入射电子量相差甚远。注入和溢出样品电子数量的不平衡就容易形成荷电场。荷电场是由样品中自由电子的堆积所形成,因此它只可能是负电场。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "自由电子在样品中存在一定迁移能力,迁移能力随样品性质以及样品堆积状态的不同而不同。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "表面连续、结构紧密的晶体材料或体积较小(纳米级别)的样品,电子在这类样品中的迁移能力都很强。电子迁移能力强,样品的漏电能力就好,也就不容易产生荷电现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "表面断续、结构松散、体积较大的非晶态样品,电子在这类样品中迁移能力差,容易积累在某个部位形成荷电场,影响样品表面电子信息的正常溢出,产生所谓的荷电现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "样品中如果各部位的漏电能力强、弱不均,则漏电能力强的部位不会有电荷堆积。自由电子只会堆积在漏电能力弱的部位,形成所谓的局部荷电现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "异常亮、异常暗和磨平是样品荷电现象的三种表现形式。样品表面的二次电子溢出区和荷电场之间的相对位置是造成这三种荷电表像的关键因素。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "荷电场在样品中的位置与样品的性质以及加速电压等因素有关。同等情况下,改变加速电压,荷电场的位置也会跟着发生变化,样品荷电的表现形式也会跟着改变。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "荷电场如果位于样品表面二次电子溢出区下方,则荷电场将把超量的二次电子推出样品表面,形成异常亮的现象。较高加速电压下,观察表面略紧实的样品容易出现该现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "荷电场存在于溢出区的上部且溢出样品表面的二次电子产额少,则荷电场会抑制样品信息的溢出形成异常暗的现象。当用较低的加速电压来观察低密度样品时,或者样品表面有凹坑,在一定条件下就会出现这一现象。采用极低的加速电压(如100V)观察凹坑部位时,最容易出现该现象。由于该现象的形成条件较为苛刻,因此形成的几率也较低。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "荷电场所处位置较高,位于二次电子溢出区内。那么荷电场会对样品二次电子的溢出量产生一定抑制,使得样品的表面形貌细节受到一定程度的掩盖,出现磨平现象。较低加速电压,在观察松散的样品时,容易出现这种现象。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "同等条件下,随着加速电压的提升,荷电场在样品中的位置逐渐下沉,荷电形态也将发生改变。荷电形态的变化趋势是:/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/59e152fb-6c63-420b-a71b-cc449ac98d1c.jpg" title="10.png" alt="10.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "经常会看到这种变化趋势有跳跃的情况,但逆向变化则基本看不到。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "关于加速电压和束流的改变会对样品的荷电现象产生那些影响?这些影响都会带来怎样的结果?我们又该如何正确应对样品的荷电影响?都将在下一篇中通过充分的事例来与大家进行详细探讨。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "strong参考书籍:/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "《扫描电镜与能谱仪分析技术》张大同2009年2月1日/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "《微分析物理及其应用》 丁泽军等 2009年1月 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "中科大出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "《自然辩证法》 恩格斯 于光远等译 1984年10月 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "人民出版社 /span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "《显微传》 章效峰 2015年10月/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun " 清华大学出版社/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "日立S-4800冷场发射扫描电镜操作基础和应用介绍/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "北京天美高新科学仪器有限公司 高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "strong作者简介:/strong/span/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 80px height: 124px " src="https://img1.17img.cn/17img/images/202009/uepic/f18ee0a2-3ea9-48dc-86e2-dd06d5c3e6a9.jpg" title="林中清.jpg" alt="林中清.jpg" width="80" height="124" border="0" vspace="0"/span style="font-family: 宋体, SimSun "林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。/span/pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strongbr//pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200817/556801.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11)/span/strong/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "/span/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200714/553843.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10)/span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200616/551389.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9)/span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200515/538555.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)/span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200414/536016.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200318/534104.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200218/522167.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span/strong/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/strong/a/p
  • 荷电的应对技巧——安徽大学林中清33载经验谈(13)
    p style="text-align: justify text-indent: 2em "为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。/pp style="text-align: justify text-indent: 2em "strong专家约稿招募:/strong若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。/pp style="text-align: justify text-indent: 2em "本期将分享林中清老师为大家整理的33载扫描电镜经验谈之荷电的应对技巧,以飨读者。span style="color: rgb(127, 127, 127) "(本文经授权发布,分享内容为作者个人观点,仅供读者学习参考,不代表本网观点)/span/pp style="text-align: center margin-top: 15px margin-bottom: 15px "span style="font-size: 18px color: rgb(0, 0, 0) "strong荷电的应对技巧——安徽大学林中清33载经验谈(13)/strong/span/pp style="text-align: justify text-indent: 2em "strong【作者按】/strong任何事件的发生都存在着内、外两方面因素。就样品的荷电现象来说,内在因素在上一篇《扫描电镜样品荷电现象成因新解》中有详细的介绍,而加速电压和束流的影响则是最重要和最直接的外部因素。改变加速电压和束流会对样品的荷电现象产生怎样的影响?我们又该如何应对样品荷电的影响?这种种问题都将在本文给出明确的解答。 /psection style="box-sizing: border-box text-align: justify "section style="text-align: center justify-content: center position: static box-sizing: border-box " powered-by="xiumi.us"section style="color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box "p style="margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px "span style="color: rgb(151, 72, 6) font-size: 18px "strong一、 加速电压和束流对样品荷电的影响/strong/span/p/section/sectionsection style="text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box "section style="margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box "section style="margin: 0px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/section/section/section/section/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "span style="text-align: justify text-indent: 2em "充分的事例说明,加速电压和束流的改变会对样品荷电的形态及强弱产生重大影响。提升加速电压,将会增加进入样品的电子总量,也能使荷电场在样品中的位置下沉,这些变化是使样品荷电形态出现改变的源泉。提升束流强度会增加击入样品电子数,加重荷电现象。下面将就此做详细的探讨。/span/pp style="text-align: center "span style="font-size: 18px "strong1.1加速电压的改变对样品荷电的影响/strong/spanstrong/strong/pp style="text-align: justify text-indent: 2em "改变加速电压会使得由电子枪发射出来的电子束能量和亮度(发射亮度)产生同步改变。带来的结果是:电子束的发射亮度和电子能量产生同步的增加或减弱。/pp style="text-align: justify text-indent: 2em "strong电子束的发射亮度定义为:img style="max-width: 100% max-height: 100% width: 74px height: 43px " src="https://img1.17img.cn/17img/images/202010/uepic/8724f64f-0bc7-41c6-b3bc-e60bee9c5ed0.jpg" title="捕获.PNG" alt="捕获.PNG" width="74" height="43"//strong,因此提升发射亮度的结果:电子束束流密度的增加和立体角的减小。增加束流密度意味着,相同面积内电子束注入样品的电子数增加,立体角的减小会使得进入样品的电子更为集中。故提升加速电压将增加注入样品单位面积的电子数,在一定程度上会加强荷电场强度,不利于降低荷电场对测试结果的影响。/pp style="text-align: justify text-indent: 2em "strong改变任何因素对最终结果的影响都遵循着辩证法的规律,存在正、负两个方面结果的竞争。结局如何?取决于各自量变的积累是否使其成为结局的主导,所谓:量变到质变。/strongstrong/strong/pp style="text-align: justify text-indent: 2em "加速电压的增加从电荷量的改变这个方面来说,不利于样品荷电场的减弱。但是加速电压的增加也会带来以下有利于减少荷电场影响的变化:1. 电子能量的提升,大量电子深入样品内部形成堆积,造成样品中荷电场位置的下移,当该位置深入到一定值时会失去对表面电子溢出的影响。 2. 入射电子能量的提升引发背散射电子能量提升,当探头获取的信息主体是背散射电子时,将有利于削弱荷电场对结果的影响。/pp style="text-align: justify text-indent: 2em "下面将依据实例来探究改变加速电压对荷电现象的影响。/pp style="text-align: justify text-indent: 2em "strongA) 加速电压越高,荷电越强/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/1eea1347-275c-4c03-8646-074eae49ef0c.jpg" title="捕获.PNG" alt="捕获.PNG"//pp style="text-align: justify text-indent: 2em "以上三张照片展现的是一种特种布料的截面。照片从下到上可见,布纤维层上涂敷了漆料,漆料上做了多层膜。/pp style="text-align: justify text-indent: 2em "测试条件:分别用1KV、2KV、6KV加速电压对其进行观察。/pp style="text-align: justify text-indent: 2em "样品特性:截面观察,无论是布纤维、油漆层还是薄膜层相对电子束来说都是无穷厚,电子束能量再高也无法击穿。/pp style="text-align: justify text-indent: 2em "漏电能力:1. 处于中间的油漆层是strong密度较大的非晶态固体/strong,漏电能力极差且strong荷电场的位置/strong在样品中较难移动;2. 布纤维密度较大,漏电能力较强,形成的荷电场强度较小;3. 薄膜层是紧密的晶体结构,漏电能力最强,不易形成荷电场。/pp style="text-align: justify text-indent: 2em "结果:提升加速电压,随着注入样品的电子增多,三个部位分别表现为:1.油漆层 1KV注入的电子少,无荷电现象;2KV荷电现象的强度和区域都明显增加,6KV整个油漆区域都存在严重的荷电现象;2. 布纤维 1KV无荷电现象,2KV出现轻微的荷电,6KV荷电现象加重;3. 薄膜层始终无荷电现象。/pp style="text-align: justify text-indent: 2em "strongB)加速电压升高荷电现象减轻/strongstrong/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/306aa525-67a8-4be0-a866-3b5590b121c5.jpg" title="2.PNG" alt="2.PNG"//pp style="text-align: center "strong枝晶MOF/strongstrong/strong/pp style="text-align: justify text-indent: 2em "样品介绍:枝晶MOF,松散的晶体材料(见最后一张)。/pp style="text-align: justify text-indent: 2em "测试条件(AV):100V、200V、300V、400V、600V、700V/pp style="text-align: justify text-indent: 2em "样品特性:样品松软、凹陷,漏电能力较差而电场容易沉降。/pp style="text-align: justify text-indent: 2em "结果:加速电压100V,电子累积于凹陷的上表层。荷电场位置极高,抑制凹陷处二次电子溢出,图像呈异常暗。二次电子产额的不足,造成荷电场对结果影响极大,图像变形严重。/pp style="text-align: justify text-indent: 2em "200V、300V、400V,随着加速电压的提升,荷电场从样品表面下沉,电子信息开始溢出样品。只是此时表面信息还是受荷电场影响,出现磨平或异常亮的现象,但随荷电场的下沉而逐步减弱。/pp style="text-align: justify text-indent: 2em "这是一个晶体材料,加速电压的增加很容易在晶体结构上形成电荷通路,使得样品漏电能力增强而进一步加速荷电场的下降。因此我们可以看到随着加速电压从200V增加到400V荷电现象快速的减弱。/pp style="text-align: justify text-indent: 2em "加速电压增加到600V以后,形成的荷电场更深,至此对样品电子信息的溢出也无法形成影响。荷电现象消失。/pp style="text-align: justify text-indent: 2em "提升加速电压有利于荷电场的下沉减少样品的荷电现象,但缺点是,过高的加速电压会使得样品表面信息出现缺失。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/5b33187f-2953-4615-8e37-654fad2e2829.jpg" title="3.PNG" alt="3.PNG"//pp style="text-align: justify text-indent: 2em "以上实例充分展示,加速电压对样品荷电的影响并不单调,同样遵循辩证法的规律。样品漏电能力是形成荷电场的内因,是根基。改变加速电压会对荷电场在样品中所处的位置及强度产生影响,是形成荷电场最重要的外部因素。实际操作中,选取不同加速电压,依据结果的变化趋势来修正测试参数,是最有效抑制样品荷电场影响的方法之一。/pp style="text-align: justify text-indent: 2em "strongC)增加加速电压对荷电场强度和位置的影响/strong/pp style="text-align: justify text-indent: 2em "以下测试结果组合,将向我们充分展示:随着加速电压增加所带来的荷电场强度增加和荷电场位置下移,这两个增加和减弱样品荷电现象的因素,它们之间各自量变的竞争,将会给测试结果在荷电现象的呈现上,带来怎样的质变。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/8f694a6a-9018-4704-b2db-30bdb0a881dc.jpg" title="4.PNG" alt="4.PNG"//pp style="text-align: justify text-indent: 2em "样品名称:真菌和锑纳米颗粒/pp style="text-align: justify text-indent: 2em "测试条件(AV):1KV、2KV、3KV、5KV、10KV、20KV/pp style="text-align: justify text-indent: 2em "测试结果:1KV,注入样品的电子数较少,荷电场强度弱,对溢出样品表面的电子信息影响不大,测试结果无荷电现象。/pp style="text-align: justify text-indent: 2em "2KV、3KV,注入样品的电子数增多,荷电场强度逐渐加强,而荷电场的位置却处于能充分影响样品电子信息溢出的区间,因此随着加速电压的增加荷电现象加重。/pp style="text-align: justify text-indent: 2em "5KV,10KV、20KV虽然注入样品的电子数进一步增加,但荷电场在样品中的位置同步加深,逐渐失去对溢出样品表面电子信息的影响。荷电现象减弱直至在10KV后再次消失。/pp style="text-align: justify text-indent: 2em "strongD)减速模式与样品的荷电现象/strong/pp style="text-align: justify text-indent: 2em "主流观点认为:在样品台上附加一个减速场将有效的减弱样品荷电的影响。至于具体原因交代的并不清晰。/pp style="text-align: justify text-indent: 2em "实际测试过程中发现,减速场并不存在消除荷电的效果,但会对荷电现象的表现形式产生影响,结果也较为复杂。有可能消除也可能加重荷电现象,或从异常暗转变为异常亮。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/e1cefc7e-789c-4dde-bfb9-f5500d96f208.jpg" title="5.PNG" alt="5.PNG"//pp style="text-align: justify text-indent: 2em "以上都是介孔KIT-6。该样品具有一定的晶体特性,因此拥有一定的漏电能力。而晶体结构和块体形态的差异,使得不同块体以及块体的不同部位,漏电能力都存在些微差异。/pp style="text-align: justify text-indent: 2em "样品下方添加一个负电场(减速场),这个电场也会对样品各部位产生影响。样品各部位的特性及漏电能力不同,受减速场的影响也不同,出现的荷电现象更不相同。虽无法精确定量减速场对最终结果的影响,但因其出现在下方,故该影响以信息增加为主,荷电形态的变化也以由暗到亮为主。/pp style="text-align: center "span style="font-size: 18px "strong1.2 改变束流对样品荷电的影响/strong/span/pp style="text-align: justify text-indent: 2em "降低束流将会减少电子束注入样品的电子数,故束流降低荷电现象必然是减弱。但降低束流会使得电子束激发的样品信息总量下降,溢出样品表面的电子总量也会下降,探头获取样品的表面信息不足,使得样品表面形貌像的质量较差。/pp style="text-align: justify text-indent: 2em "易形成荷电的样品,绝大部分都是由轻元素所组成的非晶态结构,表面信息都不充足。因此降低束流达成减少荷电影响的手段,除非万不得已,很少被使用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/73c23666-7a1b-453f-a5f3-dfffba92be0e.jpg" title="6.PNG" alt="6.PNG"/ /psection style="box-sizing: border-box text-align: justify "section style="text-align: center justify-content: center position: static box-sizing: border-box " powered-by="xiumi.us"section style="color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box "p style="margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px "strongspan style="color: rgb(151, 72, 6) font-size: 18px "二、 样品荷电的应对/span/strong/p/section/sectionsection style="text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box "section style="margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box "section style="margin: 0px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/section/section/section/section/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "不同形态和特性的样品,其荷电现象的成因及形成荷电场的强度和位置都不相同。选用不同能量的电子信息(SE/BSE)形成表面形貌像时受荷电场的影响程度也不同。依据这种种不同来选择合适的测试条件,将有效的克服样品荷电影响。/pp style="text-align: justify text-indent: 2em "应对样品荷电影响的思路递进路线图:/pp style="text-align: justify text-indent: 2em "1. 在保证样品信息不受影响的情况下,尽量选择漏电能力强的部位来测试并增加探头接收背散射电子信息的含量。/pp style="text-align: justify text-indent: 2em "2. 如果采用以上方法无效,应尽量选择形成荷电场强度小的测试条件。比如:合适的加速电压、束流及快速拍照等。/pp style="text-align: justify text-indent: 2em "3. 再无效,可给样品覆盖漏电能力强的物质(蒸金)来降低荷电场的影响。该方法容易形成细节假象,要把握住量。/pp style="text-align: justify text-indent: 2em "以上应对样品荷电现象的思路递进只是一个建议。实际操作可不按这个路径,即可单独运用,也可以组合起来使用。因时而变、因势而取,只要适合就是最好的。/pp style="text-align: justify text-indent: 2em "最高目标:充分克服样品荷电的影响,充分获取真实的样品信息,充分获得样品的高质量表面形貌像。/pp style="text-align: center "span style="font-size: 18px "strong2.1受荷电影响小的样品结构及电子信息/strong/spanstrong/strong/pp style="text-align: justify text-indent: 2em "strong2.1.1受荷电影响小的样品结构/strong/pp style="text-align: justify text-indent: 2em "小颗粒以及连续、紧密的晶体结构漏电能力都很强,在该结构中无法形成荷电场或形成的荷电场强度不大,无需进行特殊处理即可直接观察。该类样品分以下五种情况。/pp style="text-align: justify text-indent: 2em "strongA) 纳米颗粒,直径小于几百纳米的样品/strong/pp style="text-align: justify text-indent: 2em "酒精分散滴在硅片上烘干。直径几百纳米的小颗粒表面能很强、吸附力大,不用考虑固定问题。颗粒越小吸附力越好。/pp style="text-align: justify text-indent: 2em "采用硅片的原因:1. 硅片是半导体,虽导电性不好,但其本身是结构紧密的晶体,电子迁移效果好,漏电能力强,不会形成荷电现象;2. 硅片本身电子信息极弱,抛光好的硅片表面平整,不会形成背底信息;3. 硬度大,有利于样品在其表面充分的站立,获取的样品表面形貌像立体感强。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/48c68779-a0ec-4532-a96d-99daf8bdbf63.jpg" title="7.PNG" alt="7.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/f774d24c-ada8-4f23-8b2a-1f025e1cf718.jpg" title="9.PNG" alt="9.PNG"//pp style="text-align: justify text-indent: 2em "strongB)连续、紧密的晶体结构/strong/pp style="text-align: justify text-indent: 2em "紧密、连续的晶体结构漏电能力较强,自由电子在样品上的迁移也十分容易。这类样品只要做到充分的接地,样品中形成的电荷累积就很少,不存在荷电现象或荷电极其轻微。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/7bc8fc68-2862-476d-b2db-fc94808f7a6a.jpg" title="10.PNG" alt="10.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/ceec775c-414c-401f-af53-d2361e58d006.jpg" title="11.PNG" alt="11.PNG"//pp style="text-align: justify text-indent: 2em "strongC)漏电能力差异大的样品/strong/pp style="text-align: justify text-indent: 2em "一个样品,如果不同部位的漏电能力有很大差异,样品的荷电只会在漏电能力差的部位聚集出现。测试时只需要避开漏电能力较差的部位,结果就不会受到荷电影响。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/8d950643-1090-4f87-8139-4f30594caab4.jpg" title="12.PNG" alt="12.PNG"//pp style="text-align: justify text-indent: 2em "同一个样品,不同部位漏电能力的差异来自两方面原因:1.材料特性上的些微差异,上面已有充分展示;2. 颗粒堆积体的堆积形态,凹陷部位容易积累电子,降低样品整体的漏电能力,该处极易形成荷电现象。/pp style="text-align: justify text-indent: 2em "易形成荷电现象的部位,在测试时需要加以规避。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/fe5a942c-0912-44a2-84f7-4974245817d5.jpg" title="13.PNG" alt="13.PNG"//pp style="text-align: justify text-indent: 2em "strongD)低倍有荷电现象不代表高倍率也会有荷电现象/strongstrong/strong/pp style="text-align: center text-indent: 0em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/56a3afdc-fd4e-4898-b8c3-f51b7944099a.jpg" title="14.PNG" alt="14.PNG"//strong/pp style="text-indent: 0em "strong/strong/pp style="text-align: justify text-indent: 2em "strongE)高倍率有荷电不代表低倍率也会出现荷电现象/strong/pp style="text-indent: 0em text-align: center "strong/strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/1e1dfda1-fd2a-41fa-abf3-6a9c3761ce8a.jpg" title="15.PNG" alt="15.PNG"//pp style="text-align: justify text-indent: 2em "strong2.1.2 选择受荷电影响小的电子信息(BSE)/strong/pp style="text-align: justify text-indent: 2em "strongA)背散射电子能量比较大/strong,其溢出量不容易受到样品荷电场的影响。遇到样品有荷电现象时,选择背散射电子常常可以解决90%的荷电影响。样品仓探头接收的样品信息是以背散射电子为主,是应对样品荷电现象的最有效手段。提升背散射电子能量,也是进一步减少荷电影响的有力方式。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/95c96f8e-7433-444d-9dd7-c09e566d3408.jpg" title="16.PNG" alt="16.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/d94b56cd-bccf-480f-a623-d8b973744eb1.jpg" title="17.PNG" alt="17.PNG"//pp style="text-align: justify text-indent: 2em "改变工作距离,降低上、下探头接收到的样品电子信息中总的二次电子含量,能起到减少样品荷电影响的效果。strong/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/031ef60e-af40-4d9c-84df-4550dd5efc96.jpg" title="18.PNG" alt="18.PNG"//pp style="text-align: justify text-indent: 2em "用样品仓探头观察200纳米以上的细节,清晰度和辨析度(细节分辨能力)都好;观察200纳米到20纳米细节,清晰度随细节变小而逐渐变差但辨析度具有优势;观察10纳米以下细节,清晰度和辨析度都很差。故除非观察10纳米以下的细节,对其它信息合理采用样品仓探头往往更有利。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/af2b57e0-acd1-4670-824a-48c58f3646d0.jpg" title="19.PNG" alt="19.PNG"//pp style="text-align: justify text-indent: 2em "strongB)选择不同角度的二次电子也会对图像荷电现象形成影响/strong/pp style="text-align: justify text-indent: 2em "样品表面二次电子溢出的分布并不均匀。与样品表面夹角大的高角度二次电子,溢出方向与荷电场法线方向基本重合,故比低角度二次电子更容易受荷电场的影响。探头接收的样品电子信息中高角度信息越多,荷电对结果的影响就越大。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/c3ca2fb8-96bb-4393-9a5c-574de4b98c9d.jpg" title="20.PNG" alt="20.PNG"//pp style="text-align: justify text-indent: 2em "以上事例充分说明,利用样品本身的漏电能力以及选用受荷电影响小的电子信息(背散射电子,低角度电子信息)都对减少样品荷电对结果的影响有明显效果。如果采用以上方式无法消除荷电场对测试结果的影响,那又该如何处理?/pp style="text-align: center "span style="font-size: 18px "strong2.2选择形成荷电场强度小的测试条件/strong/spanstrong/strong/pp style="text-align: justify text-indent: 2em "除了加速电压与束流对样品荷电场的形成有直接影响外,电子束的扫描速度也会影响样品中荷电场的形成。用快速的扫描方式成像,对降低样品的荷电影响同样效果显著,只是成像质量较差。这就是CSS和TV成像模式。/pp style="text-align: justify text-indent: 2em "strong2.2.1采用电子束快速扫描方式获取图像/strong/pp style="text-align: justify text-indent: 2em "快速移动的电子束会减少每次扫描时电子在样品中的注入量,并有助于电子在样品中迁移,这都会使样品中的荷电场强度大大减弱。以快速的电子束扫描模式来获取样品表面形貌像,有利于减少样品荷电对测试结果的影响。/pp style="text-align: justify text-indent: 2em "快速扫描获取样品表面形貌像的方式有:CSS和TV模式。/pp style="text-align: justify text-indent: 2em "CSS模式是以快速、多次线扫,然后取几次线扫的平均值做为图像每条线的衬度信息。整幅图像就是由这些以线扫方式所获取的样品表面形貌衬度信息所组成。/pp style="text-align: justify text-indent: 2em "TV模式是以更快速的面扫描方式获取样品表面形貌像,将十几或几十幅图片叠加在一起形成最终的表面形貌像。/pp style="text-align: justify text-indent: 2em "以电子束的快速扫描方式获取样品信息,在降低荷电的影响时,也大大削弱了样品信息的溢出量,使图像质量较差。电子束移动速度越快图像质量越差。TV模式图像质量最差。/pp style="text-align: justify text-indent: 2em "图像漂移是快速扫描成像模式所面对的最大问题。图像漂移越严重,清晰度就越差,严重的漂移会引起图像变形。虽然有些厂家设计了图像漂移校正软件,但都有限度,与慢扫描模式所获取的图像质量还是有一定差距。/pp style="text-align: justify text-indent: 2em "改变测试条件解决样品荷电影响,常常会给扫描电镜的图像带来正、反二方面的结果。用辨证的观念,坚持适度性原则,是选择最佳测试条件的更本保障。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/93c65b6d-7ef6-4019-bb09-087b799012ae.jpg" title="21.PNG" alt="21.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/639d9ab7-f211-419a-88a5-ace79ff57379.jpg" title="22.PNG" alt="22.PNG"//pp style="text-align: justify text-indent: 2em "strong2.2.2样品表面蒸镀漏电能力强的物质(蒸金)/strongstrong/strong/pp style="text-align: justify text-indent: 2em "给样品表面“蒸金”,让漏电能力强的金膜与电子束接触,既可增加样品表面的漏电能力,减少荷电场对结果的影响,还能提升样品电子信息的溢出量,改善表面形貌像的质量。但该方法带来的严重后果是对表面形貌细节的掩盖和改变。/pp style="text-align: justify text-indent: 2em "既要保证获取优质的表面形貌像又要对表面形貌像没有结构性的改变,把握好蒸金的量就极为关键。strong多次、多角度的微量蒸金/strong,是用蒸金的方式获取最佳结果的最有效方法。采用这种方法,可以避免蒸金的死角也容易掌控蒸金的量。如同炒菜时的调味,味不足可以弥补,味太过只能倒掉。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/173a8c15-f847-4f79-bfce-cf8d17a6ca8e.jpg" title="23.PNG" alt="23.PNG"/ /psection style="box-sizing: border-box text-align: justify "section style="text-align: center justify-content: center position: static box-sizing: border-box " powered-by="xiumi.us"section style="color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box "p style="margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px "span style="font-size: 18px "strongspan style="color: rgb(151, 72, 6) "三、 结束语/span/strong/span/p/section/sectionsection style="text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box "section style="margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box "section style="margin: 0px 0% position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box "section style="display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/sectionsection style="display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section style="display: flex flex-flow: row nowrap position: static box-sizing: border-box "section style="display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box "section style="position: static box-sizing: border-box " powered-by="xiumi.us"section class="group-empty" style="display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box "svg viewbox="0 0 1 1" style="float:left line-height:0 width:0 vertical-align:top "/svg/section/section/section/section/section/section/section/section/section/section/section/section/section/section/sectionp style="text-align: justify text-indent: 2em "样品的荷电现象源于电子束轰击样品时,注入样品的电子数和溢出样品表面的电子数之间出现差异。由于溢出样品表面的各种电子总数,只占电子束激发的样品电子信息中,极少的一部分,因此注入的电子数一定会远多于溢出样品表面的电子数。多余出来的电子就在样品中形成自由电子。/pp style="text-align: justify text-indent: 2em "如果样品形态是:/pp style="text-align: justify text-indent: 2em "1. 颗粒较小(几百纳米以下)或连续、紧密的晶态结构。这类样品本身的漏电能力很强,自由电子在样品中迁移十分容易。当样品接地良好,则多余的电子就会从样品中漏除。/pp style="text-align: justify text-indent: 2em "2. 样品颗粒很大且是断续、松散的非晶态结构或小颗粒的松散堆积体。这类样品的漏电能力较差,自由电子会在样品中形成堆积。这些堆积的电子将在堆积处形成静电场,从而影响样品中各种电子信息的正常溢出,在样品的表面形貌像上叠加异常暗、异常亮或者磨平这三种形态的荷电现象。静电场由样品的荷电所形成,因此也称为“荷电场”。/pp style="text-align: justify text-indent: 2em "二次电子能量较弱,由其为主形成的图像最容易受荷电场影响而酿成荷电现象。背散射电子能量较大,溢出量不易受荷电场影响,由其为主形成的图像很少出现荷电现象,且加速电压越大,图像出现荷电现象的几率越低。/pp style="text-align: justify text-indent: 2em "荷电现象只影响图像的形态而对样品形态不产生影响。/pp style="text-align: justify text-indent: 2em "样品的荷电现象有三种形态:异常亮、异常暗、磨平/pp style="text-align: justify text-indent: 2em "异常亮:当样品表面有大量二次电子产生,而荷电场产生在样品信息溢出区的下部。此时荷电场会将位于其上方的二次电子大量推出,荷电场及周边的信息正常溢出得到异常的增加,出现异常亮。该现象往往出现在使用较高加速电压观察堆积体和密度较大但漏电能力较差的样品中。/pp style="text-align: justify text-indent: 2em "异常暗:当荷电场位于样品信息溢出区的上部。此时样品的信息溢出受到荷电场的抑制,从而形成异常暗的现象。这类现象常常出现在采用低加速电压观察较松散样品的凹陷部位。增加加速电压会使得荷电场的位置下降,这种荷电形态容易转变成磨平或异常亮直至消失。/pp style="text-align: justify text-indent: 2em "磨平:样品浅表层有足够的信息产生,而荷电场位置较高,和信号溢出区混杂,荷电场会使得溢出样品的电子异常减少而影响细节分辨。这类现象较易出现在较低加速电压观察松散的样品。增加加速电压,荷电现象也会变为异常亮或消失。 /pp style="text-align: justify text-indent: 2em "应对样品荷电影响的方式有很多。各种应对方式所适合的样品类型及所获取的样品信息也各不相同。/pp style="text-align: justify text-indent: 2em "充分分散样品,使得样品各点充分接地将极为关键。它能消除很多因样品堆积而产生的附加荷电场。/pp style="text-align: justify text-indent: 2em "应对样品荷电应遵循尽量提升样品本身的漏电能力,减少样品上自由电子堆积的原则。充分分散和固定好样品,准确找到样品上漏电能力强的部位进行观察,是十分有效的手段。/pp style="text-align: justify text-indent: 2em "接收受荷电影响小的电子信息(背散射电子、低角度电子信息等)。在保证图像分辨力的基础上,选择形成荷电场小的加速电压和束流,采用快速扫描(CSS\TV模式)获取表面形貌像,这些都是削弱样品荷电影响的有效方式。/pp style="text-align: justify text-indent: 2em "如果以上方式都不奏效,在样品表面形成漏电层(蒸金 )将成为很关键的方法。蒸金应当遵循多次、多角度、微量蒸镀的原则,保证金膜均匀、适量。最佳的效果是即消除荷电影响,又提升图像质量,还对原有的图像细节影响小。/pp style="text-align: justify text-indent: 2em "实际操作过程中往往会发现,应对样品荷电,采用单一的方法并不能给我们带来完美的结果。表现为荷电不能被完全消除,图像质量受到影响。将几种消除荷电的方式复合使用常常能带来更好的效果,是应对样品荷电最有效的手段。/pp style="text-align: justify text-indent: 2em "荷电现象是进行扫描电镜测试时,经常遇到并让测试者十分头痛的问题。正确认识荷电形成的原因,才能找到可行的应对方式。希望本文能给大家提供一定的参考。/pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》 张大同2009年2月1日 span style="text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月 span style="text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月 span style="text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月 清华大学出版社/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "strong style="margin: 0px padding: 0px "作者简介/strong/spanstrong style="margin: 0px padding: 0px ":/strong/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em "span style="margin: 0px padding: 0px text-indent: 2em "img style="max-width: 100% max-height: 100% width: 82px height: 128px float: left " src="https://img1.17img.cn/17img/images/202010/uepic/97fabfc9-e32f-4731-9623-40143ec93450.jpg" title="林.jpg" alt="林.jpg" width="82" height="128"//spanspan style="text-indent: 2em "林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span/pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zt/LZQ" target="_self" style="text-indent: 2em text-decoration: underline "strong style="color: rgb(0, 176, 240) "【系列专题:安徽大学林中清33载扫描电镜经验谈】/strongstrong style="color: rgb(0, 176, 240) "/strong/a/pp style="text-indent: 2em "strong林中清系列约稿互动贴链接/strong(点击留言,与林老师留言互动):/pp style="text-indent: 2em "a href="https://bbs.instrument.com.cn/topic/7656289_1" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "https://bbs.instrument.com.cn/topic/7656289_1/span/strongstrongspan style="color: rgb(0, 176, 240) "/span/strong/a/p
  • 岩石耐崩解试验方法岩石耐崩解试验仪
    岩石耐崩解试验方法岩石耐崩解试验仪:1、试件规格每个试件质量为40-50g,10个试件总质量为400-500g。试件中的颗粒最大尺寸应小于3mm试件形状大致为球形。2、试件数量每次测定选取10个有代表性的试件。测定步骤3、按规定选择岩样,并将试件棱角磨圆4、核对试件名称及编号,填入记录表内。5、将试件放入清的解仪试验简中再将简放入箱在105-110℃温度下干24h后取出,放入干燥器内冷却至室温,称量试验圆简和试件,其质量总和为A。6、将装有试件的圆简放入耐崩解仪水槽中,安装好圆简并联结电机。向水精内注入水解液体(一般为室温下的燕馏水)使水位在圆简轴心以下20mm7、开动前解仪,使试验圆简在约10min内转动200次。8、从水槽中将圆简取出,并将装有试件残留部分的圆简放入烘箱,在 105-110℃温度下干燥24h后取出,冷却后,称量试验圆简和试件残留部分,其质量总和为B。9、重复测定步骤6-8条称重并记录试验圆筒和试件残留部分的质总和C10、倒出圆简中残留试件,将圆简擦干净,称重并记录其质量D。
  • 航天科技与荷兰建立光学仪器联合实验室 Raman-LIBS受关注
    在不久前举行的中国国家航天局与荷兰航天局的合作会谈上,中国航天科技集团公司五院508所作为国内唯一的企业代表受邀参加。  这次会谈为中荷双方在航天领域的后续合作奠定了国家级基础,而508所与荷兰应用科学研究组织(TNO)建立的中荷空间光学仪器联合实验室(以下简称“中荷联合实验室”)也被作为中荷航天合作的典范在会谈中提及。此时,距离实验室成立只有一年多的时间。  强强联手早有渊源  荷兰应用科学研究组织(TNO)在空间仪器方面有50年的研究历史,主要开展对地观测仪器、科学仪器、空间数据应用以及其他一些关键子系统的研究。TNO在光学仪器定标方面有很强的技术优势,特别是其星上定标系统具有结构紧凑、体积小、精度高、稳定性好的特点。  TNO与508所的最初接触始于2008年。2012年4月,双方正式提出建设联合实验室需求后,508所与TNO进行了多次技术专家互访和高层交流,就联合实验室合作内容等进行了洽谈,初步达成了合作意向。2014年3月,双方签署了联合实验室协议书,中荷空间光学仪器联合实验室正式揭牌。  值得一提的是,2013年7月,中荷联合实验室还在合作洽谈期间,508所便与TNO展开了合作,双方签订了大气监测仪星上定标单元的订购合同。该监测仪在轨应用后可对全球的二氧化碳和甲烷排放进行监测,为全球气候变化的科学研究提供重要数据资料。  瞄准国家重大专项“有的放矢”  2014年底,中荷联合实验室确定了在地球环境大气探测、深空探测、对地观测等方向的合作领域,并明确了五个具体项目。对于508所来说,这五个项目与未来我国的国家重大专项紧密相连,其中温室气体探测光谱仪和拉曼-激光诱导击穿光谱仪就非常具有代表性。  温室气体增加对气候和生态系统的影响是一个世界级议题,二氧化碳、甲烷等温室气体的增加会引起气温和降水的变化以及气候的变化,这些变化可能会影响到农业的种植决策、品种格局、品种改良、土地利用等一系列问题。  在“十三五”规划中,我国将发射一颗陆地生态碳监测卫星,其将搭载一台温室气体监测光谱仪,用于全球碳循环的研究。这台光谱仪可以帮助林业和环保部门探测主要温室气体的“来源”、“去向”以及时空分布。按照计划,中荷联合实验室将完成光谱仪用户要求的技术指标合理性仿真分析,形成优化后的技术指标,并将于2018年6月完成温室气体监测光谱仪正样产品的研制。  拉曼-激光诱导击穿光谱仪则结合了拉曼光谱探测技术和激光诱导击穿光谱技术,瞄准了未来国家在深空探测方面的需求。在小行星探测任务中,小型拉曼-激光诱导光谱仪还可以进行小行星土壤、岩石、有机物的探测。  目前,中荷联合实验室已经开展了小型拉曼-激光诱导击穿光谱仪的研究工作。  建设多维度合作平台  中荷联合实验室不仅是中荷双方技术合作的载体,更是聚集和培养高层次国际科技人才,进行国际学术交流的重要平台。  比如,在2014年8月召开的第一届中荷联合实验室学术研讨会上,中荷12位专家就光谱仪设计研制技术、定标技术等方面进行技术报告与交流,取得了很好的效果。今年,中荷联合实验室计划举办首届中荷企业高峰论坛,同时加强与其他研究机构和高校的沟通,并于当年9月举办第二届联合实验室学术交流会。此外,今年年初,由508所与TNO共同出资200万元成立了中荷航天创新基金。双方将瞄准我国“十三五”规划,围绕深空探测、地球环境大气探测、对地观测三个方面启动预先研究工作。
  • 我国自主研发的量子磁力仪载荷实现全球磁场测量
    我国首台自主研发的量子磁力仪载荷——“CPT原子磁场精密测量系统”于7月27日搭载空间新技术试验卫星(SATech-01)发射。11月7日,国产量子磁力仪载荷的无磁伸展臂在轨展开,载荷进入在轨长期工作阶段,目前已获取五天的有效探测数据,实现了全球磁场测量,推进了我国量子磁力仪的空间应用研究。CPT原子磁场精密测量系统由CPT原子/量子磁力仪、AMR磁阻磁力仪、NST星敏感器、无磁伸展臂组成,由中国科学院国家空间科学中心太阳活动和空间天气重点实验室、复杂航天系统与电子信息技术重点实验室,以及中科院沈阳自动化研究所联合研制。无磁伸展臂一次性展开至4.35m后,处于伸展臂顶端的CPT原子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器远离卫星磁干扰和遮挡,开始获取有效探测数据。CPT原子/量子磁力仪在轨测量噪声峰峰值0.1nT。NST星敏感器获取了卫星在不同模式、不同时段下伸展臂的姿态变化实时数据,结合AMR磁阻磁力仪的三轴磁场探测,首次在轨验证了磁场矢量和姿态一体化同步探测技术。国产量子磁力仪首次全球磁场勘测图(空间中心太阳活动与空间天气重点实验室供图)CPT原子磁场精密测量系统载荷(空间中心、沈阳自动化所供图)无磁伸展臂地面展开测试(沈阳自动化所、空间中心和微小卫星研究院供图)CPT原子磁场精密测量系统伸展臂在轨展开状态示意图(微小卫星研究院供图)CPT原子磁力仪和AMR磁阻磁力仪在轨测量结果(空间中心供图)NST星敏感器相对于卫星本体坐标系的测试结果(空间中心、中科新伦琴NST星敏团队提供供图)
  • 一批空间科学实验载荷和样品随天舟五号奔赴天宫
    16日,记者从中国科学院空间应用工程与技术中心获悉,由中国科学院牵头负责的空间应用系统近日随天舟五号货运飞船上行了一批空间站舱内外科学实验载荷、实验单元及样品、支持类设备、备品备件等应用物资。其中空间冷原子干涉仪将基于天和核心舱高微重力科学实验柜,开展空间冷原子干涉等效原理验证实验。空间冷原子干涉仪是高精度加速度与转动的测量仪器,可服务于高精度重力测量和前沿科学问题探索研究。变重力沸腾实验装置将基于问天实验舱变重力科学实验柜,开展宽域(0—2g)、稳定、长时间的不同重力条件下池沸腾传热特性与气泡动力学行为研究,揭示重力对沸腾传热特性的影响机制,服务天地不同重力环境热能高效利用。变重力颗粒振动实验装置将基于问天实验舱变重力科学实验柜,开展不同重力条件下从静态松堆积到滑坡流变规律、三维密集颗粒物质中埋置物的运动行为等研究,可为空间不同重力场下颗粒物质操作、地面地质灾害防治和工程建设等应用提供理论指导。细胞实验单元上行生保支持装置用于支持细胞实验样品上行,将基于问天实验舱生物技术实验柜开展人骨髓间充质干细胞骨向诱导分化实验及小鼠成肌细胞自噬诱导分化实验。
  • 小载荷疲劳测试,那都不是事儿~
    疲劳性能作为材料的一项基本性能指标,在日常的测试中,我们会碰到各种各样的挑战。其中有一些材料:如生物材料、电子元器件等,所用到的载荷较小,因此对试验设备配置的要求也更高。您是否还在苦苦找寻如何进行小载荷疲劳测试的配置?您是否还在担心小载荷疲劳测试结果不稳定且易受影响?别慌!英斯特朗给你支招!一般来说,低于10N的测试我们称之为小载荷测试。此类测试中有各种因素影响测试结果,如试样的制备、夹持和测量误差都有可能会导致测试结果的显著差异。英斯特朗Eletropuls动静态万能试验机结合专利的Dynacell动态载荷传感器以及基于刚度的调谐方式可实现精确的小载荷疲劳测试。另外,可配置高低温环境箱、水浴槽和非接触式视频引伸计等进行试样在特定环境条件下的材料力学性能。那么英斯特朗Eletropuls动静态万能试验机到底可以做哪些小载荷疲劳测试呢?让我们一起来一睹为快!英斯特朗小载荷测试应用案例1软组织测试一般而言,软组织材料如水凝胶、硅胶、树脂等,测试力值相对较低,因此,测试设备的配置和测试方法对测试结果的准确性至关重要。Instron电子动静态万能试验机E1000非常适用于对软组织材料的循环或疲劳测试。在此类测试中,E1000将会配合小载荷传感器如250N Dynacell载荷传感器、100N、50N或10N静态载荷传感器用于更精确的载荷测试。以下为使用E1000配合250N Dyancell载荷传感器及水浴箱进行的水凝胶的动态拉伸测试,测试条件为载荷1±0.5N,2Hz。此测试优势在于应用250N Dynacell载荷传感器消除惯性力,并使用高级幅度控制方式确保载荷峰值。同时如需要消除测试过程中的外部噪音,可在软件中设置过滤消除噪音功能,确保得到您想要的测试数据。2金属薄片测试此测试是根据标准ASTM B593对电子元器件如电路板上、插座上的铜合金材料进行弯曲疲劳性能进行验证,确认其疲劳寿命。ASTM B593在该测试中,由于加载链运动会产生惯性力,使用Instron专利Dynacell载荷传感器可以减轻这种影响。由于惯性力和加载链共振问题,在任何试验机上实现对柔性样品的纯载荷控制历来都具有挑战性。ElectroPuls基于刚度的调谐考虑了这些因素,可以更好地实现柔性样品的载荷控制测试。3电子元器件薄片测试该测试是对一种较小较薄的电子元器件材料进行循环测试。由于样品载荷达到mN级别,测试难度较大,无法进行自动调谐,故需进行手动回路调谐。且经过空载下的噪音比较,显示夹具的重量对于噪音的产生有很大影响。故我们最终通过使用客户自制夹具(重量仅为几克)来减轻噪音影响(下图左)。下图右显示采用客户自制轻夹具空载噪音低至±1mN。该测试使用Instron Electropuls E3000动静态测试系统配置10N载荷传感器。如需消除噪音,可开启波形过滤功能,但由于客户要求最原始数据,因此未启用该功能。测试条件:载荷峰值-25 mN ,80mN,位移振幅控±0.5mm,10Hz,200周期循环测试英斯特朗ElectroPuls动静态万能试验机测试范围广泛,可实现从单轴试验到拉扭双轴测试。不仅可用于小载荷疲劳测试,同样可用于金属、塑料等材料测试,其最大测试能力可达到10kN/100Nm。ElectroPuls,以更简单、更智能、更安全的方式满足您的测试需求。如您需了解更多英斯特朗有限公司,请拨打英斯特朗官方热线:400-820-2006。
  • 岛津鼎力支持药典新型实验室仪器与耗材实操演示交流会
    2024年4月16日-18日,“药典新型实验室仪器与耗材实操演示交流会”在南京国际展览中心顺利召开。会议旨在为同行们提供更好地学习应用药典收载的分析技术,了解与掌握近年来药典收录的各类新型仪器与耗材,从而将其更广泛地用于我国的新药研发与质控之中,同时促进我国实验室仪器与耗材企业的创新和发展。岛津企业管理(中国)有限公司、岛津(上海)实验器材有限公司、岛津(广州)检测技术有限公司(以下统称“岛津”)作为合作单位鼎力支持本次会议。会议热点1、吸入制剂、缓释制剂、透皮制剂等复杂制剂制备2、中药安全性控制3、手性药物拆分4、中药物质基础研究5、复杂制剂质量控制和检测6、质谱联用技术7、成像质谱显微镜技术8、超临界流体色谱技术岛津专题报告受主办方邀请,岛津中国创新中心资深应用专家董静博士发表题为“成像质谱显微镜在中药品质评价研究中的应用探索”。董博士以目前传统色谱质谱分析存在的挑战为起点,介绍了成像质谱技术经过三十年的发展,逐渐应用于中药相关研究,通过光学图像和质谱图像的融合能够为中药特性成分空间分布研究提供很好的解决方案。董博士介绍了岛津与国内研究机构开展合作情况,在较早期如开展姜黄、人参指标成分的基本空间分布研究外,目前已经延伸至药材品质及饮片炮制工艺研究,通过多个案例展示成像技术在“产地-空间-含量”、“炮制方式-空间-含量”等应用前景。岛津中国创新中心资深应用专家董静博士岛津专访主办方在本次会议邀请岛津参与视频专访活动,岛津中国分析计测事业部市场部丰伟刚先生介绍了岛津在2024年紧跟中国法规变化,立足行业热点、难点,基于客户需求,开发整体解决方案和特色分析技术,岛津积极与国内药品检验机构、研究机构开展药品监管和前沿性课题合作,并重点介绍了质谱成像技术在中药品质、化药高端制剂中的研究应用,MALDI-TOF在辅料杂质安全性监测、抗生素聚合物杂质质谱研究、多肽类药物分析方案中的应用。岛津展台岛津在本次会议设立展台展示了中药、化药、药用辅料、药包材、生物药等药品质控和研发解决方案、热点项目应用文集、消耗品解决方案、第三方检测解决方案,多位药品检验机构专家、企业参会代表莅临岛津展位,阅读、下载电子资料。多位行业专家、企业研究机构莅临岛津展位,了解岛津最新解决方案和新技术,针对光散射、质谱成像、MALDI-TOF、透皮制剂、内源性毒性物质等话题开展了深入交流和讨论。本文内容非商业广告,仅供专业人士参考。
  • “夸父一号”卫星载荷“硬X射线成像仪”首图发布
    2022年11月21日下午,“夸父一号”(ASO-S)载荷“硬X射线成像仪”(HXI)首图发布会在中国科学院紫金山天文台举行,会议同时向全国太阳物理同行网络直播。“夸父一号”卫星的全称为“先进天基太阳天文台”(ASO-S),于2022年10月9日在酒泉卫星中心成功发射。作为中国首颗综合性太阳探测卫星,“夸父一号”卫星的科学目标瞄准“一磁两暴”,即同时观测太阳磁场及太阳上两类最剧烈的爆发现象―耀斑和日冕物质抛射,研究它们的形成、演化、相互作用和彼此关联,同时为空间天气预报提供支持。作为卫星三大载荷之一的“硬X射线成像仪”,由中国科学院紫金山天文台牵头负责研制,承担着“一磁两暴”中观测太阳耀斑非热辐射的任务。ASO-S卫星工程首席科学家甘为群主持了发布会。在发布会上,HXI载荷主任设计师张哲首先介绍了ASO-S卫星和HXI载荷的设计、研制、发射及在轨早期梗概,然后详细展示了卫星入轨一个多月以来HXI载荷开展的各项在轨测试和定标工作,结果表明HXI载荷状态正常,各项功能性能均满足设计指标要求,已顺利投入科学观测活动,后续将继续配合科学需求,做好仪器功能性能的进一步优化。图 1. HXI观测到的一个太阳耀斑,是一个较小的C级耀斑,发生在2022年10月22日。此图为HXI分析软件测试版中的耀斑光变。图 2. 左图展示了2022年11月11日01时发生的一个耀斑图像,背景是SDO卫星拍摄的AIA 1700 Å图像,叠加的等值线为HXI两个能段的成像(25-30和30-35 keV,注意这里的图像尚未进行光栅定标,位置为平移对齐,但图像和太阳自转轴的倾角以及平台抖动带来的影响均已修正),可以看出经典的双足点源结构,且其中一个在高能具有精细的双源结构;右图显示了该耀斑在全日面图像上的位置。图 3. HXI观测到的2022年11月11日03时耀斑的光变(左)及成像(右)。左图分别展示了全开探测器、背景探测器的光变和10-300 keV的动态能谱图,右图为峰值期间AIA 1700 Å图像和叠加的HXI 25-30 keV的硬X射线源。两者的一致性充分说明HXI优异的成像性能和成像算法的正确性。随后,HXI载荷数据科学家苏杨就HXI在轨观测数据及结果进行了详细解读。首先介绍了HXI的科学目标、性能参数、数据特点,科学团队在发射前、后的一系列数据、软件、算法、模拟方面的准备工作,然后重点介绍了HXI开机以来数据的处理分析和成像结果。通过对比11月11日爆发的“双十一”系列耀斑的HXI数据和SDO/AIA图像,表明HXI各项功能指标达到预期目标,准直器性能、对齐精度、指向镜数据、探测器性能、成像算法、修正算法、能量定标算法均达到理想的效果。更重要的是,在准直器前后1.2米距离上最难对齐的36微米节距光栅子准直器(最高分辨率达到3.2角秒)在成像中也表现突出,这是很难得的一点。这说明在尚未进行光栅定标的情况下成像的优越性能已经超过HXI团队的预期,未来在进行详细的光栅子准直器定标后预计会达到更好的成像质量。卫星工程首席科学家甘为群总结,卫星发射才42天,HXI开机不足34天,其硬件团队就完成了绝大部分的在轨测试工作,证明了HXI在轨性能几乎完美地达到了预期的各项技术指标,为科学团队出成果创造了绝佳条件。HXI科学团队这段时间夜以继日,加班加点,由于准备充分,在HXI开机的第20天逮到第一个M级耀斑的当晚就获得了首幅太阳硬X射线图像。经过多方比对并经后续观测反复确认,这是我国首次获得太阳硬X射线图像,也是当下国际上地球视角唯一的太阳硬X射线像,其图像质量达到了国际先进水平。硬X射线成像原理与普通光学成像不同,除了精密的“光学系统”,还需要后端的成像算法等一系列的处理。今天的结果展示,虽然只有几张图,但却代表着0到1质的提升。尤其是HXI硬件团队与科学团队的紧密合作,堪称ASO-S卫星工程的楷模。甘为群希望,在接下来的ASO-S卫星另两个载荷FMG和LST首图发布中能有新的惊喜。ASO-S科学应用系统指挥(代理)、中科院紫金山天文台副台长范一中最后代表台领导对HXI团队取得的成就表示热烈祝贺,也衷心感谢在长达数年的HXI载荷研制过程中,团队成员的辛勤付出和忘我的工作精神,希望在接下来的在轨测试优化和科学观测中继续发扬团结协作传统,精心策划,争取早出成果、出好成果、出大成果。
  • 陈建峰院士:荷电再生技术焕发口罩“新生”
    p  strong仪器信息网讯/strong 面对口罩紧缺的情况,如何重复利用手中的口罩成为公众关注的问题。口罩过滤的原理主要是利用静电吸附以及纤维排列后对超细颗粒和飞沫的阻隔,口罩中间的荷电层对于携带病毒细菌等微粒或飞沫防护起到重要作用。口罩使用过程中,因细菌病毒在静电层的沉积以及哈气(水汽)等导致荷电层静电的消除,都会损伤其过滤效果,甚至失效。重复使用口罩需要解决两点问题:/pp  strong一是如何杀死或者去除沉积到口罩上的新冠病毒等病毒细菌 /strong/ppstrong  二是如何为中间静电层补充静电,如何在不破坏口罩材料及微观结构的情况下,重新将外界电荷转移至中层无纺布。/strong/pp  2月,陈建峰院士团队应对应急时期口罩重复使用的问题,提出开展“口罩荷电再生重复使用技术”研究。团队研究人员通过实验研究,发现采用便携式静电发生器(如家用电器)对普通一次性医用平面无纺布口罩进行二次荷电处理,使其再生静电效应而达到可重复使用的现象,由此提出并形成了“口罩荷电再生重复使用”的技术方法及其导则。首先将使用后的一次性医用无纺布口罩置于56度以上热水泡30分钟消毒处理(参见新型冠状病毒肺炎防控方案(第四版)),随后采用电吹风机、电风扇、电子点火器等对“失效”的口罩进行吹干荷电处理,证实口罩可重新荷电而再生静电效应。/pp style="text-align: center "img width="500" height="334" title="N95口罩.jpg" style="width: 500px height: 334px max-height: 100% max-width: 100% " alt="N95口罩.jpg" src="https://img1.17img.cn/17img/images/202002/uepic/9fa2548c-8d3d-4bf6-876f-4163b5b8a199.jpg" border="0" vspace="0"//pp  在北京化工大学党委的大力支持下,团队研究人员利用学校实验室设备资源搭建口罩过滤性能检测系统,积极开展荷电再生技术方案优化及效果的科学验证。对4类广泛使用的普通口罩(一次性防尘口罩、一次性医用口罩、一次性医用外科口罩、国外进口KF94口罩),进行了荷电再生重复使用实验研究。/pp  再生口罩样品,经国家劳动保护用品质量监督检验中心(北京)检测,结果表明:/pp  3类口罩(一次性医用口罩、一次性医用外科口罩和国外进口KF94口罩)再生后,口罩重要指标(0.1微米微粒过滤效率,即阻隔率)与新口罩相当(衰减约0.5-1.5%) /pp  一次性防尘口罩再生后,其过滤效率较新口罩提升50% /pp  一次性医用外科口罩荷电再生循环10次后,其过滤效率与新口罩相当(衰减约0.5%)。/pp  strong这表明:当前疫情应急时期,口罩重复使用是可行的/strong,可缓解当前市场需求与供给的矛盾,且可节约资源、减少环境污染。近日,“口罩荷电再生重复使用技术”得到中央领导同志充分肯定。/pp  strong口罩再生重复使用操作过程/strong:/pp  1. 热水灭毒:将用过的一次性医用无纺布口罩置于大于 56 ℃热水中浸泡 30 分钟(参考《新型冠状病毒肺炎防控方案(第四版)》56 ℃ 30 分钟可有效灭活病毒),灭活新冠病毒,水 洗去尘埃。水洗后将口罩挂干或晾干。【通常沸水与室温水(按 20 ℃计)1:1 体积比混合 后约为 60 ℃,为提高灭毒杀菌效果,可适当提高沸水比例。注意:热水浸泡灭毒和水洗 过程中不要揉搓口罩,以免破坏其微观结构 最好一人一锅热水泡,以免交叉污染】/pp  2. 荷电再生:将挂干/晾干后的口罩平放在干燥、绝缘材质表面,用电吹风机吹风 10-20 分钟, 出风口与口罩距离约 10 厘米(注意吹风机出口温度,不要太高温度以防止烫坏口罩纤维,可仿照洗发后吹干头发的过程)。或者,用普通电风扇吹口罩约 20 分钟,距离约 5 厘米。或用普通家用电子点火器等静电发生器对口罩进行全面覆盖的“电击”,使口罩重新荷电。/pp  3. 纸屑检验:在绝缘桌面上洒一些干燥的碎纸屑,将荷电再生后的口罩外层接近碎纸屑,距离大于 1 毫米但并未直接接触时,可观察到口罩对碎纸屑的静电吸附现象,则表明口罩荷 电量足够,可以重复使用。【如静电吸附现象不明显,则延长第二步荷电再生的处理时间,再次通过“纸屑吸附”检验再生口罩荷电情况,至荷电量足够,可以重复使用。】/pp  本导则提出的方法,适用于较低风险暴露人员个人参照使用,不建议推荐用于已患病者、 医护人员及实验人员等。本导则仅适用于新冠肺炎疫情防控时期应急使用。/ppbr//p
  • 仪器人的骄傲!北理工研制生命科学载荷首次登入国际空间站
    p  北京时间4日凌晨5时7分,由strong北京理工大学邓玉林教授团队/strong研制的strong“空间环境下在PCR反应中DNA错配规律研究的科学载荷”/strong在美国佛罗里达州肯尼迪空间中心由负责运营国际空间站科学研究平台的NanoRacks公司通过SpaceX公司“猎鹰9号”火箭乘坐龙飞船送往国际空间站。该载荷将在空间辐射及微重力环境下,在轨开展抗体编码基因的突变规律研究。本次搭载项目的顺利实施,是中国空间科学项目首次登入国际空间站,标志着中美空间科学合作取得了“零”的突破。根据双方协议,美方将把北理工校旗带到国际空间站,由宇航员在空间站内展开,这是中国高校校旗首次出现在国际空间站内,意义深远。/pp  本次登入国际空间站的北理工空间生命科学载荷,是科技部重大科学仪器开发专项和国防科工局民用航天专项支持下,由北京理工大学生命学院教授、国际宇航科学院院士邓玉林团队自主创新研制,是继该团队所研制的载荷在2011年神舟八号搭载、2016年长征七号首飞搭载以及2017年天舟一号搭载之后又一次实现太空之旅。此次北理工载荷将被带入到国际空间站美国实验舱,实验数据将传回给北理工研究人员进行后续的科学研究。/pp  span style="color: rgb(255, 0, 0) "strong“小实验”破冰中美太空“大合作”/strong/span/pp  能够由美方搭载,并进入国际空间站,除了北理工在空间生命科学研究领域取得的成绩得到国际充分认可外,也得益于中方团队对相关法律的认真研究,并形成突破。2011年,美国国会曾出台“沃尔夫法案”禁止美国国家航空航天局(NASA)及与NASA有合同关系的美国航天企业与中国航天领域进行任何接触和合作,该法案为组织中美太空合作的“壁垒”。北理工生命学院邓玉林教授团队带着北理工人特有的“敢为天下先”创新精神,大胆尝试通过商业合作模式,在2015年8月与美国NanoRacks公司签署协议,并通过各项审查,为国际空间站带去首个中国项目,受到各方广泛关注。/pp  此次搭载是中美两国30年来在空间领域的首次合作,具有“破冰”之意义,通过商业合作模式实现中美空间站领域合作,也为中美太空合作开辟了新的途径,开创了中美空间领域合作的新局面。/pp  span style="color: rgb(255, 0, 0) "strong“小小”载荷开展“大量”研究/strong/span/pp  本次北理工的空间载荷从关注航天员生命健康切入,延展到空间环境影响微(分子)进化的探索。空间飞行过程中航天员将面临多种健康威胁,其中空间辐射和微重力是导致航天员生理功能失调的重要因素。团队负责人邓玉林介绍到:“在神舟八号载荷实验的研究中,我们发现了在空间环境中DNA变异的一些新现象,从而推断空间环境之于基因突变可能与生物分子进化有着重要的联系。鉴于抗体是人体中较为保守的重要生物学元素,我们提出大胆的创新设想,将抗体编码基因片段作为研究空间环境对分子进化影响的模型,开展了此次空间实验。”/pp  据团队主要成员北京理工大学生命学院副教授李晓琼介绍,此次载荷是采用微型微流控PCR仪,对抗体DNA片段进行在轨飞行状态下的基因扩增,来模拟人类生命的延续与发展。在空间飞行结束后,分析基因突变规律,进而探讨空间辐射及微重力环境下的基因诱变机理。/pp  “这是一项基础性生命科学研究,具有重大的科学意义。团队在国际上首次利用空间环境开展‘微进化’研究,一方面有助于我们认识空间环境对于生物进化规律的影响,另一方面当我们掌握基因突变规律,对其做出相应改变和修饰,以更好的适应环境,对预防和控制疾病有着重要意义,对人类发展具有重要的影响。”团队成员生命学院王睿博士介绍到。/pp  此次空间实验不仅具有理论上的创新,在技术上也做出了多种新的探索。据介绍,团队利用微流控芯片模拟人体发育过程,利用扩增技术模拟细胞中基因复制,实现对生命扩增与发展的动态过程模拟,从而掌握环境对基因扩增的影响 同时,团队突破了在太空变温条件下实现基因扩增的技术难题,“温度过高会给芯片带来巨大的压力,容易产生破裂。2011年‘神八’搭载时,我们就攻克了这项难关——用微流控芯片来实现变温PCR扩增技术,在‘狭小’的载荷仪器中,开展‘大量’的科学研究。”李晓琼说。本次搭载共有两组、12块芯片,60个通道,将对20个基因在空间环境下进行突变规律的研究。“能在体积如此严苛的载荷条件下,实现20种基因的突变规律研究,这一技术在国际上也是领先的。”王睿说。/pp  span style="color: rgb(255, 0, 0) "strong未来还将与欧洲太空局合作/strong/span/pp  神八、长七、天舟一号、国际空间站??每一次搭载都彰显着北理工国防新型交叉学科空间生物与医学工程在仪表、自动控制、信息电子与生命科学、医学的交叉融合方面已经形成特色,展现出雄厚的技术实力,同时也在人才培养和团队建设方面取得了可喜的成绩。这次任务由十余人的队伍完成,分为科学和载荷两个部分,每个部分都由青年教师和学生构成。邓玉林用“敢想、敢干、敢创新”来形容团队中的师生。他说:“无论是科学还是载荷,我们都做到了多项创新,面对空间辐射、复杂机制、规律难以把握、整体实验设计、核心芯片研制等一个又一个难题,我们从老师到博士生,每个人都非常刻苦努力,严格按照时间节点完成,团队开辟了一种有效的模式,‘青年教师+学生’,并密切与企业对接,可以说是非常成功的模式范例。”/pp  邓玉林坦言,一项项科研项目的开展不仅仅收获了丰富的科研成果,更锻炼了学生们攻坚克难的科研态度,加强了师生们的国际交往能力,历练了他们的大局意识、全局精神,对于未来独立科研和技术开发提供了难得的机遇。/pp  近年来,北京理工大学瞄准世界科技前沿,立足服务国家重大战略,充分发挥自身多年来在国防科技领域研究中积累的工程技术优势,加强生物医学工程学科建设,着力学科深度交叉融合,实现了在空间生命科学领域的快速发展。在国家重大项目的资助下,在上级和兄弟单位的大力支持下,抓住机会,实现北理工空间生命载荷的多次搭载,为我国深空探测研究做出贡献,在国际空间研究领域形成影响。下一阶段,北理工与欧洲太空局(ESA)在国际空间站的合作已经启动,相信在未来,北理工将在人类探索宇宙空间的伟大征程中,写下属于自己的精彩笔触。/p
  • 祝贺长春机械院慢拉伸预裂纹(恒载荷)应力腐蚀试验机组在中船重工725所得到成功应用
    截止2013年12月17日,长春机械院慢拉伸应力腐蚀试验机组在中船重工725所得到了成功应用,725所成功获得第一批舰船材料应力腐蚀试验对比数据,该数据复合科研预期。慢拉伸预裂纹(恒载荷)应力腐蚀试验机主要用在检测、研究金属材料在极慢的拉应力和腐蚀介质环境双重作用下的力学性能。还可以用于模拟受恒拉伸力零件在腐蚀环境中的抗腐蚀情况,进行恒载荷预裂纹应力腐蚀试验,检测、研究金属材料在恒拉伸应力和腐蚀介质环境双重作用下的破坏性能。该试验机主机加载机架采用TPHS式双立柱框架组合结构,传动平稳、反应灵敏,速度范围极宽,既能实现以极慢的拉伸速度对试样加载,又具有较快的速度,便于调整试验空间装夹试样。整机采用高精度电子测量,机电伺服加载、数字控制器及计算机控制,具有技术先进、精度高、性能可靠,长时稳定等特点。该试验机配用我院独有的筒形腐蚀容器设计,容器可加热水浴,容器内腐蚀介质温度可控,试验时试样贯穿筒形腐蚀容器,试验操作方便、数据精确。中船重工725所是我国专业从事舰船材料研制和工程应用研究的军工研究所,拥有船体结构材料、有色金属材料、非金属材料、腐蚀与防护技术、特种材料、焊接工艺、自然环境试验等多个重点研究领域,是我国舰船装备发展的中坚力量。目前长春机械院与中船重工725所开展的战略合作,已经结出硕果,这必将推动我国船舶事业的发展;希望长春机械院还要加强院所合作,为维护我国海洋权益,把我国建设成一个新型的海洋大国而贡献自己的力量。关注:【长春机械院】微信号:cimachtest
  • 天宫二号紫外临边探测专项载荷研制通过验收
    p  6月23日,天宫二号紫外临边探测专项载荷在轨指标评价评审会在北京召开,评审组一致同意紫外临边探测专项载荷通过评审。/pp  评审组由北京大学、国家卫星气象中心、北京应用气象研究所、中科院空间总体部、西安光机所、长春光机所和大气物理所等单位专家组成。/pp  评审组专家认为:紫外临边探测专项在国际上首次提出并实现了环形探测新模式,采用环形+前向联合探测新体制实现了多方位、多波段同时大气成份探测,两台载荷的功能和性能指标满足研制任务书要求,考核评定为成功。/pp  天宫二号紫外临边探测专项载荷由中科院长春光学精密机械与物理研究所负责研制。该专项载荷搭载于天宫二号,于2016年9月15日发射升空。发射成功后10小时,该专项载荷加电,1小时10分钟后温控达到稳定状态。中科院大气物理所作为用户单位,在测试项目及内容覆盖了全部功能、外部、内部接口,并满足任务书要求的基础上开展了在轨指标评价工作。空间实验室在轨运行期间,该载荷对地球边缘大气层进行紫外-可见-近红外光谱临边探测,获取地球临边光谱数据。通过大气成分临边反演技术,获取大气成分如O3的垂直分布,并对大气气溶胶等信息进行反演试验性探索。/pp  天宫二号紫外临边探测专项载荷由紫外前向光谱仪和紫外环形成像仪构成,如下图所示,二者具有强互补性。环形成像仪提供大气辐射多方位空间分布与动态的宏观结构,前向光谱仪提供某一方位的精细结构。这是国内首次采用临边观测方式进行大气探测,并且可以实现对大气密度和臭氧等大气痕量气体浓度的同时遥感。/pcenterimg alt="天宫二号紫外临边探测专项载荷研制通过验收" src="http://images.ofweek.com/Upload/News/2017-07/10/nick/1499658005903068332.jpg" width="400" height="141"//centerp style="TEXT-ALIGN: center"  紫外前向光谱仪和紫外环形成像仪/pp  紫外临边探测专项的研制与空间实验室的在轨试验,为地球环境与气候预测、空间天气学应用和紫外姿态敏感单元研究等开辟了新方向,为空间大气临边成像光谱探测的业务化运行奠定基础。该专项载荷在大气痕量气体监测、大气与环境预报、空间天气等领域具有广泛的应用前景。/p
  • “高精度衡器载荷测量仪开发和应用”通过验收
    p 近日,由福建省计量院牵头承担的国家重大科学span class="hrefStyle"仪器/span设备开发专项“高精度衡器载荷测量仪开发和应用”项目以高分通过科技部组织的综合验收,这是全国质检系统承担的国家重大科学仪器设备开发专项中首个完成结题验收的项目。/pp style="TEXT-ALIGN: center TEXT-INDENT: 2em"img title="1492997501807090382.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/8f526cdb-5f1e-4039-b6bb-1a064c67e698.jpg"//pp style="TEXT-ALIGN: left TEXT-INDENT: 2em"验收会由科技部评估中心主持,东南大学校长张广军院士担任专家组组长。专家组通过听取项目验收汇报、审阅相关资料、考察实验现场,经质询和讨论,一致认为:该项目对提升我国大型衡器的整体质量和技术水平具有重要意义,具有重大的经济效益和社会效益前景。同时建议该项目加快工程化和产业化进程,并在国内和国际市场推广应用。/pp style="TEXT-ALIGN: left TEXT-INDENT: 2em"该项目是国际计量领域的一个重大技术创新,研制出的高精度衡器载荷测量仪,具备体积小、重量轻、运输方便、自动化水平高等优点,可实现等同砝码检定大型衡器。该成果的应用意义重大,不仅从根本上解决计量技术机构检定大型衡器难的问题,而且有效助力衡器产业供给侧结构性改革,将有力促进衡器检测技术、制造技术及产品质量的提升。/p
  • 事关核酸检测!北京多个核酸检测点延时服务!
    近期,西城、海淀、通州大兴、石景山等区优化核酸检测网点布局延长多个点位开放时间。西城区49个核酸检测点位延时服务至20点为优化核酸检测服务,更好满足居民核酸检测需求,从8月3日开始,西城区49个点位开放时间延长至20点。海淀区130个核酸检测采样点,开放至18点以后为应对高温天气方便,上班族们晚间进行核酸检测,海淀区优化核酸采样网点布局,延长服务时间。截至8月15日,共有130个采样点18点后仍开放。通州区29个核酸检测点延时另有6个24小时开放通州区优化核酸采样网点布局,延长服务时间,开设“夜场”,目前有29个核酸采样点,延时至20点及以后,最晚的到23点,这些采样点都无需预约,随到随检。此外,还有6个核酸采样点,提供24小时服务。大兴区15个核酸采样点延时服务至21点为满足市民实际需求,方便大家核酸检测,8月1日开始,大兴15个核酸检测采样点,延时服务至21点,大家可以就近选择点位,进行核酸采样。石景山区古城街道两个核酸点位延时服务。为满足辖区居民常态化核酸检测需求,石景山区古城街道延长,辖区2个检测点位开放时间,无需提前预约,详细信息↓↓↓当前境外疫情持续蔓延,国内疫情多地散发,北京连续报告,境外输入确诊病例,零星报告,京外关联输入确诊病例,请市民朋友按规定进行核酸检测,始终绷紧疫情防控这根弦。北京日报(ID:Beijing_Daily)综合健康西城、北京海淀、北京通州发布、这里是大兴、北京石景山【转载请注明来源:北京日报微信公众号】
  • 中国计量院为“夸父一号”卫星载荷提供标定
    近日,我国在酒泉卫星发射中心使用长征二号丁运载火箭,成功将先进天基太阳天文台卫星(夸父一号)发射升空。此前,中国计量科学研究院(以下简称“中国计量院”)对“夸父一号”硬X射线成像仪(HXI)量能器进行了地面标定试验。   据了解,HXI是“夸父一号”科学卫星的三大载荷之一,主要科学目标是在约(30~200)keV能量段,对太阳耀斑的高能辐射进行能谱和成像观测。   2018年5月至2021年7月,中科院紫金山天文台团队和中国计量院团队,利用中国计量院单能X射线标定装置,对“夸父一号”HXI量能器进行了地面标定试验。包括初样、鉴定件和正样共129个探测器的探测效率、能量线性和能量分辨率等指标的精确标定,总试验时长超过1000机时,能量范围覆盖(30-169)keV。   期间,为优化标定试验结果,中国计量院团队对单能X射线源的核心部件——单色器进行了优化设计,大大提高了单能X射线的注量率水平和通量稳定性。   该试验相当于为星载探测器刻划了精密的刻线,使它能精准地测得宇宙射线的信息,为天体物理科学研究提供准确、有价值的观测数据,为“夸父一号”将开展的太阳观测奠定了坚实基础,有望提升我国在空间科学领域的国际影响力与竞争力。
  • 上海技物所研制光学载荷随风云三号G星顺利入轨
    北京时间2023年4月16日9时36分,风云三号G星在酒泉卫星发射中心成功发射。上海技物所研制中分辨率光谱成像仪(降水型)、高精度定标器、短波红外偏振多角度成像仪和红外地平仪(已在卫星入轨初期捕获地球)随星入轨,将按既定程序开展工作。   中分辨率光谱成像仪(降水型)作为业务主载荷之一,单轨道规则刈幅达1200公里,可获取可见光/红外云图以及云顶温度、云顶高度、有效粒子半径和云形态学方面参数,辅助判断降水云的存在。   高精度定标器和短波红外偏振多角度成像仪是星上两个试验载荷。高精度定标器将首次开展在轨太阳交叉定标技术验证试验,并将高精度辐射定标结果传递给同平台或其他卫星可见/近红外遥感仪器,为星上光学载荷测量结果的统一定一个“标尺”,为未来卫星监测资料融合应用、建立气候数据集奠定研究基础。   短波红外偏振多角度成像仪使国内首次具备短波红外波段的偏振多角度卫星观测能力,将探索为实现云、气溶胶和地表等相关参数的高精度定量化反演提供观测信息,从而提高在天气预报、气候变化和地球环境监测领域等方面的能力。
  • 北斗三号卫星低能离子能谱仪载荷研制成功
    由中国科学技术大学物理学院副教授单旭为主任设计师,地球和空间科学学院、物理学院组成的空间等离子体科学探测载荷研制团队,联合航天科技集团五院513所等单位,近期成功研制北斗三号卫星低能离子探测载荷。载荷研制成果论文被《开放天文学》期刊接受发表,首次在轨观测结果在线发表于《中国科学-技术科学》期刊。 北斗三号卫星低能离子能谱仪载荷在轨运行示意图 课题组供图空间低能离子是空间等离子体探测的基本要素,卫星载荷的原位探测数据不仅可以用来研究太阳活动及其太阳风对行星际空间和行星磁场的作用、磁层结构及其动力学、磁场重联和环电流现象等空间物理,而且还能对空间天气极端事件予以预警,为卫星或飞船的安全运行提供保障。因此,绝大部分的探测卫星都会携带空间等离子体探测载荷。与国际先进的低能粒子载荷相比,我国的同类载荷相对落后,获得第一手的基准数据较少,相关科学和应用研究受限。在中国科学院院士王水、窦贤康等人的倡议下,2012年中国科大地球和空间科学学院汪毓明团队、物理学院陈向军团队和安琪/刘树彬团队联合组建了中国科大空间低能粒子有效载荷研制团队,由单旭任载荷主任设计师,带领团队进行关键技术攻关。2014年团队完成了空间低能离子谱仪原理样机和性能定标,2015年2月顺利通过专家组评审。2016年3月团队承担实践十八号卫星载荷研制任务,得益于前期的技术攻关,在一年时间内完成了原理样机、鉴定件和飞行件航天产品研制,并于2017年2月交付装星,7月卫星发射。载荷研制成果论文于2019年发表在《中国科学-技术科学》期刊。审稿专家表示:“看到中国大学研制出紧凑、功能强大的空间离子谱仪,非常令人鼓舞。与同类仪器参数相比,该谱仪比其它离子谱仪具有更高的性能”。2018年团队承担北斗三号卫星等离子体探测包的低能离子载荷研制任务,在上款载荷的基础上,进一步拓展了离子能量探测范围;提高了能量和角度分辨率;减小了载荷功耗、尺寸和重量。载荷飞行件产品于2019年11月交付,2020年6月卫星发射成功。2020年8月27日首次开机测试正常,2021年9月23日正式开始科学数据测量。其中,首次在轨测量得出的离子微分通量定量数据,与美国国家航空航天局的Van Allan探测结果一致,数据质量达到国际先进水平。相关研究结果近期在线发表在《中国科学-技术科学》期刊上,审稿专家认为:“结果非常具有吸引力,获取的科学数据对研究磁层离子动力学和监测空间环境很重要”。北斗三号卫星低能离子载荷的成功研制,标志着中国科大空间低能粒子载荷研制团队和平台建设日趋成熟,已经具备承担相关国家空间探测计划任务的能力。中国科大单旭为上述论文的第一作者和通讯作者,缪彬副研究员为首次在轨观测成果论文的共同第一作者,汪毓明教授为项目负责人、论文的共同通讯作者。相关论文信息:https://doi.org/10.1007/s11431-022-2143-6https://doi.org/10.1007/s11431-018-9288-8
  • 北京理工大学“空间生物培养与分析载荷技术及应用”技术成果成功通过专家鉴定
    p 2018年7月10日,中国分析测试协会组织专家组在北京对北京理工大学自主设计、研发的“空间生物培养与分析载荷技术及应用”科技成果进行了技术鉴定。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/94ac7c47-8eca-4ed1-b33d-814e86c3b5df.jpg" style="float:none " title="0723 01.jpg"//pp style="text-align: center "strong成果鉴定会会场/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/0a9b2e48-ea30-438c-ad16-0d46bb1ea585.jpg" style="float:none " title="0723 02.jpg"//pp style="text-align: center "strong鉴定专家组听取研究报告/strong/pp 会议由中国分析测试协会技术部主任汪正范研究员主持召开。首先,北京理工大学科学技术研究院胡晓珉秘书长代表校领导对中国分析测试协会组织本次会议表示感谢,对到会的各位专家表示感谢,并希望专家组对技术成果给予客观、公正的评价。中国分析测试协会常务秘书长张渝英研究员代表协会发言,指出中国分析测试协会对成果鉴定工作高度重视,安排专职部门和人员负责此项工作;本次会议邀请了空间研究领域非常有影响力的专家,对各位专家的拨冗出席表示感谢;推荐柴之芳院士做本次会议专家组组长,姜国华研究员和白明生研究员担任副组长。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13991e0e-eb1b-4e8b-96c7-e5ae329d5373.jpg" title="image003.jpg"//pp style="text-align: center "strong中国分析测试协会技术部主任汪正范研究员主持召开会议/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/a72f17ef-0c8c-4810-bd79-656f5067fe40.jpg" title="0723 03.jpg"//pp style="text-align: center "strong北京理工大学科学技术研究院胡晓珉秘书长代表校领导发言/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1c5f5a5a-4690-40ec-b3b7-c4be5e410b4a.jpg" style="float:none " title="image005.jpg"//pp style="text-align: center "strong中国分析测试协会常务秘书长张渝英研究员代表协会发言/strong/pp 专家组组长柴之芳院士主持了会议的汇报和讨论环节。专家组成员认真听取了项目的研究报告、查新报告及应用报告,审查了专利、论文、其它相关技术文件及成果证明资料,并对项目的技术及应用核心点进行了详细讨论和质询,项目组成员对专家提出的问题给予了详尽的解答和阐述。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/3fe30365-fc92-4794-a937-0e21383a3bd0.jpg" style="float: none width: 597px height: 583px " title="image006.jpg" width="597" height="583"//pp style="text-align: center "strong专家组组长柴之芳院士发言/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/6b1829d2-c24c-49bb-a515-428c155bf229.jpg" style="float:none " title="image007.jpg"//pp style="text-align: center "strong专家组副组长姜国华研究员发言/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/742ccb85-1154-4412-bc75-2d740b10e13e.jpg" style="float:none " title="image008.jpg"//pp style="text-align: center "strong专家组副组长白明生研究员发言/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/985e3e1d-8939-4319-8a80-2e0607a5bf06.jpg" style="float:none " title="image009.jpg"//pp style="text-align: center "strong项目负责人邓玉林教授做成果汇报并回答专家提问/strong/pp 专家组在听取了项目研究报告后,每位专家都对该成果的核心技术提出了宝贵意见,对“空间生物培养与分析载荷技术及应用”科技成果给予了高度肯定。/pp 专家组认为该项目在满足空间生命科学载荷的应用需求前提下,经过自主研发形成了包含“空间微流控芯片设计、制造技术”、“空间微流控芯片生物培养与在线观测技术”、“空间生物分析微流控芯片技术”及“空间生物载荷集成关键技术”四个创新点的研究成果,并开发了新型空间生物有效试验载荷,圆满完成空间生物培养及分析装置的四次搭载任务。该成果技术先进、创新性强,技术总体达到国际先进水平,其中多种空间生物微流控芯片的设计和检测技术达到国际领先水平。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/cff355d3-e819-4af4-a7c6-a93bbcd8090a.jpg" title="0723 04.jpg"//pp style="text-align: center "strong鉴定会专家组成员合影/strong/pp 鉴定会的最后,柴之芳院士总结发言,认为北京理工大学邓玉林教授带领的创新团队,经过十余年艰苦研发,突破了多项关键技术,创建了多个空间生物培养及分析实验平台,形成了具有“新、高、难”特点的技术成果,成功完成了4次空间搭载实验,培养了一支多学科融合的载荷技术研发队伍,为我国载人航天事业发展提供了重要的支持和保障。期望北京理工大学邓玉林教授团队再接再厉,在现有成果基础上,以科学研究为导向更加深入地开展空间生物分析检测技术及装置研究,再创辉煌!/pp style="text-align: right "北京理工大学供稿/ppbr//p
  • 北斗三号卫星低能离子能谱仪载荷研制成功
    记者27日从中国科学技术大学了解到,由该校物理学院单旭副教授为主任设计师,地球和空间科学学院以及物理学院组成的空间等离子体科学探测载荷研制团队,联合航天五院513所等单位,近期成功研制北斗三号卫星低能离子探测载荷(LEIS)。据了解,空间低能离子是空间等离子体探测的基本要素,卫星载荷的原位探测数据不仅可以用来研究太阳活动及太阳风对行星际空间和行星磁场的作用、磁层结构及其动力学、磁场重联和环电流现象等空间物理,而且还能对空间天气极端事件予以预警,为卫星或飞船的安全运行提供保障。因此,绝大部分的探测卫星都会携带空间等离子体探测载荷。与国际先进的低能粒子载荷相比,我国的同类载荷相对落后,获得第一手的基准数据较少,相关科学和应用研究受限。2012年,中国科大空间低能粒子有效载荷研制团队组建。2014年,团队完成了空间低能离子谱仪原理样机和性能定标。2016年3月,团队承担实践十八号卫星载荷研制任务,得益于前期的技术攻关,在一年时间内完成了原理样机、鉴定件和飞行件航天产品研制,并于2017年2月交付装星,7月卫星发射。专家对此评价:“与同类仪器参数相比,该谱仪比其他离子谱仪具有更高的性能。”2018年,团队承担北斗三号卫星等离子体探测包的低能离子载荷研制任务,在实践十八号卫星载荷的基础上,进一步拓展了离子能量探测范围,提高了能量和角度分辨率,减小了载荷功耗、尺寸和重量。载荷飞行件产品于2019年11月交付;2020年6月卫星发射成功;2020年8月27日首次开机测试正常;2021年9月23日正式开始科学数据测量,与美国航空航天局的范艾伦探测器(Van Allan)探测结果一致,数据质量达到国际先进水平。相关研究结果近期在线发表于《中国科学︰技术科学》上。
  • 东方德菲演示实验室再添新成员——LSA MOB-M便携式接触角测量仪
    近日,东方德菲公司演示实验室再添新成员——LSA MOB-M便携式接触角测量仪,我公司演示实验室可以直接为感兴趣的客户提供仪器演示、免费样品测试等服务。欢迎对LAUDA视频光学接触角测量仪感兴趣的客户惠临参观。LSA MOB-M便携式接触角测量仪是一款基于俯视法的手持便携式接触角测量仪,重量只有1kg,可以方便地携带到包括野外的任何测试地点。它适合用于测量液体在各种固体表面的接触角或润湿/铺展程度,测量不受样品尺寸的大小或形貌限制。 LSA MOB-M 便携式接触角测量仪- 手动式高精度数显计量注射单元- 单色高均匀LED冷光源,图像亮度由软件调节- 同轴光整体俯视视频系统,视野范围:12mm×8mm 特点:- 轴对称和不规则液滴的测量- 小角度,超润湿表面的测量 - 凸凹表面的测量- 既可放在样品表面上测量,也可与样品保持25mm无损伤样品测量- 接触面积值指数(ACI)也作为润湿表征参数 应用领域:- 样品清洗或等离子体处理后,清洁度评估- 手机或液晶显示屏大面积全自动测量 技术参数:接触角测量范围:0~180°;精度:±0.1°(0~90°);±0.5°(90~180°轴对称液滴)视频图像系统:-镜头:高分辨率、低变形率高速工业定焦视觉镜头-最大分辨率: 752×480 pixel-最高速度:60 images/s-视野范围:12 mm×8 mm光源:单色高均匀LED冷光源,亮度由软件控制加液单元:自带手动数显精密微量加液系统;加液精度 0.004 μl,准确度±0.01 μl仪器尺寸及重量:77×60×150mm(LxWxH);1Kg
  • 高光谱综合观测卫星EMI载荷进场动员会顺利召开
    7月7日,合肥研究院航天工程办组织召开了高光谱综合观测卫星大气痕量差分吸收光谱仪(EMI)进场动员会。合肥研究院院长刘建国,安光所领导班子成员以及试验队队员参加动员会,动员会由安光所副所长熊伟主持。   安光所所长郑小兵宣读了试验队任命文件并做进场动员,要求试验队各岗位人员在发射基地始终秉承“严肃认真、周到细致、稳妥可靠、万无一失”十六字方针,认真做好发射前的各项准备和测试工作,确保载荷质量和安全,确保载荷在轨正常运行。   刘建国为试验队代表授旗,并作动员讲话。他指出,安光所十多年来一直致力于卫星载荷的研发,近几年研制的载荷相继搭载高光谱观测卫星、大气环境监测卫星发射入轨,本次EMI载荷发射恰逢党的二十大即将召开,意义非常重大。展望未来,希望在座的优秀青年科技骨干,围绕科学院聚焦主责主业的总体要求,承担更加重要的研制任务。他表示,合肥研究院将做好外场试验期间的后勤保障服务工作,期待试验队凯旋归来。   大气痕量气体差分吸收光谱仪(EMI)可通过对多种气体吸收光谱“指纹”信息的准确识别,实现对全球二氧化氮、二氧化硫、臭氧和甲醛等污染气体的监测。   动员会之前,试验队队员参加了行前安全、保密教育等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制